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Abstract
Albeit platanic acid has been known since 1956, its potential to act as a valuable starting material for the synthesis of
cytotoxic agents has been neglected for many years. Hereby we describe the synthesis of a small library of amides and
oximes derived from 3-O-acetyl-platanic acid, and the results of their screening as cytotoxic agents for several human tumor
cell lines. As a result, while the cytotoxicity of the oximes was diminished as compared to the parent amides, the
homopiperazinyl amide 5 held the highest cytoxicity (EC50= 0.9 μM for A375 human melanoma cells). Extra FACS and
cell cycle measurements showed compound 5 to act onto A375 cells rather by apoptosis than by necrosis.
Clinical trial registration
No clinical trials are associated with this study

Graphical abstract

Keywords Platanic acid ● cytotoxicity ● SRB assay

Introduction

Platanic acid (PA, Fig. 1) is a 20-oxo-30-norlupane analog
to betulinic acid. The compound was first isolated by C.
Djerassi [1] in 1956; it occurs in several plants, including
Platanus sp., Melaleucas sp. or Melilotus sp. [2] This
pentacyclic triterpenoic acid, however, can also be readily
obtained in good yields by oxidative cleavage of the exo-
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cyclic double bond of betulinic acid (BA) or derivatives
thereof. Typically, OsO4 [3], RuO4 [4], or ozone [5] have
been utilized for this reaction. Its reconversion can be per-
formed by means of a Wittig reaction; [6] this reaction has
been used to access labeled PA and derivatives thereof [7].

Despite the relatively good accessibility of platanic acid,
the number of studies and structural modifications has
remained relatively small over all these years. This is all the
more astonishing since the number of publications on
betulinic acid is almost unmanageably large, while less than
100 publications can be found under the keyword “platanic
acid” in SciFinder (as of February 2022). This is surprising
as several derivatives derived from platanic acid have pro-
ven to be strongly cytotoxic or enzyme inhibitors [8]. This
included the synthesis of cytotoxic amides [9] but also an
access to rhodamine B conjugates that acted as mitocans in
several human tumor cell lines even in low nano-molar
concentration [10–13]. Several derivatives were potent
inhibitors of the enzymes acetyl and butyrylcholinesterase
(AChE, BChE) [8] but also of xanthine oxidase [14, 15].
The development of inhibitors for AChE and/or BChE as
therapeutics to alleviate the symptoms of neurological dis-
orders such as Alzheimer’s disease [16–19], Parkinson [20–
26] or Lewy body dementias [27–32] has been in the focus
of scientific interest now for many years. Inhibitors of
xanthine oxidase are drugs intended for the therapy of
hyperuricemia and gout but also for the management of
reperfusion injury [33–45]. However, the focus of our own
investigations was based on the cytotoxic potential of these
compounds.

Results and discussion

3-O-Acetyl-platanic acid [8] (Scheme 1) was chosen as a
starting material for the synthesis of the derivatives. Thus,
this very valuable starting material was allowed to react
with oxalyl chloride in the presence of catal. amounts of
dimethylformamide (DMF) followed by the addition of N-
methylpiperazine to yield amide 1 in 76% isolated yield.
The same procedure was applied for the synthesis of

analogs 2 (from ethylenediamine, 87%), 3 (from morpho-
line, 73%), and 4 (from piperazine, 95%). Activation of 1
with oxalyl chloride followed by the reaction with homo-
piperazine furnished 5 while from the reaction of 1 with an
excess of iodomethane in dry DCM compound 6 was
obtained. Reaction of amides 1–4 with hydroxylammonium
chloride in dry pyridine at 60 °C for 3 h furnished (E)
configurated oximes 7–10, respectively. A 2D ROESY
NMR spectrum (Fig. 2) of compound 9 was recorded to
determine the absolute configuration of the oximes 7-10.
This spectrum revealed evidence of ROE interactions
between the protons from the methyl group (H-29 at δ =
1.66 ppm) with the proton from the hydroxyl group (at δ =
10.04 ppm) indicated by the presence of a ROE cross peak.
Based on these results, the oximes hold an (E) configura-
tion. This result is in full agreement with previously
obtained results. Careful examination of the synthesis of 9
revealed that very small amounts (as indicated via HPTLC-
ESI-MS) of (Z) configured product were also formed during
the reaction, but this material could not be isolated.

To assess their cytotoxicity, photometric sulforhodamine
B (SRB) assays were performed employing a set of human
malignant cell lines (A375, HT29, MCF-7, A2780, HeLa)
and non–malignant fibroblasts (NIH 3T3). The results from
these assays are compiled in Table 1.

Amides 2–5 were highly cytotoxic for all human tumor
cell lines but also for non-malignant NIH 3T3 and HEK293
cells. The highest cytotoxicity was observed for amide 5
holding a homopiperazinyl moiety. This follows previous
findings [12, 13] for homopiperazinyl holding derivatives of
triterpenoids and their cytotoxicity. This compound showed
an EC50 value for A375 human melanoma cells as low as
0.9 μM. Compounds 1, 3 and 6 were not soluble under the
conditions of the assay. The cytotoxicity of the oximes was
diminished as compared to the cytotoxicity determined for
the corresponding amides. Thereby piperazine derived
compound 10 showed the lowest EC50 value (2.2 ± 0.4 μM)
again for A375 tumor cells followed by EC50= 2.7 ±
0.3 μM for human ovarian carcinoma cells A2780.

Extra FACS based investigation (Fig. 3) of compounds
2 and 5 (A375 cells, incubation time 48 h) showed 0.4%

Fig. 1 Structures of platanic acid
(PA) and betulinic acid (BA)
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of the cells necrotic (R1), 15.5% late-apoptotic (R2) and
3.6% apoptotic (R3), while for 5 the percentage of
necrotic cells was also low (0.7%) but the number of
apoptotic cells ca. five-times larger (20.8%, R4) than for
compound 2.

Investigation of the cell cycle (48 h, A375 cells, Fig. 4)
showed for 2 73.8% of the cells in G1 phase, 15.9% in S,
10.4% in G2/M and 24.5% as apoptotic while for 5 under
the same conditions the percentage of cells in G1 was
slightly lowered (65.3%) while those in the S phase were
higher (24.4%).

