Skip to main content
Log in

Atrial remodeling and atrial fibrillation recurrence after catheter ablation

Past, present, and future developments

Atriales Remodeling und Rezidiv des Vorhofflimmerns nach Katheterablation

Entwicklungen der Vergangenheit, Gegenwart und Zukunft

  • Main topic
  • Published:
Herz Aims and scope Submit manuscript

Abstract

The term “atrial remodeling” is used to describe the electrical, mechanical, and structural changes associated with the presence of an arrhythmogenic substrate for atrial fibrillation. Rhythm control therapy may slow down or even reverse progressive atrial remodeling. Atrial remodeling has long been recognized as an important predictor of clinical outcomes and therapeutic success, but recent advances have highlighted its clinical relevance and revealed the implications of specific anatomical changes such as atrial asymmetry or shape. This has opened the path to computational precision medicine that captures these data in detail and combines them with other factors, to provide patient-specific solutions. The goal of precision medicine lies in improving clinical outcomes, reducing costs, and avoiding unnecessary procedures. In this article, we review the history of atrial remodeling and we summarize the insights from our research on anatomical atrial remodeling and its association with rhythm outcomes after catheter ablation. Finally, we present recent advances in the field, reflecting the beginning of a new technological era that will enable us to improve patient care by personalized patient-specific medicine.

Zusammenfassung

Der Begriff „atriales Remodeling“ wird verwendet, um die elektrischen, mechanischen und strukturellen Veränderungen der Vorhöfe zu beschreiben, die mit dem Vorhandensein eines arrhythmogenen Substrats für Vorhofflimmern verbunden sind und die sich durch Rhythmuskontrolle z. T. rückbilden lassen. Das atriale Remodeling ist seit Langem als wichtiger Prädiktor für klinische Ergebnisse und rhythmuserhaltenden Erfolg anerkannt, wurde aber in letzter Zeit weiter und intensiver im Hinblick auf spezifische anatomische Veränderungen der Form oder Asymmetrie untersucht. Diese Studien haben die klinische Relevanz und die Bedeutung solcher Veränderungen aufgezeigt. Dies hat den Weg zur rechnergestützten Präzisionsmedizin geebnet, die diese Daten detailliert erfasst und mit anderen Faktoren kombiniert, um patientenspezifische Lösungen bereitzustellen. Das Ziel der Präzisionsmedizin besteht zum einen darin, klinische Ergebnisse zu verbessern, zum anderen auch darin, Kosten zu senken und unnötige Prozeduren zu vermeiden. Im vorliegenden Artikel geben die Autoren einen Überblick über die Vorgeschichte des atrialen Remodelings und fassen die Erkenntnisse aus ihrer Forschung zum anatomischen atrialen Remodeling und dessen Zusammenhang mit den Rhythmusergebnissen nach Katheterablation zusammen. Schließlich werden die jüngsten Fortschritte auf diesem Gebiet zu Beginn eines neuen technologischen Zeitalters präsentiert, das es ermöglichen wird, die Patientenversorgung durch personalisierte patientenspezifische Medizin zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kirchhof P, Benussi S, Kotecha D et al (2016) 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS: The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC)Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESCEndorsed by the European Stroke Organisation (ESO). Eur Heart J. https://doi.org/10.1093/eurheartj/ehw210

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ball J, Carrington MJ, McMurray JJ, Stewart S (2013) Atrial fibrillation: profile and burden of an evolving epidemic in the 21st century. Int J Cardiol 167(5):1807–1824. https://doi.org/10.1016/j.ijcard.2012.12.093

    Article  PubMed  Google Scholar 

  3. Schnabel RB, Yin X, Gona P et al (2015) 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. Lancet 386(9989):154–162. https://doi.org/10.1016/S0140-6736(14)61774-8

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benjamin EJ, Wolf PA, D’Agostino RB et al (1998) Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98(10):946–952

    Article  CAS  PubMed  Google Scholar 

  5. Andersson T, Magnuson A, Bryngelsson IL et al (2013) All-cause mortality in 272,186 patients hospitalized with incident atrial fibrillation 1995–2008: a Swedish nationwide long-term case-control study. Eur Heart J 34(14):1061–1067. https://doi.org/10.1093/eurheartj/ehs469

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marzona I, O’Donnell M, Teo K et al (2012) Increased risk of cognitive and functional decline in patients with atrial fibrillation: results of the ONTARGET and TRANSCEND studies. CMAJ 184(6):E329–E336. https://doi.org/10.1503/cmaj.111173

    Article  PubMed  PubMed Central  Google Scholar 

  7. von Eisenhart Rothe A, Hutt F, Baumert J et al (2015) Depressed mood amplifies heart-related symptoms in persistent and paroxysmal atrial fibrillation patients: a longitudinal analysis—data from the German Competence Network on Atrial Fibrillation. Europace 17(9):1354–1362. https://doi.org/10.1093/europace/euv018

