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Abstract
Objective This prospective multicenter multireader study evaluated the performance of 40% scan-time reduced spinal
magnetic resonance imaging (MRI) reconstructed with deep learning (DL).
Methods A total of 61 patients underwent standard of care (SOC) and accelerated (FAST) spine MRI. DL was used to
enhance the accelerated set (FAST-DL). Three neuroradiologists were presented with paired side-by-side datasets (666
series). Datasets were blinded and randomized in sequence and left-right display order. Image features were preference
rated. Structural similarity index (SSIM) and per pixel L1 was assessed for the image sets pre and post DL-enhancement
as a quantitative assessment of image integrity impact.
Results FAST-DL was qualitatively better than SOC for perceived signal-to-noise ratio (SNR) and artifacts and equivalent
for other features. Quantitative SSIM was high, supporting the absence of image corruption by DL processing.
Conclusion DL enables 40% spine MRI scan time reduction while maintaining diagnostic integrity and image quality
with perceived benefits in SNR and artifact reduction, suggesting potential for clinical practice utility.
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Deep learning (DL) based image enhancement techniques
have gained attention in recent years [1]. DL is a subset
of artificial intelligence (AI) machine learning (ML) that
uses multiple processing layers to progressively extract key
relevant features from the input data. DL models are based
on artificial neural networks, most commonly convolutional
neural networks (CNN) and variations, in which data tran-
sitions through a chain of layers of transformational nodes
from input to output, simulating layers of neurons. DL
based solutions leverage CNNs to process large volumes
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of data through a complex framework of decision-making
nodes known for exemplary performance in image recogni-
tion applications, such as the ability to recognize and cate-
gorize image features [2]. DL algorithms are applied to an
array of computer vision learning tasks in many industries.

Diagnostic imaging modalities are particularly suited to
benefit with opportunities such as reduced radiation and/or
contrast dose for PET [3, 4], MR [5] and CT [6]. DL-
based image enhancement can boost image signal-to-noise
ratio (SNR) offering the potential for reduced scan times
[7], enhanced patient experience [8] and improved im-
age center efficiency. DL-based image denoising methods
have demonstrated performance advantages over traditional
methods of denoising [9, 10] and may be employed to bol-
ster quality of fast acquisition of MR examinations. Fast
acquisitions are accomplished by modifying conventional
imaging protocol parameters to decrease scan times while
maintaining resolution (reducing excitations, raising band-
width, increasing parallel imaging factors) at the cost of
increased image noise (reduced SNR). DL algorithms are
then applied to the compromised fast scan data to restore
SNR while maintaining image sharpness and standard of
care (SOC) image quality.

This prospective multicenter multireader study was de-
signed to evaluate 40% scan time reduced spine MR images
processed with a commercially available DL reconstruction
algorithm against those obtained with routine SOC scan
times. Along with subjective preference rating based on
typical imaging criteria, the 3 neuroradiologists also blindly
assessed the comparative integrity and consistency of the
DL processed images.

Table 1 Protocol Parameters.
Typical scanning parameters
for standard-of-care (SOC) and
accelerated (FAST) acquisitions
at 1.5T

Scan Time TR TE/TI Slice (mm) Matrix Size ETL NEX

Sag T1

SOC 2:57 1550 10 4 320× 192 8 4

FAST 1:32 1550 10 4 320× 192 8 2

Sag T2

SOC 1:31 2584 110 4 320× 224 21 2

FAST 0:36 2584 110 4 320× 224 21 1

Sag PD

SOC 1:25 1367 35 4 320× 224 8 2

FAST 0:47 1367 35 4 320× 224 8 1

Sag STIR

SOC 2:01 4850 33/140 4 320× 224 8 2

FAST 1:13 4850 33/140 4 320× 224 8 1

Ax T2

SOC 1:38 4459 102 4 320× 224 32 3

FAST 0:30 4459 102 4 320× 224 32 2

Ax T1

SOC 3:15 634 13 4 320× 224 3 2

FAST 1:47 634 13 4 320× 224 3 1

To quantitatively assess the integrity of image processing
by the DL algorithm, we employed a structural similarity
index (SSIM) [11] to evaluate for absolute errors (anatomic
or pathologic data loss or aberration), and per pixel L1
difference to evaluate for differences in signal intensity.