Conclusion

Long time neglected platanic acid was acetylated and sub-
sequently converted into a variety of amides (1–6) and their
respective oximes (7–10). Their cytotoxic potential was
evaluated in SRB assays employing several human tumor
cell lines as well as non-malignant NIH 3T3 and HEK293
cells. As a result, the amides held a higher cytotoxicity than
the oximes. The highest cytotoxicity was observed for a
homopiperazinyl amide 5 with an EC50= 0.9 μM for human
melanoma cells. These results as well as extra FACS and

Scheme 1 Reactions and conditions: (a) (COCl)2, DCM, DMF (catal.),
then N-methylpiperazine (→ 1) or ethylenediamine (→ 2) or mor-
pholine (→ 3) or piperazine (→ 4) or homopiperazine (→ 5), 3 h,

21 °C; (b) MeI, DCM, 24 h, 21 °C; (c) hydroxylammonium chloride,
pyridine, 1 (→ 7) or 2 (→ 8) or 3 (→ 9) or 4 (→ 10), 3 h 60 °C
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cell cycle measurements reflect that even small changes in
the substitution pattern might lead to a significant change in
activity and probably in their respective mode of action of
these compounds.

Experimental

General

NMR spectra were recorded using the Varian spectrometers
DD2 and VNMRS (400 and 500MHz, respectively). MS
spectra were taken on a Advion expressionL CMS mass
spectrometer (positive ion polarity mode, solvent: methanol,

solvent flow: 0.2 mL/min, spray voltage: 5.17 kV, source
voltage: 77 V, APCI corona discharge: 4.2 μA, capillary
temperature: 250 °C, capillary voltage: 180 V, sheath gas:
N2). Thin-layer chromatography was performed on pre-
coated silica gel plates supplied by Macherey-Nagel. IR
spectra were recorded on a Spectrum 1000 FT-IR-
spectrometer from Perkin-Elmer. The UV/Vis-spectra
were recorded on a Lambda 14 spectrometer from Perkin-
Elmer. The optical rotations were measured either on a
JASCO P-2000 or a Perkin-Elmer polarimeter at 20 °C. The
melting points were determined using the Leica hot stage
microscope Galen III and are uncorrected. Elemental ana-
lyses were performed on a Foss-Heraeus Vario EL (CHNS)
unit. The solvents were dried according to usual procedures.

f2 (ppm)
1.42.02.63.03.43.84.2

f1
 (p

pm
)

9.70

10.30

9.90

10.10

Fig. 2 Determination of the absolute configuration of oxime 9 by 2D ROESY NMR

Table 1 SRB assay EC50 values
[µM] after 72 h of treatment;
averaged from three independent
experiments performed each in
triplicate; confidence interval CI
= 95%. Human cancer cell lines:
A375 (melanoma), HT29
(colorectal carcinoma), MCF-7
(breast adenocarcinoma), A2780
(ovarian carcinoma), HeLa
(cervical cancer), NIH 3T3 (non-
malignant fibroblasts), HEK293
(human embryonic kidney
cells); cut-off 30 μM, n.s. not
soluble, n.d. not determined.
Doxorubicin (DX) has been
used as a positive standard

Compound A375 HT29 MCF7 A2780 HeLa NIH 3T3 HEK293

1 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

2 1.7 ± 0.7 3.8 ± 0.2 3.4 ± 0.2 3.0 ± 0.3 3.7 ± 0.2 1.6 ± 0.6 3.1 ± 0.2

3 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

4 1.9 ± 0.4 3.9 ± 0.2 2.7 ± 0.3 2.6 ± 0.4 2.9 ± 0.4 1.3 ± 0.1 2.7 ± 0.6

5 0.9 ± 0.1 2.3 ± 0.2 1.8 ± 0.2 1.6 ± 0.1 n.d. 0.6 ± 0.1 n.d.

6 n.s. n.s. n.s. n.s. n.s. n.s. n.s.

7 7.9 ± 0.6 11.1 ± 0.3 6.3 ± 0.6 8.1 ± 0.8 9.8 ± 0.6 6.9 ± 0.9 6.1 ± 1.1

8 7.8 ± 1.2 10.1 ± 0.4 8.2 ± 0.4 10.0 ± 0.7 10.0 ± 0.5 5.5 ± 0.6 11.8 ± 1.2

9 9.0 ± 1.4 20.3 ± 1.0 6.8 ± 0.4 10.4 ± 0.8 13.6 ± 0.7 15.4 ± 1.8 7.4 ± 0.4

10 2.2 ± 0.4 4.8 ± 0.4 2.7 ± 0.3 3.5 ± 0.4 4.0 ± 0.2 1.8 ± 0.1 3.8 ± 0.3

DX n.d. 0.9 ± 0.2 1.1 ± 0.3 0.02 ± 0.01 n.d. 0.06 ± 0.03 n.d.
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Fig. 3 FACS investigation of compounds 2 and 5 (48 h incubation, A375 cells)
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Platanic acid was bought from “Betulinines” (Stříbrná
Skalice, Czech Republic) and used as received.

Cell lines and culture conditions

Following human cancer cell lines A375 (malignant mela-
noma), HT29 (colon adenocarcinoma), MCF-7 (breast
cancer), A2780 (ovarian carcinoma), HeLa (cervical can-
cer), NIH 3T3 (non-malignant mouse fibroblasts) and
HEK293 (human embryonic kidney cells) were used. All
cell lines were obtained from the Department of Oncology
(Martin-Luther-University Halle Wittenberg). Cultures were
maintained as monolayers in RPMI 1640 medium with L-
glutamine (Capricorn Scientific GmbH, Ebsdorfergrund,
Germany) supplemented with 10% heat-inactivated fetal
bovine serum (Sigma-Aldrich GmbH, Steinheim, Germany)
and penicillin/streptomycin (Capricorn Scientific GmbH,
Ebsdorfergrund, Germany) at 37 °C in a humidified atmo-
sphere with 5% CO2.

Cytotoxicity assay (SRB assay)

For the evaluation of the cytotoxicity of the compounds the
sulforhodamine-B (Kiton-Red S, ABCR GmbH, Karlsruhe,
Germany) micro-culture colorimetric assay was used. The
EC50 values were averaged from three independent experi-
ments performed each in triplicate and calculated from
semi-logarithmic dose-response curves applying a non-
linear 4 P Hills-slope equation [10].