    Article  Google Scholar 

  8. Bollmann A (2005) First comes diagnosis then comes treatment: an underappreciated paradigm in atrial fibrillation management. Eur Heart J 26(23):2487–2489. https://doi.org/10.1093/eurheartj/ehi578

    Article  PubMed  Google Scholar 

  9. Henry WL, Morganroth J, Pearlman AS et al (1976) Relation between echocardiographically determined left atrial size and atrial fibrillation. Circulation 53(2):273–279. https://doi.org/10.1161/01.cir.53.2.273

    Article  CAS  PubMed  Google Scholar 

  10. Morillo CA, Klein GJ, Jones DL, Guiraudon CM (1995) Chronic rapid atrial pacing. Structural, functional, and electrophysiological characteristics of a new model of sustained atrial fibrillation. Circulation 91(5):1588–1595. https://doi.org/10.1161/01.cir.91.5.1588

    Article  CAS  PubMed  Google Scholar 

  11. Schotten U, Duytschaever M, Ausma J et al (2003) Electrical and contractile remodeling during the first days of atrial fibrillation go hand in hand. Circulation 107(10):1433–1439. https://doi.org/10.1161/01.cir.0000055314.10801.4f

    Article  PubMed  Google Scholar 

  12. Li D, Fareh S, Leung TK, Nattel S (1999) Promotion of atrial fibrillation by heart failure in dogs: atrial remodeling of a different sort. Circulation 100(1):87–95. https://doi.org/10.1161/01.cir.100.1.87

    Article  CAS  PubMed  Google Scholar 

  13. Lehto M, Jurkko R, Parikka H et al (2009) Reversal of atrial remodeling after cardioversion of persistent atrial fibrillation measured with magnetocardiography. Pacing Clin Electrophysiol 32(2):217–223. https://doi.org/10.1111/j.1540-8159.2008.02205.x

    Article  PubMed  Google Scholar 

  14. Wijffels MC, Kirchhof CJ, Dorland R, Allessie MA (1995) Atrial fibrillation begets atrial fibrillation. A study in awake chronically instrumented goats. Circulation 92(7):1954–1968. https://doi.org/10.1161/01.cir.92.7.1954

    Article  CAS  PubMed  Google Scholar 

  15. Weng LC, Choi SH, Klarin D et al (2017) Heritability of atrial fibrillation. Circ Cardiovasc Genet. https://doi.org/10.1161/CIRCGENETICS.117.001838

    Article  PubMed  PubMed Central  Google Scholar 

  16. Andrade J, Khairy P, Dobrev D, Nattel S (2014) The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ Res 114(9):1453–1468. https://doi.org/10.1161/CIRCRESAHA.114.303211

    Article  CAS  PubMed  Google Scholar 

  17. Heijman J, Linz D, Schotten U (2021) Dynamics of atrial fibrillation mechanisms and comorbidities. Annu Rev Physiol 83:83–106. https://doi.org/10.1146/annurev-physiol-031720-085307

    Article  CAS  PubMed  Google Scholar 

  18. Berruezo A, Tamborero D, Mont L et al (2007) Pre-procedural predictors of atrial fibrillation recurrence after circumferential pulmonary vein ablation. Eur Heart J 28(7):836–841. https://doi.org/10.1093/eurheartj/ehm027

    Article  PubMed  Google Scholar 

  19. Hof I, Arbab-Zadeh A, Scherr D et al (2009) Correlation of left atrial diameter by echocardiography and left atrial volume by computed tomography. J Cardiovasc Electrophysiol 20(2):159–163. https://doi.org/10.1111/j.1540-8167.2008.01310.x

    Article  PubMed  Google Scholar 

  20. Imada M, Funabashi N, Asano M et al (2007) Anatomical remodeling of left atria in subjects with chronic and paroxysmal atrial fibrillation evaluated by multislice computed tomography. Int J Cardiol 119(3):384–388. https://doi.org/10.1016/j.ijcard.2006.07.162

    Article  PubMed  Google Scholar 

  21. Helms AS, West JJ, Patel A et al (2009) Relation of left atrial volume from three-dimensional computed tomography to atrial fibrillation recurrence following ablation. Am J Cardiol 103(7):989–993. https://doi.org/10.1016/j.amjcard.2008.12.021

    Article  PubMed  Google Scholar 

  22. Hoffmeister PS, Chaudhry GM, Mendel J et al (2007) Evaluation of left atrial and posterior mediastinal anatomy by multidetector helical computed tomography imaging: relevance to ablation. J Interv Card Electrophysiol 18(3):217–223. https://doi.org/10.1007/s10840-007-9096-y