Material andMethods

Participants

A total of 61 consecutive patients (45.5± 17.1 years old)
were prospectively recruited and consented for this mul-
ticenter, multireader, randomized case-control Institutional
Review Board (IRB) approved study. Each patient (28 fe-
males, 33 males) was scheduled to have a clinically indi-
cated MRI of the cervical, thoracic, or lumbar spine.

Image Acquisition

MR imaging consisted of 14 cervical, 9 thoracic and
88 lumbar region image sets (n= 111). The studies were
acquired from one of 5 scanners (GE; Waukesha, WI, USA,
1.5T HDe, 2 GE 1.5T HDxt, Siemens; Erlangen, Germany,
3T Skyra, Siemens 3T Verio) at 5 imaging centers (4 New
York, 1 California). A clinical practice, SOC study was
performed consisting of multiple routine pulse sequences:
sagittal T2 (n= 23)/T1 (n= 21)/STIR (n= 18)/PD (n= 12);
and axial T2 (n= 20)/T1 (n= 17) (average sequence scan
time: 171.2± 66.4s) for a total of 111 sequences acquired
from 61 patients. In addition, each subject underwent
matched pulse sequences with an accelerated (FAST) pro-
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tocol (average sequence scan time: 96.2± 41.2s), for an
additional 111 sequences (Table 1).

Image Processing

The DL model was trained on 1000s of MR DICOM
datasets from multiple vendors and clinical sites with
a variety of clinical indications and field strengths, thus
experiencing a range of image quality, tissue contrasts,
acquisition parameters, and patient anatomies. DICOM-
based processing does not utilize proprietary raw k-space
input and is thus vendor agnostic. DL processing provides
structure-preserving noise reduction, and the spine model
does not remove imaging artifacts or intrinsically enhance
image sharpness.

The DL algorithm implements image enhancement us-
ing convolutional neural network-based filtering. Original
images are enhanced by running through a cascade of filter
banks, where thresholding and scaling operations are ap-
plied. Separate neural network-based filters are obtained for
noise reduction. The parameters of the filters were obtained
through an image-guided optimization process [12–14].

The model training process typically involves several
steps:

� Initialization: initialize filters and weights with small ran-
dom values (e.g., random Gaussian weights).

� Forward propagation: provide training images as input to
the network, propagate them through the various opera-
tions (convolution, rectified linear unit, maximum pool-
ing, etc.), and compute the network output.

� Error calculation: calculate the errors in the output layer
(target image vs. output image). Usually a final loss func-
tion (for example, sum-of-squared-error) is used to com-
bine the error in each pixel into a single objective value
which is (ideally) minimized during model training.

� Back propagation: calculate the error loss gradients with
respect to all weights in the network and use techniques
like gradient descent to update all filter values/weights
and parameter values to minimize the output error/loss.

� Training: repeat the previous steps with all the images
in the selected training dataset (e.g., 90% of available
dataset), which is called one epoch. Usually multiple
(such as 100) epochs are used in model training to opti-
mize/minimize the error objective function (described in
step #3) until the model converges into a stable result.

DL processing of the FAST scan data set (FAST-DL)
was performed on an edge positioned HIPAA compliant
server-virtual machine using an FDA-cleared deep learn-
ing-CNN based, image enhancement product, SubtleMR™
(Version 1.2, Subtle Medical, Menlo Park, CA, USA) with
a processing time of approximately 30s per series. All im-
ages were reviewed on a commercial DICOM viewer.

Radiologic Assessment

Three experienced neuroradiologists (>17 years of experi-
ence) were presented with 666 different image series ran-
domized in sequential and left-right display order from SOC
(n= 111), FAST (n= 111), FAST-DL (n= 111) as paired
side-by-side datasets (SOC vs. FAST, SOC vs. FAST-DL,
FAST-DL vs. FAST). Image features were preference rated
on a Likert scale (1–5), with 1 indicating pronounced per-
ceived superiority of the image on the left, 2 mildly superior
on the left, 3 no difference, 4 mildly superior on the right,
and 5 significantly superior on the right for (1) perceived
SNR; (2) perceived spatial resolution; (3) imaging artifacts;
(4) cord delineation; (5) cord/CSF contrast; (6) disc re-
lated pathology; (7) bone lesions; and (8) facet/ligamentous
pathology. Additionally, all 3 readers assessed each of the
paired datasets for image consistency (presence or absence
of apparent loss, corruption, alteration, creation or exagger-
ation of observed anatomy and pathology).

