Skip to main content
Log in

Synthesis, in vitro and in silico enzyme (COX-1/2 & LOX-5), free radical scavenging and cytotoxicity profiling of the 2,4-dicarbo substituted quinazoline 3-oxides

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Series of the 3-methylquinazoline 3-oxide derivatives were evaluated through enzymatic assays in vitro and in silico for potential inhibitory effect against cyclooxygenase-1/2 (COX-1/2) and lipoxygenase-5 activities as well as for free radical scavenging potential and cytotoxicity. The 6-bromo (3k) and 6-iodo substituted 2-(4-chlorophenyl)-4-methylquinazoline 3-oxide (3q) exhibited significant inhibitory effect against both COX-1 (IC50 = 13.9 ± 3.21 µM and 9.7 ± 0.09 µM, respectively) and COX-2 (IC50 = 6.4 ± 0.74 µM and 4.6 ± 1.45 µM, respectively) compared to quercetin (IC50 = 13.84 ± 1.57 µM and 5.06 ± 2.60 µM, respectively). Their activity was, however, modest compared to the selective COX-2 inhibitor, celecoxib, with IC50 values of 7.35 ± 0.88 µM and 0.62 ± 0.74 µM against COX-1 and COX-2, respectively. The two compounds exhibited comparable effect on LOX-5 (IC50 = 15.0 µM), which is moderate compared to quercetin (IC50 = 8.04 ± 1.12 µM) and modest against zileuton (IC50 = 0.42 ± 0.51 µM). Structure–activity relationship analysis suggested that the presence of a halogen atom at the C-6 position and a 2-aryl group enhance inhibitory effect against COX-2. This observation is well supported by molecular docking studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The CIF files containing complete information on the studied structures were deposited with the Cambridge Crystallographic Data Center, 3b (CCDC 2035791) and 3c (CCDC 2035790), and are freely available upon request from the following website: www.ccdc.cam.ac.uk/datarequest/cif or by contacting the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB2 1EZ, UK; fax: +44-1223-336033; email: deposit@ccdc.cam.ac.uk.

References

  1. Kishore N, Kumar P, Shanker K, Verma AK. Human disorders associated with inflammation and the evolving role of natural products to overcome. Eur J Med Chem. 2019;179:272–309. https://doi.org/10.1016/j.ejmech.2019.06.034.

    Article  PubMed  CAS  Google Scholar 

  2. Rani V, Deep G, Singh RK, Palle K, Yadav UCS. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life Sci. 2016;1148:183–93. https://doi.org/10.1016/j.lfs.2016.02.002.

    Article  CAS  Google Scholar 

  3. Brubaker L, Kendall L, Reina E. Multimodal analgesia: a systematic review of local NSAIDs for non-ophthalmologic post operative pain management. Int J Surg. 2016;32:158–66. https://doi.org/10.1016/j.ijsu.2016.07.003.

    Article  PubMed  Google Scholar 

  4. Qandeel NA, El-Damasy AK, Sharawy MH, Bayomi SM, El-Gohary NS. Synthesis, in vivo anti-inflammatory, COX-1/COX-2 and 5-LOX inhibitory activities of new 2,3,4-trisubstituted thiophenes. Bioorg Chem. 2020;101:103890 https://doi.org/10.1016/j.bioorg.2020.103890R.

    Article  Google Scholar 

  5. Liaras K, Fesatidou M, Geronikaki A. Thiazoles and thiazolidinones as COX/LOX inhibitors. Molecules. 2018;23:685 https://doi.org/10.3390/molecules23030685.

    Article  PubMed Central  CAS  Google Scholar 

  6. Ju Z, Su M, Hong J, Kim EL, Moon HR, Chung HY, et al. Design of balanced COX inhibitors based on anti-inflammatory and/or COX-2 inhibitory ascidian metabolites. Eur J Med Chem. 2019;180:86–98. https://doi.org/10.1016/j.ejmech.2019.07.016.

    Article  PubMed  CAS  Google Scholar 

  7. Rawat C, Kukal S, Dahiya UR, Kukreti R. Cyclooxygenase-2 (COX-2) inhibitors: future therapeutic strategies for epilepsy management. J Neuroinflamm. 2019;16197. https://doi.org/10.1186/s12974-019-1592-3.

  8. Rathee P, Chaudhary H, Rathee S, Kumar V, Kohli K. Mechanism of action flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets. 2009;8:229–35. https://doi.org/10.2174/187152809788681029.

