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Abstract Betulin 1 and its semisynthetic derivatives exhi-
bit a cytotoxic activity toward various cancer cell lines.
These compounds are a promising and potential anticancer
candidates. A series of betulin derivatives was prepared and
tested for the antiproliferative activity in vitro against T47D
breast cancer, CCRF/CEM leukemia, HL-60 promyelocytic
leukemia, SW707 colorectal, murine P388 leukemia, as
well as BALB3T3 normal fibroblasts cell lines. Cisplatin
and betulin 1 were used as a reference compounds. Some
derivatives of betulin showed a higher cytotoxic activity
than the parent compound 1. Two derivatives (5 and 17)
were 24-fold potent than betulin 1 against the human pro-
myelocytic leukemia cell line (HL-60), with an IC50 value
of 0.3 µg/mL.

Keywords Betulin ● Betulone ● Synthesis ● Cytotoxic
activity ● Lipophilicity

Introduction

Betulin (lup-20(29)-ene-3β,28-diol) 1 is a pentacyclic tri-
terpene of the lupane type which is isolated from bark of

white birch species (Fig. 1). The compound 1 has three
active positions in its structure, namely the primary
hydroxyl group at C-28, the secondary group at C-3 and the
isopropenyl side chain at C-19. It’s possible to make a
chemical modification of these positions to obtain new
betulin derivatives with important biological properties such
as antitumor, antiviral, antimicrobial, anti-inflammatory, as
well as hepatoprotective activities (Alakurtti et al., 2006;
Tolstikov et al., 2005).

Betulone (lup-20(29)-en-28-ol-3-one) 2 similarly to
betulin 1 represents a class of pentacyclic triterpenes which
can be isolated from various plants (Fig. 1) (Diouf et al.,
2009; Liu et al., 2012; Reyes et al., 2006). The content of
betulone 2 in the native plant material is very low, therefore
the compound 2 was obtained by oxidation or bio-
transformation of naturally occurring betulin 1 (Grishko
et al., 2013; Hase et al., 1981; Mao et al., 2012). Despite the
fact that betulone 2 has been isolated from Betula lenta in
1991 (Cole et al., 1991), the crystal structure of this com-
pound was determined for the first time in 2013 (Boryczka
et al., 2013a).

It has already been reported that betulone 2 possess
interesting pharmacological activities such as anti-

Fig. 1 Chemical structure of betulin 1 and betulone 2
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leishmanial, anti-inflammatory, and aniparasitic against
Plasmodium falciparum and Trypanosoma brucei rhode-
siense (Alakurtti et al., 2010; Gachet et al., 2011; Reyes
et al., 2006). Triterpene 2 exhibited also antifouling activity
against cyprid larvae of the barnacle Balanus albicostatus
with the EC50 value 8.73 µg/mL slightly higher than betulin
1 (Chen et al., 2011). The compound 2 demonstrated almost
the same protective effects as betulin 1 against the cyto-
toxicity of cadmium at high concentrations (Hiroya et al.,
2002). Betulone 2 with the carbonyl group at C-3 position
showed anticancer effect on mouse melanoma (B16 2F2)
cell line with the IC50 value 29.3 µM (Hata et al., 2002).
Additionally, the compound 2 and its derivatives showed
in vitro cytotoxic activity against different cancer cell lines
like stomach (MGC-803), breast (Bcap-37, MCF-7), pros-
tate (PC3), melanoma (SK-MEL-2, A-375), medullo-
blastoma (Dayo), glioblastoma (LN-229), ovarian
carcinoma (OVCAR-3), and colon carcinoma (HT-29)
(Koohang et al., 2009; Liu et al., 2012; Mar et al., 2009).
Derivatives of betulone containing 3′-substituted glutaryl
groups at C-28 position represent a new class of anti-HIV
agents. These compounds exhibited anti-HIV activity with
EC50 values in the range of 4.3–10.0 µM (Sun et al., 1998a;
Sun et al., 1998b).

We have previously described the synthesis and eva-
luation of cytotoxicity of betulin derivatives containing one
or two acetylenic groups at the C-3 and/or C-28 positions.
Our studies showed, that the derivative of betulin with a
propynoyl group at C-28 position, has strong cytotoxic
effects against human leukemia (CCRF/CEM) and murine
leukemia (P388) cancer cells. Moreover, 28-O-propy-
noylbetulin induces apoptosis in human melanoma (G-361)
cells via caspase-3 activation (Boryczka et al., 2013b;
Orchel et al., 2014).

Continuing our research project on the development of
anticancer agents, we synthesized new compounds, in order
to obtain more information about the influence of alkane,
alkene, and alkyne moiety at the C-28 position on anti-
proliferative activity in the group of betulin and betulone
derivatives.

Materials and methods

Chemistry

Melting points of betulin derivatives were obtained in open
capillary tubes on a Boetius melting point apparatus without
correction. Nuclear magnetic resonance (NMR) (600/150
MHz) spectra were measured in CDCl3 as solvent on a
Bruker Avance III 600 spectrometer. The chemical shifts
values are reported in ppm (δ) and the coupling constants
(J) are presented in Hertz. The spin multiplicities are given

as singlet (s), doublet (d), triplet (t), q (quartet), and mul-
tiplet (m). Mass spectra were measured under EI conditions
on a Finnigan MAT 95 spectrometer. Infrared spectra (KBr,
pellet) were recorded using the IRAffinity-1 Shimadzu
spectrometer and reported in wave number (cm−1). The
progress of all reactions were monitored by thin layer
chromatography (TLC) on silica gel 60 254F plates using a
mixture of chloroform and ethanol (40:1, v/v) as an eluent.
The spots were visualized by spraying with a solution of 5
% sulfuric acid and then heating to 100 °C. Purification of
the new compounds was carried out by column chromato-
graphy (silica gel 60, <63 μm, Merk) using a mixture of
chloroform and ethanol (40:1, v/v) as an eluent. All solvents
for reactions were dried and purified prior to use.

The synthesis and spectral data of the compounds 3, 5, 7,
12–14 was described previously by Boryczka et al. (2013b).

