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Abstract A QSAR analysis was conducted on a series of

long-chained diarylalkylimidazole and diarylalkyltriazole

derivatives as potent aromatase inhibitors. To obtain more

appropriate QSAR models from a source of very large

number of descriptors, a two-step stepwise variable selec-

tion strategy was performed. Firstly, from each group of

the calculated descriptors, separate QSAR models were

obtained. Then, the descriptors appeared in all of the

generated models were subjected to another variable

selection method and the obtained models were subjected

to cross-validation. Finally, an external test set was used to

access the ultimate performance of the models. The

selected descriptors were analyzed for their influence on

aromatase inhibition. The effects of hydration energy,

position of H-bond acceptor, presence of cyano group, and

shape of HOMO orbital on aromatase inhibition were

successfully described, and they were consistent with the

previous reports.

Keywords Aromatase � QSAR � Diarylalkylimidazole �
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Introduction

The rate-limiting step in estrogen synthesis is the aroma-

tization of androgen which happens due to aromatase

activity. Aromatase enzyme converts C19 androgens to

C18 estrogens and is responsible for the aromatization of

androgens into estrogens by catalyzing three sequential

hydroxylation reactions. Pathologically, an abnormal

overexpression of aromatase in breast tissue is responsible

for breast cancer development (Hong and Chen, 2006).

Aromatase inhibitors are used clinically for the treatment

of estrogen-dependent diseases such as breast cancer as an

alternative to anti-hormone treatment (Brodie and Njar,

2000; Bayer et al., 1991). The third-generation aromatase

inhibitors, such as anastrozole, letrozole, and exemestane,

are now considered as an alternative to tamoxifen in first-

line treatment of advanced breast cancer (Wong and Ellis,

2004; Needleman and Tobias, 2008). So, increasing inter-

est has been devoted to the synthesis of potent and selective

inhibitors of aromatase by different research groups (Gobbi

et al., 2010; Doiron et al., 2011; Ferlin et al., 2013;

McNulty et al., 2014; Ghodsi et al., 2016).

Nowadays, computational methods have found wide-

spread application in drug design. They shorten the way of

reaching to new drugs, and thus, they save in time and

money. Among different computer-aided methods of

drug design, quantitative structure–activity relationships

(QSAR) are of special interests (Yousefinejad and Hem-

mateenejad, 2015). They are mathematical models relating

biological activity to different structural aspects of the

molecules. QSARs as promising tool in medicinal chem-

istry are used to predict the activity of new or even

unsynthesized molecules and to describe the chemo-bio-

logical interactions involved in the biological activity

under study.
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2D-QSAR methods (Ghavami and Sepehri, 2016; Pasha

et al., 2008; Srivastava et al., 2009) are robust and simple

and do not need subjective molecular alignment or deter-

mination of 3D structures or putative binding conformation

which is time-consuming. However, in some of 2D-QSAR

methods such as Hansch–Fujita method, the overall pre-

dictive quality may not be as good as some multi-dimen-

sional methods which are computationally more complex

and demanding (Myint and Xie, 2010).

In the present article, we explore 2D-QSAR models for

a series of long-chained diarylalkylimidazole and diary-

lalkyltriazole molecule skeletons, which were synthesized

and evaluated for their ability to inhibit aromatase by

Karjalainen et al. (2000).We selected these series because

they were potent and also resembled potent aromatase

inhibitors drugs such as letrozole and another point is that

Karjalainen et al. also evaluated the anti-aromatase activity

of some known potent aromatase inhibitors such as letro-

zole, fadrozole, CGS 18320B (compound 3), and com-

pound 23 (Eli Lilly) and we used them in our study to know

the requirements of the potent aromatase inhibitors.

Materials and methods

Data set

The biological data used in this article are 76 aromatase

inhibitor molecules of long-chained diarylalkylimidazole

and diarylalkyltriazole molecule skeletons (Karjalainen

et al., 2000). The basic structural skeleton of the com-

pounds used in this study is given in Fig. 1. The detailed

structural features and biological activity of these com-

pounds are listed in Table S1 of the supplementary sec-

tion. The biological activity data and the concentration of

50 % inhibition (IC50) were converted to logarithmic scale

(pIC50) and then used for subsequent QSAR analysis as

dependent variables.