    Article  PubMed  CAS  Google Scholar 

  9. Alagarsamy V, Chitra K, Saravanan G, Solomon VR, Sulthana MT, Narendhar B. An overview of quinazolines: pharmacological significance and recent developments. Eur J Med Chem. 2018;151:628–85. https://doi.org/10.1016/j.ejmech.2018.03.076.

    Article  PubMed  CAS  Google Scholar 

  10. Pathare RS, Maurya AK, Kumari A, Agnihotri VK, Vermac VP, Sawant DM. Synthesis of quinazoline-3-oxides via a Pd(II) catalyzed azide–isocyanide coupling/cyclocondensation reaction. Org Biomol Chem. 2019;17:363–8. https://doi.org/10.1039/C8OB02627K.

    Article  PubMed  CAS  Google Scholar 

  11. Combs DW, Rampulla MS, Russell RK, Rampulla R, Klaubert DH, Ritchie D, et al. Design, synthesis and bronchodilatory activity of a series of quinazoline-3-oxides. Drug Des Deliv. 1990;6:241–54.

    PubMed  CAS  Google Scholar 

  12. Alzogaray RA, Fontán A, Camps F, Masuh H, Orihuela PS, Fernández D, et al. Behavioural response of Triatoma infestans (Klug) (Hemiptera: Reduviidae) to quinazolines. Molecules. 2005;10:1190–6. https://doi.org/10.3390/molecules1009119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Armarego WLF. Quinazolines. Part V. Covalent hydration in quinazoline 3-oxides. J Chem Soc. 1962:5030–6. https://doi.org/10.1039/JR9620005030.

  14. Heaney F, Lawless E. 2-Vinyl quinazoline 3-oxide; preparation from acid induced cyclocondensation of 2-acylaminoaryloximes. J Heterocycl Chem 2007;44:569–74. https://doi.org/10.1002/jhet.5570440311.

    Article  CAS  Google Scholar 

  15. Jatangi N, Palakodety RK. I2-Catalyzed oxidative synthesis of N,4-disubstituted quinazolines and quinazoline oxides. Org Biomol Chem. 2019;17:3714–7. https://doi.org/10.1039/C9OB00349E.

    Article  PubMed  CAS  Google Scholar 

  16. Kovendi A, Kircz M. New synthesis for quinazoline N3-oxides and 1,2-dihydroquinazoline N3-oxides. Chem Ber. 1965;98:1049–59.

    Article  CAS  Google Scholar 

  17. Madabhushi S, Mallu KKR, Jillella R, Kurva S, Singh R. One-step method for synthesis of 2,4-disubstituted quinazoline 3-oxides by reaction of a 2-aminoaryl ketone with a hydroxamic acid using Zn(OTf)2 as the catalyst. Tetrahedron Lett. 2014;55:1979–82. https://doi.org/10.1016/j.tetlet.2014.01.150.

    Article  CAS  Google Scholar 

  18. Chen Y-C, Yang D-Y. Visible light-mediated synthesis of quinazolines from 1,2-dihydro- quinazoline-3-oxides. Tetrahedron. 2013;69:10438–44. https://doi.org/10.1016/j.tet.2013.09.089.

    Article  CAS  Google Scholar 

  19. Eynde JJV, Godin J, Mayence A, Maquestiau A, Anders E. A new and convenient method for the preparation of 2-substituted quinazolines. Synthesis. 1993;9:867–9. https://doi.org/10.1055/S-1993-25958.

    Article  Google Scholar 

  20. Coșkun N, Cetin M. A new regioselective synthesis and ambient light photochemistry of quinazoline 1-oxides. Tetrahedron. 2007;63:2966–72. https://doi.org/10.1016/j.tet.2007.02.004.

    Article  CAS  Google Scholar 

  21. Samandram R, Korukçu MÇ, Coşkun N. Eco-friendly H2O2 oxidation of 1,2- dihydroquinazoline-3-oxides to quinazoline-3-oxides. Synth Commun. 2021;51:2349–56. https://doi.org/10.1080/00397911.2021.1934876.

    Article  CAS  Google Scholar 

  22. Ye X, Chen Z, Zhang Z, Fu Y, Deng Z, Peng Y. A convenient approach to 2,4-disubstituted quinazoline-3-oxides using active MnO2 as the oxidant. Can J Chem. 2019;97:682–9. https://doi.org/10.1139/cjc-2018-0521.

