Skip to main content
Log in

Synthesis and anticancer activity of novel coumarin-stilbene hybrids with different hydrocarbon chains as linkers

  • Original Research Article
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Stilbene derivatives (pterostilbene and resveratrol) and 4-methylumbelliferone occur naturally in plants. These compounds and coumarin-stilbene hybrids have a variety of biological activities. It was envisioned that the molecular hybridization strategy would produce new bioactive molecules. Thus, six new coumarin-stilbene hybrids (3a-b, 4a-b, and 5a-b) with different hydrocarbon chains as linkers were synthesized by the O-alkylation reaction and characterized using FTIR, 1H NMR, 13C NMR, DEPT-135, and HRMS (ESI+) spectral analysis. An MTT assay was used to test the synthesized hybrids against breast cancer (MCF-7 and T47D) and liver cancer (HepG2) cell lines. The results showed that the synthesis of coumarin-stilbene hybrids via the O-alkylation reaction requires the presence of KI in addition to K2CO3 as a base to complete the reaction. On the other hand, the synthesis of coumarin-pterostilbene hybrids (3a-b) via the O-alkylation reaction with DMF as a solvent and an excess of base (K2CO3) and catalyst (KI) improved the yield significantly (65.43 and 73.71%, respectively). The biological results exhibited that all hybrids showed moderate to weak anticancer activities, much lower than the medication (cisplatin). However, most compounds showed superior activities than parent compounds against three different human cell lines. Among them, compounds 4a and 4b exhibited the best cytotoxic activity against T47D and MCF-7, with IC50 values of 102.05 and 23.12 µM, respectively. Compound (3a) showed the most cytotoxic activity against HepG2, with an IC50 value of 80.09 µM. To conclude, due to the simplicity of synthesis, hybridization is a promising strategy for producing new hybrid compounds with hydrocarbon chains as linkers and improving biological activity compared with their parent compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hornedo-Ortega R, Reyes González-Centeno M, Chira K, Jourdes M, Teissedre P-L. Phenolic compounds of grapes and wines: key compounds and implications in sensory perception. In: Cosme F, Nunes MF, Filipe-Ribeiro L, editors. Chemistry and biochemistry of winemaking, wine stabilization and aging. London, United Kingdom: IntechOpen; 2021.

    Google Scholar 

  2. Kurrey R, Saha A, Sinha S, Sahu Y, Khute M, Sahu B, et al. Recent advances on analytical methodologies for screening and detection of biophenols and their challenges: a brief review. Results Chem. 2022;4:100456. https://doi.org/10.1016/j.rechem.2022.100456.

    Article  CAS  Google Scholar 

  3. Valletta A, Iozia LM, Leonelli F. Impact of environmental factors on stilbene biosynthesis. Plants. 2021;10:90. https://doi.org/10.3390/plants10010090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sugathan S, Pradeep NS, Abdulhameed S. Bioresources and bioprocess in biotechnology: volume 2: exploring potential biomolecules. 1st ed. Singapore: Springer; 2017.

    Book  Google Scholar 

  5. Chan EWC, Wong CW, Tan YH, Foo JPY, Wong SK, Chan HT. Resveratrol and pterostilbene: a comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J. Appl. Pharmaceutical Sci. 2019;9:124–9. https://doi.org/10.7324/JAPS.2019.90717.

    Article  CAS  Google Scholar 

  6. Salehi B, Mishra AP, Nigam M, Sener B, Kilic M, Sharifi-Rad M, et al. Resveratrol: a double-edged sword in health benefits. Biomedicines. 2018;6:91. https://doi.org/10.3390/biomedicines6030091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deveci HA. Functional foods and nutraceuticals: bioactive compounds. Livre de Lyon; 2022. Publisher Springer Cham. https://doi.org/10.1007/978-3-030-42319-3.

  8. Gupta A, Padmanabhan P, Singh S. Resveratrol isomeric switching during bioreduction of gold nanoparticles: a gateway for cis-resveratrol. Nanotechnology. 2020;31:465603. https://doi.org/10.1088/1361-6528/ababcb.

    Article  CAS  PubMed  Google Scholar 

  9. Bohara RA, Tabassum N, Singh MP, Gigli G, Ragusa A, Leporatti S. Recent overview of resveratrol’s beneficial effects and Its nano-delivery systems. Molecules. 2022;27:5154. https://doi.org/10.3390/molecules27165154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Marumo M, Ekawa K, Wakabayashi I. Resveratrol inhibits Ca2+ signals and aggregation of platelets. Environ Health Prevent Med. 2020;25:70. https://doi.org/10.1186/s12199-020-00905-1.