General procedure for the synthesis of derivatives 4, 6, 8–9

To a mixture of betulin 1 (0.44 g, 1 mmol) and 2-propenoic
acid (0.08 g, 1.10 mmol), 3-cyclopropyl-2-propynoic acid
(0.12 g, 1.10 mmol), 2-butenoic acid (0.09 g, 1.10 mmol) or
2-butynoic acid (0.9 g, 1.10 mmol) in dichloromethane (5
mL) was added slowly a solution of dicyclohex-
ylcarbodiimide (0.23 g, 1.12 mmol), and 4-
dimethylaminopyridine (0.01 g, 0.08 mmol) in dichlor-
omethane (1 mL) at −10 °C temperature. The reaction was
stirred under argon atmosphere at −10 °C temperature for 5
h, and then was allowed to warm to room temperature and
stirred overnight. The progress of the reaction was mon-
itored by TLC until completion and then filtered. The sol-
vent was removed under reduced pressure and the residue
was purified by silica gel column chromatography
(chloroform/ethanol 40:1, v/v).

28-O-(2-Propenoyl)betulin (4) Yield 74%; mp 117–121 °C;
Rf 0.44 (chloroform/ethanol, 40:1, v/v); IR (KBr) ν max 3445,
2939, 1723, 1456, 1269 cm−1; 1H NMR (600MHz, CDCl3): δ
6.42 (1H, m, CH=CH2), 6.15 (1H, m, CH=CH2), 5.84 (1H, m,
CH=CH2), 4.71 (1H, s, H-29), 4.61 (1H, s, H-29), 4.36 (1H, d,
J= 10.8 Hz, H-28), 3.95 (1H, d, J= 10.8Hz, H-28), 3.20 (1H,
m, H-3), 2.49 (1H, m, H-19), 1.67 (3H, s, CH3), 1.06 (3H, s,
CH3), 0.98 (3H, s, CH3), 0.96 (3H, s, CH3), 0.84 (3H, s, CH3),
0.77 (3H, s, CH3);

13C NMR (150MHz, CDCl3): δ 166.7
(O–C=O), 150.2 (C-20), 130.5, 128.6, 109.9 (C-29), 79.0 (C-
3), 62.8 (C-28), 55.3, 50.4, 48.8, 47.7, 46.5, 42.7, 40.9, 38.9,
38.7, 37.6, 37.1, 34.6, 34.2, 29.8, 29.6, 28.0, 27.4, 27.1, 25.2,
20.8, 19.1, 18.3, 16.1, 16.0, 15.4, 14.8; EIMS m/z 496 [M]+

(14), 189 (100).
28-O-(3-Cyclopropyl-2-propynoyl)betulin (6) Yield 49%;

mp 108–113 °C; Rf 0.44 (chloroform/ethanol, 40:1, v/v); IR
(KBr) ν max 3475, 2941, 2228, 1707, 1454, 1258 cm−1; 1H
NMR (600MHz, CDCl3): δ 4.68 (1H, s, H-29), 4.58 (1H, s, H-
29), 4.31 (1H, d, J= 10.8Hz, H-28), 3.93 (1H, d, J= 10.8Hz,
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H-28), 3.18 (1H, m, H-3), 2.42 (1H, m, H-19), 1.67 (3H, s,
CH3), 1.01 (3H, s, CH3), 0.97 (3H, s, CH3), 0.96 (3H, s, CH3),
0.92–0.91 (5H, m, CH, CH2), 0.82 (3H, s, CH3), 0.77 (3H, s,
CH3);

13C NMR (150MHz, CDCl3): δ 154.5 (O–C=O), 150.1
(C-20), 109.9 (C-29), 93.3, 78.9 (C-3), 68.6 (C-28), 64.1, 55.3,
50.4, 48.8, 47.7, 46.4, 42.7, 40.9, 38.9, 38.7, 37.6, 37.1, 34.5,
34.2, 29.7, 29.5, 28.0, 27.4, 27.0, 25.2, 20.8, 19.1, 18.3, 16.1,
16.0, 15.3, 14.8, 9.2, 1.1, -0.6; EIMS m/z 534 [M]+ (18), 189
(100).

28-O-(2-Butenoyl)betulin (8) Yield 57%; mp 182–184 °C;
Rf 0.45 (chloroform/ethanol, 40:1, v/v); IR (KBr) ν max 3560,
2945, 1707, 1443, 1195 cm−1; 1H NMR (600MHz, CDCl3): δ
7.00 (1H, m, CH=CHCH3), 5.88 (1H, m, CH=CHCH3), 4.72
(1H, s, H-29), 4.61 (1H, s, H-29), 4.34 (1H, d, J= 10.8Hz, H-
28), 3.93 (1H, d, J= 10.8 Hz, H-28), 3.21 (1H, m, H-3), 2.48
(1H, m, H-19), 1.91 (3H, m, CH=CHCH3), 1.68 (3H, s, CH3),
1.06 (3H, s, CH3), 1.00 (3H, s, CH3), 0.99 (3H, s, CH3), 0.85
(3H, s, CH3), 0.71 (3H, s, CH3);

13C NMR (150MHz, CDCl3):
δ 167.0 (O–C=O), 150.2 (C-20), 144.4, 122.9, 109.8 (C-29),
78.9 (C-3), 62.4 (C-28), 55.3, 50.4, 48.9, 47.7, 46.5, 42.7, 40.9,
38.9, 38.7, 37.6, 37.2, 34.6, 34.2, 29.9, 29.7, 28.0, 27.4, 27.1,
25.2, 20.8, 19.2, 18.3, 16.1, 16.0, 15.4, 14.8, 3.7; EIMS m/z
510 [M]+ (14), 189 (100).

