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Abstract

Heart failure (HF) with preserved ejection fraction (HFpEF) is a multi-organ,
systemic syndrome that involves multiple cardiac and extracardiac pathophysiologic
abnormalities. Because HFpEF is a heterogeneous syndrome and resistant to a “one-
size-fits-all” approach it has proven to be very difficult to treat. For this reason, several
research groups have been working on methods for classifying HFpEF and testing
targeted therapeutics for the HFpEF subtypes identified. Apart from conventional
classification strategies based on comorbidity, etiology, left ventricular remodeling,
and hemodynamic subtypes, researchers have been combining deep phenotyping
with innovative analytical strategies (e.g., machine learning) to classify HFpEF into
therapeutically homogeneous subtypes over the past few years. Despite the growing
excitement for such approaches, there are several potential pitfalls to their use,
and there is a pressing need to follow up on data-driven HFpEF subtypes in order
to determine their underlying mechanisms and molecular basis. Here we provide
a framework for understanding the phenotype-based approach to HFpEF by reviewing
(1) the historical context of HFpEF; (2) the current HFpEF paradigm of comorbidity-
induced inflammation and endothelial dysfunction; (3) various methods of sub-
phenotyping HFpEF; (4) comorbidity-based classification and treatment of HFpEF;
(5) machine learning approaches to classifying HFpEF; (6) examples fromHFpEF clinical
trials; and (7) the future of phenomapping (machine learning and other advanced
analytics) for the classification of HFpEF.
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Heart failure (HF) with preserved ejection
fraction (HFpEF) is a multi-organ, systemic
syndrome that involves multiple cardiac
and extra-cardiac pathophysiological ab-
normalities [1–3]. Because it is a hetero-
geneous syndromeand resistant to a “one-
size-fits-all” approach, HFpEF has proven
to be very difficult to treat [4]. By defini-
tion, HF is heterogeneous because it is the
end result of a wide variety of cardiovas-
cular diseases and risk factors. However,
patients with HF with reduced ejection
fraction (HFrEF) respond in a more homo-
geneous manner to therapies [5], whereas

HFpEF patients do not. For these reasons,
several research groups have been work-
ing on combining deep phenotyping with
innovative analytical strategies to classify
HFpEF into therapeutically homogeneous
subtypes [6–11].

Shah et al. initially used a form of
machine learning, unsupervised model-
based clustering, of deep phenotypic data
in HFpEF (n= 397), which they termed
“phenomapping” [6], and found that from
a data-driven perspective, HFpEF is very
heterogeneous. In addition, they iden-
tified multiple unique HFpEF “pheno-
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groups” that have differences in clini-
cal characteristics, biomarkers, cardiac
structure/function, pathophysiology, and
outcomes (validated in a separate group of
107 HFpEF patients). Subsequently there
has been a proliferation of such studies
throughout the field of HF [12–19].

Despite the novelty of these stud-
ies, machine learning analyses [20, 21]
are only the starting point for further
investigation into HFpEF subtypes, just
an initial step on the way to the ulti-
mate goal of unraveling the pathobiology
underlying these subtypes so that we
can develop effective therapeutics. In
addition, at present it is unclear whether
machine learning strategies will be the
optimal way to identify (1) mechanisms
underlying specific types of HFpEF and
(2) therapeutically homogeneous HFpEF
subtypes. It is likely that a combination of
techniques (clinical, pathophysiological,
hemodynamic, -omics, exercise testing,
and machine learning) will be helpful in
the future to identify HFpEF subtypes.
Here, we provide a framework for under-
standing the phenotype-based approach
to HFpEF by reviewing (1) the historical
context of HFpEF (i.e., diastolic HF); (2) the
current paradigm of comorbidity-induced
inflammation and endothelial dysfunction
as stressors on multiple organs, including
the heart; (3) various ways of sub-phe-
notyping HFpEF, with examples of how
these have been leveraged toward poten-
tial therapeutics; (4) comorbidity-based
classification and treatment of HFpEF;
(5) machine learning approaches to clas-
sifying HFpEF; (6) examples from HFpEF
clinical trials that have informed future
phenotype-based HFpEF treatments; and
(7) the future of phenomapping (machine
learning and other advanced analytics)
for classification of HFpEF.

Historical context of HFpEF

Chronic HF remains a deadly clinical syn-
drome associated with considerable loss
of quality life and high socioeconomic
burden. Dyspnea on exertion and ex-
ercise intolerance are the leading symp-
tomsbutamyriadofclinicalmanifestations
from the early stages of the HF syndrome
(e.g., fatigue) to late-stage HF (e.g., loss
of appetite, cachexia) can occur. Having

emerged as a common and growing type
of HF, HFpEF (defined most recently by in-
ternational consensus as HF with EF≥ 50%
[22]) currently accounts for 50% of all HF
and is projected to grow in proportion
of HF over the next few decades. Pa-
tients with HFpEF generally do not re-
spond to strategies known to improve the
prognosis in patients with HF and reduced
EF (HFrEF). The reasons proposed for this
include a variety of different underlying
pathomechanisms (that may not be very
responsive to neurohormonal antagonists,
in particular), a much greater heterogene-
ity in therapeutic response, and a higher
prevalence of non-cardiac comorbidities
compared with HFrEF. It is now clear that
HFpEFisnotanearly formofHFrEF[23]; sys-
tematic longitudinal studies have shown
that the transition from HFpEF to HFrEF is
rare [24]. The lack of prognostic benefit in
HFpEF from current HFrEF strategies sug-
gests novel disease mechanisms but also
questions the classic concept of myocar-
dial injury as the main driver of disease
progression in HFpEF.