    Article  CAS  Google Scholar 

  11. Huang H, Liao D, Zhou G, Zhu Z, Cui Y, Pu R. Antiviral activities of resveratrol against rotavirus in vitro and in vivo. Phytomedicine. 2020;77:153230. https://doi.org/10.1016/j.phymed.2020.153230.

    Article  CAS  PubMed  Google Scholar 

  12. Seshadri TR. Polyphenols of Pterocarpus and Dalbergia woods. Phytochemistry. 1972;11:881–98. https://doi.org/10.1016/S0031-9422(00)88430-7.

    Article  CAS  Google Scholar 

  13. Abdulhameed S, Pradeep NS, Sugathan S. Bioresources and bioprocess in biotechnology: volume 2: exploring potential biomolecules. 1st ed. Singapore: Springer; 2017.

    Book  Google Scholar 

  14. Cassiano C, Eletto D, Tosco A, Riccio R, Monti MC, Casapullo A. Determining the effect of pterostilbene on insulin secretion using chemoproteomics. Molecules. 2020;25:2885. https://doi.org/10.3390/molecules25122885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee PS, Chiou YS, Ho CT, Pan MH. Chemoprevention by resveratrol and pterostilbene: targeting on epigenetic regulation. Biofactors. 2017;44:26–35. https://doi.org/10.1002/biof.1401.

    Article  CAS  PubMed  Google Scholar 

  16. Rodríguez-Bonilla P, Gandía-Herrero F, Matencio A, García-Carmona F, López-Nicolás JM. Comparative study of the antioxidant capacity of four stilbenes using ORAC, ABTS+, and FRAP techniques. Food Anal Methods. 2017;10:2994–3000. https://doi.org/10.1007/s12161-017-0871-9.

    Article  Google Scholar 

  17. Chatterjee K, AlSharif D, Mazza C, Syar P, Al Sharif M, Fata JE. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells. Nutrients. 2018;10:243. https://doi.org/10.3390/nu10020243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin W-S, Leland JV, Ho C-T, Pan M-H. Occurrence, bioavailability, anti-inflammatory, and anticancer effects of pterostilbene. J Agric Food Chem. 2020;68:12788–99. https://doi.org/10.1021/acs.jafc.9b07860.

    Article  CAS  PubMed  Google Scholar 

  19. Remsberg CM, Yanez JA, Ohgami Y, Vega-Villa KR, Rimando AM, Davies NM. Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytotherapy Res. 2008;22:169–79. https://doi.org/10.1002/ptr.2277.

    Article  CAS  Google Scholar 

  20. Amin A, Akhtar MF, Saleem A, Sharif A, Shah S, Khan MI, et al. Pterostilbene improves CFA-induced arthritis and peripheral neuropathy through modulation of oxidative stress, inflammatory cytokines and neurotransmitters in Wistar rats. Inflammopharmacology. 2022;30:2285–300. https://doi.org/10.1007/s10787-022-01069-w.

    Article  CAS  PubMed  Google Scholar 

  21. Li YR, Li S, Lin CC. Effect of resveratrol and pterostilbene on aging and longevity. Biofactors. 2018;44:69–82. https://doi.org/10.1002/biof.1400.

    Article  CAS  PubMed  Google Scholar 

  22. Sun, Liu H, Long X, Teng w SR, Ge H, Wang Y, et al. Antidiabetic effects of pterostilbene through PI3K/Akt signal pathway in high fat diet and STZ-induced diabetic rats. Eur J Pharmacol. 2019;859:172526. https://doi.org/10.1016/j.ejphar.2019.172526.

    Article  CAS  PubMed  Google Scholar 

  23. Pan MH, Wu JC, Ho CT, Lai CS. Antiobesity molecular mechanisms of action: resveratrol and pterostilbene. Biofactors. 2018;44:50–60. https://doi.org/10.1002/biof.1409.

    Article  CAS  PubMed  Google Scholar 

  24. Yan W, Ren D, Feng X, Huang J, Wang D, Li T, et al. Neuroprotective and anti-Inflammatory effect of pterostilbene against cerebral ischemia/reperfusion injury via suppression of COX-2. Front Pharmacol. 2021;12:770329. https://doi.org/10.3389/fphar.2021.770329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mangasuli SN, Hosamani KM, Satapute P, Joshi SD. Synthesis, molecular docking studies and biological evaluation of potent coumarin–carbonodithioate hybrids via microwave irradiation. Chem Data Collections. 2018;15-16:115–25. https://doi.org/10.1016/j.cdc.2018.04.001.