Descriptor generation

The chemical structures of molecules were constructed

using Hyperchem package (version 7, Hypercube Inc.) and

were optimized with semi-empirical AM1 method. Then,

different quantum chemical descriptors such as dipole

moment (D.M) and energies of HOMO and LUMO orbi-

tals, hydration energies, and lipophilicity (octanol/water

partition coefficient; LogP) were calculated by the soft-

ware. Dragon software was used for calculation of different

2D descriptors including functional groups, geometrical,

topological, and constitutional descriptors for each

molecule.

A total of 870 descriptors, categorized in 16 different

groups, were calculated (see Table S2 of supplementary

materials). In addition, the isosurface plots of HOMO

energies around the atoms were constructed using

Hyperchem.

Model development

QSAR models were developed using multiple linear

regression (MLR) analysis coupled with variable selection

method of stepwise selection. Since variable collinearity

degrades the performance of MLR equations, the calcu-

lated descriptors were searched for collinearity, and among

the detected collinear variables (R2[ 0.95), the one rep-

resented the highest correlation with biological activity was

retained and the rest were omitted. The data set was divi-

ded into training (61 molecules) and test (15 molecules)

sets by sampling from the two-dimensional space of the

principal component analysis scores of the descriptors

(Figure S1 of supplementary section). We tried to sample

the test set molecules from almost all parts of the shown

distribution.

Since the number of the remaining descriptors was much

higher than the number of the molecules in the training set,

model development was achieved in a two-step manner

Hemmateenejad and Yazdani, 2009). In the first step,

separate QSAR models were developed from the pool of

each group of descriptors. Then, the descriptors appeared

in the QSAR models of different groups were used as a

new source of descriptors to generate the final QSAR

model. In the model development step, leave-one-out

cross-validation (LOO-CV) was used to validate the

obtained models to select the most convenient model. The

final performances of the models were judged utilizing a

separate test set.

Stepwise regression and principal component analysis

were achieved using SPSS software (SPSS Inc., version

11). Some other calculations were done in MATLAB

(Mathwork Inc., version 7) environment. A personal

computer (CPU at 2.3 GHz) with Windows XP operating

system was used throughout.

Results and discussion

Generally, the structure of nonsteroidal aromatase inhibi-

tors consists of two parts: (1) the azole part with a nitrogen

atom coordinating to the heme iron atom of aromatase and

(2) the bulky aryl part, which is hydrophobic and acts like

the same as the steroid ring of the substrate (Pouget et al.,

2004). In this study, the effect of different microscopic

structural properties of the molecules including electronic,
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topologic, constitutional, and physicochemical descriptors

on their aromatase activity has been investigated using a

QSAR approach. The distribution of the studied molecules

in the two-dimensional factor space of the calculated

descriptors is given in Figure S1. It represents a relatively

homogeneous distribution of molecules without any sig-

nificant outlier. The test set molecules were sampled from

this distribution.

The QSAR models obtained from the different groups of

molecular descriptors are given in Table S2. The correla-

tion coefficients of the models are in the range of 0.1–0.6.

The number of selected descriptors is varied between 1 and

9. Models using higher number of variables resulted in

better calibration statistics. However, models of higher

calibration statistics do not mean that they are essentially

better and more validation models should be developed. It

should be noted that we would like to have as more useful

variables as possible for the next step. Thus, we were not so

serious in model validation and models of higher selected

variables were considered for the future analyses.

In the previous step, a total number of 87 descriptors

were identified as significant structural invariants affecting

the aromatase inhibition of the studied molecules. In the

next step, these descriptors were used to build the final

QSAR model. Stepwise regression analysis suggested 11

significant QSAR models. To select the most convenient

QSAR model, the models were validated by LOO-CV.

