Skip to main content

Advertisement

Log in

Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Microbial pathogenesis, cancer progression, and neurological diseases are associated with oxidative stress due to the increased production of reactive oxygen species (ROS). This work aims to evaluate the antioxidants, antibacterial, cytotoxic, and anti-cholinesterase activities of 1,4-benzoxazepines derivatives (Zepin 7–32), as well as in silico modeling of their mode of action. The cytotoxic activity of Zepin (7–32) measured against the MDA-MB-231 breast cancer cell line revealed that Zepin-16 and −25 were the most potent anti-breast cancer compounds with IC50 values of 0.03 mM and 0.02 mM, respectively; the IC50 values of other 1,4-benzoxazepines with anticancer activity were in the range of 0.05–0.32 mM. Zepin-15, −16, −17, −19, −20, −21, −22, and −25 compounds were the most potent antibacterial agents against at least one of the tested strains from both Gram-negative and Gram-positive bacterial strains by agar diffusion test. However, oxazino-1,4-benzoxazepines 14–19 and 25 were the only compounds that exhibited antioxidant activity in DPPH assay; their ability to scavenge the DPPH radicals was in the following order, Zepin-16>−18>−17>−14>−15>−25. Correlated with the antioxidant activity, 1,4-benzoxazepines derivatives at 50 μg/mL, caused inhibition in acetylcholinesterase (AChE) activity ranging from 9.5 to 81%. The % inhibition pattern of 1,4-benzoxazepine derivatives toward AChE was classified into high effects (≥50%), moderate effects (>30 to 50%) and low effects (<30%). Interestingly, in the current study, the exhibited biological activities of 1,4-benzoxazepine derivatives have been confirmed by molecular modeling studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data presented in this study are available on request from the corresponding author.

References

  1. Stanisheva D, Gerova M, Petrov O. Synthesis of a new polycyclic heterocyclic ring system. part III. Benzo[b]imidazo[1,5-d][1,4]oxazepine-1,4(2H,5H)-diones. Heterocycl Commun. 2017;23:23–7. https://doi.org/10.1515/hc-2016-0236.

    Article  CAS  Google Scholar 

  2. Tóth L, Fu Y, Zhang HY, Mándi A, Kövér KE, Illyés TZ, et al. Preparation of neuroprotective condensed 1,4-benzoxazepines by regio- and diastereoselective domino Knoevenagel-[1,5]-hydride shift cyclization reaction. Beilstein J Org Chem. 2014;10:2594–602. https://doi.org/10.3762/bjoc.10.272.

    Article  CAS  Google Scholar 

  3. Grunewald GL, Dahanukar VH, Ching P, Criscione KR. Effect of ring size or an additional heteroatom on the potency and selectivity of bicyclic benzylamine-type inhibitors of phenylethanolamine N-methyltransferase. J Med Chem. 1996;39:3539–46. https://doi.org/10.1021/jm9508292.

    Article  CAS  Google Scholar 

  4. Ashok D, Radhika G, Ananda Rao B, Sarasija M, Jayashree A, Sadanandam P. Synthesis of benzoxazepine derivatives from pyrazole-chalcone via a simple and convenient protocol using basic alumina as solid support. Chil Chem Soc. 2018;63:3983–7. https://doi.org/10.4067/s0717-97072018000203983.

    Article  CAS  Google Scholar 

  5. Bright SA, Campiani G, Deininger MW, Lawler M, Williams DC, Zisterer DM. Sequential treatment with flavopiridol synergistically enhances pyrrolo-1,5-benzoxazepine-induced apoptosis in human chronic myeloid leukaemia cells including those resistant to imatinib treatment. Biochem Pharmacol. 2010;80:31–8. https://doi.org/10.1016/j.bcp.2010.02.019.

    Article  CAS  Google Scholar 

  6. Nathwani SM, Butler S, Fayne D, McGovern NN, Sarkadi B, Meegan MJ, et al. Novel microtubule-targeting agents, pyrrolo-1,5-benzoxazepines, induce apoptosis in multi-drug-resistant cancer cells. Cancer Chemother Pharmacol. 2010;66:585–96. https://doi.org/10.1007/s00280-009-1200-9.

