
ORIGINAL ARTICLE

https://doi.org/10.1007/s00062-021-01099-x
Clin Neuroradiol (2022) 32:225–230

Support Vector Machine-based Spontaneous Intracranial Hypotension
Detection on Brain MRI

Philipp G. Arnold1 · Emre Kaya1 · Marco Reisert2 · Niklas Lützen1 · Philippe Dovi-Akué1 · Christian Fung3 ·
Jürgen Beck3 · Horst Urbach1

Received: 1 August 2021 / Accepted: 9 September 2021 / Published online: 19 October 2021
© The Author(s) 2021

Abstract
Background and Purpose To develop a fully automatic algorithm for the magnetic resonance imaging (MRI) identification
of patients with spontaneous intracranial hypotension (SIH).
Material andMethods A support vector machine (SVM) was trained with structured reports of 140 patients with clinically
suspected SIH. Venous sinuses and basal cisterns were segmented on contrast-enhanced T1-weighted MPRAGE (Magneti-
zation Prepared-Rapid Gradient Echo) sequences using a convolutional neural network (CNN). For the segmented sinuses
and cisterns, 56 radiomic features were extracted, which served as input data for the SVM. The algorithm was validated
with an independent cohort of 34 patients with proven cerebrospinal fluid (CSF) leaks and 27 patients who had MPRAGE
scans for unrelated reasons.
Results The venous sinuses and the suprasellar cistern had the best discriminative power to separate SIH and non-SIH
patients. On a combined score with 2 points, mean SVM score was 1.41 (±0.60) for the SIH and 0.30 (±0.53) for the
non-SIH patients (p< 0.001). Area under the curve (AUC) was 0.91.
Conclusion A fully automatic algorithm analyzing a single MRI sequence separates SIH and non-SIH patients with a high
diagnostic accuracy. It may help to consider the need of invasive diagnostics and transfer to a SIH center.

Keywords Bern score · Machine learning · Convolutional neural network · Cerebrospinal fluid leak · Magnetic resonance
imaging
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Introduction

Spontaneous intracranial hypotension (SIH) is an ortho-
static headache syndrome that in almost all cases is caused
by spinal cerebrospinal fluid (CSF) leaks [1]. Diagnostic
criteria include a CSF pressure <60mm H2O and/or evi-
dence of a CSF leak on imaging [2]; however, only ap-
proximately one third of SIH patients have a CSF opening
pressure below 60mm H2O, and the CSF opening pres-
sure can, in fact, be normal or even elevated, particularly
in patients with a long history of SIH [3, 4], or with large
abdominal girth [5].

Among the numerous cranial MRI signs of SIH pachy-
meningeal enhancement (83%) and engorgement of the ve-
nous sinuses (93%) have the highest sensitivity; however,
20–30% of SIH patients are considered to have normal MRI
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scans [1, 6]. Engorgement of the venous sinuses does not
only mean a volume plus but also a change of shape with,
e.g. the inferior margin of the midportion of the dominant
transverse sinus showing a distended convex appearance
called the venous distension sign [7]. Dobrocky et al. 2019
proposed a scoring system which has been later termed
the Bern score where pachymeningeal contrast enhance-
ment, engorgement of venous sinuses and effacement of the
suprasellar cistern of 4.0mm or less were shown to be the
most important discriminating features and weighted with
2 points each while subdural fluid collection, effacement
of the prepontine cistern of 5mm or less, and a mamil-
lopontine distance of 6.5mm or less were weighted with
1 point each resulting into a maximum score of 9 [8]. Pa-
tients with total scores of 2 points or fewer were classified
as having a low, with 3–4 points as having an intermediate,
and with 5 or more points as having a high probability for
a spinal CSF leak; however, some of the features (especially
the engorgement of the venous sinuses) are somewhat arbi-
trary in definition which can lead to a different assessment
for different raters. We hypothesized that these and other
shape changes of the venous sinuses are better detected by
a machine learning algorithm. Therefore, in order to over-
come such subjective visual assessments and to avoid time-
consuming distance measurements we sought to develop
a fully automatic classifier that discriminates SIH patients
and healthy controls.