Four models represented RCV
2 of higher than 0.6, and thus,

they were considered as predictive models according to the

recommendation of Tropsha et al. (2003). These models in

accompanying with their statistical parameters are given in

Table 1. The reported P values suggest that all models are

statistically significant with confidence level higher than

99.99 %. The calibration statistics (R2 and SEC) are

increased by increasing the number of variables. However,

no significant changes are observed in the cross-validation

statistics by increasing the number of variables from 8 to

11. To have a balance between the calibration and vali-

dation statistics and the number of variables, model number

E9 with 9 input variables was selected for prediction of

Fig. 1 Basic skeleton of the molecules used in this study
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new samples and for description of the studied interaction

system.

The cross-validation predicted values of pIC50 for

training molecules together with relative error of predic-

tions are listed in Table S3. In addition, the prediction

results for the external test set molecules, which did not

contribute to the model development and selection, are

given in Table S4. Obviously, for most of the test set

molecules, the predictions are accurate and the prediction

errors are in the range of the errors obtained for the training

set. However, the prediction result for only one molecule

(molecule 53) is associated with large error. The reported

pIC50 for this molecule is 3.68, whereas the corresponding

predicted value by QSAR model is 5.61 (52 % higher than

experimental value). By comparing the IC50 of molecule 53

with its neighbors in Table 1, one can observe that the

reported IC50 for molecule 53 is strangely much higher

than the others. In Table 3 of the reference of this work

(Karjalainen et al., 2000), which the experimental data

were collected, the IC50 of molecules 53 has been written

210 lM. However, according to the selectivity ratio of

desmolase over aromatase for these molecules (D/A = 9)

and the IC50 of this molecule toward desmolase, which is

19.0 lM, one can conclude that the IC50 of molecule 53

most probably is 2.1 lM and there is an error in the dec-

imal point of IC50 of molecule 53 toward aromatase. If we

accept this statement, the experimental pIC50 of molecule

53 would be 5.68, which is very close to the predicted

value by the suggested QSAR model. So, for calculation of

the statistical parameters of the prediction set, the pIC50

value of 5.68 was used. At last, to check our conclusion

about this molecule, we found the original patent (Kar-

jalainen et al., 1995). In this patent, the IC50 of molecule 53

was reported to be 2.8 instead of 210, so the experimental

pIC50 of molecule 53 is 5.55, which is also very close to the

predicted value (5.61) by the suggested QSAR model

(%E = ? 1.06).

To have an overview on the overall prediction ability of

the suggested QSAR model, it was validated according to

the criteria suggested by Tropsha et al. (2003), Golbraikh

and Tropsha (2002), and Roy and Roy (2008). In particular,

the correlation coefficient between the predicted and

observed activities of compounds from an external test (r2),

the correlation coefficients for regressions through the

origin (predicted versus observed activities or observed

versus predicted activities, i.e., r0
2 or r’0

2, respectively), and

the slope of the regression lines through the origin (k and

k’, respectively) were calculated. Tropsha et al. (2003;

Golbraikh and Tropsha, 2002) considered a QSAR model

to be predictive, if all of the following conditions are sat-

isfied: (i) Q2[ 0.5, (ii) r2[ 0.6, (iii) r0
2 or r0

02 is close to

r2, such that [(r2 - r0
2)/r2] or [(r2 - r0

02)/r2]\ 0.1, and (iv)

0.85\ k\ 1.15 or 0.85\ k0 \ 1.15. In addition, accord-

ing to the recommendation of Roy and Roy (21), an

additional statistic for external validation (rm2) was cal-

culated as rm2 = r2*[1 - (r2 - r0
2)1/2]. For a model with

good external predictability, rm2 value should be[0.5. The

calculated parameters for the external test set molecules are

given in Table 2. As seen, model 9 possesses all require-

ments to be accepted as a predictive model. Also, it is

preferred for prediction ability over model 8. In addition,

models of higher numbers of variables do not have much

higher statistical parameters to be preferred over model 9.