In theclassicmechanistic conceptofHF-
pEF, the heart was the primary source of
the syndrome, with left ventricular (LV) hy-
pertrophy (LVH) and diastolic dysfunction
as the main drivers, triggered by systemic
hypertension, with contributions from risk
factors such as coronary artery disease
(CAD). This mechanistic concept arose
from early studies in the 1970s of dias-
tolic dysfunction in the cardiac catheter-
ization laboratory, and later by various
case series showing impaired filling of the
LV in patients with HF and a normal EF
[25]. The field was heavily influenced by
hypertrophic cardiomyopathy (HCM); in-
deed, HFpEF was viewed as a forme fruste
of HCM in that it was similar pathophysio-
logically but did not meet criteria for HCM
because there was no family history, no
genetic abnormalities, and a cause of LVH
(hypertension) was present in themajority
of patients. The lack of dedicated HFpEF
programs also likely impaired this stage of
HFpEF understanding because clinicians
were not seeing the full extent of HF-
pEF in the community; rather, it was of-
ten patients with severe HFpEF or specific
cardiomyopathies (e.g., cardiac amyloido-
sis, HCM) that were presenting to HF clin-
ics with “diastolic HF” [26]. Furthermore,

over the past 50 years, we have witnessed
an epidemiological transition from uncon-
trolled hypertension and smoking (major
risk factors for LVH) and high rates of CAD
to a better control of these risk factors
and an explosion of morbid obesity, dia-
betes, atrial fibrillation, coupled with an
aging population. Whether HFpEF itself
has changed due to these epidemiologi-
cal transitions, or whether it was always
the case, it is now clear that HFpEF is not
simply cardiac-centric but instead a sys-
temic syndrome, with multiple involved
organs; not only the heart but the lungs,
liver, adipose tissue, skeletal muscles, and
kidneys are all variably involved in indi-
vidual patients with HFpEF [27].

A primary cardiac insult is the trigger
for HFrEF (e.g., myocardial infarction, my-
ocarditis, geneticabnormality, chemother-
apy). In HFpEF, however, cardiomyocyte
cell death and severe loss of contractility at
rest are not commonly observed. Instead,
cardiac function in HFpEF is characterized
by impaired cardiac fillingand altereddias-
tolic properties (stiffness) of the LV, which
result in increased LV filling pressure, con-
gestion, and dyspnea on exertion. The
underlying pathomechanisms are still not
completely resolved, but a leading theory
is that myocardial injury in HFpEF is not
primary but rather secondary to comor-
bidity-induced stress on the endothelium
[28].

Comorbidity–inflammation–
endothelial dysfunction paradigm
of HFpEF

According to a leading conceptual frame-
work of HFpEF, largely based on preclin-
ical disease models, systemic inflamma-
tion, triggeredbyarterialhypertensionand
metabolic disease states such as diabetes
and obesity, leads to coronarymicrovascu-
lar inflammation and dysfunction, suben-
docardial ischemia, and altered cardiomy-
ocyte mechanics and metabolism (as re-
viewed in [29]). Thus, HFpEF is consid-
ered a result of a multisystem disorder
and is strongly associated with advanced
age, which may reflect cumulative effects
of an increasing number and duration of
systemic comorbidities.
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Table 1 Classification schemes for heart failurewith preserved ejection fraction (HFpEF). Reproducedwith permission from [82]
Classification
scheme

Categories of HFpEF Description

“Garden-variety” HFpEF HTN, diabetes, obesity, and/or chronic kidney disease

CAD-HFpEF Typically, multivessel CAD with prior coronary revascularization

Right heart failure-HFpEF Predominant right-sided HF with or without pulmonary HTN

Atrial fibrillation-predominant HFpEF Atrial arrhythmias dominate the clinical presentation

HCM-like HFpEF These patients do not have genetic forms of HCM, but their clinical course and
echocardiographic features are typical of HCM

High-output HFpEF Typically, due to liver disease, severe anemia

Valvular HFpEF Multiple moderate valvular lesions

Clinical clas-
sification

Rare causes of HFpEF For example, infiltrative cardiomyopathies, cardiotoxicities, genetic cardiomy-
opathies

Exercise-induced increase in LA pressure These patients typically are very breathless with exertion but do not have overt
signs of volume overload and typically do not have a history of HF hospitalization

Volume overload Signs and symptoms of volume overload; typically have a history of HF hospital-
ization

Presentation
phenotypes

RV failure+ pulmonary HTN Right heart failure predominates the clinical picture; often pulmonary HTN is
present and systemic blood pressure is reduced

Type 1: HCM Typical genetic forms of HCM

Type 2: Infiltrative Cardiac amyloidosis and other forms of infiltrative or restrictive cardiomyopathies

Type 3: Non-HTN, non-LVH No history of HTN and LV wall thickness <1.2 cm

Myocardial
phenotypes

Type 4: HTN Typical, “garden-variety” form of HFpEF with history of HTN

A: Younger males with CAD, lower LVEF

B: Younger females with lowest NT-proBNP

C: Obesity, hyperlipidemia, diabetesmellitus,
anemia, and renal insufficiency

D: Obese females

E: Older males with CAD, lowest LVEF

Latent class
analysis

F: female predominance, advanced age, lower
BMI, atrial fibrillation, CKD, highest NT-proBNP

Based on latent class analysis of the I-PRESERVE AND CHARM-Preserved trials. The
authors used latent class analysis of 11 clinical features (age, gender, BMI, atrial
fibrillation, CAD, diabetes, hyperlipidemia, valvular disease, alcohol use, eGFR, and
hematocrit) to find 6 distinct groups of HFpEF in I-PRESERVE and validated these
findings in CHARM-Preserved