28-O-(2-Butynoyl)betulin (9) Yield 52%; m.p. 111–113 °C;
Rf 0.44 (chloroform/ethanol, 40:1, v/v); IR (KBr) ν max 3482,
2942, 2245, 1709, 1457, 1248 cm−1; 1H NMR (600MHz,
CDCl3): δ 4.69 (1H, s, H-29), 4.59 (1H, s, H-29), 4.33 (1H, d,
J= 10.8 Hz, H-28), 3.95 (1H, d, J= 10.8Hz, H-28), 3.16 (1H,
m, H-3), 2.42 (1H, m, H-19), 1.99 (3H, s, C≡CCH3), 1.68 (3H,
s, CH3), 1.02 (3H, s, CH3), 0.98 (3H, s, CH3), 0.97 (3H, s,
CH3), 0.82 (3H, s, CH3), 0.76 (3H, s, CH3);

13C NMR (150
MHz, CDCl3): δ 154.4 (O–C=O), 150.0 (C-20), 109.9 (C-29),
85.5, 79.0 (C-3), 72.5, 64.2 (C-28), 55.3, 50.4, 48.8, 47.6, 46.4,
42.7, 40.9, 38.9, 38.7, 37.6, 37.1, 34.5, 34.2, 29.7, 29.5, 28.0,
27.4, 27.0, 25.2, 20.8, 19.1, 18.3, 16.1, 16.0, 15.3, 14.8, 3.8;
EIMS m/z 508 [M]+ (22), 189 (100).

General procedure for the synthesis of derivatives 10–11

To a mixture of betulin 1 (0.44 g, 1 mmol) and pyridine
(2.5 mL) in benzene (6 mL) at 0–5 °C temperature was
added solution of propyl chloroformate or allyl chlor-
oformate (3 mmol) in benzene (5 mL). The reaction was
stirred at 0–5 °C temperature for 4 h. After this time the
reaction was allowed to warm to room temperature and
stirred overnight. The reaction mixture was diluted with 5
mL of chloroform and washed successively with 1 N sul-
furic acid and water, then dried and concentrated under
reduced pressure. The crude product was purified by silica
gel column chromatography (chloroform/ethanol 40:1, v/v).

28-O-Propoxycarbonylbetulin (10) Yield 51 %. m.p.
92–95 °C; Rf 0.43 (chloroform/ethanol, 40:1, v/v); IR (KBr)
ν max 3536, 2941, 1743, 1457, 1267 cm−1; 1H NMR (600

MHz, CDCl3): δ 4.72 (1H, s, H-29), 4.61 (1H, s, H-29),
4.37 (1H, d, J= 10.8 Hz, H-28), 4.12 (2H, t, J= 6.6 Hz,
OCH2), 3.94 (1H, d, J= 10.8 Hz, H-28), 3.20 (1H, m, H-3),
2.46 (1H, m, H-19), 1.73 (2H, m, CH2CH3), 1.68 (3H, s,
CH3), 1.07 (3H, s, CH3), 1.01 (3H, s, CH3), 1.00 (3H, s,
CH3), 0.99 (3H, t, J= 7.2 Hz, CH2CH3), 0.85 (3H, s, CH3),
0.78 (3H, s, CH3);

13C NMR (150MHz, CDCl3): δ 156.0
(O–C=O), 150.1 (C-20), 109.9 (C-29), 79.0 (C-3), 69.6,
66.4 (C-28), 55.3, 50.4, 48.8, 47.7, 46.6, 42.7, 40.9, 38.9,
38.7, 37.6, 37.1, 34.4, 34.2, 29.6, 29.5, 28.0, 27.4, 27.0,
25.2, 22.0, 20.8, 19.1, 18.3, 16.1, 16.0, 15.3, 14.8, 10.2;
EIMS m/z 528 [M]+ (19), 189 (100).

28-O-Allyloxycarbonylbetulin (11) Yield 66 %; m.p.
91–94 °C; Rf 0.47 (chloroform/ethanol, 40:1, v/v); IR (KBr)
ν max 3405, 2962, 1737, 1457, 1270 cm−1; 1H NMR (600
MHz, CDCl3): δ 5.98 (1H, m, CH=CH2), 5.38 (1H, m,
CH=CH2), 5.31 (1H, m, CH=CH2), 4.71 (1H, s, H-29),
4.66 (2H, m, OCH2), 4.61 (1H, s, H-29), 4.38 (1H, d, J=
10.8 Hz, H-28), 3.95 (1H, d, J= 10.8 Hz, H-28), 3.21 (1H,
m, H-3), 2.46 (1H, m, H-19), 1.68 (3H, s, CH3), 1.06 (3H, s,
CH3), 1.00 (3H, s, CH3), 0.99 (3H, s, CH3), 0.84 (3H, s,
CH3), 0.78 (3H, s, CH3);

13C NMR (150MHz, CDCl3): δ
155.6 (O–C=O), 150.1 (C-20), 131.7, 118.9, 109.9 (C-29),
78.9 (C-3), 68.5, 66.7 (C-28), 55.3, 50.4, 48.8, 47.7, 46.6,
42.7, 40.9, 38.9, 38.7, 37.6, 37.2, 34.4, 34.2, 29.7, 29.6,
28.0, 27.4, 27.0, 25.2, 20.8, 19.1, 18.3, 16.1, 16.0, 15.4,
14.8; EIMS m/z 496 [M]+ (14), 189 (100).

General procedure for the synthesis of derivatives 15–26

To a solution of the appropriate monoester 3–14 (1 mmol)
in dry dichloromethane (12 mL) was added pyridinium
chloroformate (0.53 g, 2.48 mmol). The reaction was stirred
at room temperature for 2 h and then diluted with ether (16
mL) and still was stirred for 10 min. The reaction mixture
was filtered off through a layer of silica gel and washed with
ether (5 mL). The filtrate was concentrated under reduced
pressure and the residue was purified by silica gel column
chromatography (chloroform/ethanol 40:1, v/v).