    Article  PubMed  Google Scholar 

  23. Nedios S, Tang M, Roser M et al (2011) Characteristic changes of volume and three-dimensional structure of the left atrium in different forms of atrial fibrillation: predictive value after ablative treatment. J Interv Card Electrophysiol 32(2):87–94. https://doi.org/10.1007/s10840-011-9591-z

    Article  PubMed  Google Scholar 

  24. Nedios S, Koutalas E, Kosiuk J et al (2015) Impact of asymmetrical dilatation of the left atrium on the long-term success after catheter ablation of atrial fibrillation. Int J Cardiol 184:315–317. https://doi.org/10.1016/j.ijcard.2015.02.078

    Article  PubMed  Google Scholar 

  25. Badano LP, Pezzutto N, Marinigh R et al (2008) How many patients would be misclassified using M‑mode and two-dimensional estimates of left atrial size instead of left atrial volume? A three-dimensional echocardiographic study. J Cardiovasc Med 9(5):476–484. https://doi.org/10.2459/JCM.0b013e3282f194f0

    Article  Google Scholar 

  26. Bisbal F, Guiu E, Calvo N et al (2013) Left atrial sphericity: a new method to assess atrial remodeling. Impact on the outcome of atrial fibrillation ablation. J Cardiovasc Electrophysiol 24(7):752–759. https://doi.org/10.1111/jce.12116

    Article  PubMed  Google Scholar 

  27. Bisbal F, Alarcon F, Ferrero-de-Loma-Osorio A et al (2018) Left atrial geometry and outcome of atrial fibrillation ablation: results from the multicentre LAGO-AF study. Eur Heart J Cardiovasc Imaging 19(9):1002–1009. https://doi.org/10.1093/ehjci/jey060

    Article  PubMed  Google Scholar 

  28. Varela M, Bisbal F, Zacur E et al (2017) Novel computational analysis of left atrial anatomy improves prediction of atrial fibrillation recurrence after ablation. Front Physiol 8:68. https://doi.org/10.3389/fphys.2017.00068

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bisbal F, Gomez-Pulido F, Cabanas-Grandio P et al (2016) Left atrial geometry improves risk prediction of thromboembolic events in patients with atrial fibrillation. J Cardiovasc Electrophysiol 27(7):804–810. https://doi.org/10.1111/jce.12978

    Article  PubMed  Google Scholar 

  30. Nedios S, Koutalas E, Sommer P et al (2017) Asymmetrical left atrial remodelling in atrial fibrillation: relation with diastolic dysfunction and long-term ablation outcomes. Europace 19(9):1463–1469. https://doi.org/10.1093/europace/euw225

    Article  PubMed  Google Scholar 

  31. Dinov B, Knopp H, Lobe S et al (2016) Patterns of left atrial activation and evaluation of atrial dyssynchrony in patients with atrial fibrillation and normal controls: Factors beyond the left atrial dimensions. Heart Rhythm 13(9):1829–1836. https://doi.org/10.1016/j.hrthm.2016.06.003

    Article  PubMed  Google Scholar 

  32. Seewoster T, Marinov K, Lobe S et al (2021) Abnormal pattern of left atrial activation and asynchronous conduction predicted the occurrence of new atrial fibrillation: evidences for Bachmann’s bundle block in atrial fibrillation pathophysiology. Europace. https://doi.org/10.1093/europace/euab010

    Article  PubMed  Google Scholar 

  33. Lobe S, Knopp H, Le TV et al (2018) Left atrial Asynchrony measured by pulsed-wave tissue doppler is associated with abnormal atrial voltage and recurrences of atrial fibrillation after catheter ablation. JACC Clin Electrophysiol 4(12):1640–1641. https://doi.org/10.1016/j.jacep.2018.08.017

    Article  PubMed  Google Scholar 

  34. Nedios S, Lobe S, Knopp H et al (2021) Left atrial activation and asymmetric anatomical remodeling in patients with atrial fibrillation: the relation between anatomy and function. Clin Cardiol 44(1):116–122. https://doi.org/10.1002/clc.23515

    Article  PubMed  Google Scholar 

  35. Nedios S, Kircher S, Hindricks G (2020) Cardiovascular magnetic resonance imaging for the detection of left atrial remodeling and the prediction of atrial fibrillation ablation success: more than meets the eye. Int J Cardiol 305:161–162. https://doi.org/10.1016/j.ijcard.2020.01.026

    Article  PubMed  Google Scholar 

  36. Csecs I, Yamaguchi T, Kheirkhahan M et al (2020) Left atrial functional and structural changes associated with ablation of atrial fibrillation—Cardiac magnetic resonance study. Int J Cardiol 305:154–160. https://doi.org/10.1016/j.ijcard.2019.12.010

