Skip to main content
Log in

Synthesis of 6,6-Dimethyl-3-azabicyclo [3.1.0]hexane via Ru (II)-catalyzed intramolecular cyclopropanation

  • Brief Report
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

6,6-Dimethyl-3-azabicyclo[3.1.0]hexane (6,6-DMABH) is a crucial component in several antiviral medications, such as boceprevir and pf-07321332. To enable more efficient synthesis of 6,6-DMABH, we have developed an innovative approach that utilizes intramolecular cyclopropanation of alpha-diazoacetates via Ru (II) catalysis and the Gabriel synthesis. Gram-scale synthesis of 6,6-DMABH from 3-methyl-2-butenol is achieved in seven distinct steps, resulting in a total yield of 28%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Data availability

The data that support the findings of this study are available in the supplementary material of this article.

References

  1. Flefel EM, El Sofany WI, Al Harbi RAK, El Shahat M. Development of a novel series of anticancer and antidiabetic: spirothiazolidines analogs. Molecules. 2019;24:2511–30. https://doi.org/10.3390/molecules24132511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. El Shahat M, El Sofany WI, Soliman AA, Hasanin M. Newly synthesized imidazolotriazole, imidazolotriazine, and imidazole-pyrazole hybrid derivatives as promising antimicrobial agents. J Mol Struct. 2022;1250:131727. https://doi.org/10.1016/j.molstruc.2021.131727.

    Article  CAS  Google Scholar 

  3. El Sofany WI, El sayed WA, Abd Rabou AA, El Shahat M. Synthesis of new imidazole-triazole-glycoside hybrids as anti-breast cancer candidates. J Mol Struct. 2022;1270:133942. https://doi.org/10.1016/j.molstruc.2022:133942.

    Article  CAS  Google Scholar 

  4. Abdelhameed RM, Darwesh OM, El Shahat M. Synthesis of arylidene hydrazinylpyrido[2,3-d]pyrimidin-4-ones as potent anti-microbial agents. Heliyon. 2020;6:e04956. https://doi.org/10.1016/j.heliyon.2020.e04956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. El Sofany WI, Flefel EM, Darwesh OM, El Shahat M. Boosting the antimicrobial performance based on new fused spirothiazolidine framework analogs. J Iran Chem Soc. 2022;19:4223–36.

    Article  CAS  Google Scholar 

  6. Gohl M, Zhang L, El Kilani H, Sun X, Zhang K, Bronstrup M et al. From repurposing to redesign: optimization of boceprevir to highly potent inhibitors of the SARS-CoV-2 main protease. Molecules. 2022;27. https://doi.org/10.3390/molecules27134292.

  7. Hu Y, Ma C, Szeto T, Hurst B, Tarbet B, Wang J. Boceprevir, calpain inhibitors II and XII, and GC-376 have broad-spectrum antiviral activity against coronaviruses. ACS Infect Dis. 2021;7:586–97. https://doi.org/10.1021/acsinfecdis.0c00761.

    Article  CAS  PubMed  Google Scholar 

  8. Oerlemans R, Ruiz-Moreno AJ, Cong Y, Dinesh Kumar N, Velasco-Velazquez MA, Neochoritis CG, et al. Repurposing the HCV NS3-4A protease drug boceprevir as COVID-19 therapeutics. RSC. Med Chem. 2020;12:370–9. https://doi.org/10.1039/d0md00367k

    Article  CAS  Google Scholar 

  9. Joyce RP, Hu VW, Wang J. The history, mechanism, and perspectives of nirmatrelvir (PF-07321332): an orally bioavailable main protease inhibitor used in combination with ritonavir to reduce COVID-19-related hospitalizations. Med Chem Res. 2022;31:1637–46. https://doi.org/10.1007/s00044-022-02951-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shekhar C, Nasam R, Paipuri SR, Kumar P, Nayani K, Pabbaraja S, et al. Total synthesis of antiviral drug, nirmatrelvir (PF-07321332. Tetrahedron Chem. 2022;4:100033. https://doi.org/10.1016/j.tchem.2022.100033.

  11. Wang YT, Liao JM, Lin WW, Li CC, Huang BC, Cheng TL. et al. Structural insights into Nirmatrelvir (PF-07321332)-3C-like SARS-CoV-2 protease complexation: a ligand Gaussian accelerated molecular dynamics study. Phys Chem Chem Phys. 2022;24:22898–904. https://doi.org/10.1039/d2cp02882d.