Pheno-group 1: BNP deficiency syndrome

Pheno-group 2: Cardiometabolic phenotype

Pheno-
mapping

Pheno-group 3: RV failure+ cardiorenal pheno-
type

Model-based clustering of 67 continuous variables (phenotypes): physical charac-
teristics, vital signs, ECG data, laboratory data, and echocardiographic parameters

CAD coronary artery disease, HCM hypertrophic cardiomyopathy, HF heart failure, RV right ventricular, HTN hypertension, LVH left ventricular hypertrophy,
LVEF left ventricular ejection fraction, BMI body mass index, CKD chronic kidney disease, NT-proBNPN-terminal pro-B-type natriuretic peptide

Clinical evidence for heterogeneity
in patients classified as HFpEF

The multitude of comorbidities that lead
to HFpEF, coupled with the multi-organ,
systemic nature of the HFpEF syndrome,
contribute to its heterogeneity. Patients
with HFpEF share signs and symptoms
of HF and echocardiographic features or
biomarker evidence of elevated left atrial
pressure with preserved LVEF as the main
criteria within the current HF classifica-
tion [30]. However, clinical evidence from
prospective trials and observational stud-
ies suggests heterogeneity in pathophysi-
ological triggers and clinical presentation
with relevance for further diagnostics and

therapy. For several decades HCM has
been a model for diastolic dysfunction re-
lated to structural heart disease, but HCM
is found in only a minority (~5%) of HF-
pEF patients. Based on findings in HCM
studies, LVH was considered to be a major
contributor to HFpEF because hyperten-
sion is a very common comorbidity and
has been considered a trigger for HFpEF.
Yet, the association between the degree
of LVH and diastolic dysfunction in clini-
cal studies is weak, and LVH is only found
in about half of the patients with HFpEF
[31], which suggests that even myocardial
remodeling is heterogeneous in HFpEF.

Recently, HFpEF related to cardiac amy-
loidosis with accumulation of misfolded

proteins in the extracellular matrix has
moved into focus, and even though car-
diac amyloidosis is likely to be present
in a small but relevant fraction of HF-
pEF patients (~5%, [32]), it is an exam-
ple of how there may be subtypes of HF-
pEF that have unique features on cardiac
imaging, a specific confirmatory diagnos-
tic approach, and targeted therapy. The
common form of HFpEF has been associ-
ated with metabolic disease such as obe-
sity or diabetes. Indeed, seminal studies
in human myocardium from HFpEF pa-
tients have suggested that diabetes melli-
tus, which ispresent inalmosthalfofHFpEF
patients (45%, [33]), may induce specific
alterations in myocardial passive stiffness
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Fig. 18 Left atrialmyopathy phenotypeof heart failurewithpreservedejection fraction (HFpEF).Top
panel: Scatterplot of left atrial (LA) vs. left ventricular (LV) longitudinal strain showing a correlation
between the twophenotypes anddeviation from the correlation representingdifferent LA/LVpheno-
typesofHFpEF, including the “LApredominant” (i.e., LAmyopathy)phenotype,definedas LA reservoir
strain lower than expected for any given value of LV longitudinal strain.Middle panel: Volcano plot of
proteinsassociatedwithLAmyopathy.Proteins in redon the right representthose inwhichhigher lev-
els are significantly associatedwith increased LAmyopathy, andon the left represent those inwhich
higher levels are significantly associatedwith reduced LAmyopathy.Bottom panel: Venn diagram
showing thatwhile three proteins overlap between LAmyopathy and atrial fibrillation, several oth-
ers appear to be specific for the disproportionate LAmyopathy phenotype (proteins identified using
aproteomic analysis in thePROMIS-HFpEFstudywithvalidation in theNorthwesternUniversityHFpEF
cohort). Reproducedwith permission fromPatel RB et al. [44]

not observed in non-diabetic HFpEF tissue
[34, 35]. In this context, HFpEF is now con-
sidered one manifestation of diabetic car-
diomyopathy [36]withahigherprevalence
ofmyocardial hypertrophyandfibrosis and
a worse prognosis. Chronic kidney disease
(CKD; defined as estimated glomerular fil-
tration rate <60ml/min/1.73m2), present
in approximately 50% of HFpEF patients
[37], may be another discriminator. For
instance, in a recent Japanese study, pa-
tients with moderate CKD but not pa-
tients with manifest LVH profited from
renin–angiotensin–aldosterone system in-
hibitors [38]. Varying definitions for the
cut-off for a preserved EF in randomized
trials (between 40 and 50%) have added to
the perceived variability also between HF-
pEF cohorts. For instance, the fraction of
patients with ischemic heart disease was
higher in studies with a lower EF cut-off
(≥40%) as in the CHARM-Preserved (65%
of patients) and EMPEROR-Preserved (36%
of patients) trials compared with studies
with a higher EF cut-off (≥45%) as in the
PARAGON (23% of patients with ischemic
heart disease) and PARAMOUNT (21% of
patients) trials [39–42].

Methods for classification of HFpEF

A variety of methods for classification of
HFpEF have been proposed, and eachmay
be useful clinically for selecting appropri-
ate therapies and designing targeted clini-
cal trials. These includeclinical (etiological,
or primary comorbidity driving HFpEF in
a particular patient), pathophysiological
(primary pathophysiology driving HFpEF
in a particular patient), myocardial, type
of clinical presentation, and data-driven
approaches to the classification of HFpEF
(. Table 1). Examples ofmethods for iden-
tification of specific HFpEF subtypes, and
how these strategies can lead to novel
therapies, are discussed next.