28-O-Propanoylbetulone (15) Yield 82%; m.p. 65–67 °C;
Rf 0.64 (chloroform/ethanol, 40:1, v/v); IR (KBr) ν max 2945,
1733, 1705, 1462, 1187 cm−1; 1H NMR (600MHz, CDCl3): δ
4.72 (1H, s, H-29), 4.62 (1H, s, H-29), 4.30 (1H, d, J= 10.8
Hz, H-28), 3.86 (1H, d, J= 10.8 Hz, H-28), 2.49 (1H, m, H-
19), 2.37 (2H, q, J= 7.2 Hz, CH2CH3), 1.69 (3H, s, CH3), 1.18
(3H, t, J= 7.2 Hz, CH2CH3), 1.10 (3H, s, CH3), 1.09 (3H, s,
CH3), 1.05 (3H, s, CH3), 1.01 (3H, s, CH3), 0.96 (3H, s, CH3);
13C NMR (150MHz, CDCl3 ): δ 218.0 (C=O), 174.9
(O–C=O), 150.1 (C-20), 109.9 (C-29), 62.5 (C-28), 55.0, 49.8,
48.8, 47.7, 47.4, 46.4, 42.8, 40.8, 39.6, 37.7, 36.9, 34.6, 34.2,
33.5, 29.8, 29.6, 27.7, 27.1, 26.6, 25.2, 21.3, 21.1, 19.6, 19.2,
15.9, 15.8, 14.7, 9.2; EIMS m/z 526 [M]+ (23), 189 (100).
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28-O-(2-Propenoyl)betulone (16) Yield 62 %; m.p.
69–71 °C; Rf 0.62 (chloroform/ethanol, 40:1, v/v); IR (KBr)
ν max 2962, 1723, 1706, 1456, 1261 cm−1; 1H NMR (600
MHz, CDCl3): δ 6.34 (1H, m, CH=CH2), 6.06 (1H, m,
CH=CH2), 5.75 (1H, m, CH=CH2), 4.63 (1H, s, H-29),
4.53 (1H, s, H-29), 4.30 (1H, d, J= 10.8 Hz, H-28), 3.86
(1H, d, J= 10.8 Hz, H-28), 2.40 (1H, m, H-19), 1.65 (3H, s,
CH3), 1.01 (3H, s, CH3), 1.00 (3H, s, CH3), 0.96 (3H, s,
CH3), 0.92 (3H, s, CH3), 0.87 (3H, s, CH3);

13C NMR (150
MHz, CDCl3): δ 217.0 (C=O), 165.6 (O–C=O), 149.0 (C-
20), 129.5, 127.6, 108.9 (C-29), 61.8 (C-28), 53.9, 48.7,
47.7, 46.7, 46.3, 45.5, 41.8, 39.8, 38.6, 36.7, 35.9, 33.5,
33.1, 32.4, 28.7, 28.6, 26.1, 25.5, 24.2, 20.3, 20.0, 18.6,
18.1, 14.9, 14.8, 13.7; EIMS m/z 495 [M]+ (27), 203 (100).

28-O-Propynoylbetulone (17) Yield 78%; m.p. 93–96 °C;
Rf 0.65 (chloroform/ethanol, 40:1, v/v); IR (KBr) ν max 3301,
2948, 2117, 1712, 1708, 1225 cm−1; 1H NMR (600MHz,
CDCl3): δ 4.69 (1H, s, H-29), 4.60 (1H, s, H-29), 4.38 (1H, d,
J= 10.8 Hz, H-28), 3.99 (1H, d, J= 10.8Hz, H-28), 2.89 (1H,
s, C≡CH), 2.48 (1H, m, H-19), 1.68 (3H, s, CH3), 1.07 (3H, s,
CH3), 1.06 (3H, s, CH3), 1.03 (3H, s, CH3), 0.88 (3H, s, CH3),
0.80 (3H, s, CH3);

13C NMR (150MHz, CDCl3): δ 217.9
(C=O), 153.2 (O-C=O), 149.8 (C-20), 110.0 (C-29), 74.8,
74.6, 64.8 (C-28), 55.0, 49.7, 48.8, 47.6, 47.3, 46.4, 42.8, 40.8,
39.6, 37.8, 36.9, 34.4, 34.1, 33.5, 29.6, 29.5, 27.0, 26.6, 25.2,
21.3, 21.0, 19.6, 19.1, 15.9, 15.8, 14.7; EIMS m/z 492 [M]+

(28), 203 (100).
28-O-(3-Cyclopropyl-2-propynoyl)betulone (18) Yield

83%; m.p. 93–97 °C; Rf 0.65 (chloroform/ethanol, 40:1, v/v);
IR (KBr) ν max 2947, 2232, 1711, 1705, 1457, 1249 cm

−1; 1H
NMR (600MHz, CDCl3): δ 4.71 (1H, s, H-29), 4.62 (1H, s,
H-29), 4.35 (1H, d, J= 10.8 Hz, H-28), 3.96 (1H, d, J= 10.8
Hz, H-28), 2.43 (1H, m, H-19), 1.68 (3H, s, CH3), 1.09 (3H,
s, CH3), 1.08 (3H, s, CH3), 1.05 (3H, s, CH3), 1.00 (3H, s,
CH3), 0.97–0.96 (5H, m, CH, CH2), 0.95 (3H, s, CH3);

13C
NMR (150MHz, CDCl3): δ 218.5 (C=O), 155.0 (O–C=O),
150.5 (C-20), 110.5 (C-29), 93.9, 69.1, 64.6 (C-28), 55.5,
50.3, 49.3, 48.2, 47.9, 46.9, 43.3, 41.4, 40.2, 38.3, 37.4, 35.1,
34.7, 34.0, 30.2, 30.1, 27.6, 27.1, 25.8, 21.9, 21.6, 20.2, 19.7,
16.5, 16.4, 15.2, 9.4 1.3, -0.4; EIMS m/z 533 [M]+ (14), 93
(100).