    Article  PubMed  Google Scholar 

  37. Heijman J, Sutanto H, Crijns H et al (2021) Computational models of atrial fibrillation: achievements, challenges and perspectives for improving clinical care. Cardiovasc Res. https://doi.org/10.1093/cvr/cvab138

    Article  PubMed  PubMed Central  Google Scholar 

  38. Feeny AK, Chung MK, Madabhushi A et al (2020) Artificial intelligence and machine learning in arrhythmias and cardiac electrophysiology. Circ Arrhythm Electrophysiol 13(8):e7952. https://doi.org/10.1161/CIRCEP.119.007952

    Article  PubMed  PubMed Central  Google Scholar 

  39. Nedios S, Sanatkhani S, Oladosu M et al (2021) Association of low-voltage areas with the regional wall deformation and the left atrial shape in patients with atrial fibrillation: a proof of concept study. Int J Cardiol Heart Vasc 33:100730. https://doi.org/10.1016/j.ijcha.2021.100730

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sanatkhani S, Nedios S, Menon PG et al (2021) Subject-specific calculation of left atrial appendage blood-borne particle residence time distribution in atrial fibrillation. Front Physiol. https://doi.org/10.3389/fphys.2021.633135

    Article  PubMed  PubMed Central  Google Scholar 

  41. Masci A, Barone L, Dede L et al (2018) The impact of left atrium appendage morphology on stroke risk assessment in atrial fibrillation: a computational fluid dynamics study. Front Physiol 9:1938. https://doi.org/10.3389/fphys.2018.01938

    Article  PubMed  Google Scholar 

  42. Grandi E, Dobrev D, Heijman J (2019) Computational modeling: What does it tell us about atrial fibrillation therapy? Int J Cardiol 287:155–161. https://doi.org/10.1016/j.ijcard.2019.01.077

    Article  PubMed  PubMed Central  Google Scholar 

  43. Niederer SA, Lumens J, Trayanova NA (2019) Computational models in cardiology. Nat Rev Cardiol 16(2):100–111. https://doi.org/10.1038/s41569-018-0104-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Boyle PM, Zghaib T, Zahid S et al (2019) Computationally guided personalized targeted ablation of persistent atrial fibrillation. Nat Biomed Eng 3(11):870–879. https://doi.org/10.1038/s41551-019-0437-9

    Article  PubMed  PubMed Central  Google Scholar 

  45. Aronis KN, Ali R, Trayanova NA (2019) The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. Int J Cardiol 287:139–147. https://doi.org/10.1016/j.ijcard.2019.01.096

    Article  PubMed  PubMed Central  Google Scholar 

  46. Roney CH, Williams SE, Cochet H et al (2018) Patient-specific simulations predict efficacy of ablation of interatrial connections for treatment of persistent atrial fibrillation. Europace 20(suppl_3):iii55–iii68. https://doi.org/10.1093/europace/euy232

    Article  PubMed  PubMed Central  Google Scholar 

  47. Atta-Fosu T, LaBarbera M, Ghose S et al (2021) A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT. BMC Med Imaging 21(1):45. https://doi.org/10.1186/s12880-021-00578-4

    Article  PubMed  PubMed Central  Google Scholar 

  48. Firouznia M, Feeny AK, LaBarbera MA et al (2021) Machine learning-derived Fractal features of shape and texture of the left atrium and pulmonary veins from cardiac computed tomography scans are associated with risk of recurrence of atrial fibrillation Postablation. Circ Arrhythm Electrophysiol 14(3):e9265. https://doi.org/10.1161/CIRCEP.120.009265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Dey D, Slomka PJ, Leeson P et al (2019) Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am Coll Cardiol 73(11):1317–1335. https://doi.org/10.1016/j.jacc.2018.12.054

    Article  PubMed  PubMed Central  Google Scholar 

  50. Singh JP (2019) It is time for us to get artificially intelligent! JACC Clin Electrophysiol 5(2):263–265. https://doi.org/10.1016/j.jacep.2018.12.003

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Nedios MD, PhD.

Ethics declarations

Conflict of interest

S. Nedios, F. Lindemann, J. Heijman, H. J. G. M. Crijns, A. Bollmann, and G. Hindricks declare that they have no competing interests.

For this article no studies with human participants or animals were performed by any of the authors. All studies performed were in accordance with the ethical standards indicated in each case.

Additional information

Sotirios Nedios and Frank Lindemann contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nedios, S., Lindemann, F., Heijman, J. et al. Atrial remodeling and atrial fibrillation recurrence after catheter ablation. Herz 46, 312–317 (2021). https://doi.org/10.1007/s00059-021-05050-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00059-021-05050-1

Keywords

Schlüsselwörter

Navigation