    Article  Google Scholar 

  26. Chauhan NB, Patel NB, Patel VM, Mistry BM. Synthesis and biological evaluation of coumarin clubbed thiazines scaffolds as antimicrobial and antioxidant. Med Chem Res. 2018;27:2141–9. https://doi.org/10.1007/s00044-018-2222-9.

    Article  CAS  Google Scholar 

  27. Dharavath R, Nagaraju N, Reddy MR, Ashok D, Sarasija M, Vijjulatha M, et al. Microwave-assisted synthesis, biological evaluation and molecular docking studies of new coumarin-based 1, 2, 3-triazoles. RSC Adv. 2020;10:11615–23. https://doi.org/10.1039/D0RA01052A.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lingaraju GS, Balaji KS, Jayarama S, Anil SM, Kiran KR, Sadashiva MP. Synthesis of new coumarin tethered isoxazolines as potential anticancer agents. Bioorganic Med Chem Lett. 2018;28:3606–12. https://doi.org/10.1016/j.bmcl.2018.10.046.

    Article  CAS  Google Scholar 

  29. Dhawan S, Awolade P, Kisten P, Cele N, Pillay A-S, Saha S, et al. Synthesis, cytotoxicity and antimicrobial evaluation of new coumarin-tagged β-lactam triazole hybrid. Chem Biodivers. 2020;17:e1900462. https://doi.org/10.1002/cbdv.201900462.

    Article  CAS  PubMed  Google Scholar 

  30. Duangdee N, Mahavorasirikul W, Prateeptongkum S. Design synthesis and anti-proliferative activity of some new coumarin substituted hydrazide–hydrazone derivatives. J Chem Sci. 2020;132:66. https://doi.org/10.1007/s12039-020-01767-4.

    Article  CAS  Google Scholar 

  31. Thakur A, Singla R, Jaitak V. Coumarins as anticancer agents: A review on synthetic strategies, mechanism of action and SAR studies. Eur J Med Chem. 2015;101:476–95. https://doi.org/10.1016/j.ejmech.2015.07.010.

    Article  CAS  PubMed  Google Scholar 

  32. Abdulrahman FG, Abulkhair HS, Zidan RA, Alwakeel AI, Al-Karmalawy AA, Husseiny EM. Novel benzochromenes: design, synthesis, cytotoxicity, molecular docking and mechanistic investigations. Fut Med Chem. 2024;16:105–23. https://doi.org/10.4155/fmc-2023-0198.

    Article  CAS  Google Scholar 

  33. Piekus-Slomka N, Mikstacka R, Ronowicz J, Sobiak S. Hybrid cis-stilbene molecules: novel anticancer agents. Int J Mol Sci. 2019;20:1300. https://doi.org/10.3390/ijms20061300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sunil R, Pal S, Jayashree A. Molecular hybridization-an emanating tool in drug design. Med Chem. 2019;9:93–5.

    Google Scholar 

  35. Kerru N, Singh P, Koorbanally N, Raj R, Kumar V. Recent advances (2015–2016) in anticancer hybrids. Eur J Med Chem. 2017;142:179–212. https://doi.org/10.1016/j.ejmech.2017.07.033.

    Article  CAS  PubMed  Google Scholar 

  36. Noureddin SA, El-Shishtawy RM, Al-Footy KO. Synthesis of new symmetric cyclic and acyclic halocurcumin analogues typical precursors for hybridization. Res Chem Intermed. 2020;46:5307–23. https://doi.org/10.1007/s11164-020-04264-y.

    Article  CAS  Google Scholar 

  37. Al Zahrani NA, El-Shishtawy RM, Asiri AM. Recent developments of gallic acid derivatives and their hybrids in medicinal chemistry: A review. Eur J Med Chem. 2020;204:112609. https://doi.org/10.1016/j.ejmech.2020.112609.

    Article  CAS  PubMed  Google Scholar 

  38. Noureddin SA, El-Shishtawy RM, Al-Footy KO. Curcumin analogues and their hybrid molecules as multifunctional drugs. Eur J Med Chem. 2019;182:111631. https://doi.org/10.1016/j.ejmech.2019.111631.

    Article  CAS  PubMed  Google Scholar 

  39. Herrera-R A, Castrillón W, Otero E, Ruiz E, Carda M, Agut R, et al. Synthesis and antiproliferative activity of 3- and 7-styrylcoumarins. Med Chem Res. 2018;27:1893–905. https://doi.org/10.1007/s00044-018-2202-0.