    Article  CAS  Google Scholar 

  7. Lennon J, Bright S, Carroll E, Butini S, Campiani G, O’Merara A, et al. The novel pyrrolo-1,5-benzoxazepine, PBOX-6, synergistically enhances the apoptotic effects of carboplatin in drug sensitive and multidrug resistant neuroblastoma cells. Biochem Pharmacol. 2014;87:611–24. https://doi.org/10.1016/j.bcp.2013.12.017.

    Article  CAS  Google Scholar 

  8. Kapur S, Cho R, Jones C, McKay G, Zipursky RB. Is amoxapine an atypical antipsychotic? Positron-emission tomography investigation of its dopamine2 and serotonin2 occupancy. Biol Psychiatry. 1999;45:1217–20. https://doi.org/10.1016/s0006-3223(98)00204-2.

    Article  CAS  Google Scholar 

  9. Umemiya H, Fukasawa H, Ebisawa M, Eyrolles L, Kawachi E, Eisenmann G, et al. Regulation of retinoidal actions by diazepinylbenzoic acids. Retinoid synergists which activate the RXR-RAR heterodimers. J Med Chem. 1997;40:4222–34. https://doi.org/10.1021/jm9704309.

    Article  CAS  Google Scholar 

  10. Klunder JM, Hargrave KD, West M, Cullen E, Pal K, Behnke ML, et al. Novel non-nucleoside inhibitors of HIV-1 reverse transcriptase. 2. Tricyclic pyridobenzoxazepinones and dibenzoxazepinones. J Med Chem. 1992;35:1887–97. https://doi.org/10.1021/jm00088a027.

    Article  CAS  Google Scholar 

  11. Fu P, Jamison M, La S, MacMillan JB, Inducamides A-C. chlorinated alkaloids from an RNA polymerase mutant strain of Streptomyces sp. Org Lett. 2014;16:5656–9. https://doi.org/10.1021/ol502731p.

    Article  CAS  Google Scholar 

  12. Yoo CB, Jones PA. Epigenetic therapy of cancer: past.; present and future. Nat Rev Drug Discov. 2006;5:37–50. https://doi.org/10.1038/nrd1930.

    Article  CAS  Google Scholar 

  13. Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E. et al.Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1.;2-4-triazol-5-yl)-5.;6-dihydrobenzo[f]imidazo[1.;2-d][1.;4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. Med Chem. 2013;56:4597–610. https://doi.org/10.1021/jm4003632.

  14. Safina BS, Elliott RL, Forrest AK, Heald RA, Murray JM, Nonomiya J, et al. Design of selective benzoxazepin PI3Kδ inhibitors through control of dihedral angles. ACS Med Chem Lett. 2017;8:936–40. https://doi.org/10.1021/acsmedchemlett.7b00170.

    Article  CAS  Google Scholar 

  15. Castanedo GM, Blaquiere N, Beresini M, Bravo B, Brightbill H, Chen J, et al. Structure-based design of tricyclic NF-κB inducing kinase (NIK) inhibitors that have high selectivity over phosphoinositide-3-kinase (PI3K). J Med Chem. 2017;60:627–40. https://doi.org/10.1021/acs.jmedchem.6b01363.

    Article  CAS  Google Scholar 

  16. Yin Y, Zhang YQ, Jin B, Sha S, Wu X, Sangani CB, et al. 6.;7-Dihydrobenzo[f]benzo[4.;5]imidazo[1.;2-d][1.;4]oxazepine derivatives as selective inhibitors of PI3Kα. Bioorg Med Chem. 2015;2:1231–40. https://doi.org/10.1016/j.bmc.2015.01.052.

    Article  CAS  Google Scholar 

  17. Staben ST, Siu M, Goldsmith R, Olivero AG, Do S, Burdick DJ, et al. Structure-based design of thienobenzoxepin inhibitors of PI3-kinase. Bioorg Med Chem Lett. 2011;21:4054–8. https://doi.org/10.1016/j.bmcl.2011.04.124.

    Article  CAS  Google Scholar 

  18. Rewcastle GW, Gamage SA, Flanagan JU, Frederick R, Denny WA, Baguley BC, et al. Synthesis and biological evaluationof novel analogues of the pan class I phosphatidylinositol 3-kinase (PI3K) inhibitor 2-37(difluoromethyl)-1-[4.;6-di(4-morpholinyl)-1.;3.;5-triazin-2-yl]-1H-benzimidazole(ZSTK474). J Med Chem. 2011;54:7105–26. https://doi.org/10.1021/jm200688y.

