Skip to main content

Advertisement

Log in

Synthesis and evaluation of new 2-oxo-1,2-dihydroquinoline-3-carboxamides as potent inhibitors against acetylcholinesterase enzyme

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD), a worldwide mental disorder manifested with dementia symptoms, was used to be treated with tacrine. The latter use was terminated recently due to its hepatotoxicity. Thus, synthesis of tacrine analogues free of hepatotoxicity was attempted, a group of new 2-oxo-1,2-dihydroquinoline-3-carboxamides have been synthesized and properly characterized. Their biological evaluation in inhibiting acetylcholinesterase enzyme (AChE), was evaluated by the in-house gas chromatography method. The synthesized carboxamides showed a strong potency in inhibiting AChE. Nine compounds from the group had activities higher than or close to donepezil (the positive control, IC50 ca 10 nM). For example, compound 7 depicted IC50 of 7 nM and was subsequently evaluated by the in vivo zebra fish model. Interestingly compound 7 showed better recovery from scopolamine-induced dementia than that of donepezil. Further ex vivo and in vivo models have been established recently in the lab to evaluate the safety of these compounds.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu L, Chan C. The role of inflammasome in Alzheimer’s disease. Ageing Res Rev. 2014;15:6–15.

    Article  CAS  PubMed  Google Scholar 

  2. Boccardi V, Murasecco I, Mecocci P. Diabetes Drugs in The Fight Against Alzheimer's Disease. Ageing Res Rev. 2019;54:1–35.

    Article  CAS  Google Scholar 

  3. Giaume C, Sáez JC, Song W, Leybaert L, Naus CC. Connexins and pannexins in Alzheimer’s disease. Neurosci Lett. 2019;695:100–5.

    Article  CAS  PubMed  Google Scholar 

  4. Das N, Raymick J, Sarkar S. Role of metals in Alzheimer’s disease. Metab Brain Dis. 2021;36:1627–39.

    Article  CAS  PubMed  Google Scholar 

  5. Al-Shaikh FSH, Duara R, Crook JE, Lesser ER, Schaeverbeke J, Hinkle KM, et al. Selective vulnerability of the nucleus basalis of Meynert among neuropathologic subtypes of Alzheimer disease. JAMA Neurol. 2020;77:225–33.

    Article  Google Scholar 

  6. Chen Y, Shu K, Kang H. Deep Brain Stimulation in Alzheimer’s Disease: Targeting the Nucleus Basalis of Meynert. J Alzheimer’s Dis. 2021;80:53–70.

    Article  CAS  Google Scholar 

  7. Mahady L, Nadeem M, Malek‐Ahmadi M, Chen K, Perez SE, Mufson EJ. HDAC 2 dysregulation in the nucleus basalis of Meynert during the progression of Alzheimer’s disease. Neuropathol Appl Neurobiol. 2019;45:380–97.

    Article  CAS  PubMed  Google Scholar 

  8. Alexandris AS, Walker L, Liu AKL, McAleese KE, Johnson M, Pearce RKB, et al. Cholinergic deficits and galaninergic hyperinnervation of the nucleus basalis of Meynert in Alzheimer’s disease and Lewy body disorders. Neuropathol Appl Neurobiol. 2020;46:264–78.

    Article  CAS  PubMed  Google Scholar 

  9. Dani M, Wood M, Mizoguchi R, Fan Z, Walker Z, Morgan R, et al. Microglial activation correlates in vivo with both tau and amyloid in Alzheimer’s disease. Brain. 2018;141:2740–54.

    PubMed  Google Scholar 

  10. Humpel C. Platelets: their potential contribution to the generation of beta-amyloid plaques in Alzheimer’s disease. Curr Neurovasc Res. 2017;14:290–8.

    Article  CAS  PubMed  Google Scholar 

  11. Cai H-Y, Yang J-T, Wang Z-J, Zhang J, Yang W, Wu M-N, Qi J-S. Lixisenatide reduces amyloid plaques, neurofibrillary tangles and neuroinflammation in an APP/PS1/tau mouse model of Alzheimer's disease. Biochem Biophys Res Commun. 2018;495:1034–40.

    Article  CAS  PubMed  Google Scholar 

  12. Muir JL. Acetylcholine, aging, and Alzheimer’s disease. Pharmacol Biochem Behav. 1997;56:687–96.

    Article  CAS  PubMed  Google Scholar 

  13. Tropea MR, Puma DDL, Melone M, Gulisano W, Arancio O, Grassi C, et al. Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer’s disease-like pathology. Prog Neurobiol. 2021;206:102154.

    Article  CAS  PubMed  Google Scholar 

  14. Komersová A, Kovářová M, Komers K, Lochař V, Čegan A. Why is the hydrolytic activity of acetylcholinesterase pH dependent? Kinetic study of acetylcholine and acetylthiocholine hydrolysis catalyzed by acetylcholinesterase from electric eel. Z für Naturforsch C. 2018;73:345–51.

    Article  CAS  Google Scholar 

  15. Kaur A, Anand C, Singh TG, Dhiman S, Babbar R. Acetylcholinesterase inhibitors: a milestone to treat neurological disorders. Plant Arch. 2019;19:1347–59.