    Article  CAS  Google Scholar 

  40. Hernández C, Moreno G, Herrera RA, Cardona GW. New hybrids based on curcumin and resveratrol: synthesis, cytotoxicity and antiproliferative activity against colorectal cancer cells. Molecules. 2021;26:2661. https://doi.org/10.3390/molecules26092661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tang KW, Ke CC, Tseng CH, Chen YL, Tzeng CC, Chen YJ, et al. Enhancement of anticancer potential of pterostilbene derivative by chalcone hybridization. Molecules. 2021;26:4840. https://doi.org/10.3390/molecules26164840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yin Y, Lian BP, Xia YZ, Shao YY, Kong LY. Design, synthesis and biological evaluation of resveratrol-cinnamoyl derivates as tubulin polymerization inhibitors targeting the colchicine binding site. Bioorganic Chem. 2019;93:103319. https://doi.org/10.1016/j.bioorg.2019.103319.

    Article  CAS  Google Scholar 

  43. Vema VN, Y BK, Mandava VBR, Mussulla S, Addada RR, A SR. Synthesis, anticancer evaluation and molecular docking studies of 1,3,4-oxadiazole linked resveratrol derivatives. Chem Data Collections. 2020;30:100570. https://doi.org/10.1016/j.cdc.2020.100570.

    Article  CAS  Google Scholar 

  44. Liu JC, Chen B, Yang JL, Weng JQ, Yu Q, Hu DX. Design, synthesis and cytotoxicity of thiazole-based stilbene analogs as novel DNA topoisomerase IB inhibitors. Molecules. 2022;27:1009. https://doi.org/10.3390/molecules27031009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen W, Mao J, Sun J, Sun M, Zhang C. Synthesis and biological evaluation of resveratrol–coumarin hybrid compounds as potential antitumor agents. Med Chem Res. 2013;22:1630–40. https://doi.org/10.1007/s00044-012-0159-y.

    Article  CAS  Google Scholar 

  46. Belluti F, Fontana G, Dal Bo L, Carenini N, Giommarelli C, Zunino F. Design, synthesis and anticancer activities of stilbene-coumarin hybrid compounds: Identification of novel proapoptotic agents. Bioorganic Med Chem. 2010;18:3543–50. https://doi.org/10.1016/j.bmc.2010.03.069.

    Article  CAS  Google Scholar 

  47. Hussain MK, Singh DK, Singh A, Asad M, Ansari MI, Shameem M, et al. A novel benzocoumarin-stilbene hybrid as a DNA ligase I inhibitor with in vitro and in vivo anti-tumor activity in breast cancer models. Sci Rep. 2017;7:10715. https://doi.org/10.1038/s41598-017-10864-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fotso GW, Mogue Kamdem L, Dube M, Fobofou SA, Ndjie Ebene A, Arnold N, et al. Antimicrobial secondary metabolites from the stem barks and leaves of Monotes kerstingii Gilg (Dipterocarpaceae). Fitoterapia. 2019;137:104239. https://doi.org/10.1016/j.fitote.2019.104239.

    Article  CAS  PubMed  Google Scholar 

  49. Drabikova K, Perecko T, Nosal R, Rackova L, Ambrozova G, Lojek A, et al. Different effect of two synthetic coumarin-stilbene hybrid compounds on phagocyte activity. Neuro Endocrinol Lett. 2010;31:73–8.

    CAS  PubMed  Google Scholar 

  50. Xiao CF, Tao LY, Sun HY, Wei W, Chen Y, Fu LW, et al. Design, synthesis and antitumor activity of a series of novel coumarin–stilbenes hybrids, the 3-arylcoumarins. Chin Chem Lett. 2010;21:1295–8. https://doi.org/10.1016/j.cclet.2010.04.034.

    Article  CAS  Google Scholar 

  51. Chen H, Li S, Yao Y, Zhou L, Zhao J, Gu Y, et al. Design, synthesis, and antitumor activities of novel triphenylethylene–coumarin hybrids, and their interactions with Ct-DNA. Bioorganic Med Chem Lett. 2013;23:4785–9. https://doi.org/10.1016/j.bmcl.2013.07.009.

    Article  CAS  Google Scholar 

  52. Matos MJ, Uriarte E, Santana L. 3-Phenylcoumarins as a privileged scaffold in medicinal chemistry: the landmarks of the past decade. Molecules. 2021;26:6755. https://doi.org/10.3390/molecules26216755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Agbo EN, Gildenhuys S, Choong YS, Mphahlele MJ, More GK. Synthesis of furocoumarin–stilbene hybrids as potential multifunctional drugs against multiple biochemical targets associated with Alzheimer’s disease. Bioorganic Chem. 2020;101:103997. https://doi.org/10.1016/j.bioorg.2020.103997.