  19. Heffron TP, Wei B, Olivero A, Staben ST, Tsui V, Do S, et al. Rational design of phosphoinositide 3-kinase α inhibitors that exhibit selectivity over the phosphoinositide 3-kinase β isoform. J Med Chem. 2011;54:7815–33. https://doi.org/10.1021/jm2007084.

    Article  CAS  Google Scholar 

  20. Staben ST, Ndubaku C, Blaquiere N, Belvin M, Bull RJ, Dudley D, et al. Discovery of thiazolobenzoxepin PI3-kinase inhibitors that spare the PI3-kinase β isoform. Bioorg Med Lett. 2013;23:2606–13. https://doi.org/10.1016/j.bmcl.2013.02.102.

    Article  CAS  Google Scholar 

  21. Branco-Junior FJ, Teixeira RCD, Pereira CM, Pitta RI, Galdino-Pitta RM. The role of oxazolidine derivatives in the treatment of infectious and chronic diseases. Curr Bioact Compd. 2017;13:292–304. https://doi.org/10.2174/1573407213666161214162149.

    Article  CAS  Google Scholar 

  22. Charmantray F, Demeunynck M, Carrez D, Croisy A, Lansiaux A, Bailly C, et al. 4-Hydroxymethyl-3-aminoacridine derivatives as a new family of anticancer agents. J Med Chem. 2003;46:967–77. https://doi.org/10.1021/jm020389w.

    Article  CAS  Google Scholar 

  23. Alali FQ, Tahboub YR, Ibrahim ES, Qandil AM, Tawaha K, Burgess JP, et al. Pyrrolizidine alkaloids from Echium glomeratum (Boraginaceae). Phytochemistry. 2008;69:2341–6. https://doi.org/10.1016/j.phytochem.2008.06.017.

    Article  CAS  Google Scholar 

  24. de Carvalho GS, Dias RM, Pavan FR, Leite CQ, Silva VL, Diniz CG, et al. Synthesis.; cytotoxicity.; antibacterial and antileishmanial activities of imidazolidine and hexahydropyrimidine derivatives. Med Chem. 2013;9:351–9. https://doi.org/10.2174/1573406411309030005.

    Article  Google Scholar 

  25. da Rocha Pitta MG, da Rocha Pitta MG, de Melo Rêgo MJ, Galdino SL. The evolution of drugs on schistosoma treatment: looking to the past to improve the future. Mini Rev Med Chem. 2013;13:493–508. https://doi.org/10.2174/1389557511313040003.

    Article  Google Scholar 

  26. Gleave RJ, Walter DS, Beswick PJ, Fonfria E, Michel AD, Roman SA, et al. Synthesis and biological activity of a series of tetrasubstituted-imidazoles as P2X(7) antagonists. Bioorg Med Chem Lett. 2010;20:4951–4. https://doi.org/10.1016/j.bmcl.2010.05.018.

    Article  CAS  Google Scholar 

  27. Mizyed SA, Ashram M, Awwadi FF. A new and convenient synthetic method for 1,2,3,5,6,11b-hexahydroimidazo [1,2-d][1,4]benzoxazepine and its derivatives. Arkivoc. 2011;X:277–86. https://doi.org/10.3998/ark.5550190.0012.a22.

    Article  Google Scholar 

  28. Ashram M, Awwadi FF. A new, simple and efficient method for the synthesis oftricyclic[1,3]oxazolo[3,2-d][1,4]benzoxazepine,[1,3]oxazino[3,2-d][1,4]benzoxazepine,pyrimido[1,2- d][1,4]benzoxazepine and their derivatives. Arch Org Chem. 2019;2019:142–51. https://doi.org/10.24820/ark.5550190.p010.780.

  29. Ashram M, Awwadi FF. new and efficient synthesis of unsaturated benzoxazepines using sodium metabisulfite and potassium permanganate as oxidative reagents. Arkivoc. 2019;VI:239–51. https://doi.org/10.24820/ark.5550190.p011.061.