Material andMethods

For training of a support vector machine (SVM) algo-
rithm, we analyzed sagittal contrast-enhanced T1-weighted
MPRAGE (Magnetization Prepared-Rapid Gradient Echo)
sequences of 140 patients (149 MRI scans, female: 91,
male: 58, mean age 44± 12 years) who were transferred
to our clinic with suspected SIH between 2015 and 2020.
They then received a standardized MRI protocol of the
head and spine on a 1.5 (n= 120) or 3 (n= 29) Tesla scan-
ner (Avanto/Trio/Prisma, Siemens Healthineers, Erlangen,
Germany) and had structured reports with respect to the
points of the SIH score proposed by Dobrocky et al. [8].
Of the 149 MRI scans 19 (12.8%) showed engorgement of
the venous sinuses, 65 (43.6%) pachymeningeal enhance-
ment, 39 (26.1%) effacement of the suprasellar cistern, 61
(40.9%) effacement of the prepontine cistern, 51 (34.2%)
reduced mamillopontine distances and 20 (13.4%) subdural
fluid collections.

The MRI protocol included axial T2-weighted, axial Dif-
fusion Weighted Imaging (DWI), sagittal 3D-Fluid Atten-
uated Inversion Recovery (FLAIR) and sagittal contrast-
enhanced MPRAGE sequences for the head and sagittal 3D
T2-weighted SPACE (Sampling Perfection with Applica-

tion optimized Contrasts using different flip angle Evolu-
tion) sequences for the spine.

Segmentation of Volumes and Training of
a Segmentation CNN

Venous Sinuses

The superior sagittal sinus was segmented from approxi-
mately 1–2cm behind the coronal suture down to the con-
fluens sinuum. The straight sinus was segmented in its en-
tire length, and both transverse sinuses downwards to the
transition to the sigmoid sinuses.

Basal Cisterns

The prepontine cistern was segmented from the pontomes-
encephalic to the pontobulbar transition in craniocaudal di-
rection and from the right to the left side so that the volume
did not reach beyond the ventral pons surface. The suprasel-
lar cistern was segmented from the pituitary gland upwards
to the optic chiasm and from the ventral pituitary border to
the pituitary stalk. The interpeduncular cisterns were seg-
mented from the pontomesencephalic transition upwards to
the mammillary bodies. Lateral borders were the cerebral
peduncles (Fig. 1).

For training of the segmentation CNN, the abovemen-
tioned structures of 36 patients of the training cohort were
manually segmented by an experienced neuroradiologist us-
ing the in-house developed postprocessing platform NORA
(www.nora-imaging.com). The U-net like neuronal network
was implemented using the patchwork framework (https://
bitbucket.org/reisert/patchwork/) and trained on contrast-
enhanced T1-weighted MPRAGE scans. The CropGener-
ator was set to 3 dimensions (ndim= 3), the patch size to
32× 32× 32 voxels (“patch_size”: [32,32,32]) and the depth
to 4 (depth= 4). The PatchworkModel itself was trained
with 5 epochs (epochs= 5), 1000 iterations (num_its= 1000)
and data augmentation was done with a random rotation an-
gle of the patches dphi= 0.2 (“dphi”: 0.2). The output of the
CNN is a voxel-wise probability value between 0 and 1 in-
dicating whether the voxel belongs to the respective volume
as displayed in Fig. 1.

The accuracy of the CNN segmentation was assessed
with Dice coefficients. Thresholds showing the best overlap
between manual and CNN segmentation were chosen for
subsequent feature extraction (Suppl. Fig. 1a, b). As the
Dice coefficient for the straight sinus was worse than that of
the other sinuses, it was disregarded in the further analysis.

K

http://www.nora-imaging.com
https://bitbucket.org/reisert/patchwork/
https://bitbucket.org/reisert/patchwork/


Support Vector Machine-based Spontaneous Intracranial Hypotension Detection on Brain MRI 227

Fig. 1 Midsagittal contrast-
enhanced MPRAGE (Magneti-
zation Prepared-Rapid Gradient
Echo) slice (a) with automat-
ically segmented suprasellar
cistern (red), prepontine cistern
(green), interpeduncular cistern
(blue) and superior sagittal sinus
(yellow) and coronal (b) and
axial (c) projections

Feature Extraction

Eight radiomic 3D-shape features (major axis length, minor
axis length, least axis length, elongation, flatness, surface
area to volume ratio, sphericity, and volume) were extracted
using the python library pyradiomics [9]. The dominant
transverse sinus (ST-D) was determined by comparing the
volumes of both transverse sinuses. In summary, we an-
alyzed 32 (4 * 8) radiomic features for the sinuses, and
8 radiomic features for each cistern.