Statistical Analysis

Wilcoxon rank sum tests were performed to assess the sta-
tistical significance of the difference in scores for each fea-
ture in comparative datasets (Table 2). Statistical signifi-
cance of the difference in scores of a dataset feature was
determined by a p-value <0.05. Mean and standard devia-
tions for the combined reader Likert scores for each feature
were also calculated.

Inter-reader agreement was assessed using the Spear-
man rank correlation method. The coefficient varies from
–1 to 1, with –1 indicating a perfectly negative relationship
(a high rating from one neuroradiologist and low rating
from another) and 1 indicating a perfectly positive relation-
ship (Table 3).

To quantitatively assess the integrity of images processed
by the DL algorithm, we compared both FAST and FAST-
DL images to the reference SOC image. We employed
SSIM to assess for absolute errors (anatomic or pathologic
data loss or aberration), and per pixel L1 difference to eval-
uate differences in signal intensity. In addition, while not
part of the subjective analysis, SOC images were also pro-
cessed with DL and subjected to SSIM measures (SOC vs.
SOC-DL) as an additional method of assessing the impact
of DL processing (Table 4).

Results

Performance

All 666 image sets (SOC, FAST, FAST-DL) were ranked
as of diagnostic quality by each of the 3 neuroradiologists.
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Table 2 Wilcoxon rank sum test results. All readers combined. P-value <0.05 (bold) suggests statistical significance for features in one dataset
with respect to its comparison

Feature SOC vs. FAST FAST-DL vs. SOC FAST-DL vs. FAST

Mean± Std P value Mean± Std P value Mean± Std P value

SNR 3.7± 0.5 <0.05 3.4± 0.6 <0.05 3.9± 0.4 <0.05

Resolution 3.0± 0.3 <0.05 3.0± 0.3 0.41 3.0± 0.2 0.25

Artifacts 3.3± 0.6 <0.05 3.1± 0.5 <0.05 3.1± 0.3 <0.05

Cord delineation 3.1± 0.2 <0.05 3.0± 0.2 0.25 3.0± 0.1 0.16

Cord/CSF contrast 3.1± 0.3 <0.05 3.0± 0.3 0.56 3.0± 0.1 1

Disc pathology 3.1± 0.2 <0.05 3.0± 0.2 0.64 3.0± 0.1 0.1

Bone lesions 3.1± 0.3 <0.05 3.0± 0.3 0.3 3.0± 0.1 0.41

Facet/ligamentous pathology 3.1± 0.2 <0.05 3.0± 0.1 0.26 3.0± 0.1 <0.05

FAST-DL was statistically better than SOC for per-
ceived SNR (3.4± 0.6, p-value <0.05) and imaging artifacts
(3.1± 0.5, p-value <0.05). FAST-DL and SOC were statisti-
cally equivalent for perceived spatial resolution (3.0± 0.3),
cord delineation (3.0± 0.2), cord/CSF contrast (3.0± 0.3),
disc-related pathology (3.0± 0.2), bone lesions (3.0± 0.3)
and facet/ligamentous pathology (3.0± 0.1) (with p-values
>0.24). SOC was better than FAST for all criteria (p-
value <0.05). FAST-DL was better than FAST for SNR,
artifacts, and facet/ligamentous pathology (p-value <0.05).
Wilcoxon Rank Sum test results for Likert scale analysis
are collectively summarized for all 3 readers in Table 2.

Qualitative assessment of image integrity was equivalent
across the 3 datasets for all 3 blinded readers, indicating
that there was no perceived loss or aberration of anatomy
or pathology (Fig. 1). Multisequence imaging of SOC and
FAST-DL of representative patients and acquisition times
are demonstrated in Fig. 2.

Spearman rank-order correlation coefficient analysis
demonstrated moderately strong inter-rater agreement be-
tween the 3 blinded neuroradiologists (Rho= 0.454 for
radiologist 1 vs. 2; Rho= 0.527 for radiologist 1 vs. 3; and
Rho= 0.442 for radiologist 2 vs. 3) (Table 3).