    Article  CAS  Google Scholar 

  23. Wang Q, Wang F, Yang X, Zhou X, Li X. Rh(III)- and Zn(II)-catalyzed synthesis of quinazoline N‑oxides via C−H amidation−cyclization of oximes. Org Lett. 2016;18:6144–7. https://doi.org/10.1021/acs.orglett.6b03155.

    Article  PubMed  CAS  Google Scholar 

  24. Biswass SK. Does the interdependence between oxidative stress and inflammation explain the antioxidant paradox? Oxid Med Cell Longev. 2016;2016:20165698931. https://doi.org/10.1155/2016/5698931.

    Article  CAS  Google Scholar 

  25. Mphahlele MJ, Makhafola TJ, Mmonwa MM. In vitro cytotoxicity of novel 2,5,7-tricarbo-substituted indoles derived from 2-amino-5-bromo-3-iodoacetophenone. Bioorg Med Chem. 2016;24:4576–86. https://doi.org/10.1016/j.bmc.2016.07.056.

    Article  PubMed  CAS  Google Scholar 

  26. Counceller CM, Eichman CC, Wray BC, Stambuli JP. A practical metal-free synthesis of 1H-indazoles. Org Lett. 2008;10:1021–3. https://doi.org/10.1021/ol800053f.

    Article  PubMed  CAS  Google Scholar 

  27. Mphahlele MJ, Magwaza NM, Gildenhuys S, Setshedi IB. Synthesis, α-glucosidase inhibition and antioxidant activity of the 7-carbo–substituted 5-bromo-3-methylindazoles. Bioorg Chem. 2020;97:103702 https://doi.org/10.1016/j.bioorg.2020.10370.

    Article  PubMed  CAS  Google Scholar 

  28. Wray BC, Stambuli JP. Synthesis of N-arylindazoles and benzimidazoles from a common intermediate. Org Lett. 2010;12:4576–9. https://doi.org/10.1021/ol101899q.

    Article  PubMed  CAS  Google Scholar 

  29. López SE, Salazar J. Trifluoroacetic acid: Uses and recent applications in organic synthesis. J Fluor Chem. 2013;156:73–100. https://doi.org/10.1016/j.jfluchem.2013.09.004.

    Article  CAS  Google Scholar 

  30. Ronchin L, Vavasori A, Bortoluzzi M. Organocatalyzed Beckmann rearrangement of cyclohexanone oxime by trifluoroacetic acid in aprotic solvent. Catal Commun. 2008;10:251–6. https://doi.org/10.1016/j.catcom.2008.09.001.

    Article  CAS  Google Scholar 

  31. Buchardt O, Jensen B. Photochemical studies XI. The photolysis of quinoxaline N-oxides to benz[d][1,3,6]-oxadiazepines. X-ray study Acta Chem Scand 1968;22:877–82.

    Article  CAS  Google Scholar 

  32. Meanwell NA. Fluorine and fluorinated motifs in the design and application of bioisosteres for drug design. J Med Chem. 2018;61:5822–80. https://doi.org/10.1021/acs.jmedchem.7b01788.

    Article  PubMed  CAS  Google Scholar 

  33. Böhm H, Banner D, Bendels S, Kansy M, Kuhn B, Müller K, et al. Fluorine in medicinal chemistry. ChemBiochem. 2004;5:637–43. https://doi.org/10.1002/cbic.200301023.

    Article  PubMed  CAS  Google Scholar 

  34. Yin Z, Li X, Deng Z, Yang Q, Peng Y. The synthesis of isoxazolo[2,3-c]quinazolines via a cycloaddition of quinazoline-3-oxides and acrylates. Tetrahedron Lett. 2020;61:151818 https://doi.org/10.1016/j.tetlet.2020.151818.

    Article  CAS  Google Scholar 

  35. Wang Y, Liu Y, Yang Q, Mao X, Chai W-M, Peng Y. Study on the interaction between 4-(1H-indol-3-yl)-2-(p-tolyl)quinazoline-3- oxide and human serum albumin. Bioorg Med Chem. 2020;28:115720 https://doi.org/10.1016/j.bmc.2020.115720.

    Article  PubMed  CAS  Google Scholar 

  36. Kim HP, Mani I, Iversen L, Ziboh VA. Effects of naturally-occurring flavonoids and biflavonoids on epidermal cyclooxygenase and lipoxygenase from guinea-pigs. Prostaglandin Leukot Essent Fatty Acids. 1998;58:17–24. https://doi.org/10.1016/S0952-3278(98)90125-9.