Clinical subtype: left atrial myopathy

Shah et al. have shown that left atrial (LA)
myopathy in HFpEF, defined by reduced
LA reservoir strain, is associated with
increased pulmonary vascular resistance,
decreased peak VO2, and poor outcomes
[43]. Recently, they defined a unique
LA myopathy phenotype in HFpEF in the
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Fig. 28 Potential role of plasminogen activator inhibitor-1 (PAI-1) as amolecularmechanism under-
lying heart failurewith preserved ejection fraction (HFpEF). Both comorbidity-induced inflamma-
tion (via reactive oxygen species [ROS]-induced cellular stress) and visceral adipocytes (common in
HFpEF) induce upregulation of PAI-1 in the circulation.PAI-1 and related proteins (e.g., insulin-like
growth factor binding protein-3 [IGFBP3]) result in cellular senescence and accelerated aging,which
may be important risk factors for the development of HFpEF

PROMIS-HFpEF observational study by
taking the residuals of linear regression
of LA reservoir strain and LV longitudinal
strain to define a continuous phenotype
that ranges from LA-preserved, to LA/LV-
balanced, to LA-predominant (LA myopa-
thy) phenotypes (. Fig. 1a; [44]). The LA
myopathy phenotype is associated with
better LV systolic and diastolic function
but worse hemodynamics (lower stroke
volume, increased pulmonary artery pres-
sure). In a proteomic analysis in the
PROMIS study (with external validation),
LA myopathy was associated with in-
creased natriuretic peptides and several
novel circulating proteins, which were
independent of AF (. Fig. 1b, c). In-
teratrial shunt devices and procedures
[45–55] offer a therapeutic option for
HFpEF-LA myopathy and therefore could
be targeted to these patients if better
identified. In addition, automated deep
learning algorithms of electrocardiograms
and echocardiograms could be trained to
identify the LA myopathy HFpEF subtype
for further evaluation in clinical trials.

Genetic subtype

Phase3HFpEFclinical trials suchasTOPCAT
and PARAGON have shown that patients
with LVEF >65%, especially men, do not
respond favorably [39, 56] and are partic-
ularly resistant to conventional HF thera-
peutics. Thus, there may be a unique hy-
percontractile HFpEF phenotype that may
or may not be associated with unrec-
ognized cardiomyopathy variants. A re-
cent CHARM trial analysis found that on
whole-exomesequencing, 20of767 (2.6%)
HFpEF patients had pathogenic or likely
pathogenic cardiomyopathy rare variants,
which was only slightly lower than the
rate found in HFrEF (3.5%), and both were
much higher than in the general popu-
lation [57]. While 2.6% may seem trivial,
it translates into nearly 80,000 patients
in the United States alone given the esti-
matedHFpEF prevalence (over 3million) in
the United States, and is similar to the fre-
quencyof transthyretin amyloid cardiomy-
opathy (~3–4% of HFpEF [58]), for which
there is an approved treatment that lowers
mortality [59]. In HFpEF, both hypercon-
tractile and hypocontractile (despite pre-
served global LVEF) subtypes exist, and

these HFpEF phenotypes could be treated
with myosin inhibitors or activators, re-
spectively, both of which are currently in
development [60, 61]. Further investiga-
tion of the frequency of rare cardiomy-
opathy variants in HFpEF and use of deep
learning algorithms to train on the elec-
trocardiograms and echocardiograms of
HFpEF associated with these variants will
be essential to further our understanding
of the genetic subtypes of HFpEF.

Molecular subtype: plasminogen
activator inhibitor-1

Plasminogen activator inhibitor (PAI)-1 is
one of the only biomarkers found in cross-
cohort collaborationstudies tobeuniquely
associated with incident HFpEF but not
HFrEF [62]. It has been implicated in ag-
ing, senescence, visceral adiposity, and im-
paired metabolism [63–65]. Activation of
PAI-1 may represent a unique HFpEF sub-
type characterized by accelerated aging,
inflammation, and presence of metabolic
comorbidities. Indeed, PAI-1 is a key pro-
tein secreted by metabolically unhealthy
visceral adipose tissue, which is found in
the vast majority of HFpEF patients. Pre-
clinical studies have identified PAI-1 as
a promoter of senescence (. Fig. 2). Clin-
ical deep phenotyping studies in an Old
Order Amish kindred found that a rare
variant in the gene that encodes for PAI-1,
SERPINE1, is associated with PAI-1 defi-
ciency, increased insulin sensitivity, and
longevity [65]. Taken together, these data
suggest a central role for PAI-1 in a po-
tential “accelerated aging” HFpEF pheno-
type. Studies on the associations between
PAI-1 levels and multi-omics were con-
ducted with HFpEF patients, and these as-
sociations could be compared with those
in HFrEF and controls. Identification of
a unique HFpEF phenotype with elevated
PAI-1 levels is relevantbecauseof theavail-
ability of a novel PAI-1 inhibitor, which is
currently being tested in a Phase 2 trial in
COVID-19 (clinicaltrials.govNCT04634799)
and could be repurposed for HFpEF. De-
termining molecular pathways associated
with increased PAI-1 in HFpEF could also
identify novel targets, and pathophysio-
logicabnormalitiesassociatedwithPAI-1 in
HFpEF could inform endpoints for Phase 2
trials.
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Fig. 38 Phenomappingofheart failurewithpreservedejection fraction (HFpEF).Left panel: hierarchical clusteringheatmap
of 397 patients with HFpEF (columns) and 67 continuous variables (features, rows) demonstrating the heterogeneity of
HFpEF.Red indicates increased andblue indicates decreased values.Middle panel: principal components analysis showing
the clear differentiation of the three identified pheno-groups.Right panel: Kaplan–Meier curves for survival free of cardio-
vascular hospitalization or death among the three pheno-groups.PCprincipal component,CV cardiovascular.Reproduced
with permission from Shah SJ et al. [7]

