Skip to main content
Log in

Design, synthesis, antibacterial evaluation and molecular docking studies of novel pyrazole/1,2,4-oxadiazole conjugate ester derivatives

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

The development of new antimicrobial drugs is most needed due to rapid growth in global antimicrobial resistance. Thus, in this context, a series of novel pyrazole/1,2,4-oxadiazole conjugate ester derivatives (7a–j) was synthesized. All the derivatives were evaluated for their in vitro antibacterial activity against Gram-positive (Enterococcus, Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Salmonella, Klebsiella and Escherichia coli) bacteria and their minimum inhibitory concentration (MIC) was determined. Some of the derivatives have shown significant biological activity with a potency comparable to standard drug Streptomycin. Moreover, molecular docking studies, pharmacokinetic properties ADMET (absorption, distribution, metabolic, excretion and toxicity), molecular properties and TOPKAT analysis were predicted through in silico method. In vitro and in silico studies revealed that among all the compounds, compound (7a) has shown a significant biological activity with a good LibDock score 162.751 kcal/mol. All the synthesized derivatives were confirmed by FTIR, 1H NMR, 13C NMR and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10:369–78.

    Article  PubMed  Google Scholar 

  2. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Årdal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K, Rex JH, et al. Antibiotic development—economic, regulatory and societal challenges. Nat Rev Microbiol. 2019;18:267–74.

    Article  PubMed  Google Scholar 

  4. Lomazzi M, Moore M, Johnson A, Balasegaram M, Borisch B. Antimicrobial resistance—moving forward?BMC Public Health. 2019;19:858.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Laws M, Shaaban A, Rahman KM. Antibiotic resistance breakers: current approaches and future directions. FEMS Microbiol Rev. 2019;43:490–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Richardson LA. Understanding and overcoming antibiotic resistance. PLOS Biol. 2017;15.

  7. Mannam MR, S S, Kumar P, Chamarthi NR, K. RSP. Synthesis of novel 3-[(2R*)-2-[(2S*)-6-fluoro-3,4-dihydro-2H-chromen-2-yl]-2-hydroxyethyl]-urea/thiourea derivatives and evaluation of their antimicrobial activities. Phosphorus, Sulfur, Silicon Relat Elements. 2019;195:65–74..

  8. Naresh VSSP, Somarothu P. Synthesis and antimicrobial activity of some novel fused heterocyclic moieties. Organic. Communications. 2013;6:78–85.

    Google Scholar 

  9. Mannam MR, Devineni SR, Pavuluri CM, Chamarthi NR, Kottapalli RSP. Urea and thiourea derivatives of 3-(trifluoromethyl)-5,6,7,8-tetrahydro-[1, 2, 4]triazolo[4,3-a]pyrazine: synthesis, characterization, antimicrobial activity and docking studies. Phosphorus, Sulfur, Silicon Relat Elements. 2019;194:922–32.

    Article  CAS  Google Scholar 

  10. Mannam MR, S S, Kumar P, K RSP. Synthesis of novel 1‐(5‐(Benzylsulfinyl)‐3‐methyl‐1,3,4‐thiadiazol‐2(3 H)‐ylidene)‐thiourea/urea derivatives and evaluation of their antimicrobial activities. J Heterocycl Chem. 2019;56:2179–91.

    Article  CAS  Google Scholar 

  11. Maddali NK, Viswanath IVK, Murthy YLN, Bera R, Takhi M, Rao NS, et al. Design, synthesis and molecular docking studies of quinazolin-4-ones linked to 1,2,3-triazol hybrids as Mycobacterium tuberculosis H37Rv inhibitors besides antimicrobial activity. Med Chem Res. 2019;28:559–70.

    Article  CAS  Google Scholar 

  12. MA A. A review: biological importance of heterocyclic compounds. Der Pharma Chem. 2017;9:141–7.

    Google Scholar 

  13. Depa N, Erothu H. One‐pot three‐component synthesis of 3‐aminoalkyl indoles catalyzed by molecular iodine. ChemistrySelect. 2019;4:9722–5.

    Article  CAS  Google Scholar 

  14. Ansari A, Ali A, Asif M, Shamsuzzaman S. Review: biologically active pyrazole derivatives. N J Chem. 2017;41:16–41.

    Article  CAS  Google Scholar 

  15. Hassan AS, Askar AA, Naglah AM, Almehizia AA, Ragab A. Discovery of new schiff bases tethered pyrazole moiety: design, synthesis, biological evaluation, and molecular docking study as dual targeting DHFR/DNA gyrase inhibitors with immunomodulatory activity. Molecules. 2020;25:2593.

    Article  CAS  PubMed Central  Google Scholar 

  16. Cunha F, Nogueira J, de Aguiar A. Synthesis and antibacterial evaluation of 3,5-Diaryl-1,2,4-oxadiazole derivatives. J Braz Chem Soc. 2018;29:2405–2416.