General procedure for the synthesis of amides (GPA)

To an ice-cold solution of 3-O-acetyl-platanic acid (1.8 g,
3.5 mmol) in dry DCM (20 mL), oxalyl chloride (0.6 mL,
7.0 mmol) and DMF (cat.) were added. After stirring for 3 h
at 21 °C, the volatiles were removed under reduced

pressure. The residue was dissolved in DCM (25 mL), and
at 0 °C 4 equivalents of the corresponding amine were
added; stirring at 21 °C was continued for 12 h. Usual
aqueous workup followed by chromatographic purification
of the crude product yielded the amides.

General procedure for the synthesis of oximes (GPB)

To a solution of the carboxamide in dry pyridine (19mL),
hydroxylammonium chloride was added, and the mixture was
stirred at 60 °C for 3 h. The solvent was removed under
reduced pressure by co-evaporating with toluene (3 × 20mL).
The residue was fractionated by column chromatography.

3β-Acetyloxy-N-(1-methylpiperazinyl) 20-oxo-30-
norlupan-28-amide (1)

According to GPA with methylpiperazine (1.7 mL,
15.6 mmol) followed by column chromatography (silica gel,
n-hexane/chloroform/methanol, 5:4.75:0.25) gave 1 (1.8 g,
76%) as a white solid; m. p. > 300 °C; RF= 0.22 (n-hexane/
chloroform/methanol, 5:4.75:0.25); [α]D=−21.8° (c 0.12,
CHCl3); IR (ATR): ν= 2988w, 2970 m, 2940 m, 2867 m,
2793 m, 1733s, 1716m, 1622s, 1458 m, 1413 m, 1369 m,
1346 m, 1300 m, 1289 m, 1248 s, 1222 m, 1195 m, 1167 m,
1143 m, 1133 m, 1111 m, 1077 m, 1036 m, 1027 m,
1009 m, 977 m, 900 m, 782 m, 751w, 695 m, 656w, 598 m,
549w, 509 m cm−1; 1H NMR (500MHz, CDCl3) δ= 4.45
(dd, J= 10.8, 5.4 Hz, 1H), 3.62 (s, 4H, 32-H+ 32’-H), 3.22
(dt, J= 11.4, 6.0 Hz, 1H), 2.67 (td, J= 12.5, 3.8 Hz, 1H),
2.39 (s, 4H, 33-H+ 33’-H), 2.32 (s, 3H, 34-H), 2.14 (s, 3H,
29-H), 2.10–2.03 (m, 2H, 16-Ha+ 18-H), 2.01 (s, 3H, 31-
H), 1.99–1.85 (m, 2H, 22-Ha+ 21-Ha), 1.66–1.55 (m, 4H,
1-Ha+ 16-Hb+ 2-H), 1.50–1.43 (m, 3H, 22-Hb+ 21-Hb+
6-Ha), 1.43–1.32 (m, 5H, 11-Ha+ 6-Hb+ 7-H+ 15-Ha),
1.31–1.25 (m, 2H, 11-Hb+ 9-H), 1.18–1.13 (m, 1H, 15-

Fig. 4 Cell cycle investigation for compounds 2 and 5 (incubation 48 h, A375 cells), red G1 G2/M, striped S phase, blue apoptosis
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Hb), 1.06–1.00 (m, 1H, 12-Ha), 0.98–0.92 (m, 5H, 1-Hb+
27-H+ 12-Hb), 0.90 (s, 3H, 26-H), 0.83 (s, 3H, 25-H), 0.82
(s, 3H, 23-H), 0.81 (s, 3H, 24-H), 0.79–0.75 (m, 1H, 5-H)
ppm; 13C NMR (126MHz, CDCl3) δ= 212.9 (C-20), 173.2
(C-28), 170.8 (C-30), 80.8 (C-3), 55.4 (C-5), 55.0 (C-33+
C-33’), 54.3 (C-17), 52.4 (C-18), 50.5 (C-9), 49.9 (C-19),
45.7 (C-34), 41.6 (C-32+ C-32’), 40.5 (C-14), 38.2 (C-1),
37.7 (C-8), 37.0 (C-4+ C-10), 35.8 (C-13), 35.5 (C-22),
34.1 (C-7), 31.9 (C-16), 30.2 (C-29), CH3, 29.7 (C-15),
28.6 (C-21), 27.8 (C-23), 27.4 (C-12), 23.6 (C-2), 21.2 (C-
31), 21.0 (C-11), 18.0 (C-6), 16.4 (C-24), 16.1 (C-25), 15.9
(C-26), 14.5 (C-27) ppm; MS (ESI, MeOH:CHCl3, 4:1): m/
z 605.4 ([M+H+Na]+, 100%); analysis calcd for
C36H58N2O4 (582.87): C 74.18, H 10.03, N 4.81; found:
73.86, H 10.29, N 4.57.

3β-Acetyloxy-N-(2-aminoethyl) 20-oxo-30-norlupan-
28-amide (2)