Targeting primary comorbidities in
HFpEF

The different clinical manifestations of
HFpEF in clinical trials and registries, as
well as the failure of generalized medical
approaches such as renin–angiotensin–re-
ceptor signaling cascade blockers to im-
prove the prognosis in HFpEF cohorts,
have emphasized the need for a more
differentiated therapeutic strategy. A pro-
posed treatment strategy suggests the
identification of leading comorbidities
based on the clinical phenotype, which
would then guide therapeutic interven-
tions [66]. This approach is in line with
current European Society of Cardiology
(ESC) guideline recommendations to treat
etiologies and cardiovascular and non-car-
diovascular comorbidities in HFpEF [67].
However, whether specific treatment of
such selected subgroups improves the
prognosis in HFpEF remains to be de-
termined. For instance, treating arterial
hypertension can reduce the risk for HF,
including HFpEF [68]. However, while
lowering elevated systolic blood pressure
in patients with manifest HFpEF was asso-
ciated with reduced hospitalization rates
it did not lower all-cause or cardiovascular
mortality [69].

The majority of HFpEF patients have
increased pulmonary artery pressure (pul-
monary hypertension [PH]), although in
most this is typically pulmonary venous

hypertension; however, there are some
HFpEF patients who have combined post-
and pre-capillary PH. Treatment using spe-
cific drugs approved for pulmonary artery
hypertension in unselected patients with
HFpEF has yielded mixed results and is
currently not recommended [70]. Stimu-
lators of the soluble guanyl cyclase (en-
hancing cGMP-signaling) have been effec-
tive in patients with primary pulmonary
artery hypertension (riociguat [71]) and
also in HFrEF (vericiguat [72]). Yet, veri-
ciguat demonstrated neutral results in HF-
pEF patients in the VITALITY-HFpEF [73]
and SOCRATES-Preserved trials [74]; how-

Fig. 47 Protein clusters identified byweighted coexpression network analyses in the PROMIS-
HFpEF derivation cohort and the NorthwesternUniversity validation cohort.The inflammation clus-
ter (turquoise)mediated the association between comorbidity burden andmarkers of elevated left
atrial pressure in heart failurewithpreserved ejection fraction (HFpEF) and differentiatedHFpEF from
controls in an external cohort.aAdjacency networkmapof circulatingproteins color-codedbycluster
assignment by hierarchical clustering-based nearness or coexpression of proteins.For clarity of pre-
sentation,onlynodes (proteins) thatwereassignedtoaclusterare shown(n=159/248); the remaining
proteins lie on the outer edges of the networkmap.bOverrepresented, nonredundant pathways in
each clusterwith false discovery rate correctedp values.cDetailed networkmaps of proteins in the
three clusters thatwere representative of inflammation (i.e., overrepresentation of ≥2 inflammatory
pathways). Node size reflects intracluster connectivity (i.e., the sumofweighted edges [correlations]
with all other proteins in the cluster).Node color density reflects the strength of clustermembership.
Edge thickness and transparency reflect the adjacency of proteins according toweighted coexpres-
sions. dAdjacencynetworkmapof circulatingproteins in theNorthwesternpatientswithHFpEF in the
validation cohort. Clusters withmost significant overlapwere assigned the same color as the corre-
sponding cluster in the PROMIS-HFpEF cohort. eAdjacency networkmapof circulatingproteins in the
Northwestern control patients in the validation cohort.Cluster preservationwas tested against the
Northwestern patients with HFpEF; clusters with significant overlapwere assigned the same color as
the correspondingcluster in theNorthwesternpatientswithHFpEF.FDR falsediscovery rate,PROMIS-
HFpEF Prevalence ofMicrovascular Dysfunction inHeart FailureWith Preserved Ejection Fraction,
WCNAweight coexpression network analysis.Reproducedwith permission from Sanders-vanWijk S
et al. [9]

ever, both trials did not differentiate pa-
tients without versus with PH.

Dietary restriction in obese patients im-
proves diastolic function [75], and a re-
duction in calorie intake by ~400kcal/day
increases exercise capacity and quality of
life in elderly obese HFpEF patients [76].
Again, the impact on prognosis has yet to
be established. Ongoing and future trials
of drugs that result in significant weight
loss (e.g., GLP-1 receptor agonists) will
hopefully answer the question of whether
weight loss improves outcomes in HFpEF.
In summary, in patients with HFpEF, treat-
ment of contributing risk factors may or
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Table 2 Examples of going beyond initial HFpEF phenomapping studies:ongoing follow-up studies of the original three HFpEF pheno-groups iden-
tified by Shah et al. [7]
Pheno-group Follow-up studies

1: Morbid obesity with the
BNP deficiency syndrome

STEP-HFpEF: RCT of a GLP1 receptor agonist in obese HFpEF patients

2: Extreme cardiometabolic
syndrome

PROMIS-HFpEF: evaluation of impaired coronary flow reserved in HFpEF, and proteomic analysis of comorbidity-inflam-
mation paradigm in HFpEF

3: RV cardio-abdomino-
renal syndrome

VICTORY: observational study of exfoliated colonocytes (extracted from stool samples) in hospitalized HFpEF vs. non-
HF hospitalized controls to determinewhether colonocyte NHE3 (by flow cytometry) is upregulated in HFpEF and
whether magnitude of NHE3 upregulation correlateswith RV enlargement/dysfunction