    Article  CAS  Google Scholar 

  30. Nathwani SM, Cloonan SM, Stronach M, Campiani G, Lawler M, Williams DC, et al. Novel microtubule-targeting agents.; pyrrolo-1.;5-benzoxazepines.; induce cell cycle arrest and apoptosis in prostate cancer cells. Oncol Rep. 2010;24:1499–507. https://doi.org/10.3892/or_00001011.

    Article  CAS  Google Scholar 

  31. Zinad DS, Mahal A, Mohapatra RK, Sarangi AK, Pratama MRF. Medicinal chemistry of oxazines as promising agents in drug discovery. Chem Biol Drug Des. 2020;95:16–47. https://doi.org/10.1111/cbdd.13633.

    Article  CAS  Google Scholar 

  32. Latif N, Mishriky N, Assad FM. Carbonyl and thiocarbonyl compounds. XIX. Intramolecular cyclization of (2-nitroetheny1)aryl N-arylcarbamates: synthesis of newer series of 3,4-dihydro-2H-1,3-oxazin-2-ones and their antimicrobial activities. Aust J Chem. 1982;35:1037–43. https://doi.org/10.1071/CH9821037.

    Article  CAS  Google Scholar 

  33. Fu HG, Li ZW, Hu XX, Si SY, You XF, Tang S, et al. Synthesis and biological evaluation of quinoline derivatives as a novel class of broad-spectrum antibacterial agents. Molecules. 2019;24:548 https://doi.org/10.3390/molecules24030548.

    Article  CAS  Google Scholar 

  34. Bhalgat CM, Ramesh B. Synthesis, antimicrobial screening and structure–activity relationship of novel pyrimidines and their thioethers. Bull Fac Pharm Cairo Univ. 2014;52:259–67. https://doi.org/10.1016/j.bfopcu.2014.08.001.

    Article  Google Scholar 

  35. Šagud I, Škorić I, Burčul F. Naphthoxazoles and heterobenzoxazoles: cholinesterase inhibition and antioxidant activity. Turk J Chem. 2019;43:118–24. https://doi.org/10.3906/kim-1807-133.

    Article  CAS  Google Scholar 

  36. Yang D, Wan C, He M, Che C, Xiao Y, Fu B, et al. Design, synthesis, crystal structure and fungicidal activity of (E)-5-(methoxyimino)-3,5-dihydrobenzo[e][1,2]oxazepin-4(1H)-one analogues. MedChemComm. 2017;8:1007–14. https://doi.org/10.1039/c7md00025a.

    Article  CAS  Google Scholar 

  37. El Azab IH, Elkanzi NA. Design, synthesis, and antimicrobial evaluation of new annelated pyrimido[2,1-c][1,2,4]triazolo[3,4-f][1,2,4]triazines. Molecules. 2020;25:1339 https://doi.org/10.3390/molecules25061339.

    Article  CAS  Google Scholar 

  38. Qamar R, Saeed A, Saeed M, Ashraf Z, Abbas Q, Hassan M, et al. Synthesis, carbonic anhydrase inhibitory activity and antioxidant activity of some 1,3-oxazine derivatives. Drug Dev Res. 2018;79:352–61. https://doi.org/10.1002/ddr.21464.

    Article  CAS  Google Scholar 

  39. Ansari N, Khodagholi F, Amini M. 2-Ethoxy-4,5-diphenyl-1,3-oxazine-6-one activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Eur J Pharm. 2011;658:84–90. https://doi.org/10.1016/j.ejphar.2011.02.028.

    Article  CAS  Google Scholar 

  40. Ansari N, Khodagholi F, Amini M, Shaerzadeh F. Attenuation of LPS-induced apoptosis in NGF-differentiated PC12 cells via NF-κB pathway and regulation of cellular redox status by an oxazine derivative. Biochimie. 2011;93:899–908. https://doi.org/10.1016/j.biochi.2011.01.012.

    Article  CAS  Google Scholar 

  41. Sagud I, Skoric I, Burcul F. Naphthoxazoles and heterobenzoxazoles: cholinesterase inhibition and antioxidant activity. Turk J Chem. 2019;43:118–24. https://doi.org/10.3906/kim-1807-133.