The plot of predicted activities against the experimental

values for both training and test molecules is given in

Fig. 2. Obviously, the data are distributed around the ideal

straight line of zero intercept and unit slope. One can also

observe a homogeneous distribution of training and test set

data.

In addition to checking the prediction ability of the

QSAR model 9, it was validated for chance correlation by

y-randomization. The activity values were randomly

shuffled 50 times, whereas the independent variables were

kept constant. New regression models were generated

using the randomly shuffled dependent variable, and then,

correlation coefficient of prediction (RP_rand
2 ) was calcu-

lated for each model. The average value of RP_rand
2 for 50

randomized activity data was 0.273. The reliability of the

Table 1 Final QSAR models and their statistical parameters

No. Model R2 R2CV SEC SECV P

E8 pIC50 = -13.62 ? 1.57 nTB ? 4.48 BEHv2 ? 2.00 ATS3m - 0.72 ATS7m - 0.39

nCp - 0.05 G(N���N) - 0.10 Hyd.E ? 0.03 G(O���O)
0.816 0.6729 0.3662 0.5166 0.001

E9 IC50 = -20.34 ? 1.48 nTB ? 4.915 BEHv2 ? 2.00 ATS3m - 0.71 ATS7m - 0.39

nCp - 0.05 G(N���N) - 0.10 Hyd.E ? 0.03 G(O���O) ? 0.06 SRW07

0.8328 0.7047 0.3525 0.4768 0.001

E11 IC50 = -21.52 ? 1.45 nTB ? 4.62 BEHv2 ? 2.08 ATS3m - 0.75 ATS7m -

0.39 nCp - 0.05 G(N���N) - 0.10 Hyd.E ? 0.03 G(O���O) ? 0.07 SRW07 ? 0.56 ATS8v

0.8492 0.7356 0.3381 0.4605 0.001

E10 IC50 = -15.61 ? 1.512 nTB ? 3.69 BEHv2 ? 2.00 ATS3m - 0.71 ATS7m - 0.43

nCp - 0.05 G(N���N) - 0.09 Hyd.E ? 0.028 G(O���O) ? 0.074 SRW07 ? 0.571

ATS8v - 14.665G3p

0.8891 0.7071 0.3275 0.4904 0.001
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QSAR model 9 (for not being obtained by chance) was

confirmed using the corrected parameter (cRP
2) (Mitra et al.,

2010). The minimum threshold value for this parameter is

0.5, and we obtained a cRP
2 value of 0.730.

The applicability domain (AD) of the QSAR model 9

was also investigated. The AD of a QSAR model is the

range within which it tolerates a new molecule. There are

different approaches for visualizing the AD (Roy et al.,

2015). Here, we utilized the most commonly used Williams

plot (Garg and Smith, 2014) that is the plot of leverage

against the standardized residual plot (Fig. 3). Leverage

(h) shows how reliable is the prediction for new

compounds, and hence, it is related to confidence interval

of the predicted values. Prediction for compounds with h

value lower than the warning leverage (h*) is thought to be

reliable. The warning leverage is defined as 3(p ? 1)/n,

where p and n are the number of descriptors and the

number of molecules in the training set, respectively. In

this essay, p and n are 9 and 61, respectively, and hence, h*

is calculated as 0.49. For the training set, compounds with

h[ h* are considered with largest structural influence in

model development, whereas for the test set, the com-

pounds h[ h* are considered to be predicted unreliably.

Table 2 Statistical parameters of the external test set

Parameter Model

E8 E9 E10 E11

r2ab 0.991 0.913 0.905 0.889

r0
2 0.857 0.860 0.852 0.813

r0
02 0.898 0.900 0.894 0.874

(r2 - r0
2)/r2 0.135 0.058 0.059 0.084

(r2 - r0
02)/r2 0.093 0.014 0.069 0.017

rm2 0.628 0.702 0.850 0.640

rm
02 0.689 0.808 0.840 0.770

k 0.987 1.007 1.005 1.006

k
0

1.009 0.989 0.990 0.989
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Fig. 2 Plot of predicted activities by QSAR model E9 against the

experimental value; filled markers are for cross-validation of training

set, and open markers are for test set. The dotted diagonal line is an

ideal fit with zero intercept and unit slope

Fig. 3 Williams plot to evaluate the applicability domain of QSAR

model 9 for training set (open circles) and test set (closed triangles).