BNP B-type natriuretic peptide, RCT randomized controlled trial, GLP1 glucagon-like peptide 1, HFpEF heart failure with preserved ejection fraction,
NHE3 sodium-hydrogen exchanger-3, RV right ventricular

Table 3 Key steps in the derivation and validation of HFpEF subtypes using unsupervisedma-
chine learning (phenomapping) analyses
Step Details

1 Identify a rich dataset for training (derivation) and a separate, similar dataset for exter-
nal validation

2 Determine which variables (features) to include in the MLmodels, evaluate for miss-
ingness, perform imputation

3 Data reduction techniques (e.g., PCA) for high-dimensionality data and to account for
redundancy

4 Split training dataset into training and test subsets

5 Evaluate a variety of unsupervisedML techniques (or ensemblemethods) on the train-
ing dataset

6 Cross-validate in the internal test dataset, perform regularization to prevent overfitting

7 Determine optimal (most parsimonious) number of clusters (subtypes) usingmultiple
methods

8 Deploy the model to assign the most probable clusters in the external validation
dataset

9 Compare clinical characteristics of pheno-groups (clusters): derivation vs. validation
datasets

10 Create a simplified regression model to assign pheno-groups in further validation
datasets

11 Follow-up studies to probe diseasemechanisms in identified pheno-groups (disease
subtypes)

HFpEF heart failure with preserved ejection fraction,MLmachine learning, PCA principal compo-
nents analysis

may not be sufficient to treat the cardiac
and systemic alterations that they have
accumulated from these risk factors.

Machine learning approaches to
the classification of HFpEF

As mentioned earlier, multiple studies
have now applied data-driven approaches
(“phenomapping”) to HFpEF classification.
These studies have used machine learning
analytic techniques similar to our original
phenomapping study and have shown
that the HFpEF subtypes identified have
different clinical features and outcomes
(. Fig. 3; [7]). Nonetheless, the study by
Shah and colleagues was only the initial
“proof of concept” that HFpEF is a truly

heterogeneous syndrome (as shown in the
heatmap in. Fig. 3, left panel), warranting
larger-scale, multicenter investigations to
advance the science of identifying novel
HFpEF subtypes and treatment targets
using next-generation phenomics. Im-
portantly, machine learning analysis of
deeply phenotyped HFpEF cohorts is only
the starting point for further investiga-
tion into HFpEF subtypes. While several
HFpEF phenomapping studies have been
published and have agreed on up to five
common HFpEF sub-phenotypes (. Fig. 4;
[77]), additional research is required to
determine the pathophysiological and
molecular mechanisms underlying each
HFpEF subtype.

As an example, since the initial HFpEF
phenomapping study [7], Shah et al. have
probed further into the three identified
HFpEF subtypes by investigating under-
lying disease mechanisms and designing
and conducting targeted clinical trials in
these subtypes, as shown in . Table 2.
In addition, once HFpEF subtypes have
been identified, analytical approaches
such as natural language processing and
supervised machine learning can be used
to assist with automated identification of
patients within specific HFpEF subtypes,
which will assist with enrollment in future
targeted HFpEF clinical trials and targeting
of specific therapies to HFpEF subtypes.
For example, natural language processing
of unstructured electronic health record
data has been used to automate the
identification of eligible patients for an
HFpEF clinical trial (PARAGON; [78]). In
addition, large-scale machine learning
analyses of national electronic health
record claims data have been used to
develop a prediction model for amyloido-
genic transthyretin cardiomyopathy to
improve/automate clinical recognition of
this treatable HFpEF subtype [79]. Deep
learning machine learning models have
also been used for the automated iden-
tification of amyloidogenic transthyretin
cardiomyopathy using electrocardiogra-
phy and echocardiography [80].

Various types of -omics data can be
analyzed with data reduction techniques
with subsequent identification of overrep-
resented biological pathways, which can
provide insight into underlying biological
mechanisms of HFpEF and its subtypes.
This has been done using principal com-
ponents analysis and weighted coexpres-
sion network analyses ([9];. Fig. 5). These
techniques reduce high-dimensional data
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Fig. 59Main heart fail-
urewith preserved ejec-
tion fraction sub-pheno-
types identifiedacrossphe-
nomapping studies.NP na-
triureticpeptide,CVcardio-
vascular, T2DM type 2 dia-
betesmellitus, LV left ven-
tricular,CVP central venous
pressure,PAHpulmonary
arterial hypertension. Re-
producedwith permission
fromGalli E et al. [77]

into a low-dimensional data space, sum-
marized by eigenvalues. Eigenvalues can
thenbeused in conventionalmultivariable
regression and mediation analyses to de-
termine associations and perform causal
inference with particular HFpEF subtypes.

Despite the rapid rise ofmachine learn-
ing and -omics studies in HF, including
HFpEF, thereareseveral challenges to these
types of studies that must be considered
when evaluating their clinical utility in the
classification (sub-phenotyping) of HFpEF
and in understanding underlying molecu-
larmechanisms. . Table 3 lists key steps in
performingmachine learning analyses rel-
evant to classification of HFpEF. . Table 4
lists various potential problems with these
types of studies (e.g., lack of external vali-
dation, single timepoint assessments, dis-
ease progression bias, cohort bias, fea-
ture bias, and publication bias) and offers
potential solutions for overcoming these
limitations.