    Article  CAS  Google Scholar 

  42. Aydin BO, Anil D, Demir Y. Synthesis of N-alkylated pyrazolo[3,4-d]pyrimidine analogs and evaluation of acetylcholinesterase and carbonic anhydrase inhibition properties. Arch Pharm. 2021;354:e2000330 https://doi.org/10.1002/ardp.202000330.

    Article  CAS  Google Scholar 

  43. Haji Ali S, Osmaniye D, Sağlık BN, Levent S, Özkay Y, Kaplancıklı ZA. Synthesis, and evaluation of novel 2H-benzo[b][1,4]thiazin-3(4H)-one derivatives as new acetylcholinesterase inhibitors. Molecules. 2022;27:2121 https://doi.org/10.3390/molecules27072121.

    Article  CAS  Google Scholar 

  44. Kulshreshtha A, Piplani P. Ameliorative effects of amide derivatives of 1,3,4-thiadiazoles on scopolamine induced cognitive dysfunction. Eur J Med Chem. 2016;122:557–73. https://doi.org/10.1016/j.ejmech.201.06.6046.

    Article  CAS  Google Scholar 

  45. Cheung J, Rudolph MJ, Burshteyn F, Cassidy MS, Gary EN, Love J, et al. Structures of human acetylcholinesterase in complex with pharmacologically important ligands. J Med Chem. 2012;55:10282–86. https://doi.org/10.1021/jm300871x.

    Article  CAS  Google Scholar 

  46. Gießel JM, Loesche A, Csuk R, Serbian I. Caffeic acid phenethyl ester (CAPE)-derivatives act as selective inhibitors of acetylcholinesterase. Eur J Med Chem. 2019;177:259–68. https://doi.org/10.1016/j.ejmech.2019.05.059.

    Article  CAS  Google Scholar 

  47. Zhang Y, Kua J, McCammon JA. Role of the catalytic triad and oxyanion hole in acetylcholinesterase catalysis: an ab initio QM/MM. study J Am Chem Soc. 2002;124:10572–7. https://doi.org/10.1021/ja020243m.

    Article  CAS  Google Scholar 

  48. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, et al. Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science. 1991;253:872–9. https://doi.org/10.1126/science.1678899.

    Article  CAS  Google Scholar 

  49. Greene LM, Butini S, Campiani G, Williams DC, Zisterer DM. Pre-clinical evaluation of a novel class of anti-cancer agents, the pyrrolo-1, 5-benzoxazepines. J Cancer. 2016;7:2367–77. https://doi.org/10.7150/jca.16616.

    Article  CAS  Google Scholar 

  50. Rashad MS, Georgey HH, George RF, Abdel-Gawad NM. Identification of some benzoxazepines as anticancer agents inducing cancer cell apoptosis. Future Med Chem. 2018;10:1649–64. https://doi.org/10.4155/fmc-2018-0068.

    Article  CAS  Google Scholar 

  51. Ndubaku CO, Heffron TP, Staben ST, Baumgardner M, Blaquiere N, Bradley E, et al. Discovery of 2-{3-[2-(1-isopropyl-3-methyl-1H-1,2-4-triazol-5-yl)-5,6-dihydrobenzo[f]imidazo[1,2-d][1,4]oxazepin-9-yl]-1H-pyrazol-1-yl}-2-methylpropanamide (GDC-0032): a β-sparing phosphoinositide 3-kinase inhibitor with high unbound exposure and robust in vivo antitumor activity. J Med Chem. 2013;56:4597–610.

  52. Castanedo GM, Blaquiere N, Beresini M, Bravo B, Brightbill H, Chen J, et al. Structure-based design of tricyclic NF-κB inducing kinase (NIK) inhibitors that have high selectivity over phosphoinositide-3-kinase (PI3K). J Med Chem. 2017;60:627–40. https://doi.org/10.1021/acs.jmedchem.6b01363.

    Article  CAS  Google Scholar 

  53. Smith L II, Piatnitski EL, Kiselyov AS, Ouyang X, Chen X, Burdzovic-Wizemann S, et al. Tricyclic azepine derivatives: pyrimido[4,5-b]-1,4-benzoxazepines as a novel class of epidermal growth factor receptor kinase inhibitors. Bioorg Med Chem Lett. 2006;16:1643–46. https://doi.org/10.1016/j.bmcl.2005.12.018.