28-O-Phenylpropynoylbetulone (19) Yield 82 %; m.p.
82–85 °C; Rf 0.64 (chloroform/ethanol, 40:1, v/v); IR (KBr)
ν max 2945, 2223, 1722, 1707, 1457, 1187 cm

−1; 1H NMR
(600MHz, CDCl3): δ 7.60–7.37 (5H, m, Ar-H), 4.71 (1H, s,
H-29), 4.61 (1H, s, H-29), 4.43 (1H, d, J= 10.8 Hz, H-28),
4.04 (1H, d, J= 10.8 Hz, H-28), 2.41 (1H, m, H-19), 1.69
(3H, s, CH3), 1.09 (3H, s, CH3), 1.07 (3H, s, CH3), 1.03
(3H, s, CH3), 1.00 (3H, s, CH3), 0.94 (3H, s, CH3);

13C
NMR (150MHz, CDCl3): δ 218.0 (C=O), 154.7 (O–C=O),
149.9 (C-20), 132.9, 130.6, 128.5, 110.0 (C-29), 86.3, 80.7,
64.5 (C-28), 54.9, 49.7, 48.8, 47.6, 47.3, 46.4, 42.8, 40.8,
39.6, 37.8, 36.8, 34.5, 34.1, 33.5, 29.6, 29.5, 27.0, 26.6,

25.2, 21.3, 21.0, 19.6, 19.1, 15.9, 15.8, 14.7; EIMS m/z 569
[M]+ (16), 129 (100).

28-O-(2-Butenoyl)betulone (20) Yield 81 %; m.p.
129–131 °C; Rf 0.63 (chloroform/ethanol, 40:1, v/v); IR
(KBr) ν max 2944, 1719, 1708, 1457, 1179 cm

−1; 1H NMR
(600MHz, CDCl3): δ 7.00 (1H, m, CH=CHCH3), 5.89 (1H,
m, CH=CHCH3), 4.72 (1H, s, H-29), 4.62 (1H, s, H-29),
4.34 (1H, d, J= 10.8 Hz, H-28), 3.93 (1H, d, J= 10.8 Hz,
H-28), 2.42 (1H, m, H-19), 1.92 (3H, m, CH=CHCH3),
1.69 (3H, s, CH3), 1.10 (3H, s, CH3), 1.09 (3H, s, CH3),
1.07 (3H, s, CH3), 1.01 (3H, s, CH3), 0.96 (3H, s, CH3);

13C
NMR (150MHz, CDCl3): δ 218.1 (C=O), 167.0 (O–C=O),
150.1 (C-20), 144.5, 122.8, 109.9 (C-29), 62.4 (C-28), 55.0,
49.8, 48.8, 47.7, 47.4, 46.5, 42.8, 40.8, 39.6, 37.7, 36.8,
34.6, 34.2, 33.5, 29.8, 29.6, 27.1, 26.6, 25.2, 21.3, 21.1,
19.6, 18.0, 15.9, 15.8, 14.7, 3.6; EIMS m/z 510 [M]+ (14),
189 (100).

28-O-(2-Butynoyl)betulone (21) Yield 78 %; m.p.
92–94 °C; Rf 0.66 (chloroform/ethanol, 40:1, v/v); IR (KBr)
ν max 2960, 2245, 1742, 1707, 1458, 1260 cm

−1; 1H NMR
(600MHz, CDCl3): δ 4.69 (1H, s, H-29), 4.59 (1H, s, H-
29), 4.34 (1H, d, J= 10.8 Hz, H-28), 3.94 (1H, d, J= 10.8
Hz, H-28), 2.44 (1H, m, H-19), 1.99 (3H, s, C≡CCH3), 1.68
(3H, s, CH3), 1.07 (3H, s, CH3), 1.06 (3H, s, CH3), 1.03
(3H, s, CH3), 0.99 (3H, s, CH3), 0.93 (3H, s, CH3);

13C
NMR (150MHz, CDCl3): δ 218.0 (C=O), 154.4 (O–C=O),
149.9 (C-20), 110.0 (C-29), 85.6, 72.5, 64.2 (C-28), 55.0,
49.7, 48.8, 47.6, 47.3, 46.4, 42.7, 40.8, 39.6, 37.7, 36.8,
34.5, 34.1, 33.5, 29.6, 29.5, 27.0, 26.6, 25.2, 21.3, 21.0,
19.6, 19.1, 15.9, 15.8, 14.7, 3.8; EIMS m/z 507 [M]+ (29),
422 (100).

28-O-Propoxycarbonylbetulone (22) Yield 78 %; m.p.
76–78 °C; Rf 0.63 (chloroform/ethanol, 40:1, v/v); IR (KBr)
ν max 2963, 1741, 1700, 1458, 1256 cm−1; 1H NMR (600
MHz, CDCl3): δ 4.72 (1H, s, H-29), 4.62 (1H, s, H-29),
4.37 (1H, d, J= 10.8 Hz, H-28), 4.13 (2H, t, J= 6.6 Hz,
OCH2), 3.95 (1H, d, J= 10.8 Hz, H-28), 2.45 (1H, m, H-
19), 1.74 (2H, m, CH2CH3), 1.68 (3H, s, CH3), 1.10 (3H, s,
CH3), 1.09 (3H, s, CH3), 1.05 (3H, s, CH3), 1.01 (3H, s,
CH3), 0.99 (3H, t, J= 7.2 Hz, CH2CH3), 0.96 (s, CH3, 3H);
13C NMR (150MHz, CDCl3): δ 218.0 (C=O), 156.0
(O–C=O), 150.0 (C-20), 109.9 (C-29), 69.6, 66.4 (C-28),
55.0, 49.7, 48.8, 47.7, 46.6, 42.8, 40.8, 39.6, 37.7, 36.9,
34.4, 34.2, 33.5, 29.6, 29.5, 27.1, 26.6, 25.6, 25.2, 22.1,
21.3, 21.1, 19.6, 19.1, 15.9, 15.8, 14.7, 10.2; EIMS m/z 526
[M]+ (15), 422 (100).