Quantitative assessment of image similarity using
the SSIM was 0.981± 0.011 for SOC vs. SOC-DL and
0.984± 0.009 for FAST vs. FAST-DL. This supports the
absence of substantial anatomic aberration by DL pro-
cessing of the source series (Table 4). The per pixel L1
difference for SOC vs. FAST was 37.5± 17.6, and for

Table 3 Spearman Rank-order correlation coefficient for inter-reader
agreement. The scores were averaged across the reader pairs. The
results indicate moderately strong inter-reader agreement for Likert
scale analysis of across all 8 quality features assessed

Spearman
Rho

Radiologist 1
vs. 2

Radiologist 1
vs. 3

Radiologist 2
vs. 3

Rho= 0.454 Rho= 0.527 Rho= 0.442

SOC vs. FAST-DL was 36.7± 17.4. The Wilcox paired
test differences were found to be significant (p< 0.001) at
4.363 e–12.

Discussion

This prospective, randomized, multicenter study assessed
the ability of DL enhancement to preserve perceived MR
spine image quality despite 40% scan time reduction.

Blinded assessments by 3 neuroradiologists found the
overall diagnostic quality of DL-enhanced MR images sta-
tistically equivalent or subjectively better than SOC across
all assessed features.

MR image quality and speed are traditionally linked by
constraints over signal-to-noise ratio. Scans with higher
SNR and/or spatial resolution are perceived as offering bet-
ter overall image quality and greater detail but requiring
longer scan times when using traditional image reconstruc-
tion techniques. DL-based models in image reconstruction
can overcome the SNR/scan time relationship by applying
detail-preserving denoising to accelerated sequences and
restoring quality to SOC levels. In our study the DL-en-
hanced fast images were able to provide perceived SNR
benefits over even conventional SOC imaging.

MR examinations are susceptible to image degradation
from artifacts, often due to patient motion related to long
scan times. Motion is a significant challenge in MRI oc-
curring in 29% of inpatient/emergency department exami-

Table 4 Structural similarity index (SSIM) results. Quantitative
assessment of image similarity using the SSIM was 0.981± 0.011
for SOC vs. SOC-DL and 0.984± 0.009 for FAST vs. FAST-DL.
This supports the absence of substantial anatomic aberration by DL-
processing of the source series

Structural Similarity Index (SSIM)

SOC vs. SOC-DL 0.981± 0.011

FAST vs. FAST-DL 0.984± 0.009
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nations and 7% of outpatient studies [15] and can lead to
the need to have to repeat portions of or even complete ex-
aminations. Andre et al. found that that 19.8% of all MRI
sequences need to be repeated due to motion artifact, which
extrapolates to a $592 revenue loss per hour and $115,000
loss annually per scanner due to motion artifact [16]. In this
study, DL-enhanced images statistically exceeded SOC in
artifact reduction, likely reflecting shorter scan times and
reduced patient motion.

Scan time reductions inherently improve patient com-
fort and overall experience [8]. Up to 30% of patients re-
ported significant anxiety, largely from claustrophobia, dur-
ing an MR study [17]. The authors’ internal multicenter
surveys have shown that even minor reductions in exami-
nation length result in a significantly higher level of patient
satisfaction [8].

In our study, we achieved a scan time reduction of ap-
proximately 40% while maintaining or exceeding routine
quality. If DL-enhanced fast protocols were utilized with
all MR exams, one could anticipate a proportional increase
in exam-based workflow efficiency for an imaging facility.
Future research could explore whether scan time reduction
of this scale results in a true positive impact on profitability,
e.g., the ability to scan more patients per day.

A scan time acceleration of 40% was chosen for this
study based on limited clinical experience. Future research
might investigate greater accelerations. Work with the brain
has shown image acceleration of 60% while maintaining
quantitative integrity [18]. Additional research could fo-
cus on making greater image quality practical by denoising
higher resolution native acquisitions.

In this study, the SOC images serve as the standard for
image preference. Our randomized blinded assessment of
the imaging features is meant to reflect human visual per-
ception of comparative image quality. A radiologist’s qual-
itative assessment of non-inferiority is critical before a DL-
enhanced alternative would be considered acceptable for
clinical use. On the other hand, processed images should
satisfy both qualitative and quantitative measures to ensure
that diagnostically relevant features are not altered, and in-
tegrity of the processed image information is maintained.