SVM Classifier and SVM Training

For each of the automatically segmented volumes a SVM
(python library scikit-learn [10]) was trained to discriminate
absent (0) and present (1) SIH findings taking the structured
reports as ground truth (GT). To determine the best com-
bination of SVM parameters, i.e. C and gamma for radial
basis function (RBF) kernels and C for linear kernels, in re-
spect of area under the curve (AUC) a grid search approach
was applied. Preprocessing was done by the StandardScaler
to assure normal distribution of the input data. For the RBF
kernel gamma was varied between 0.001 and 30 and C
between 0.01 and 100, for the linear kernel C was varied
between 0.001 and 750. The class_weight was set to “bal-
anced”. To assess the sensitivity and specificity of the SVM
results compared to the ground truth a leave-one-out cross-
validation was performed. The assessments of the SVM re-
sults in terms of sensitivity, specificity, and accuracy for
engorgement of the venous sinuses (Sinus), effacement of
the prepontine cistern (PPC), effacement of the suprasellar
cistern (SSC) and effacement of the interpeduncular cis-
tern (IPC) are displayed in Table 1. As specificity was low,
we disregarded the interpeduncular cistern for the valida-

tion. For each SVM a linear kernel with the respective C as
shown in Table 1 value was used.

Results

For validation, we analyzed 34 patients (female: 25, male: 9,
mean age 45± 10 years) with a CSF leak proven by con-
ventional myelography, CT myelography or digital subtrac-
tion myelography (DSM) between 2018 and 2020 and no
prior SIH-related treatment and 27 patients (female: 18,
male: 9, mean age 46± 13 years) who underwent a contrast-
enhanced T1-weighted MPRAGE sequence for unrelated
reasons and had inconspicuous findings. Of the patients 27
(79.4%) of the SIH group had a CSF leak due to ventral
dural tears, 5 (14.7%) patients due to leaking meningeal
diverticulae, and 2 (5.9%) patients due to CSF venous fis-
tulas. From the controls 27 patients were chosen so that
they closely matched the age and the sex distribution of the
CSF leak group.

Among the segmented volumes, engorgement of the ve-
nous sinuses had the highest discriminative power to sep-
arate SIH patients and controls. The best discriminating
radiomic features for the venous sinuses were the volume
and the surface to volume ratio (Suppl. Fig. 2a and b). For
the suprasellar cistern, the best discriminating radiomic fea-
tures were least axis length and volume (Suppl. Fig. 3). The
effacement of the prepontine cistern did not contribute to
the discrimination between SIH-patients and normal con-
trols, so it was disregarded for the calculation of the final
SVM score. An example for midsagittal contrast-enhanced
MPRAGE slices of a patient in the SIH group and the con-
trol group are shown in Fig. 2a, b.
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Table 1 Four-field tables comparing ground truth (GT) with SVM predictions (P)

Sinus PPC SSC IPC

n= 149 P=0 P=1 P=0 P=1 P=0 P=1 P=0 P=1

GT= 0 97
65%

33
22%

71
48%

17
11%

95
64%

15
10%

70
47%

28
19%

GT= 1 2
1%

17
11%

15
10%

46
31%

8
5%

31
21%

24
16%

27
18%

Sensitivity 74.6% 80.7% 86.4% 71.4%

Specificity 89.5% 75.4% 79.5% 52.9%

Accuracy 76.5% 78.5% 84.6% 65.1%

C 0.01 0.1 1 2.5

Ground truth (GT)= 0 means that the sign was rated as absent in the structured reports, GT= 1 as present.
P= 0 (absent) and P= 1 (present) are the support vector machine (SVM) results.
PPC prepontine cistern, SSC suprasellar cistern, IPC interpeduncular cistern

Table 2 Results from the scoring of the validation cohort

Score Sinus+ SSC Sinus SSC PPC

SIH Controls SIH Controls SIH Controls SIH Controls

0P 2 20 7 23 13 23 24 12

1P 16 6 27 4 21 4 10 15

2P 16 1 – – – – – –

Mean 1.41 0.30 0.79 0.15 0.62 0.15 0.29 0.56

Two spontaneous intracranial hypotension (SIH) patients (5.9%) have 0 points (P), 16 patients (47.1%) 1 point and another 16 patients (47.1%)
2 points (mean: 1.41± 0.60), 20 non-SIH patients (74.1%) have 0 points, 6 patients (22.2%) 1 point and 1 patient (3.7%) 2 points (mean:
0.30± 0.53). Engorgement of the venous sinuses have a higher discriminative power than effacement of the suprasellar cistern (SSC). The
prepontine cistern (PPC) was eliminated from the calculation of the SVM score due to its low specificity.