According to GPA with ethylenediamine (0.7 mL,
11.0 mmol) followed by chromatography (silica gel,
chloroform/methanol/ammonium hydroxide, 9:1:0.1) gave
2 (2.4 g, 87%) as a white solid; m.p. 230–233 °C (lit.: [46]
231–234 °C); RF= 0.17 (chloroform/methanol/ammonium
hydroxide, 9:1:0.1); [α]D=−13.9° (c 0.13, CHCl3) [lit].:
[47] [α]D=−8.5° (c 0.16, CHCl3); IR (ATR): ν= 2941 m,
2866 m, 1732m, 1703m, 1633m, 1524 m, 1467 m, 1449 m,
1391 m, 1367 m, 1317 m, 1247 s, 1196 m, 1163 m, 1108w,
1073w, 1028 m, 979 m, 945 m, 901 m, 866 m, 820w,
753 m, 657 m, 610 m, 556 m, 506 m cm−1; 1H NMR
(500MHz, CDCl3) δ= 4.44 (dd, J= 10.9, 5.3 Hz, 1H, 3-
H), 3.42–3.24 (m, 3H, 19-H+ 32-H), 2.86 (t, J= 5.9 Hz,
2H, 33-H), 2.21 (td, J= 12.0, 4.2 Hz, 1H, 13-H), 2.14 (s,
3H, 29-H), 2.12–2.02 (m, 2H, 18-H+ 21-Ha), 2.01 (s, 3H,
31-H), 1.99–1.95 (m, 1H, 16-Ha), 1.81–1.76 (m, 1H, 22-
Ha), 1.66–1.56 (m, 4H, 1-Ha+ 16-Hb+ 2-H), 1.52–1.43 (m,
3H, 22-Hb+ 21-Hb+ 6-Ha), 1.43–1.34 (m, 4H, 15-Ha+ 11-
Ha+ 6-Hb+ 7-Ha), 1.33–1.29 (m, 1H, 7-Hb), 1.28–1.20 (m,
2H, 11-Hb+ 9-H), 1.18–1.13 (m, 1H, 15-Hb), 1.10–0.99
(m, 2H, 12-H), 0.97 (s, 3H, 27-H), 0.95–0.91 (m, 1H, 1-Hb),
0.89 (s, 3H, 26-H), 0.83–0.81 (m, 6H, 25-H+ 23-H), 0.80
(s, 3H, 24-H), 0.78–0.74 (m, 1H, 5-H); 13C NMR
(126MHz, CDCl3) δ= 213.0 (C-20), 176.8 (C-28), 171.1
(C-30), 81.0 (C-3), 55.7 (C-17), 55.5 (C-5), 51.3 (C-19),
50.5 (C-9), 50.2 (C-18), 42.4 (C-14), 41.5 (C-33), 41.1 (C-
32), 40.8 (C-8), 38.5 (C-1), 38.1 (C-22), 37.9 (C-4), 37.2
(C-10), 36.9 (C-13), 34.4 (C-7), 33.0 (C-16), 30.2 (C-29),
29.6 (C-15), 28.7 (C-21), 28.0 (C-23), 27.3 (C-12), 23.8 (C-
2), 21.4 (C-31), 21.0 (C-11), 18.3 (C-6), 16.6 (C-24), 16.3
(C-25), 16.2 (C-26), 14.8 (C-27) ppm; MS (ESI, MeOH:
CHCl3, 4:1): m/z 541.3 ([M]-, 100%); analysis calcd for
C33H54N2O4 (542.79): C 73.02, H 10.03, N 5.16; found:
72.86, H 10.29, N 46.

3β-Acetyloxy-N-(4-morpholinyl) 20-oxo-30-
norlupan-28-amide (3)

According to GPA with morpholine (1.4 mL, 16.4 mmol)
followed by chromatography (silica gel, n-hexane/chloro-
form/acetone, 5:4.75:0.25) gave 3 (1.7 g, 73%) as a white
solid; m.p. 255–258 °C; RF= 0.17 (n-hexane/chloroform/
acetone, 5:4.75:0.25); [α]D=−20.5° (c 0.14, CHCl3); IR
(ATR): ν= 2943 m, 2864 m, 1732m, 1709m, 1634s,
1452 m, 1409 m, 1367 m, 1314w, 1263 m, 1244 s, 1188 s,
1173w, 1116 s, 1066w, 1031 s, 979 m, 901w, 844w, 751w,
609w, 598w, 577w, 556w, 507w cm−1; 1H NMR
(400MHz, CDCl3) δ= 4.45 (dd, J= 10.5, 5.5 Hz, 1H, 3-
H), 3.67–3.53 (m, 8H, 33-H+ 33’-H+ 32-H+ 32’-H),
3.26 – 3.18 (m, 1H, 19-H), 2.68 (td, J= 12.2, 4.0 Hz, 1H,
13-H), 2.16 (s, 3H, 29-H), 2.11–2.03 (m, 2H, 16-Ha+ 18-
H), 2.02 (s, 3H, 31-H), 1.97–1.86 (m, 2H, 22-Ha+ 21-Ha),
1.65–1.58 (m, 3H, 1-Ha+ 16-Hb+ 2-Ha), 1.58–1.45 (m,
4H, 2-Hb+ 22-Hb+ 21-Hb+ 6-Ha), 1.44–1.42 (m, 1H, 11-
Ha), 1.41–1.34 (m, 4H, 6-Hb+ 7-H+ 15-Ha), 1.31–1.23 (m,
2H, 9-H+ 11-Hb), 1.21–1.14 (m, 1H, 15-Hb), 1.07–1.01
(m, 1H, 12-Ha), 0.97 (s, 3H, 27-H), 0.96–0.92 (m, 2H, 1-Hb

+ 12-Hb), 0.91 (s, 3H, 26-H), 0.83 (s, 3H, 25-H), 0.82 (s,
3H, 23-H), 0.82 (s, 3H, 24-H), 0.80–0.76 (m, 1H, 5-H)
ppm;13C NMR (101MHz, CDCl3) δ= 213.0 (C-20), 173.7
(C-28), 171.1 (C-30), 81.0 (C-3), 67.1 (C-33+C-33’ + C-
32+C-32’), 55.6 (C-5), 54.6 (C-17), 52.6 (C-18), 50.8 (C-
9), 50.1 (C-19), 41.9 (C-14), 40.7 (C-8), 38.5 (C-1), 37.9
(C-4), 37.3 (C-10), 36.1 (C-13), 35.7 (C-22), 34.4 (C-7),
32.1 (C-16), 30.5 (C-29), 30.0 (C-15), 28.9 (C-21), 28.1 (C-
23), 27.6 (C-12), 23.8 (C-2), 21.4 (C-31), 21.3 (C-11), 18.3
(C-6), 16.6 (C-24), 16.4 (C-25), 16.2 (C-26), 14.8 (C-27)
ppm; MS (ESI, MeOH:CHCl3, 4:1): m/z 592.5 ([M+H+
Na]+, 100%); analysis calcd for C35H55NO5 (569.81): C
73.77, H 9.73, N 2.46; found: C 73.55, H 9.97, N 2.11.