28-O-Allyloxycarbonylbetulone (23) Yield 72 %; m.p.
123–125 °C; Rf 0.66 (chloroform/ethanol, 40:1, v/v); IR
(KBr) ν max 2945, 1741, 1710, 1457, 1248 cm

−1; 1H NMR
(600MHz, CDCl3 ): δ 5.98 (1H, m, CH=CH2), 5.40 (1H,
m, CH=CH2), 5.31 (1H, m, CH=CH2), 4.72 (1H, s, H-29),
4.66 (2H, m, OCH2), 4.62 (1H, s, H-29), 4.38 (1H, d, J=
10.8 Hz, H-28), 3.96 (1H, d, J= 10.8 Hz, H-28), 2.44 (1H,
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m, H-19), 1.68 (3H, s, CH3), 1.10 (3H, s, CH3), 1.09 (3H, s,
CH3), 1.08 (3H, s, CH3), 1.05 (3H, s, CH3), 0.96 (3H, s,
CH3);

13C NMR (150MHz, CDCl3 ): δ 218.0 (C=O), 155.6
(O–C=O), 150.0 (C-20), 131.7, 119.0, 109.9 (C-29), 68.5,
66.6 (C-28), 55.0, 53.4, 49.7, 48.8, 47.7, 47.4, 46.6, 42.8,
40.8, 39.6, 37.7, 36.9, 34.4, 34.2, 33.5, 29.6, 29.5, 27.0,
26.6, 25.2, 21.3, 21.1, 19.6, 15.9, 15.8, 14.7; EIMS m/z 524
[M]+ (19), 422 (100).

28-O-Propargyloxycarbonylbetulone (24) Yield 73%;
m.p. 173–175 °C; Rf 0.64 (chloroform/ethanol, 40:1, v/v);
IR (KBr) ν max 3245, 2944, 2131, 1721, 1706, 1452, 1269
cm−1; 1H NMR (600MHz, CDCl3): δ 4.74 (2H, d, J= 2.4
Hz, OCH2), 4.69 (1H, s, H-29), 4.60 (1H, s, H-29), 4.38
(1H, d, J= 10.8 Hz, H-28), 3.96 (1H, d, J= 10.8 Hz, H-28),
2.54 (1H, t, J= 2.4 Hz, C≡CH), 2.41 (1H, m, H-19), 1.68
(3H, s, CH3), 1.09 (3H, s, CH3), 1.07 (3H, s, CH3), 1.03
(3H, s, CH3), 0.99 (3H, s, CH3), 0.93 (3H, s, CH3);

13C
NMR (150MHz, CDCl3 ): δ 218.0 (C=O), 155.1 (O–C=O),
149.9 (C-20), 110.0 (C-29), 76.8, 75.6, 75.4, 67.2 (C-28),
55.2, 54.9, 49.7, 48.7, 47.6, 46.5, 42.8, 40.8, 39.6, 37.7,
36.8, 34.3, 34.1, 33.4, 29.5, 29.4, 26.9, 26.6, 25.2, 21.3,
21.0, 19.6, 19.1, 15.9, 15.8, 14.7; EIMS m/z 523 [M]+ (24),
189 (100).

28-O-(3-Butynyloxycarbonyl)betulone (25) Yield 77%;
m.p. 81–84 °C; Rf 0.63 (chloroform/ethanol, 40:1, v/v); IR
(KBr) ν max 3310, 2948, 2360, 1744, 1705, 1458, 1248
cm−1; 1H NMR (600MHz, CDCl3): δ 4.69 (1H, s, H-29),
4.59 (1H, s, H-29), 4.36 (1H, d, J= 10.8 Hz, H-28), 4.25
(2H, t, J= 7.2 Hz, OCH2), 3.94 (1H, d, J= 10.8 Hz, H-28),
2.60 (2H, m, OCH2CH2), 2.41 (1H, m, H-19), 2.03 (1H, t, J
= 2.4 Hz, C≡CH), 1.68 (3H, s, CH3), 1.08 (3H, s, CH3),
1.07 (3H, s, CH3), 1.03 (3H, s, CH3), 0.98 (3H, s, CH3),
0.93 (3H, s, CH3);

13C NMR (150MHz, CDCl3): δ 218.2
(C=O), 155.5 (O–C=O), 149.9 (C-20), 110.0 (C-29), 79.4,
76.8, 70.2, 66.7 (C-28), 65.3, 54.9, 49.6, 48.7, 47.6, 47.3,
46.5, 42.7, 40.8, 39.6, 37.6, 36.8, 34.3, 34.1, 33.4, 29.5,
29.4, 26.9, 26.5, 25.1, 21.2, 21.0, 19.6, 19.0, 15.9, 15.8,
14.6; EIMS m/z 537 [M]+ (14), 189 (100).

28-O-(2-Butynyloxycarbonyl)betulone (26) Yield 75%;
m.p. 150–152 °C; Rf 0.59 (chloroform/ethanol, 40:1, v/v);
IR (KBr) ν max 2956, 2231, 1742, 1704, 1458, 1255 cm

−1;
1H NMR (600MHz, CDCl3): δ 4.71 (2H, q, J= 2.4 Hz,
OCH2), 4.69 (1H, s, H-29), 4.59 (1H, s, H-29), 4.36 (1H, d,
J= 10.8 Hz, H-28), 3.93 (1H, d, J= 10.8 Hz, H-28), 2.42
(1H, m, H-19), 1.87 (3H, t, J= 2.4 Hz, C≡CCH3), 1.68 (3H,
s, CH3), 1.08 (3H, s, CH3), 1.07 (3H, s, CH3), 1.03 (3H, s,
CH3), 0.98 (3H, s, CH3), 0.93 (3H, s, CH3);

13C NMR (150
MHz, CDCl3): δ 218.2 (C=O), 155.2 (O–C=O), 149.9
(C-20), 110.0 (C-29), 84.1, 76.7, 72.6, 66.9 (C-28), 56.1,
54.9, 49.6, 48.7, 47.6, 47.3, 46.5, 42.7, 40.8, 39.6, 37.7,
36.8, 34.3, 33.4, 29.5, 29.4, 26.9, 26.5, 25.1, 21.2, 21.0,
19.6, 19.1, 15.9, 15.8, 14.6, 3.7; EIMS m/z 537 [M]+ (14),
189 (100).