    Google Scholar 

  16. H Ferreira-Vieira T, M Guimaraes I, R Silva F, M Ribeiro F. Alzheimer’s disease: targeting the cholinergic system. Curr Neuropharmacol 2016;14:101–15.

    Article  Google Scholar 

  17. Abubakar MU, Abubakar D. Characterization of Acetylcholinesterase from Various Sources: A Mini Re. J Environ Bioremediation Toxicol. 2021;4:24–30.

    Article  Google Scholar 

  18. Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH. Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem. 1986;47:263–77.

    Article  CAS  PubMed  Google Scholar 

  19. Moss DE. Improving anti-neurodegenerative benefits of acetylcholinesterase inhibitors in Alzheimer’s disease: Are irreversible inhibitors the future? Int J Mol Sci. 2020;21:3438.

    Article  CAS  PubMed Central  Google Scholar 

  20. Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf. 2020;19:147–57.

    Article  CAS  PubMed  Google Scholar 

  21. Marucci G, Buccioni M, Dal Ben D, Lambertucci C, Volpini R, Amenta F. Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology 2021;190:108352.

    Article  CAS  PubMed  Google Scholar 

  22. Li K, Jiang Y, Li G, Liu T, Yang Z. Novel Multitarget Directed Tacrine Hybrids as Anti-Alzheimer’s Compounds Improved Synaptic Plasticity and Cognitive Impairment in APP/PS1 Transgenic Mice. ACS Chem Neurosci. 2020;11:4316–28.

    Article  PubMed  CAS  Google Scholar 

  23. Nikseresht A, Ghasemi S, Parak S. [Cu3 (BTC) 2]: A metal–organic framework as an environment-friendly and economically catalyst for the synthesis of tacrine analogues by Friedländer reaction under conventional and ultrasound irradiation. Polyhedron 2018;151:112–7.

    Article  CAS  Google Scholar 

  24. Makhaeva GF, Kovaleva NV, Boltneva NP, Lushchekina SV, Astakhova TY, Rudakova EV, et al. New hybrids of 4-amino-2, 3-polymethylene-quinoline and p-tolylsulfonamide as dual inhibitors of acetyl-and butyrylcholinesterase and potential multifunctional agents for Alzheimer’s disease treatment. Molecules. 2020;25:3915.

    Article  CAS  PubMed Central  Google Scholar 

  25. McEneny-King A, Osman W, Edginton AN, Rao PPN. Cytochrome P450 binding studies of novel tacrine derivatives: predicting the risk of hepatotoxicity. Bioorg Med Chem Lett. 2017;27:2443–9.

    Article  CAS  PubMed  Google Scholar 

  26. Yip LY, Aw CC, Lee SH, Hong YS, Ku HC, Xu WH, et al. The liver-gut microbiota axis modulates hepatotoxicity of tacrine in the rat. Hepatology 2018;67:282–95.

    Article  CAS  PubMed  Google Scholar 

  27. Li Z, Mei J, Jiang L, Geng C, Li Q, Yao X, Cao J. Chaga medicinal mushroom, Inonotus obliquus (Agaricomycetes) polysaccharides suppress tacrine-induced apoptosis by ROS-scavenging and mitochondrial pathway in HepG2 cells. Int J Med Mushrooms. 2019;21:583–93.

    Article  PubMed  Google Scholar 

  28. Siraki AG. Free radical metabolites in arylamine toxicity. Adv Mol Toxicol. 2013;7:39–82.

  29. Sim E, Laurieri N. Arylamine N-acetyltransferases in Health And Disease: From Pharmacogenetics To Drug Discovery and Diagnostics. World Scientific. 3–42 (2018).

  30. Liu X, Liu Y, Zhao G, Zhang Y, Liu L, Wang J, et al. Biochemical Characterization of Arylamine N-acetyltransferases From Vibrio vulnificus. Front Microbiol. 2021;11:3405

    Article  Google Scholar 

  31. Blömeke B, Lichter J. Expression and Activity of Arylamine N-Acetyltransferases in Organs: Implications on Aromatic Amine Toxicity. In: ARYLAMINE N-ACETYLTRANSFERASES IN HEALTH AND DISEASE: From Pharmacogenetics to Drug Discovery and Diagnostics, World Scientific, 133–64 (2018).

  32. Agúndez JAG, García-Martín E Human Arylamine N-Acetyltransferase Type 2: Phenotypic Correlation with Genotype-A Clinical Perspective. In: Arylamine N-acetyltransferases in health and disease: from pharmacogenetics to drug discovery and diagnostics, World Scientific, 69–89 (2018).

  33. Fu J, Bao F, Gu M, Liu J, Zhang Z, Ding J, et al. Design, synthesis and evaluation of quinolinone derivatives containing dithiocarbamate moiety as multifunctional AChE inhibitors for the treatment of Alzheimer’s disease. J Enzym Inhib Med Chem. 2020;35:118–28.