3β-Acetyloxy-N-(1-piperazinyl) 20-oxo-30-norlupan-
28-amide (4)

According to GPA with piperazine (0.7 g, 8.0 mmol) fol-
lowed chromatography (silica gel, CHCl3/MeOH, 9:1) gave
compound 4 (1.1 g, 95%) as a white solid; m.p. 220–223 °C
(lit.: [10]115–125 °C); RF= 0.15 (CHCl3/MeOH, 9:1); [α]D
=−20.3° (c 0.13, CHCl3); IR (ATR): ν= 2941 m, 2866 m,
1731m, 1709m, 1628s, 1450 m, 1413 m, 1393 m, 1367 m,
1318w, 1244 s, 1193 s, 1163 m, 1133 m, 1110w, 1102w,
1027 s, 979 m, 900w, 858w, 803w, 752 m, 679w, 659w,
608w, 572w, 552w 507w, 453w cm−1; 1H NMR (500MHz,
CDCl3) δ= 4.45 (dd, J= 10.7, 5.4 Hz, 1H, 3-H), 3.78–3.63
(m, 4H, 32-H+ 32’-H), 3.20 (t, J= 11.4 Hz, 1H, 19-H),
3.00–2.89 (m, 4H, 32-H+ 32’-H), 2.64 (t, J= 10.3 Hz, 1H,
13-H), 2.15 (s, 3H, 29-H), 2.10–2.03 (m, 2H, 18-H+ 16-
Ha), 2.02 (s, 3H, 31-H), 1.94–1.84 (m, 2H, 22-Ha+ 21-Ha),
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1.67-1.55 (m, 4H, 1-Ha+ 16-Hb+ 2-H), 1.53-1.45 (m, 3 H,
22-Hb+ 6-Ha+ 21-Hb), 1.42-1.30 (m, 5H, 11-Ha+ 6-Hb+
7-H+ 15-Ha), 1-29-1.28 (m, 1H, 9-H), 1.25-1.21 (m, 1H,
11-Hb), 1.20-1.15 (m, 1H, 15-Hb), 1.07-1.00 (m, 1H, 12-
Ha), 0.99-0.94 (m, 5H, 1-Hb+ 27-H+ 12-Hb), 0.90 (s, 3H,
26-H), 0.83 (s, 3H, 25-H), 0.82 (s, 3H, 23-H), 0.81 (s, 3H,
24-H), 0.80-0.75 (m, 1H, 5-H) ppm; 13C NMR (126MHz,
CDCl3): δ= 212.9 (C-20), 173.7 (C-28), 171.1 (C-30), 81.0
(C-3), 58.5 (C-33+C-33’), 55.6 (C-5), 54.6 (C-17), 52.6
(C-18), 50.7 (C-9), 50.1 (C-19), 45.4 (C-32+ C-32‘) 41.9
(C-14), 40.7 (C-8), 38.5 (C-1), 37.9 (C-4), 37.3 (C-10), 36.1
(C-13), 35.7 (C-22), 34.3 (C-7), 32.1 (C-16), 30.5 (C-29),
30.0 (C-15), 28.9 (C-21), 28.0 (C-23), 27.6 (C-12), 23.8 (C-
2), 21.4 (C-31), 21.3 (C-11), 18.3 (C-6), 16.6 (C-24), 16.4
(C-25), 16.2 (C-26), 14.8 (C-27) ppm; MS (ESI, MeOH:
CHCl3, 4:1): m/z 569.6 ([M]+, 100%); analysis calcd for
C35H56N2O4 (568.83): C 73.90, H 9.92, N 4.92; found: C
73.65, H 10.13, N 4.75.

3β-Acetyloxy-N-(1-homopiperazinyl) 20-oxo-30-
norlupan-28-amide (5)

According to GPA with homopiperazine (0.4 g, 4.0 mmol)
followed by column chromatography (silica gel, CHCl3/
MeOH, 95:5) gave 5 (387 mg, 67%) as a white solid; m. p.
160-165 °C; RF= 0.14 (CHCl3/MeOH, 9:1); [α]D= -29.2° (c
0.16, CHCl3); IR (ATR): ν= 2940m, 1732s, 1622s, 1367m,
1244vs, 979m, 750 s cm−1; 1H NMR (500MHz, CDCl3): δ
= 4.45 (dd, J= 10.7, 5.4 Hz, 1H, 3-H), 3.24 (td, J= 11.4,
3.6 Hz, 1H, 19-H), 3.89 – 2.55 (m, 8H, 32-H, 33-H, 34-H, 36-
H), 2.73 (t, J= 12.4 Hz, 1H, 13-H), 2.15 (s, 3H, 29-H), 2.14 –
2.02 (m, 3H, 16-Ha, 18-H, 22-Ha), 2.02 (s, 3H, 31-H), 1.98 –

1.87 (m, 1H, 21-Ha), 1.68 – 1.12 (m, 17H, 35-H, 1-Ha, 2-H,
16-Hb, 22-Hb, 21-Hb, 6-H, 11-Ha, 7-H, 15-Ha, 9-H, 11-Hb, 15-
Hb), 1.06 – 0.99 (m, 2H, 12-H), 0.97 (s, 3H, 27-H), 0.96 –

0.94 (m, 1H, 1-Hb), 0.91 (s, 3H, 26-H), 0.82 (s, 3H, 25-H),
0.82 (s, 3H, 23-H), 0.81 (s, 3H, 24-H), 0.79 – 0.74 (m, 1H, 5-
H); 13C NMR (126MHz, CDCl3): δ= 213.4 (C-20), 174.7
(C-28), 171.3 (C-30), 81.3 (C-3), 55.9 (C-5), 55.3 (C-17),
53.2 (C-18), 51.0 (C-9), 50.5 (C-19), 42.2 (C-14), 41.0 (C-8),
38.8 (C-1), 38.2 (C-4), 37.5 (C-10), 36.3 (C-13), 36.3 (C-22),
34.6 (C-7), 32.2 (C-16), 30.7 (C-29), 30.3 (C-15), 29.2 (C-
21), 28.3 (C-23), 27.8 (C-12), 24.1 (C-2), 21.7 (C-31), 21.6
(C-11), 18.5 (C-6), 16.9 (C-24), 16.6 (C-25), 16.4 (C-26),
15.1 (C-27) ppm; MS (ESI, MeOH): m/z 583.3 ([M]+,
100%); analysis calcd. for C36H58N2O4 (582.86): C 74.18, H
10.03, N 4.81; found: C 73.82, H 10.31, N 4.56.