Antiproliferative Assay in vitro

Cells

The targeted compounds were evaluated for their cyto-
toxicity towards the cancer cell lines including T47D
(human breast cancer), CCRF/CEM (human leukemia),
SW707 (human colorectal), HL-60 (human promyelocytic
leukemia), P388 (mouse leukemia), as well as BALB3T3
normal mouse fibroblasts cell line. The tested cell lines were
obtained from the American Type Culture Collection
(Rockville, Maryland, USA) and maintained at the Cell
Culture Collection of the Institute of Immunology and
Experimental Therapy (Wrocław, Poland). The cells were
seeded in 96-well plates (Sarstedt, USA) at a density of 104

cells per well in 100 µL of culture medium overnight. The
cancer cell lines CCRF/CEM (human leukemia) and P388
(mouse leukemia) were cultured in RPMI 1640 medium
(Gibco, Scotland, UK) supplemented with 2 mM glutamine
(Sigma-Aldrich, Chemie GmbH, Steinheim, Germany) and
10 % fetal calf serum FBS (Sigma-Aldrich, Chemie GmbH,
Steinheim, Germany). The cancer cell lines SW707 (human
colorectal), T47D (human breast cancer) and HL-60 (human
promyelocytic leukemia) were cultured in mixture of RPMI
1640 and Opti-MEM (1:1) medium (both from Gibco,
Scotland, UK) supplemented with 2 mM glutamine (Sigma-
Aldrich, Chemie GmbH, Steinheim, Germany) and 5 % or
20 % fetal calf serum FBS (Sigma-Aldrich, Chemie GmbH,
Steinheim, Germany). The normal mouse fibroblasts
BALB3T3 was cultured in Dulbecco’s modified Eagle’s
medium (Sigma-Aldrich, Chemie GmbH, Steinheim, Ger-
many) supplemented with 2 mM glutamine (Sigma-Aldrich,
Chemie GmbH, Steinheim, Germany) and 10 % fetal calf
serum FBS (Sigma-Aldrich, Chemie GmbH, Steinheim,
Germany). The all culture media were supplemented with
streptomycin (100 µg/mL) and penicillin (100 U/mL) (both
antibiotics from Polfa, Tarchomin, Poland). The cell cul-
tures were maintained at 37 °C in humid atmosphere satu-
rated with 5 % CO2.

SRB assay

This technique as first was described by Skehan et al. in
1990. The SRB assay was performed after 96 h exposure of
the cultured cells to varying concentrations (ranging from 1
to 100 µg/mL) of the tested substances. The reported deri-
vatives as well as betulin 1 were dissolved in 10 % dimethyl
sulfoxide (DMSO) to concentration of 1 mg/mL, and next
diluted in culture medium to reach the required concentra-
tions. DMSO as a solvent did not exert any inhibitory effect
on cell proliferation. The cells fastened to the plastic were
fixed mildly layering cold 50% TCA (trichloroacetic acid,
Aldrich-Chemie, Germany) on the top of the culture
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medium in each well. The plates were incubated at 4 °C for
1 h and then washed five times with tap water. The cells
fixed with TCA were stained with 0.4 % sulforhodamine B
(SRB, Sigma, Germany) dissolved in 1 % acetic acid
(POCH, Gliwice, Poland) for 30 min. The unbound dye was
removed by rinsing four times with 1 % acetic acid. The
protein-bound dye was extracted with 10 mM unbuffered
tris base (POCH, Gliwice, Poland) and then determined the
optical density at 540 nm in a computer-interfaced, 96-well
microtiter plate reader Multiscan RC photometer (Labsys-
tems, Helsinki, Finland).

The compounds in given concentration were examined in
triplicates in each experiment which was repeated 3–5
times. The results of cytotoxic activity in vitro were
expressed as an IC50 in µg/mL.

MTT assay

The MTT assay was used for the cytotoxicity screening
against leukemia cells growing in suspension culture. This
assay was performed after 96 h of the leukemia cells to
varying concentrations (ranging from 1 to 100 µg/mL) of
the tested substances. The derivatives of betulin were dis-
solved in 10 % DMSO to concentration of 1 mg/mL, and
next diluted in culture medium to reach the required con-
centrations. DMSO as a solvent did not exert any inhibitory
effect on cell proliferation. During the last 3–4 h of incu-
bation 20 µl of MTT solution were added to each well
(MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetra-
zolium bromide; stock solution: 5 mg/mL). The pale yellow
MTT is reduced to a navy blue formazan in the mitochon-
dria of living cells. At the end of incubation time, 80 µL of
the lysing mixture was added to each well (lysing mixture:
225 mL dimethylformamide, 67.5 g sodium dodecyl sulfate
and 275 mL of distilled water). After 24 h are formed the
crystals of formazan, which are insoluble in aqueous solu-
tions. The formazan crystals had been dissolved. The opti-
cal densities were read on a Multiskan RC photometer at
570 nm wavelength.

The compounds in given concentration were examined in
triplicates in each experiment which was repeated 3–5
times. The results of cytotoxic activity in vitro were
expressed as an IC50 in µg/mL.

In silico study

The physicochemical properties of obtained compounds
such as lipophilicity (cLogP), molecular mass (M), topo-
logical polar surface area (tPSA), hydrogen bond donors
(HBD) and hydrogen bond acceptors (HBA) were calcu-
lated using the ACD/Labs software.

Results and discussion

Chemistry

The synthesis of betulin derivatives 3–14 was accomplished
starting with betulin 1, which was isolated from birch bark
of Betula verrucosa. The crude compound 1 was purified by
flash-chromatography using a mixture of dichloromethane
and ethanol as an eluent. Derivatives 3–14 were obtained
according to our published procedures (Boryczka et al.,
2013a, b). The esterification reactions of betulin 1 with
carboxylic acids or chloroformates were performed with
49–86 % yields. The resulting monoesters 3–14 were oxi-
dized with pyridinium chloroformate in dry dichlor-
omethane to the derivatives of betulone 15–26 in 62–83 %
yields. The synthesis of compounds 3–26 was presented via
Scheme 1. All compounds were purified by column chro-
matography using the mixture of chloroform and ethanol.
The chemical structures of new derivatives were determined
on the basis of their 1H-NMR, 13C-NMR, IR and MS
spectra.