    Article  CAS  Google Scholar 

  34. Pavlidis N, Kofinas A, Papanikolaou MG, Miras HN, Drouza C, Kalampounias AG, et al. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper (ΙΙ) in in vitro cell models of Alzheimer’s disease. J Inorg Biochem. 2021;217:111393.

    Article  CAS  PubMed  Google Scholar 

  35. Hepnarova V, Korabecny J, Matouskova L, Jost P, Muckova L, Hrabinova M, et al. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer's disease. Eur J Med Chem. 2018;150:292–306.

    Article  CAS  PubMed  Google Scholar 

  36. de Oliveira C Brum J, Neto DCF, de Almeida JSFD, Lima JA, Kuca K, França TCC, et al. Synthesis of new quinoline-piperonal hybrids as potential drugs against Alzheimer’s disease. Int J Mol Sci. 2019;20:3944.

  37. Worek F, Eyer P, Thiermann H. Determination of acetylcholinesterase activity by the Ellman assay: a versatile tool for in vitro research on medical countermeasures against organophosphate poisoning. Drug Test Anal 2012;4:282–91.

    Article  CAS  PubMed  Google Scholar 

  38. Holas O, Musilek K, Pohanka M, Kuca K. The progress in the cholinesterase quantification methods. Expert Opin Drug Disco. 2012;7:1207–23.

    Article  CAS  Google Scholar 

  39. Komers K, Komersová A, Stratilová J. Comment on colorimetric monitoring of enzymatic hydrolysis of acetylthiocholine. Sci. Pap. Univ. Pardubice. Ser. A, Fac. Chem. Technol. 2003;9:89–96.

    CAS  Google Scholar 

  40. Gerlai R. Editorial: A small fish with a big future: Zebrafish in behavioral neuroscience: Rev. Neurosci. Rev Neurosci. 2011;22:3–4.

    Article  PubMed  Google Scholar 

  41. Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer’s disease research. Front Genet. 2014;5:1–10.

    Article  Google Scholar 

  42. Alzweiri M, Al-Helo T. Gas Chromatography with Modified pH-Sensitive Pellets in Evaluating Esterase Activity of Carbonic Anhydrase III Enzyme: drug discovery approach. Chromatographia. 2021;84:1–8.

  43. Sabbah DA, Hishmah B, Sweidan K, Bardaweel S, AlDamen M, Zhong HA, et al. Structure-based design: Synthesis, X-ray crystallography, and biological evaluation of N-substituted-4-hydroxy-2-quinolone-3-carboxamides as potential cytotoxic agents. Anti-Cancer Agents Med Chem (Former Curr Med Chem Agents). 2018;18:263–76.

  44. Bollo S, Munoz L, Núñez‐Vergara LJ, Squella JA. Electrochemical characterization of tacrine, an antialzheimer’s disease drug, and its determination in pharmaceuticals. Electroanal Int J Devoted Fundam Pract Asp Electroanal 2000;12:376–82.

    CAS  Google Scholar 

  45. Feixas F, Matito E, Sola M, Poater J. Analysis of Hückel’s [4 n+ 2] Rule through Electronic Delocalization Measures. J Phys Chem A 2008;112:13231–8.

    Article  CAS  PubMed  Google Scholar 

  46. Ogura H, Kosasa T, Kuriya Y, Yamanishi Y. Comparison of inhibitory activities of donepezil and other cholinesterase inhibitors on acetylcholinesterase and butyrylcholinesterase in vitro. Methods Find Exp Clin Pharmacol 2000;22:609–14.

    Article  CAS  PubMed  Google Scholar 

  47. Recanatini M, Cavalli A, Belluti F, Piazzi L, Rampa A, Bisi A, et al. SAR of 9-amino-1, 2, 3, 4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. J Med Chem. 2000;43:2007–18.

    Article  CAS  PubMed  Google Scholar 

  48. Sugimoto H, Iimura Y, Yamanishi Y, Yamatsu K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5, 6-dimethoxy-1-oxoindan-2-yl) methyl] piperidine hydrochloride and related compounds. J Med Chem.1995;38:4821–9.

  49. Ota T, Shinotoh H, Fukushi K, Kikuchi T, Sato K, Tanaka N, et al. Estimation of plasma IC50 of donepezil for cerebral acetylcholinesterase inhibition in patients with Alzheimer disease using positron emission tomography. Clin Neuropharmacol. 2010;33:74–78.

    Article  CAS  PubMed  Google Scholar 

  50. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.

    Article  CAS  PubMed  Google Scholar 

  51. Hamilton TJ, Morrill A, Lucas K, Gallup J, Harris M, Healey M, et al. Establishing zebrafish as a model to study the anxiolytic effects of scopolamine. Sci Rep. 2017;7:1–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank The University of Jordan represented by the Deanship of Academic Research for supporting and funding the project of (62/2019-2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammed Alzweiri.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alzweiri, M., Sweidan, K., Saleh, O.a. et al. Synthesis and evaluation of new 2-oxo-1,2-dihydroquinoline-3-carboxamides as potent inhibitors against acetylcholinesterase enzyme. Med Chem Res 31, 1448–1460 (2022). https://doi.org/10.1007/s00044-022-02922-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-022-02922-x

Keywords

Navigation