The vertical dotted line shows the warning leverage (h* = 0.49), and

the horizontal dotted lines show the range of accurate prediction

within ±3 U
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On the other hand, residuals are related to accuracy and

show how the predicted value is close to the actual value.

The compounds with standardized residual no[3 U (±s-

tandard deviation) are considered to be predicted accu-

rately. Figure 3 shows that the standardized residuals for

both training and test compounds are within ±3 U. This

implies that QSAR model 9 predicted the activity of all

compounds accurately, and thus, all compounds are inlier.

Also, Fig. 3 suggests that all compounds in the data set are

within the applicability domain expect 3 molecules (#49,

#50, and #76). These compounds have very low stan-

dardized residual, and hence, they can be considered as the

influential compounds in the regression.

After approving the statistical significance and predic-

tion quality of the suggested models, now it is time to

investigate the role of the descriptors appeared in the

QSAR models. A brief description of the descriptors used

by QSAR models of Table 2 is given in Table 3. Here, we

explain the contribution of some descriptors in the model.

To support our obtained results, we used some cross-

references.

The descriptor G(N���N) is sum of geometrical distances

between N and N atoms, especially between the N of CN

and imidazolic or triazolic N that coordinate with heme.

The descriptor G(O���O) is defined as sum of geometrical

distances between O and O atoms. These descriptors are

important in aromatase inhibitory because oxygen of

methoxy groups can be considered as the H-bond acceptor,

depending on its spatial position relative to the nitrogen

atom coordinating the iron ion. The methoxy groups can

bind in different enzyme regions, being characterized by a

different distance between the imidazolyl and the phenyl

rings (Leonetti et al., 2004).

Another factor in these equations is nCp (number of

total primary C of sp3 hybridization). This suggests the

importance of the length of the bridge carbon chain,

which represented negative effect on potency. The length

of the bridge linking the imidazole or triazole to the

phenyl rings is another important element affecting the

enzyme affinity. In the other studies (Leonetti et al., 2004;

Recanatini et al., 2001), the authors indicated that lacking

the spacer results in a strong reduction in enzyme inhi-

bition due to restriction of the conformational flexibility

of compounds, whereas elongation of the spacer results in

a reasonable decrease in inhibition. The length of the

spacer can affect inhibitory potency by changing the

position of the H-bond acceptors relative to imidazolic or

triazolic N that coordinate with heme. It is known (Re-

canatini et al., 2001) that the best spacer between imi-

dazole or triazole and phenyl ring that had a H-bond

acceptor in para position is one methylene, and in most of

the nonsteroidal aromatase inhibitor drugs such as Arim-

idex, letrozole, and fadrozole, there is one methylene as a

spacer (see the structure of letrozole and fadrozole in

Fig. 1 and Table S1).

The descriptor nTB (number of triple bonds) is another

influential parameter. Since the triple bond in the studied

molecules is related to nitrile, nTB can be considered as the

indication of the presence of CN, a strong H-bond acceptor,

in molecular structure. Although the presence of a strong

H-bond acceptor (like CN or F) is not strictly necessary to

inhibit aromatase (Cavalli and Recanatini, 2002), they can

increase the affinity of the compounds to aromatase by

interacting with hydrophilic residue such as serine in the

binding pocket of aromatase and as a result increase the

inhibitory potency.