Concerns exist about DL post-processing introducing in-
stabilities in an image, where tiny perturbations in the sam-
pling domain have been shown to be capable of translating
into noticeable artifacts on the reconstructed image [19].
This has been shown for highly contrived noise additions
to k-space data and it is unclear whether such effects oc-
cur under normal operating conditions. It is important to
emphasize that the current method starts from image-based
data rather than k-space, which may be less susceptible to
this effect.

However, to verify the absence of data aberration on the
DL post-processed images, the quantitative metric of SSIM

Fig. 1 Consistency across datasets. Sagittal T2 (left to right): SOC,
FAST, FAST-DL with acquisition times. Blinded readers found no
variations in image integrity (morphology/pathology) across the
datasets. A tiny incidental intrathecal schwannoma (white arrow)
at upper L3 level maintains excellent visual conspicuity across all
three datasets

[11] was calculated to assess for the presence or absence of
absolute errors (such as anatomic data loss or exaggeration)
for the pairs of accelerated unenhanced and DL-enhanced
datasets (FAST vs. FAST-DL), and as an additional mea-
sure, for the SOC series and one processed with DL solely
for this purpose (SOC vs. SOC-DL). While SSIM has lim-
itations [20], it is a commonly employed metric to measure
the similarity between two images, ranging from 0.0 to 1.0,
with 1.0 meaning two images are identical. The high SSIM
results for FAST vs. FAST-DL and SOC vs. SOC-DL are
reassuring with respect to the absence of significant DL-
processing related corruption. As the SOC and FAST scans
represent two separate acquisitions with minor differences
in patient and slice position, SSIM for these could not be
accurately assessed. As an additional quantitative assess-
ment of image similarity, L1 measures were obtained. The
quantitative result for image integrity is consistent with the
blinded qualitative assessment by the 3 neuroradiologists
who reported no instances of observed image aberration
between dataset pairs (Fig. 1).

While there are numerous AI-centric solutions in the
medical imaging marketspace, many have narrow applica-
tion. The broad benefits of a DL solution for cross-sectional
image reconstruction have been recognized, and at present
MR and CT manufacturers are developing or refining DL
solutions for image processing, currently at variable stages
of fruition and regulatory clearance [21, 22]. Scanner ven-
dors will likely limit their proprietary DL solutions to their
own devices, and at least initially, to their newest high-end
scanners [20, 21]. Independent or third-party DL solutions
are vendor-agnostic and model-neutral, increasing appeal
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Fig. 2 Multisequence imaging. SOC (a) and FAST-DL (b) Representative patients and acquisition times

to imaging enterprises operating scanners with a variety of
vendors, models, and ages.

The generalizability of our findings could be strength-
ened by further investigations and larger subject popu-
lations, given the relatively small number of uncommon
pathologies within this study cohort. Of note, only a sin-
gle intradural lesion was present and no intramedullary
lesions were detected in this outpatient study and thus re-
ported measures of cord delineation and cord/CSF contrast
therefore serve as surrogates for evaluation of intradural
pathology. Pathologies commonly present on outpatient
spine MR studies, such as disc derangements, spinal canal
stenosis, and facet arthropathy were well represented and
faithfully preserved across all three datasets (SOC, FAST
and FAST-DL).

In this study, clinical spine imaging patients were en-
rolled in a consecutive manner, a method which could both
reduce as well as create bias. This led to a disproportionate
number of lumbar spine studies with respect to cervical and
thoracic exams; however, at the time of statistical analysis,
the blinded Likert rating trends, such as perceived benefits

in SNR and artifact reduction, were found to be equally ap-
plicable across all spine exams regardless of the anatomic
target location.

Strengths of this investigation include the prospective,
multicenter, multireader study design with images obtained
from geographically diverse patient populations, using mag-
nets of variable strength, age, and manufacturer. The results,
despite evaluation in limited number of patients, support the
feasibility and suggest the generalizability of DL enhance-
ment to shorten clinical MR spine examinations.

Conclusion

DL matches or exceeds the perceived image quality and di-
agnostic qualitative performance of standard of care spine
MRI exams, enabling a 40% scan time reduction. DL quali-
tatively outperformed standard of care in reduction of image
artifacts and perceived signal-to-noise ratio. Quantitative
structural similarity index metrics (SSIM) attest to image
integrity preservation after DL-processing. This study sug-
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gests the potential for routine utility of DL reconstructed
MRI in clinical practice.
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