3β-Acetyloxy-N-(1,1-dimethylpiperazin-1-ium-4-yl)
20-oxo-30-norlupan-28-amide iodide (6)

A solution of 1 (1.8 g, 3.0 mmol) and iodomethane (3.2 mL,
51 mmol) in dry DCM (60 mL) was stirred for 1 day at

21 °C. The volatiles were removed under reduced pressure
followed by chromatography (silica gel, chloroform/
methanol/formic acid, 4.5:0.4:0.1) to afford 6 (1.2 g, 63%)
as a yellowish solid; m.p. 130-231 °C; RF= 0.27 (chloro-
form/methanol/formic acid, 4.5:0.4:0.1); [α]D=−1.3° (c
0.13, CHCl3); IR (ATR): ν= 2825 m, 2776w, 2740w,
2696w, 1646m, 1578 s, 1382 m, 1351 s, 1227 m, 1066 m,
790 m, 764 m, 726 m cm−1; 1H NMR (500MHz, CD3OD):
δ= 4.44-4.39 (m, 1H, 3-H), 4.05-3.89 (m, 4H, 32-H+ 32’-
H), 3.45 (s, 4H, 33-H+ 33’-H), 3.25 (s, 6H, 34-H+ 35-H),
3.19-3.11 (m, 1H, 19-H), 2.70-2.61 (m, 1H, 13-H), 2.15 (s,
3H, 29-H), 2.14-2.01 (m, 3H, 21-Ha+ 18-H+ 22-Ha), 1.99
(s, 3H, 31-H), 1.97-1.88 (m, 1H, 16-Ha), 1.71-1.55 (m, 4H,
1-Ha+ 21-Hb+ 2-H), 1.55-1.33 (m, 9H, 16-Hb+ 22-Hb+
6-Ha+ 11-Ha+ 6-Hb+ 7-H+ 15-Ha+ 9-H), 1.32-1.23 (m,
2H, 11-Hb+ 15-Hb), 1.11-1.05 (m, 1H, 12-Ha), 0.99 (s, 3H,
27-H), 0.98-0.94 (m, 2H, 1-Hb+ 12-Hb), 0.92 (s, 3H, 26-
H), 0.87 (s, 3H, 25-H), 0.83 (s, 3H, 23-H), 0.83 (s, 3H, 24-
H), 0.81-0.78 (m, 1H, 5-H) ppm; 13C NMR (126MHz,
CD3OD) δ= 215.6 (C-20), 175.6 (C-28), 172.9 (C-30),
82.5 (C-3), 62.4 (C-33+ C-33’), 56.9 (C-5), 55.8 (C-17),
53.9 (C-18), 52.0 (C-34+C-35), 52.0 (C-9), 51.6 (C-19),
42.9 (C-14), 41.9 (C-8), 39.6 (C-1), 39.5 (C-32+ C-32’),
38.8 (C-4), 38.3 (C-10), 37.4 (C-13), 36.5 (C-22), 35.4 (C-
7), 32.8 (C-21), 31.1 (C-15), 29.8 (C-29), 29.7 (C-16), 28.5
(C-12), 28.4 (C-23), 24.6 (C-2), 22.4 (C-11), 21.1 (C-31),
19.2 (C-6), 16.9 (C-24), 16.8 (C-25), 16.6 (C-26), 15.0 (C-
27) ppm; MS (ESI, MeOH:CHCl3, 4:1): m/z 597.0 ([M-I]+,
100%); analysis calcd for C37H61IN2O4 (724.79): C 61.31,
H 8.48, N 3.87; found: C 61.03, H 8.67, N 3.58.

(3β, 20E) 3-Acetyloxy-20-hydroxyimino-N-(1-
methylpiperazinyl)-30-norlupan-28-amide (7)

According to GPB from 1 (1.9 g, 3.3 mmol) and hydro-
xylammonium chloride (1.5 g, 22 mmol) followed by
chromatography (silica gel, n-hexane/chloroform/methanol,
5:4.5:0.5) 7 (1.5 g, 75%) was obtained as a white solid; m.p.
295-300 °C; RF= 0.27 (n-hexane/chloroform/methanol,
5:4.5:0.5); [α]D=+0.21° (c 0.12, MeOH); IR (ATR): ν=
2944 m, 2872 m, 2686w, 2583w, 2513w, 2452w, 1712m,
1627s, 1456 m, 1449 m, 1488 m, 1373 s, 1315w, 1300w,
1249 s, 1206 m, 1153 m, 1130w, 1086w, 1049 m, 1025 m,
975 s, 947 m, 911w, 850w, 763 m, 746 m, 690 m, 667 m,
606 m, 545 m, 511 m, 476 m cm−1; 1H NMR (500MHz,
DMSO-d6) δ 4.36 (dd, J= 11.6, 4.6 Hz, 1H, 3-H), 3.70-
3.30 (m, 6H, 33-H+ 33’-H+ 32-H), 3.00 – 2.93 (m, 1H,
19-H), 2.93-2.82 (m, 2H, 32’-H), 2.80-2.75 (m, 1H, 13-H),
2.74 (s, 3H, 34-H), 2.10-2.01 (m, 1H, 16-Ha), 1.98 (s, 3H,
31-H), 1.95-1.90 (m, 1H, 22-Ha), 1.77-1.70 (m, 1H, 21-Ha),
1.66 (s, 3H, 29-H), 1.64-1.37 (m, 9H, 18-H+ 1-Ha+ 2-Ha