    CAS  Google Scholar 

  17. Biernacki K, Daśko M, Ciupak O, Kubiński K, Rachon J, Demkowicz S. Novel 1,2,4-oxadiazole derivatives in drug discovery. Pharmaceuticals. 2020;13:111.

    Article  CAS  PubMed Central  Google Scholar 

  18. Parikh PH, Timaniya JB, Patel MJ, Patel KP. Design, synthesis, and characterization of novel substituted 1,2,4-oxadiazole and their biological broadcast. Med Chem Res. 2020;29:538–48.

    Article  CAS  Google Scholar 

  19. Dasari SR, Tondepu S, Vadali LR, Seelam N. PEG-400 mediated an efficient eco-friendly synthesis of new isoxazolyl pyrido[2,3-d]pyrimidines and their anti-inflammatory and analgesic activity. Synth Commun. 2020;50:2950–61.

    Article  CAS  Google Scholar 

  20. Perla P, Seelam N, Bera R. Design and synthesis of novel 1a,3,4-oxadiazole derivatives as cytotoxic agents: a combined experimental and docking study. Russ J Org Chem. 2020;56:924–34.

    Article  CAS  Google Scholar 

  21. Alam O, Naim M, Nawaz F, Alam MJ, Alam P. Current status of pyrazole and its biological activities. J Pharmacy Bioallied Sci. 2016;8:2–17.

    Article  Google Scholar 

  22. El Shehry MF, Abbas SY, Farrag AM, Fouad SA, Ammar YA. Synthesis and biological evaluation of 3-(2,4-dichlorophenoxymethyl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. J Iran Chem Soc. 2020;17:2567–75.

    Article  CAS  Google Scholar 

  23. Liu H, Yang G-S, Liu C-B, Lin Y, Yang Y, Gong Y-N. Syntheses, crystal structures, and antibacterial activities of helical M(II) phenyl substituted pyrazole carboxylate complexes. J Coord Chem. 2014;67:572–87.

    Article  CAS  Google Scholar 

  24. Hassan S. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules. 2013;18:2683–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Dasari SR, Tondepu S, Vadali LR, Seelam N. Design, synthesis and molecular docking studies of novel pyrazole benzimidazole derivatives as potent antibacterial agents. Asian J Chem. 2019;31:2733–9.

    Article  CAS  Google Scholar 

  26. Koteswara Rao CP, Rao TB, Charan GK, Srinu B, Maturi SR. Synthesis and anticancer evaluation of 2-{4-[5-(5-substituted arylpyrimidin-2-yl)-1H-pyrazol-3-yl]-phenyl}thiazolo[4,5-b]pyridine derivatives. Russ J Gen Chem. 2019;89:1023–8.

    Article  CAS  Google Scholar 

  27. Karrouchi K, Radi S, Ramli Y, Taoufik J, Mabkhot Y, Al-aizari F. et al. Synthesis and pharmacological activities of pyrazole derivatives: a review. Molecules. 2018;23:134.

    Article  PubMed Central  Google Scholar 

  28. Kumar D, Patel G, Chavers AK, Chang K-H, Shah K. Synthesis of novel 1,2,4-oxadiazoles and analogues as potential anticancer agents. Eur J Med Chem. 2011;46:3085–92.

    Article  CAS  PubMed  Google Scholar 

  29. Caneschi W, Enes KB, Carvalho de Mendonça C, de Souza Fernandes F, Miguel FB, da Silva Martins J, et al. Synthesis and anticancer evaluation of new lipophilic 1,2,4 and 1,3,4-oxadiazoles. Eur J Med Chem. 2019;165:18–30.

    Article  CAS  PubMed  Google Scholar 

  30. Suhail HD, Mazin NM, Ekhlas Qanber J, Rawaa MOH. Synthesis, characterization and antibacterial evaluation of 1,3,4-oxadiazole derivatives. Int J Res Pharm Sci. 2019;10:2342–50.

    Article  Google Scholar 

  31. Neeraja P, Srinivas S, Mukkanti K, Dubey PK, Pal S. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: their synthesis and antibacterial evaluation. Bioorganic Med Chem Lett. 2016;26:5212–7.

    Article  CAS  Google Scholar 

  32. Titi A, Messali M, Alqurashy BA, Touzani R, Shiga T, Oshio H. et al. Synthesis, characterization, X-Ray crystal study and bioctivities of pyrazole derivatives: Identification of antitumor, antifungal and antibacterial pharmacophore sites. J Mol Struct. 2020;1205:127625.

    Article  CAS  Google Scholar 

  33. Anand Mohan J, Md. Mansoor A. Design, synthesis and antibacterial evaluation of hybrid curcumin based pyrazole derivatives. Int J pharma Bio Sci. 2020;10:L94–101.

    Google Scholar 

  34. Baral N, Mohapatra S, Raiguru BP, Mishra NP, Panda P, Nayak S, et al. Microwave-assisted rapid and efficient synthesis of new series of chromene-based 1,2,4-oxadiazole derivatives and evaluation of antibacterial activity with molecular docking investigation. J Heterocycl Chem. 2019;56:552–65.