Examples from HFpEF clinical
trials that have informed future
phenotype-based treatment

Several ongoing and recently completed
HFpEF clinical trials have taken advantage
of sub-phenotyping of HFpEF in order to
target therapeutics to particular HFpEF
subtypes in an attempt to improve
chances for HFpEF clinical trial success.
For example, in the EMBARK-HFpEF trial
(open-label proof-of-concept study of
mavacamten [myosin inhibitor] in HFpEF
[NCT04766892]), only patients with LVEF
>60%, LV hypertrophy, and elevated
biomarkers (elevated natriuretic peptides
or troponin) are allowed entry into the
trial. These HFpEF patients are most simi-
lar to patients with genetic/familiar forms
of HCM and therefore are hypothesized
to be the patients most likely to benefit
(and least likely to have adverse effects)
from mavacamten therapy.

In the SERENADE trial (NCT03153111),
which is a randomized controlled trial of

macitentan (a dual endothelin receptor A
and B antagonist) in patients with HFpEF,
elevated natriuretic peptides, cardiac re-
modeling (LVH or LA enlargement), and
evidence of pulmonary vascular disease
(invasive defined elevation in pulmonary
vascular resistance or diastolic pulmonary
gradient; or elevated pulmonary artery
pressure with evidence of right ventric-
ular dysfunction) are allowed entry into
the trial. These patients are hypothesized
to be those who will benefit most from
macitentan. To further select patientswho
may benefit, SERENADE included a 4-week
placebo run-in phase (to ensure clinical
stability) and a 5-week macitentan run-in
phase (to exclude patients who develop
early fluid retention in response to maci-
tentan). Only patients who qualify for the
trial and make it through these two run-
in phases were randomized in the trial.

In the recently completed REDUCE LAP-
HF II trial ([81]; a phase3, pivotal, multicen-
ter trial of 626 HFpEF patients randomized
1:1 to an atrial shunt device vs. sham con-

318 Herz 4 · 2022



M
ai
n
to
pi
c

Table 4 HFpEF phenomapping analyses: possible problems andpotential solutions
Problem Explanation Solution

Lack of
external
validation

MLmodels often perform well in the derivation dataset because they
are designed to perform well when given a lot of data (features) that
are not correlated. However, they may not perform well in an external
validation dataset

Always include a validation dataset (preferably external to
the derivation dataset) to validate MLmodels, and plan for
this from the design phase of the study

Publication
bias

Many ML and -omics studies cannot be explained biologically, or may
not validate, both of which create publication biases (results that do
not fit known paradigms tend not to be published), limiting clinical
applications and future studies

Cloud platforms for data sharing should be implemented
which will reduce publication bias and allow future stud-
ies to validate or refute our analyses and find meaning in
unexplained results. In addition, independent investiga-
tors would be able to reanalyze data as new statistical and
bioinformatics approaches are developed

Single time-
point mea-
surements

The development of HFpEF likely requires multiple consecutive trig-
gers, creating a dynamically evolving phenotype. Even after clinically
overt HFpEF emerges, the underlying molecular phenotype(s) are fur-
ther evolving with timewith disease progression, which will change
the circulating proteome/metabolome. Even in healthy individuals,
changes in multi-omics over a relatively short time can be strikingly
variable. Single timepoint omics data and ML analyses alone will not
be able to determine which signals are reactive or causal

When possible, investigators should leverage -omics and
other high-dimensional (e.g., imaging) data from serial
timepoints, and they should validate any identified signals
in multiple cohorts and in orthogonal study types (e.g.,
transcriptomic analyses, animal studies). Mechanistic ex-
periments on tissues or patient-derived cell linesmay also
address these challenges

Cohort-
driven and
feature-
driven
biases of
ML analyses

It is well known that ML studies often suffer from lack of external val-
idation. However, less well known is that the features included in the
MLmodel often drive the identified clusters (subtypes)

Compare unbiased vs. biased selection of features for incor-
poration in MLmodels

True patho-
biological
HFpEF sub-
types vs.
disease
progres-
sion HFpEF
subtypes

In previous unsupervisedML analyses of HFpEF that sought to iden-
tify different HFpEF pathobiological subtypes, often subtypes that
represent different stages of HFpEF progression (disease severity) are
instead identified

Identification of HFpEF subtypes that reflect disease sever-
ity/progression, can still be used to identify and stratify
treatment targets, which would be clinically relevant. Upon
identification of HFpEF subtypes, investigators should use
multivariable analyses to determine whether subtypes
are independent of markers of disease severity. Investiga-
tors can also use input features that are markers of disease
severity prior to inclusion in ML models

HFpEF heart failure with preserved ejection fraction,MLmachine learning

trol), all patientswererequired tohavedoc-
umented evidence of elevated pulmonary
capillarywedgepressure (>25mmHgdur-
ing exercise) on their screening right heart
catheterization study. Furthermore, pa-
tients with evidence of greater than mild
right ventricular dysfunction, greater than
mild tricuspid regurgitation, elevated pul-
monaryvascular resistance (PVR >3.5WU),
or other reasons to suspect poor outcomes
with the device were excluded. Thus,
REDUCE LAP-HF II was an enrichment trial
(a type of precision medicine trial; [82]).
Nevertheless, despite the careful patient
selection process, the overall trial results
were neutral. However, further post hoc
analyses demonstrated that patients with
peak exercise pulmonary vascular resis-
tance <1.74 WU appeared to benefit from
thedevice (. Fig. 6; [83]). Thus, future pre-
cisionmedicinetrialsofatrial shuntdevices
and procedures in HFpEFmay benefit from
only including thosepatientswith the abil-

ity tovasodilate thepulmonaryvasculature
during exertion.