+ 12-Ha+ 16-Hb+ 2-Hb+ 22-Hb+ 6-Ha+ 21-Hb), 1.37-
1.24 (m, 6H, 11-Ha+ 6-Hb+ 7-H+ 9-H+ 15-Hb), 1.16-
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1.08 (m, 2H, 11-Hb+ 15-Hb), 0.97-0.92 (m, 1H, 1-Hb), 0.91
(s, 3H, 27-H), 0.85 (s, 3H, 26-H), 0.83-0.81 (m, 1H, 12-Hb),
0.80 (s, 3H, 25-H), 0.79-0.74 (m, 7H, 23-H+ 24-H+ 5-H)
ppm; 13C NMR (126MHz, DMSO-d6) δ= 172.8 (C-28),
170.1 (C-30), 159.9 (C-20), 79.9 (C-3), 54.7 (C-5), 53.6 (C-
17), 52.1 (C-33+ C-33‘ + C-32+ C-32‘), 51.5 (C-18),
49.8 (C-9), 43.3 (C-19), 41.8 (C-34), 41.4 (C-14), 40.2 (C-
8), 37.8 (C-1), 37.4 (C-4), 36.6 (C-10), 35.0 (C-22), 35.8
(C-13), 33.7 (C-7), 31.5 (C-16), 29.3 (C-15), 28.5 (C-21),
27.6 (C-23), 25.1 (C-12), 23.4 (C-2), 21.0 (C-31), 20.6 (C-
11), 17.7 (C-6), 16.4 (C-24), 15.9 (C-25), 15.7 (C-26), 14.3
(C-27), 10.7 (C-29) ppm; MS (ESI, MeOH:CHCl3, 4:1): m/
z 598.6 ([M+CH3OH+H]+, 100%) 1197.3 ([2 M+
2CH3OH+H]+, 10%); analysis calcd for C36H59N3O4

(597.87): C 72.32, H 9.95, N 7.03; found: 72.08, H 10.15,
N 6.80.

(3β, 20E) 3-Acetyloxy-20-hydroxyimino-N-(2-
aminoethyl)-30-norlupan-28-amide (8)

According to GPB from 2 (1.3 g, 2.5 mmol) and hydro-
xylammonium chloride (1.2 g, 17 mmol) followed by chro-
matography (silica gel, n-hexane/chloroform/methanol,
4:3.5:1.5) 8 (0.7 g, 51%) was obtained as a white solid; m.p. >
300 °C; RF= 0.22 (n-hexane/chloroform/methanol,
4:3.5:1.5); [α]D=+3.12° (c 0.10, MeOH); IR (ATR): ν=
2940 s, 2872m, 1733m, 1709m, 1657m, 1639m, 1516m,
1467m, 1451m, 1367 s, 1317w, 1245 s, 1195m, 1172w,
1156w, 1131w, 1108w, 1024 s, 978 s, 946m, 902m, 878w,
850m, 803w, 774w, 691m, 611m, 560m, 548m, 500m,
471m cm−1; 1H NMR (500MHz, DMSO-d6) δ= 4.36 (dd, J
= 11.5, 4.6 Hz, 1H, 3-H), 3.32-3.28 (m, 2H, 32-H), 3.10 (dt,
J= 11.0, 5.6 Hz, 1H, 19-H), 2.82-2.73 (m, 2H, 33-H), 2.54-
2.46 (m, 1H, 13-H), 2.24-2.17 (m, 1H, 16-Ha), 1.99 (s, 3H,
31-H), 1.90-1.84 (m, 1H, 22-Ha), 1.74-1.66 (m, 1H, 21-Ha),
1.64 (s, 3H, 29-H), 1.60-1.46 (m, 5H, 1-Ha+ 2-Ha+ 18-H+
12-Ha+ 2-Hb), 1.46-1.37 (m, 3H, 6-Ha+ 16-Hb+ 22-Hb),
1.37-1.22 (m, 7H, 11-Ha+ 21-Hb+ 6-Hb+ 7-H+ 9-H+ 15-
Ha), 1.19-1.08 (m, 1H, 11-Hb), 1.06-1.01 (m, 1H, 15-Hb),
0.97-0.91 (m, 1H, 1-Hb), 0.90 (s, 3H, 27-H), 0.84 (s, 3H, 26-
H), 0.83-0.81 (m, 1H, 12-Hb), 0.80 (s, 3H, 25-H), 0.79-0.74
(m, 7H, 23-H+ 24-H+ 5-H) ppm; 13C NMR (126MHz,
DMSO-d6) δ= 176.1 (C-28), 170.1 (C-30), 159.7 (C-20),
79.9 (C-3), 54.7 (C-5), 54.6 (C-17), 49.7 (C-9), 49.4 (C-18),
44.0 (C-19), 41.8 (C-14), 40.2 (C-8), 38.6 (C-33), 37.7 (C-1),
37.4 (C-4), 37.3 (C-22), 36.6 (C-10), 36.5 (C-32), 36.3 (C-
13), 33.7 (C-7), 32.0 (C-16), 28.9 (C-15), 28.2 (C-21), 27.6
(C-23), 25.1 (C-12), 23.4 (C-2), 21.0 (C-31), 20.4 (C-11),
17.7 (C-6), 16.4 (C-24), 15.9 (C-25), 15.8 (C-26), 14.3 (C-
27), 10.6 (C-29) ppm;; MS (ESI, MeOH:CHCl3, 4:1): m/z
558.1 ([M+H]+, 100%) 1170.5 ([2M+H]+, 50%); analysis
calcd for C33H55N3O4 (557.81): C 71.06, H 9.94, N 7.53;
found: C 70.78, H 10.12, N 7.35.

(3β, 20E) 3-Acetyloxy-20-hydroxyimino-N-(4-
morpholinyl)-30-norlupan-28-amide (9)

According to GPB from 3 (1.5 g, 2.6 mmol) and hydro-
xylammonium chloride (1.2 g, 17 mmol) followed by
chromatography (silica gel, n-hexane/chloroform/methanol,
5:4.75:0.25) compound 9 (1.3 g, 85%) was obtained as a
white solid; m.p. 283-286 °C; RF= 0.24 (n-hexane/chloro-
form/methanol, 5:4.75:0.25); [α]D=+0.76° (c 0.10,
MeOH); IR (ATR): ν= 3400 m, 2967 m, 2940 m, 2927 m,
2860 m, 1735w, 1706s, 1636s, 1467w, 1445 m, 1393 m,
1385 m, 1363 m, 1313w, 1299w, 1268 s, 1224w, 1185 m,
1119 s, 1065w, 1046 m, 1031 m, 978 m, 948w, 915w,
904w, 881w, 854 m, 751w, 662 m, 646 m, 596 m, 550w,
510w cm−1; 1H NMR (500MHz, DMSO-d6) δ= 4.37 (dd,
J= 11.6, 4.7 Hz, 1H, 3-H), 3.56-3.46 (m, 8H, 33-H+ 33’-
H+ 32-H+ 32’-H), 2.98 (q, J= 6.5 Hz, 1H, 19-H), 2.86-
2.79 (m, 1H, 13-H), 2.11-2.05 (m, 1H, 16-Ha), 1.99 (s, 3H,
31-H), 1.97-1.92 (m, 1H, 22-Ha), 1.74-1.68 (m, 1H, 21-Ha),
1.65 (s, 3H; 29-H), 1.64-1.43 (m, 8H, 18-H+ 1-Ha+ 12-Ha