    Article  CAS  Google Scholar 

  54. Chen X, Du Y, Sun H, Wang F, Kong L, Sun M. Synthesis and biological evaluation of novel tricyclic oxazine and oxazepine fused quinazolines,, part 1: erlotinib analogs. Bioorg Med Chem Lett. 2014;24:884–7. https://doi.org/10.1016/j.bmcl.2013.12.079.

    Article  CAS  Google Scholar 

  55. Al-Zereini WA. Bioactive crude extracts from four bacterial isolates of marine sediments from Red Sea, Gulf of Aqaba, Jordan. Jord J Biol Sci. 2014;7:133–7. https://doi.org/10.12816/0008227.

    Article  Google Scholar 

  56. Al-Zereini WA. Ononis natrix and Salvia verbenaca: two Jordanian medicinal plants with cytotoxic and antibacterial activities. J Herbs Spices Med Plants. 2017;23:18–25. https://doi.org/10.1080/10496475.2016.1241200.

    Article  CAS  Google Scholar 

  57. Brand-Williams W, Cuvelier M, Berset C. Use of free radical method to evaluate antioxidant activity. Food Sci Technol. 1995;28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5.

    Article  CAS  Google Scholar 

  58. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharm. 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  CAS  Google Scholar 

  59. Al-Sha’er MA, Mansi I, Almazari I, Hakooz N. Evaluation of novel Akt1 inhibitors as anticancer agents using virtual co-crystallized pharmacophore generation. J Mol Graph Model. 2015;62:213–25. https://doi.org/10.1016/j.jmgm.2015.10.004.

    Article  CAS  Google Scholar 

  60. Al-Sha’er MA, Al-Aqtash RA, Taha MO. Discovery of new phosphoinositide 3-kinase delta (PI3Kδ) inhibitors via virtual screening using crystallography-derived pharmacophore modelling and QSAR analysis. Med Chem. 2019;15:588–601. https://doi.org/10.2174/1573406415666190222125333.

    Article  CAS  Google Scholar 

  61. BIOVIA DS software; Dassault Systèmes: San Diego, CA, USA, 2016.

  62. CATALYST_4. 11 software users’ Manual; Accelrys Inc.: San Diego, CA, USA, 2005.

  63. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28:235–42. https://doi.org/10.1093/nar/28.1.235.

    Article  CAS  Google Scholar 

  64. Protein Data Bank. http://www.rcsb.org (Accessed 1 June 2021).

  65. Venkatachalam CM, Jiang X, Oldfield T, Waldman M. Ligand Fit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model. 2003;21:289–307. https://doi.org/10.1016/S1093-3263(02)00164-X.

    Article  CAS  Google Scholar 

  66. Taha MO, Habash M, Al-Hadidi Z, Al-Bakri A, Younis K, Sisan S. Docking-based comparative intermolecular contacts analysis as new 3-D QSAR concept for validating docking studies and in silico screening: NMT and GP inhibitors as case studies. J Chem Inform Model. 2011;51:647–69. https://doi.org/10.1021/ci100368t.

    Article  CAS  Google Scholar 

  67. Al-Sha’er MA, Taha MO. Application of docking-based comparative intermolecular contacts analysis to validate Hsp90α docking studies and subsequent in silico screening for inhibitors. J Mol Model. 2012;18:4843–63. https://doi.org/10.1007/s00894-012-1479-z.

    Article  CAS  Google Scholar 

  68. Al-Sha’er MA. Basheer HA. Taha MO. Discovery of new PKN2 inhibitory chemotypes via QSAR-guided selection of docking-based pharmacophores. Mol Divers. 2022. https://doi.org/10.1007/s11030-022-10434-4.

Download references

Acknowledgements

The authors would like to thank Mutah University for its support and for providing space to perform the experiments. We are thankful to the Deanship of Scientific Research at Zarqa University for support through Biovia 2019 software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Al-Mustafa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Mustafa, A., Al-Zereini, W., Ashram, M. et al. Evaluation of antibacterial, antioxidant, cytotoxic, and acetylcholinesterase inhibition activities of novel [1,4] benzoxazepines fused to heterocyclic systems with a molecular modeling study. Med Chem Res 32, 239–253 (2023). https://doi.org/10.1007/s00044-022-02999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02999-4

Keywords

Navigation