Phenomapping using advanced
modalities

Current phenomapping approaches for
HFpEF are largely based on clinical data
available from demographics and routine
clinical parameters such as medical his-
tory, medication history, routine blood
tests, as well as electrocardiographic and
echocardiographic read-outs [7, 15]. Fu-
ture HFpEF phenomapping studies ideally
will be planned prospectively and have
already started at various centers across
the world (e.g., the US National Insti-
tutes of Health HeartShare Study [www.
HeartShareStudy.org]). In addition, ad-
vanced imaging, e.g., machine learning-
based (magnetic resonance) image anal-
ysis and deep-learning algorithms for
echocardiographic data may provide in-

cremental prognostic value in HFpEF [84,
85]. Metabolic profiling quantifying blood
serum metabolites by liquid chromatog-
raphy–tandem mass spectrometry and
proton-nuclear magnetic resonance spec-
troscopy and evaluation of their response
to therapy (e.g., exercise training) has also
been used to characterize HFpEF patients
[86, 87]. An interesting approach is also
to combine medical history and multi-
omics analyses (e.g., serum metabolome
and gut microbiome in cardiometabolic
disease patients) to compute the response
to drugs in patient subgroups [88].

Conclusion

Heart failure with preserved ejection fraction
(HFpEF) is a heterogeneous, systemic, multi-
organ syndrome that is rising in prevalence
and is associated with high morbidity and
mortality. While certain therapeutics (e.g.,
sodium-dependent glucose contransporter-2
inhibitors) may be beneficial in the large ma-
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Fig. 68 Beneficial effects of interatrial shunt device therapy in patients with heart failurewith preserved ejection fraction
(HFpEF) with peak exercise pulmonary vascular resistance (PVR) <1.74WUenrolled in the REDUCELAP-HF II trial. Top panel:
In the sham control group, therewas no association between peak exercise PVRand change in health status (Kansas City Car-
diomyopathy Questionnaire overall summary score [KCCQ-OSS]) frombaseline to 12months (all patients improved approx-
imately 10 points).However, in the atrial shunt device-treated patients, thosewithpeak exercise PVR<1.74WU improved
to a greater extentwith the device comparedwith sham,whereas thosewith peak exercise PVR≥1.74WUdidworsewith
the device comparedwith sham.Middle panel: Only HFpEF patients with peak PVR<1.74WUexperienced a significant im-
provement in NYHAfunctional class in the trial. Bottom panel: Patients without latent pulmonary vascular disease (PVD;
i.e., patientswithpeak exercise PVR<1.74WU) andnopacemaker at baseline had the highestwin ratio, lowestHFevent rate,
and greatest improvement in health status in response to the atrial shunt device (comparedwith sham control).KCCQ-OSS
Kansas City Cardiomyopathy Questionnaire,WUWoodunits,NYHANewYork Heart Association, LA left atrial.Reproduced
with permission fromBorlaug BA et al. [83]
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jority of HFpEF patients, most treatments
are not well suited for a one-size-fits-all
approach. Unsupervised machine learning
(phenomapping) combinedwith -omics anal-
yses is a growing approach to the classifi-
cation of HFpEF and likely represents the
future of HFpEF precision medicine. Never-
theless, investigators and clinicians should
understand the potential limitations of such
approaches and should augment their initial
phenomapping studies of HFpEF with follow-
up studies to identify underlying molecular
mechanisms with the hope of conducting
successful precision medicine trials in the
future.
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Zusammenfassung

Perspektiven bei Herzinsuffizienzmit erhaltener Ejektionsfraktion.
Zielgerichtete Therapie durch tiefe Phänotypisierung

Die Herzinsuffizienz mit erhaltener Ejektionsfraktion (HFpEF) ist ein systemisches
Multiorgansyndrom, das mehrere kardiale und extrakardiale pathophysiologische
Anomalien umfasst. HFpEF hat sich als sehr schwierig zu behandeln erwiesen, da es sich
um ein heterogenes Syndrom handelt, das einem „One-size-fits-all-Ansatz“ widersteht.
Aus diesemGrund habenmehrere Forschungsgruppen anMethoden zur Klassifizierung
von HFpEF gearbeitet und zielgerichtete Therapeutika für die identifizierten HFpEF-
Subtypen getestet. Neben konventionellen Klassifizierungsstrategien basierend auf
Komorbiditäten, Ätiologie, linksventrikulärem Remodeling und hämodynamischen
Subtypen wurde in den letzten Jahren eine tiefe Phänotypisierung mit innovativen
analytischen Strategien (z. B. maschinelles Lernen) kombiniert, um HFpEF in
therapeutisch homogene Subtypen zu stratifizieren. Trotz der wachsenden
Begeisterung für solche Ansätze gibt es mehrere potenzielle Fallstricke bei ihrer
Verwendung, und es besteht ein dringender Bedarf, datengesteuert identifizierte
HFpEF-Subtypen besser zu verstehen, und ihre zugrunde liegenden Mechanismen und
molekularen Grundlagen zu erforschen. In der vorliegenden Arbeit wird der Rahmen
des phänotypbasierten Ansatzes für HFpEF umrissen: (1) der historische Kontext von
HFpEF; (2) das aktuelle HFpEF-Paradigma der komorbiditätsinduzierten Entzündung
und endothelialen Dysfunktion; (3) verschiedene Methoden zur Subphänotypisierung
von HFpEF; (4) komorbiditätsbasierte Klassifizierung und Behandlung von HFpEF;
(5) maschinelle Lernansätze zur Klassifizierung von HFpEF; (6) Beispiele aus klinischen
HFpEF-Studien; und (7) die Zukunft des Phänomappings (maschinelles Lernen und
andere fortschrittliche Analytik) für die Klassifizierung von HFpEF.
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