The negative sign of the coefficient of the hydration

energy (Hyd. E) indicates that the potent molecules should

have low values of the hydration energy. This means that

lipophilicity can be one of the driving forces for the strong

binding to aromatase. As Ghosh et al. (2010) revealed in

the binding pocket of aromatase, the substrate is delineated

Table 3 Selected descriptors in final QSAR models

Descriptor Definition

G3p 3rd component symmetry directional WHIM index/weighted by atomic polarizabilities

G(N���N) Sum of geometrical distances between N���N
ATS8v Boro-Moreau autocorrelation of a topological structure -lag8/weighted by atomic van der Waals volumes

SRW07 Self-returning walk count of order 07

G(O���O) Sum of geometrical distances between O���O
ATS7m Boro-Moreau autocorrelation of a topological structure -lag7/weighted by atomic masses

nCp Number of total primary C(sp3)

BEHv2 Highest eigenvalue n. 2 of burden matrix/weighted by atomic van der Waals volume

ATS3m Boro-Moreau autocorrelation of a topological structure -lag3/weighted by atomic masses

nTB Number of triple bonds

Hyd. E Hydration energy
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with a confluence of tight packing hydrophobic residues

from different parts of the polypeptide chain.

Previous studies (Jones et al., 1990; Okada et al., 1996,

1997) revealed that inhibitory potency for aromatase

depends on the position and number of nitrogen atoms in

the heterocycles, which can be due to polar and charge

interactions. We investigated the HOMO shape of imida-

zole derivative and corresponding triazole derivative

(Fig. 3). It appears that the molecular orbital involved in

the eventual coordination bond with the iron atom is

located on the imidazole ring of molecule 68, but it is

spread over the phenyl rings in the case of molecule 69.

The relative unavailability of the nitrogen electron pair of

the latter compound explains the low inhibitory activity of

the 1,3,4-triazole-1yl-substituted derivatives. However,

there are several aromatase inhibitors drugs, possessing a

triazole moiety, which are very potent, e.g., vorozole,

letrozole. In fact, Lange et al. (1993) demonstrated that the

replacement of the imidazole group by a triazole moiety

results in lower in vitro inhibition and higher in vivo

activity. It has shown that the increased in vivo activity of

triazoles compared with imidazoles is due to increased

metabolic stability of the triazole derivatives.

Karjalainen et al. found that the substitution of the

1-position of imidazole with the diarylalkyl moiety pre-

served some activity (e.g., see compound 22 with IC50 of

16 lM), whereas the substitution of the 2-position of imi-

dazole reduced activity radically (for example, 2-(4,4-

diphenylbutyl)-2H-imidazole with IC50 over 1000 lM).

The difference in potency of the molecules can be

explained partly by difference in the HOMO shape of the

molecules (Fig. 4). In high-potency molecule, the HOMO

orbital is mainly located over the imidazolyl ring, whereas

in the low potency molecule, the HOMO orbital is dis-

tributed over other parts of the molecules (Fig. 5).

Conclusion

A QSAR study was conducted on the series of aromatase

inhibitors in a two-step manner. The final models were

validated rigorously, and among the generated models, a

Fig. 4 HOMO shape of a molecule 68, imidazole derivative;

IC50 = 2.2 lM and b molecule 69, triazole derivative, IC50 = 36 lM

Fig. 5 Effect of 1- and 2 substitution on the HOMO shape of the two

imidazole derivatives. a Molecule 22 with IC50 of 16 lM and b 2-

(4,4-diphenylbutyl)-2H-imidazole with IC50 of[1000 lM

840 Med Chem Res (2016) 25:834–842
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9-parametric model was selected as the most appropriate

model of high goodness of fit and external prediction. The

suggested QSAR model could extensively describe the

factors affecting the aromatase inhibitory activity of the

studied molecules. The importance of sum of geometrical

distances between two oxygen or two nitrogen atoms in the

molecules was related to hydrogen bonding interaction of

the inhibitors with aromatase in a special geometry. The

presence of CN, a strong H-bond acceptor, in molecular

structure was another influential parameter. Also, the

number of bridging methylene groups in the space was

found as another significant parameter. Our study indicates

lipophilicity can be one of the effective factors for the

strong binding to aromatase. Finally, the shape of HOMO

orbital and its distribution over imidazole ring were

described as the other important factors. The results

obtained in this study were consistent with previous works.

On the other hand, we used the cross-references to support

our findings and conclusion in this study.
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