    Article  CAS  Google Scholar 

  54. Fais A, Corda M, Era B, Fadda MB, Matos MJ, Quezada E, et al. Tyrosinase inhibitor activity of coumarin-resveratrol hybrids. Molecules. 2009;14:2514–20. https://doi.org/10.3390/molecules14072514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pintus F, Floris S, Fais A, Era B, Kumar A, Gatto G, et al. Hydroxy-3-phenylcoumarins as multitarget compounds for skin aging diseases: synthesis, molecular docking and tyrosinase, elastase, collagenase and hyaluronidase inhibition, and sun protection factor. Molecules. 2022;27:6914. https://doi.org/10.3390/molecules27206914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Quezada E, Delogu G, Picciau C, Santana L, Podda G, Borges F, et al. Synthesis and vasorelaxant and platelet antiaggregatory activities of a new series of 6-halo-3-phenylcoumarins. Molecules. 2010;15:270–9. https://doi.org/10.3390/molecules15010270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Vilar S, Quezada E, Santana L, Uriarte E, Yánez M, Fraiz N, et al. Design, synthesis, and vasorelaxant and platelet antiaggregatory activities of coumarin–resveratrol hybrids. Bioorganic Med Chem Lett. 2006;16:257–61. https://doi.org/10.1016/j.bmcl.2005.10.013.

    Article  CAS  Google Scholar 

  58. Gao L, Wang F, Chen Y, Li F, Han B, Liu D. The antithrombotic activity of natural and synthetic coumarins. Fitoterapia. 2021;154:104947. https://doi.org/10.1016/j.fitote.2021.104947.

    Article  CAS  PubMed  Google Scholar 

  59. Samanta P, Kapat K, Maiti S, Biswas G, Dhara S, Dhara D. pH-labile and photochemically cross-linkable polymer vesicles from coumarin based random copolymer for cancer therapy. J Colloid Interface Sci. 2019;555:132–44. https://doi.org/10.1016/j.jcis.2019.07.069.

    Article  CAS  PubMed  Google Scholar 

  60. Duan YC, Ma YC, Zhang E, Shi XJ, Wang MM, Ye XW, et al. Design and synthesis of novel 1, 2, 3-triazole-dithiocarbamate hybrids as potential anticancer agents. Eur J Med Chem. 2013;62:11–9. https://doi.org/10.1016/j.ejmech.2012.12.046.

    Article  CAS  PubMed  Google Scholar 

  61. Ali EMM, Elashkar AA, El-Kassas HY, Salim EI. Methotrexate loaded on magnetite iron nanoparticles coated with chitosan: biosynthesis, characterization, and impact on human breast cancer MCF-7 cell line. Int J Biol Macromol. 2018;120:1170–80. https://doi.org/10.1016/j.ijbiomac.2018.08.118.

    Article  CAS  PubMed  Google Scholar 

  62. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47:936–42.

    CAS  PubMed  Google Scholar 

  63. Catto M, Nicolotti O, Leonetti F, Carotti A, Favia AD, Soto-Otero R, et al. Structural insights into monoamine oxidase inhibitory potency and selectivity of 7-substituted coumarins from ligand- and target-based approaches. J Med Chem. 2006;49:4912–25. https://doi.org/10.1021/jm060183l.

    Article  CAS  PubMed  Google Scholar 

  64. Ouellette RJ, Rawn JD. 10 - Nucleophilic Substitution and Elimination Reactions. Organic Chemistry Study Guide Key Concepts, Problems, and Solutions 2015; 169–82. https://doi.org/10.1016/B978-0-12-801889-7.00010-8.

  65. Al-lehaib LA, Ali EMM, Al-Footy KO, El-Shishtawy RM. Novel styryl-heterocyclic hybrids: Synthesis, characterization and anticancer activity. Results Chem. 2024;7:101374. https://doi.org/10.1016/j.rechem.2024.101374.

    Article  CAS  Google Scholar 

  66. Gkionis L, Kavetsou E, Kalospyros A, Manousakis D, Garzon Sanz M, Butterworth S, et al. Investigation of the cytotoxicity of bioinspired coumarin analogues towards human breast cancer cells. Mol Diversity. 2021;25:307–21. https://doi.org/10.1007/s11030-020-10082-6.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda M. El-Shishtawy.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-lehaib, L.A., Ali, E.M.M., Al-Footy, K.O. et al. Synthesis and anticancer activity of novel coumarin-stilbene hybrids with different hydrocarbon chains as linkers. Med Chem Res 33, 764–778 (2024). https://doi.org/10.1007/s00044-024-03212-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-024-03212-4

Keywords

Navigation