+ 2-Ha+ 2-Hb+ 16-Hb+ 22-Hb+ 6-Ha), 1.42-1.29 (m,
7H, 21-Hb+ 6-Hb+ 11-Ha+ 7-H+ 9-H+ 15-Ha), 1.19-
1.08 (m, 2H, 11-Hb+ 15-Hb), 0.98-0.92 (m, 1H, 1-Hb), 0.91
(s, 3H, 27-H), 0.85 (s, 3H, 26-H), 0.84-0.82 (m, 1H, 12-Hb),
0.81 (s, 3H, 25-H), 0.79 (m, 7H, 23-H+ 24-H+ 5-H) ppm;
13C NMR (126MHz, DMSO-d6) δ= 172.5 (C-28), 170.1
(C-30), 159.8 (C-20), 79.9 (C-3), 66.3 (C-33+C-33‘ + C-
32+C-32‘), 54.7 (C-5), 53.5 (C-17), 51.6 (C-18), 49.8 (C-
9), 43.4 (C-19), 41.4 (C-14), 40.2 (C-8), 37.8 (C-1), 37.4
(C-4), 36.6 (C-10), 35.8 (C-13), 35.0 (C-22), 33.7 (C-7),
31.4 (C-16), 29.2 (C-15), 28.5 (C-21), 27.6 (C-23), 25.1 (C-
12), 23.4 (C-2), 20.9 (C-31), 20.6 (C-11), 17.7 (C-6), 16.4
(C-24), 15.9 (C-25), 15.7 (C-26), 14.3 (C-27), 10.6 (C-29)
ppm; MS (ESI, MeOH:CHCl3, 4:1): m/z 585.7 ([M+H]+,
86%) 1115.2 ([2 M+H]+, 20%); analysis calcd for
C35H56N2O5 (584.83): C 71.88, H 9.65, N 4.79; found:
71.64, H 9.87, N 4.51.

(3β, 20E) 3-Acetyloxy-20-hydroxyimino-N-(1-
piperazinyl)-30-norlupan-28-amide (10)

According to GPB from 4 (1.5 g, 2.6 mmol) and hydro-
xylammonium chloride (1.2 g, 17 mmol) followed by chro-
matography (silica gel, n-hexane/chloroform/methanol,
4:3.5:1.5) compound 10 (1.1 g, 75%) was obtained as white
solid; m.p. 211-215 °C; RF= 0.17 (n-hexane/chloroform/
methanol, 4:3.5:1.5); [α]D=−14.4° (c 0.11, CHCl3); IR
(ATR): ν= 2943 s, 2713 s, 2667 s, 2163w, 1983w, 1894w,
1732m, 1623m, 1577m, 1506m, 1468m, 1393m, 1372m,
1315m, 1246m, 1193m, 1160m, 1146m, 1027m, 999 s,
981m, 947m, 901m, 850m, 575 s, 540 s, 510 s, 471 s, 419 s
cm−1; 1H NMR (500MHz, CDCl3) δ= 4.48 – 4.43 (m, 1H,
3-H), 3.78-3.67 (m, 4H, 33-H+ 33’-H), 3.07 (m, 1H, 19-H),

Medicinal Chemistry Research (2022) 31:1049–1059 1057



3.04-2.90 (m, 4H, 32-H+ 32’-H), 2.81 (m,1H, 13-H), 2.11-
2.04 (m, 1H, 16-Ha), 2.03 (s, 3H, 31-H), 2.00-1.82 (m, 2H,
22-Ha+ 21-Ha), 1.80 (s, 3H, 29-H), 1.75-1.46 (m, 9H, 18-H
+ 1-Ha+ 2-H+ 16-Hb+ 12-Ha+ 21-Hb+ 6-Ha+ 22-Hb),
1.43-1.39 (m, 1H, 11-Ha), 1.39-1.31 (m, 4H, 6-Hb+ 7-H+
15-Ha), 1.30-1.24 (m, 2H, 9-H+ 11-Hb), 1.19-1.13 (m, 1H,
15-Hb), 0.98-0.93 (m, 2H, 1-Hb+ 12-Hb), 0.92 (s, 3H, 27-H),
0.90 (s, 3H, 26-H), 0.83 (s, 3H, 25-H), 0.82 (s, 3H, 23-H),
0.82 (s, 3H, 24-H), 0.79-0.75 (m, 1H, 5-H) ppm; 13C NMR
(126MHz, CDCl3) δ= 173.4 (C-28), 171.2 (C-30), 162.7 (C-
20), 81.1 (C-3), 58.5 (C-33+C-33’), 55.7 (C-5), 54.4 (C-17),
52.7 (C-18), 50.8 (C-9), 45.0 (C-32+C-32‘), 44.0 (C-19),
41.9 (C-14), 40.8 (C-8), 38.6 (C-1), 37.9 (C-4), 37.3 (C-10),
36.5 (C-13), 35.8 (C-22), 34.4 (C-7), 32.5 (C-16), 29.9 (C-
15), 29.3 (C-21), 28.1 (C-23), 26.0 (C-12), 23.8 (C-2), 21.4
(C-31), 21.3 (C-11), 18.3 (C-6), 16.6 (C-24), 16.4 (C-25),
16.2 (C-26), 14.7 (C-27), 11.8 (C-29) ppm; MS (ESI, MeOH:
CHCl3, 4:1): m/z 584.0 ([M+H]+, 50%) 1167.0 ([2M+H]
+, 100%); analysis calcd for C35H57N3O4 (583.86): C 72.00,
H 9.84, N 7.20; found: 71.86, H 10.03, N 6.97.
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