Table 3 SVM score vs. results from human reading (HR) for the
validation cohort

SVM score= 0 SVM score= 1 SVM score= 2

HR= 0 1 (2.9%) 2 (5.9%) 0 (0%)

HR= 1 1 (2.9%) 9 (26.4%) 5 (14.7%)

HR= 2 0 (0%) 5 (14.7%) 11 (32.4%)

Confusion matrix for support vector machine (SVM) score compared
to the results from the human reading (HR): 21 patients (61.8%) had
the same score in human reading and SVM score, 13 patients (38.2%)
had a score differing by one point, no patients had a score differing by
2 points. The mean score from human reading was 1.38± 0.64 and the
mean score of the SVM algorithm was 1.41± 0.60 (p= n. s.)

The final SVM score consists of the sum of the Sinus
and SSC score, leading to a maximum score of 2 (1 point
for engorgement of the venous sinuses, 1 for effacement of
the suprasellar cistern) and is shown in Fig. 3a for the val-
idation cohort. The prepontine cistern was eliminated from
the calculation of the SVM score due to its low specificity.
The results for the SVM (i.e. Sinus+ SSC), Sinus, SSC and
PPC score are shown in Table 2.

The mean SVM score was 1.41 (±0.60) for the SIH
and 0.30 (±0.53) for the non-SIH patients (Mann-Whit-
ney U-test, p< 0.001). The area under the curve (AUC) of
the receiver operating characteristic (ROC) curve was 0.91
(Fig. 3b). For comparison, we reviewed the structured re-
ports of the 34 SIH patients which showed a good agree-

ment between the SVM score and the results from the hu-
man reading as can be seen in the confusion matrix (Ta-
ble 3).

Discussion

In this study, we showed the feasibility of an automated
approach of classifying head MRI scans to identify patients
with spontaneous intracranial hypotension (SIH). A single
MRI sequence, namely a contrast-enhanced T1-weighted
MPRAGE sequence, which is part of our standard MRI
protocol was analyzed [11]. As the segmentation of the
considered volumes (superior sagittal sinus, both transverse
sinuses, suprasellar cistern) is done by a computer there is
no variability between raters allowing for an objective and
unbiassed MRI assessment. This could be e.g. helpful in the
follow-up of SIH patients and whether they show a benefit
from treatment such as epidural blood patches.

Patients with proven CSF leaks in the validation cohort
had as underlying causes ventral dural tears, meningeal di-
verticulae, and CSF venous fistulas in a proportion similar
to previous reports [12, 13].

In contrast to the 9-point score proposed by Dobrocky
et al. which has been termed the Bern score later on [8,
14], we used a 2-point score. This simplification is due to
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Fig. 2 Sagittal contrast-en-
hanced MPRAGE (Magneti-
zation Prepared-Rapid Gradient
Echo) slices in a 34-year-old
man with SIH due to a ven-
tral dural tear at TH1/2 (a) and
a 60-year-old man with an oc-
ular myasthenia and a normal
MRI (b). SVM-based SIH score
is 2 in (a) and 0 in (b)

a b

Fig. 3 a SVM score for the validation cohort b ROC curve for SVM score consisting of the sum of the Sinus and SSC score. AUC is 0.91

the facts that effacements of the interpeduncular and pre-
pontine cisterns are not accurately identified by the SVM
algorithm and the trained CNN cannot accurately segment
subdural effusions and pachymeningeal enhancement yet;
however, there are other anatomical structures such as the
pituitary gland which are more easily to segment and likely
have good discriminating radiomic features (e.g. its supe-
rior contour) deserving further training and validation.

A limitation of our study is that the SVM algorithm was
trained with structured reports of 19 independent neurora-
diological physicians with an unknown intrarater and inter-
rater variability; however, if only patients with proven CSF
leaks and healthy controls would have been used for train-
ing, the area under the curve (AUC) of the receiver oper-
ating characteristic (ROC) analysis would likely be higher.
So, training with a higher number of proven CSF leaks and
analyzing additional anatomic structures responsive to CSF
volume changes are future tasks.

A limitation of any automated approach is that it will fail
to detect patients with (MRI signs of) intracranial hyperten-
sion who suddenly develop a CSF leak. Moreover, whether
patients with very severe brain sagging are identified is not
clear yet.

Conclusion

We propose a simple, fully automatic SVM algorithm that
analyzes contrast-enhancedMPRAGE sequences to identify
SIH patients with a high diagnostic accuracy. It may help
to consider the need of invasive diagnostics and transfer to
a SIH center.

Supplementary Information The online version of this article (https://
doi.org/10.1007/s00062-021-01099-x) contains supplementary mate-
rial, which is available to authorized users.
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