Cytotoxic activity

The newly compounds and betulin 1 were tested in vitro for
their antitumor activity towards the following human cancer
cell lines: T47D (human breast cancer), CCRF/CEM
(human leukemia), SW707 (human colorectal), HL-60
(human promyelocytic leukemia) and murine leukemia
P388 as well as BALB3T3 normal mouse fibroblasts cell
line. In this study, cisplatin was used as a reference antic-
ancer agent. The IC50 values (µg/mL) of the betulin deri-
vatives are reported in Table 1 and Table 2. The compounds
3–9, containing acyloxy group at the C-28 position, had

Scheme 1 Synthesis of
derivatives 3–26. Reagents and
conditions: a RCOOH, CH2Cl2,
DCC, DMAP, rt, 24 h or ROC
(O)Cl, benzene, pyridine, rt, 24
h; b PCC, CH2Cl2, rt, 2 h
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IC50 values in the range of 0.02–49.0 µg/mL against the
tested cell lines. In the series of the monoesters 3–9 the
cytotoxic activity depends on the type of bond in the sub-
stituent at the C-28 position. The structure–activity rela-
tionships observed in the monoesters 3–9 indicates that rank
order of the antiproliferative activity against the HL-60
cancer cell line, is as follows: propynoyl > propenoyl > 2-
butynoyl > propanoyl > 3-cyclopropyl-2-propynoyl. Oxi-
dation of the 3-hydroxyl group in compounds 4, 6 and 10 to
a carbonyl group led to an increase of activity against the
HL-60 cancer cell line. The compounds 5 and 17 possessed
the most potent activity, with IC50 value 0.3 µg/mL towards
the human HL-60 cancer cell line. Moreover, these com-
pounds exhibited the same antiproliferative activity as cis-
platin. The betulones 24–26 with the acetylenic formate
group at the C-28 position showed loss of activity against
the human colorectal cell line (SW707) and normal mouse
fibroblast cell line (BALB3T3). The rank order of the
cytotoxic activity of the compounds 24–26 against T47D
and CCRF/CEM cell lines, according to the nature of the
formate substituent is as follows: propargyl > 3-butynyl >
2-butynyl.

The in silico study of tested compounds was performed
by determination of Lipinski’s rule of five and tPSA. The
number of HBA and HBD significantly modulates the size
of the polar surface area of molecule. The increase of the
HBA number leads to higher affinity of the derivatives of
betulone for P-glycoprotein. The most of betulin derivatives
exhibited high values of molecular mass (M > 500) and
lipophilicity (cLogP > 5). However, the tPSA of all

compounds is less than 140 Å, what determines high oral
bioavailability (Abd El-Karim et al., 2015).

Table 1 Cytotoxic activity
(IC50) of betulin 1, derivatives of
betulin and cisplatin as a
reference compound against the
four cancer cell lines

Compound Cytotoxic activity IC50 [μg/mL]

Human Murine

T47D CCRF/CEM SW707 P388 BALB3T3

Betulin 1 32.4± 10.7 10.9± 5.5 22.9± 15.4 5.5± 3.3 47.3± 7.9

3a 12.1± 4.4 8.1± 0.9 29.2± 24.4 3.3± 0.8 32.3± 23.0

4 7.1± 2.7 19.6± 9.5 29.6± 4.2 9.9± 5.9 24.3± 6.9

5a 9.1± 1.9 0.02± 0.001 14.9± 3.3 0.4± 0.1 0.3± 0.05

6 33.6± 6.3 16.5± 8.5 Neg 8.4± 9.2 Neg

7a Neg 49.0± 9.8 Neg Neg Neg

8 29.9± 9.3 28.0± 21.6 32.0± 4.2 5.1± 4.9 25.6± 1.8

9 16.7± 5.5 2.1± 0.3 24.3± 8.8 2.9± 1.4 17.4± 1.1

19 Neg Neg Neg Neg Neg

24 23.3± 3.5 18.7± 6.6 Neg 30.3± 11.8 Neg

25 29.8± 10.7 25.2± 4.6 Neg 3.8± 1.9 Neg

26 79.2± 5.2 47.6± 5.7 Neg 18.3± 12.9 Neg

Cisplatin 3.1± 1.0 2.0± 0.5 2.2± 0.5 0.5± 0.3 2.7± 0.3

Neg negative in the concentration used
a Boryczka et al. (2013a, b)

Table 2 Cytotoxic activity (IC50) of betulin 1, derivatives of betulin
and cisplatin as a reference compound against the HL-60 cancer cell
line. The parameters determined by computational methods such as
lipophilicity (cLogP), molecular mass (M), topological polar surface
area (tPSA), hydrogen bond donors (HBD) and hydrogen bond
acceptors (HBA)

Compound IC50 [μg/mL] cLogP M tPSA [Å] HBD HBA

Betulin 1 7.2± 0.5 6.63 442.71 40.46 2 2

3 29.3± 3.4 8.42 498.78 46.53 1 3

4 18.8± 4.8 8.23 496.76 46.53 1 3

5 0.3± 0.004 7.76 494.75 46.53 1 3

6 44.8± 10.9 8.85 534.81 46.53 1 3

9 24.5± 1.9 8.31 508.77 46.53 1 3

10 26.8± 2.5 8.39 528.80 55.76 1 4

11 14.9± 3.9 8.01 526.79 55.76 1 4

12 3.7± 0.5 7.64 524.77 55.76 1 4

15 33.7± 5.5 8.13 496.76 43.37 0 3

16 5.0± 1.3 8.07 494.75 43.37 0 3

17 0.3± 0.06 7.66 492.73 43.37 0 3

18 33.9± 5.5 8.61 532.79 43.37 0 3

21 29.5± 5.4 8.39 506.76 43.37 0 3

22 21.4± 2.1 8.23 526.79 52.60 0 4

23 28.4± 1.6 8.05 524.77 52.60 0 4

24 11.6± 4.9 7.68 522.76 52.60 0 4

Cisplatin 0.3± 0.08 — — — — —
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In conclusion, the newly derivatives of betulin and
betulone has been synthesized and characterized by spec-
troscopic analyses. Derivatives of betulin were tested for
their antiproliferative activity against the five cancer cell
lines. Several compounds exhibited a better cytotoxic effect
than betulin 1. The most active derivatives 5 and 17 were
24-fold potent than betulin 1 against the human promye-
locytic leukemia cell line (HL-60).
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