    Article  CAS  Google Scholar 

  35. Shetnev A, Baykov S, Kalinin S, Belova A, Sharoyko V, Rozhkov A. et al. 1,2,4-Oxadiazole/2-imidazoline hybrids: multi-target-directed compounds for the treatment of infectious diseases and cancer. Int J Mol Sci. 2019;20:1699.

    Article  CAS  PubMed Central  Google Scholar 

  36. Wang B-L, Zhang L-Y, Zhan Y-Z, Zhang Y, Zhang X, Wang L-Z, et al. Synthesis and biological activities of novel 1,2,4-triazole thiones and bis(1,2,4-triazole thiones) containing phenylpyrazole and piperazine moieties. J Fluor Chem. 2016;184:36–44.

    Article  CAS  Google Scholar 

  37. Dürüst Y, Karakuş H, Kaiser M, Tasdemir D. Synthesis and anti-protozoal activity of novel dihydropyrrolo[3,4-d][1,2,3]triazoles. Eur J Med Chem. 2012;48:296–304.

    Article  PubMed  Google Scholar 

  38. Sağırlı A, Dürüst Y. Reactions of 3-(p-substituted-phenyl)-5-chloromethyl-1,2,4-oxadiazoles with KCN leading to acetonitriles and alkanes via a non-reductive decyanation pathway. Beilstein J Org Chem. 2018;14:3011–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. DÜRÜSt Y, KarakuŞ H, Yavuz MZ, GepdİRemen AA. Synthesis of novel triazoles bearing 1,2,4-oxadiazole and phenylsulfonyl groups by 1,3-dipolar cycloaddition of some organic azides and their biological activities. Turk J Chem. 2014;38:739–55.

    Article  Google Scholar 

  40. Pitasse-Santos P, Sueth-Santiago V, Lima M. 1,2,4- and 1,3,4-Oxadiazoles as scaffolds in the development of antiparasitic agents. J Braz Chem Soc. 2017;29:435–456.

    Google Scholar 

  41. Cai J, Wei H, Hong KH, Wu X, Cao M, Zong X, et al. Discovery and preliminary evaluation of 2-aminobenzamide and hydroxamate derivatives containing 1,2,4-oxadiazole moiety as potent histone deacetylase inhibitors. Eur J Med Chem. 2015;96:1–13.

    Article  CAS  PubMed  Google Scholar 

  42. Mohammadi-Khanaposhtani M, Shabani M, Faizi M, Aghaei I, Jahani R, Sharafi Z, et al. Design, synthesis, pharmacological evaluation, and docking study of new acridone-based 1,2,4-oxadiazoles as potential anticonvulsant agents. Eur J Med Chem. 2016;112:91–8.

    Article  CAS  PubMed  Google Scholar 

  43. Quadri M, Silnović A, Matera C, Horenstein NA, Stokes C, De Amici M, et al. Novel 5-(quinuclidin-3-ylmethyl)-1,2,4-oxadiazoles to investigate the activation of the α7 nicotinic acetylcholine receptor subtype: synthesis and electrophysiological evaluation. Eur J Med Chem. 2018;160:207–28.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parrish JP, Dueno EE, Kim S-I, Jung KW. Improved Cs2CO3 promoted O-alkylation of acids. Synth Commun. 2011;30:2687–700.

    Article  Google Scholar 

  45. Panday AK, Ali D, Choudhury LH. Cs2CO3-Mediated rapid room-temperature synthesis of 3-amino-2-aroyl benzofurans and their copper-catalyzed N-arylation reactions. ACS Omega. 2020;5:3646–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang Q, Song C, Huang H, Zhang K, Chang J. Cesium carbonate promoted cascade reaction involving DMF as a reactant for the synthesis of dihydropyrrolizino[3,2-b]indol-10-ones. Org Chem Frontiers. 2018;5:80–7.

    Article  CAS  Google Scholar 

  47. Castillo J-C, Orrego-Hernández J, Portilla J. Cs2CO3-promoted direct N-alkylation: highly chemoselective synthesis of N-alkylated benzylamines and anilines. Eur J Org Chem. 2016;2016:3824–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are gratefully acknowledged to the Department of Chemistry and Centre for Advanced Energy Studies (CAES), KLEF (Deemed to be University), Vaddeswaram, Andhra Pradesh, India for providing the research facilities and also Averin Biotech Pvt. Ltd, Hyderabad for in silico studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harikrishna Erothu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Depa, N., Erothu, H. Design, synthesis, antibacterial evaluation and molecular docking studies of novel pyrazole/1,2,4-oxadiazole conjugate ester derivatives. Med Chem Res 30, 1087–1098 (2021). https://doi.org/10.1007/s00044-021-02710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-021-02710-z

Keywords

Navigation