    Article  CAS  Google Scholar 

  37. Liu B, Qu L, Yan S. Cyclooxygenase-2 promotes tumor growth and suppresses tumor immunity. Cancer Cell Int. 2015;15:106 https://doi.org/10.1186/s12935-015-0260-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Larkins TL, Nowell M, Singh S, Sanford GL. Inhibition of cyclooxygenase-2 decreases breast cancer cell motility, invasion and matrix metalloproteinase expression. BMC Cancer. 2006;6:181 https://doi.org/10.1186/1471-2407-6-181.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Steele VE, Hawk ET, Viner JL, Kubet RA. Mechanisms and applications of the non-steroidal anti-inflammatory drugs in the chemoprevention of cancer. Mutat Res. 2003;523:137–44. https://doi.org/10.1016/S0027-5107(02)00329-9.

    Article  PubMed  CAS  Google Scholar 

  40. Regulski M, Piotrowska-Kempisty H, Prukała W, Dutkiewicz Z, Regulska K, Stanisz B, et al. Synthesis, in vitro and in silico evaluation of novel trans-stilbene analogues as potential COX-2 inhibitors. Bioorg Med Chem. 2018;26:141–151. https://doi.org/10.1016/j.bmc.2017.11.027.

    Article  PubMed  CAS  Google Scholar 

  41. Michaux C, Charlier C. Structural approach for COX-2 inhibition. Mini-Rev Med Chem. 2004;4:603–15. https://doi.org/10.2174/1389557043403756.

    Article  PubMed  CAS  Google Scholar 

  42. Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Pak JY, et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384:644 https://doi.org/10.1038/384644a0.

    Article  PubMed  CAS  Google Scholar 

  43. Bruker S. Version 6.02 (Includes XPREP and SADABS). Madison, WI, USA: Bruker AXS Inc.; 2016.

    Google Scholar 

  44. Farrugia LJ. WinGX and ORTEP for Windows: an update. J Appl Crystallogr. 2012;45:849–54. https://doi.org/10.1107/S0021889812029111.

    Article  CAS  Google Scholar 

  45. Sheldrick GM. SHELXT-Integrated space-group and crystal-structure determination. Acta Crystallogr A. 2015;71:3–8. https://doi.org/10.1107/S2053273314026370.

    Article  CAS  Google Scholar 

  46. Sheldrick GM. Crystal structure refined with SHELXL. Acta Crystallogr C. 2015;71:3–8. https://doi.org/10.1107/S2053229614024218.

    Article  CAS  Google Scholar 

  47. Spek AL. Structure validation in chemical crystallography. Acta Crystallogr D. 2009;65:148–55. https://doi.org/10.1107/S090744490804362X.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Nikkeri NM, Chikkur BP. Synthesis and antioxidant activity of 2-amino-5-methylthiazol derivatives containing 1,3,4-oxadiazole-2-thiol moiety. ISRN Org Chem. 2013;8:620718 https://doi.org/10.1155/2013/620718.

    Article  CAS  Google Scholar 

  49. Morris V, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comp Chem. 2009;30:2785–91. https://doi.org/10.1002/jcc.21256.

    Article  CAS  Google Scholar 

  50. Hanwell MD, Curtis DE, Lonie DC, Vandermeersch T, Zurek E, Hutchison GR. Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J Cheminformatics. 2012;4:7 https://doi.org/10.1186/1758-2946-4-17.

    Article  CAS  Google Scholar 

  51. Salentin S, Schreiber S, Haupt VJ, Adasme MF, Schroeder M. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–7. https://doi.org/10.1093/nar/gkv315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the University of Stellenbosch Central Analytical Facility (CAF) and the University of the Witwatersrand for mass spectrometric and X-ray data, respectively.

Author contributions

Conceptualization and supervision, MJM and MMM; methodology, data curation and analyses, MJM; synthesis, EEO; bioassays, ENA; molecular docking, YSC; Writing: review & editing, MJM.

Funding

FundingThis project was funded by the University of South Africa, the National Research Foundation (NRF) in South Africa (NRF GUN: 118554), and the University Sains Malaysia (RUi grant: 1001/CIPPM/8011051). The views and opinions expressed in this article are those of the authors and not of the funding bodies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malose J. Mphahlele.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mphahlele, M.J., Onwu, E.E., Agbo, E.N. et al. Synthesis, in vitro and in silico enzyme (COX-1/2 & LOX-5), free radical scavenging and cytotoxicity profiling of the 2,4-dicarbo substituted quinazoline 3-oxides. Med Chem Res 31, 146–164 (2022). https://doi.org/10.1007/s00044-021-02811-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02811-9

Keywords

Navigation