    Article  CAS  PubMed  Google Scholar 

  12. Zhong L, Zhao Z, Peng X, Zou J, Yang S. Recent advances in small-molecular therapeutics for COVID-19. Precis Clin Med. 2022;5:pbac024. https://doi.org/10.1093/pcmedi/pbac024.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Concellon JM, Rodriguez-Solla H, Concellon C, del Amo V. Stereospecific and highly stereoselective cyclopropanation reactions promoted by samarium. Chem Soc Rev. 2010;39:4103–13. https://doi.org/10.1039/b915662c.

    Article  CAS  PubMed  Google Scholar 

  14. de Carne-Carnavalet B, Archambeau A, Meyer C, Cossy J, Folleas B, Brayer JL. et al. Efficient synthesis of substituted 3-azabicyclo[3.1.0]hexan-2-ones from 2-iodocyclopropanecarboxamides using a copper-free Sonogashira coupling. Chemistry. 2012;18:16716–27. https://doi.org/10.1002/chem.201203153.

    Article  CAS  PubMed  Google Scholar 

  15. Ruppel JV, Cui X, Xu X, Zhang XP. Stereoselective intramolecular cyclopropanation of alpha-diazoacetates via Co(II)-based metalloradical catalysis. Org Chem Front. 2014;1:515–20. https://doi.org/10.1039/C4QO00041B.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu X, Lu H, Ruppel JV, Cui X, Lopez de Mesa S, Wojtas L. et al. Highly asymmetric intramolecular cyclopropanation of acceptor-substituted diazoacetates by Co(II)-based metalloradical catalysis: iterative approach for development of new-generation catalysts. J Am Chem Soc. 2011;133:15292–5. https://doi.org/10.1021/ja2062506.

    Article  CAS  PubMed  Google Scholar 

  17. Berranger T, Demonchaux P. Process for the preparation of 6,6-dimethyl-3-azabicyclo-[3.1.0]-hexanecompounds utilizing bisulfite intermediate. WO 2008082508.

  18. Wu G, Frank CX, Rashatasakhon P, Eckert JM, Wong GSK, Lee HC et al. Process for the preparation of 6,6-dimethyl-3-azabicyclo-[3.1.0]-hexane compounds and enantiomeric salts thereof. WO 2007075790.

  19. Chandgude AL, Ren X, Fasan R. Stereodivergent intramolecular cyclopropanation enabled by engineered carbene transferases. J Am Chem Soc. 2019;141:9145–50. https://doi.org/10.1021/jacs.9b02700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Che CM, Huang JS, Lee FW, Li Y, Lai TS, Kwong HL. et al. Asymmetric inter- and intramolecular cyclopropanation of alkenes catalyzed by chiral ruthenium porphyrins. Synthesis and crystal structure of a chiral metalloporphyrin carbene complex. J Am Chem Soc. 2001;123:4119–29. https://doi.org/10.1021/ja001416f.

    Article  CAS  PubMed  Google Scholar 

  21. Kopka IE, Lin LS, Jewell JP, Lanza TJ, Fong TM, Shen CP. et al. Synthesis and cannabinoid-1 receptor binding affinity of conformationally constrained analogs of taranabant. Bioorg Med Chem Lett. 2010;20:4757–61. https://doi.org/10.1016/j.bmcl.2010.06.127.

    Article  CAS  PubMed  Google Scholar 

  22. Kim K, Hong SH. Iridium-catalyzed single-step N-substituted lactam synthesis from lactones and amines. J Org Chem. 2015;80:4152–6. https://doi.org/10.1021/acs.joc.5b00101.

    Article  CAS  PubMed  Google Scholar 

  23. Shinozuka T, Yamamoto Y, Hasegawa T, Saito K, Naito S. First total synthesis of sterenins A, C and D. Tetrahedron Lett. 2008;49:1619–22. https://doi.org/10.1016/j.tetlet.2008.01.031.

    Article  CAS  Google Scholar 

  24. Lan CL, Auclair K. 1,5,7-Triazabicyclo[4.4.0]dec-5-ene: an effective catalyst for amide formation by lactone aminolysis. J Org Chem. 2023;88:10086–95. https://doi.org/10.1021/acs.joc.3c00913.

    Article  CAS  PubMed  Google Scholar 

  25. Mercado-Marin EV, Chheda PR, Faulkner A, Carrera D. Magnesium ethoxide mediated lactone aminolysis with aminoheterocycles. Tetrahedron Lett. 2020;21:151552. https://doi.org/10.1016/j.tetlet.2019.151552.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support provided by the ABA Chemicals Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Ma, Y., Cheng, S. et al. Synthesis of 6,6-Dimethyl-3-azabicyclo [3.1.0]hexane via Ru (II)-catalyzed intramolecular cyclopropanation. Med Chem Res 32, 2501–2504 (2023). https://doi.org/10.1007/s00044-023-03158-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-023-03158-z

Keywords

Navigation