Skip to main content
Log in

QSAR study of diarylalkylimidazole and diarylalkyltriazole aromatase inhibitors

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A QSAR analysis was conducted on a series of long-chained diarylalkylimidazole and diarylalkyltriazole derivatives as potent aromatase inhibitors. To obtain more appropriate QSAR models from a source of very large number of descriptors, a two-step stepwise variable selection strategy was performed. Firstly, from each group of the calculated descriptors, separate QSAR models were obtained. Then, the descriptors appeared in all of the generated models were subjected to another variable selection method and the obtained models were subjected to cross-validation. Finally, an external test set was used to access the ultimate performance of the models. The selected descriptors were analyzed for their influence on aromatase inhibition. The effects of hydration energy, position of H-bond acceptor, presence of cyano group, and shape of HOMO orbital on aromatase inhibition were successfully described, and they were consistent with the previous reports.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bayer H, Batzl C, Hartmann RW, Mannschreck A (1991) New aromatase inhibitors. Synthesis and biological activity of pyridyl-substituted tetralone derivatives. J Med Chem 34:2685–2691

    Article  CAS  PubMed  Google Scholar 

  • Brodie AM, Njar VC (2000) Aromatase inhibitors and their application in breast cancer treatment. Steroids 65(4):171–179

    Article  CAS  PubMed  Google Scholar 

  • Cavalli A, Recanatini M (2002) Looking for selectivity among cytochrome P450s inhibitors. J Med Chem 45:251–254

    Article  CAS  PubMed  Google Scholar 

  • Doiron J, Soultan AH, Richard R, Touré MM, Picot N, Richard R, Čuperlović-Culf M, Robichaud GA, Touaibia M (2011) Synthesis and structure–activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur J Med Chem 46:4010–4024

    Article  CAS  PubMed  Google Scholar 

  • Ferlin MG, Carta D, Bortolozzi B, Ghodsi R, Chimento A, Pezzi V, Moro S, Hanke N, Hartmann RW, Basso G, Viola G (2013) Design, synthesis, and structure–activity relationships of azolylmethylpyrroloquinolines as nonsteroidal aromatase inhibitors. J Med Chem 56:7536–7551

    Article  CAS  PubMed  Google Scholar 

  • Garg R, Smith CJ (2014) Predicting the bioconcentration factor of highly hydrophobic organic chemicals. Food Chem Toxicol 69:252–259

    Article  CAS  PubMed  Google Scholar 

  • Ghavami R, Sepehri B (2016) QSPR/QSAR solely based on molecular surface electrostatic potentials for benzenoid hydrocarbons. J Iran Chem Soc 13:519–529

    Article  CAS  Google Scholar 

  • Ghodsi R, Azizi E, Ferlin MG, Pezzi V, Zarghi A (2016) Design, synthesis and biological evaluation of 4-(Imidazolylmethyl)-2-aryl-quinoline derivatives as aromatase inhibitors and anti-breast cancer agents. Lett Drug Des Discov 13:89–97

    Article  CAS  Google Scholar 

  • Ghosh D, Griswold J, Erman M, Pangborn W (2010) X-ray structure of human aromatase reveals an androgen-specific active site. Steroid Biochem Mol Biol 118:197–202

    Article  CAS  Google Scholar 

  • Gobbi S, Zimmer C, Belluti F, Rampa A, Hartmann RW, Recanatini M, Bisi A (2010) Novel highly potent and selective nonsteroidal aromatase inhibitors: synthesis, biological evaluation and structure–activity relationships investigation. J Med Chem 53:5347–5351

    Article  CAS  PubMed  Google Scholar 

  • Golbraikh A, Tropsha A (2002) Beware of q2. J Mol Graph Model 20:269–276

    Article  CAS  PubMed  Google Scholar 

  • Hemmateenejad B, Yazdani M (2009) QSAR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors. Anal Chim Acta 634:27–35

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Chen S (2006) Aromatase inhibitors: structural features and biochemical characterization. Ann N Y Acad Sci 1089:237–251

    Article  CAS  PubMed  Google Scholar 

  • Jones CD, Winter MA, Hirsch KS, Stamm N, Talor HM, Holden HE, Davenport JD, Krumkalns EV, Suhr RG (1990) Estrogen synthetase inhibitors. 2. Comparison of the in vitro aromatase inhibitory activity for a variety of nitrogen heterocycles substituted with diarylmethane or diarylmethanol groups. J Med Chem 33:416–429

    Article  CAS  PubMed  Google Scholar 

  • Karjalainen A, Pelkonen O, Sodervall ML, Lahde MA, Lammintausta RAS, Karjalainen AL, Kalapudas AM (1995) Aromatase inhibiting 4(5)-imidazoles. US Patent 5,439,928

  • Karjalainen A, Kalapudas A, Sodervall M, Pelkonen O, Lammintausta R (2000) Synthesis of new potent and selective aromatase inhibitors based on long-chained diarylalkylimidazole and diarylalkyltriazole molecule skeletons. Eur J Pharm Sci 11:109–131

    Article  CAS  PubMed  Google Scholar 

  • Lang M, Batzl C, Furet P, Bowman R, Hausler A, Bhatnagar AS (1993) Structure–activity relationships and binding model of novel aromatase inhibitors. J Steroid Biochem Mol Biol 44:421–428

    Article  CAS  PubMed  Google Scholar 

  • Leonetti F, Favia A, Rao A, Aliano R, Paluszcak A, Hartmann RW, Carotti A (2004) Design and synthesis, and 3D QSAR of novel potent and selective aromatase inhibitors. J Med Chem 47:6792–6803

    Article  CAS  PubMed  Google Scholar 

  • McNulty J, Keskar K, Crankshaw DJ, Holloway A (2014) Discovery of a new class of cinnamyl-triazole as potent and selective inhibitors of aromatase (cytochrome P450 19A1). Bioorg Med Chem Lett 24:4586–4589

    Article  CAS  PubMed  Google Scholar 

  • Mitra I, Saha A, Roy K (2010) Exploring quantitative structure–activity relationship studies of antioxidant phenolic compounds obtained from traditional Chinese medicinal plants. Mol Simul 36:1067–1079

    Article  CAS  Google Scholar 

  • Myint KZ, Xie XQ (2010) Recent advances in fragment-based QSAR and multi-dimensional QSAR methods. Int J Mol Sci 11:3846–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Needleman SJ, Tobias JS (2008) Aromatase inhibitors in early hormone receptor-positive breast cancer: what is the optimal initiation time for the maximum benefit? Drugs 68:1–15

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Yoden T, Kawaminami E, Shimada Y, Kudoh M, Isomura Y, Shikama H, Fujikura T (1996) Studies on aromatase inhibitors. I. Synthesis and biological evaluation of 4-amino-4H-1,2,4-triazole derivatives. Chem Pharm Bull 44:1871–1879

    Article  CAS  PubMed  Google Scholar 

  • Okada M, Yoden T, Kawaminami E, Shimada Y, Kudoh M, Isomura Y (1997) Studies on aromatase inhibitors.II. Synthesis and biological evaluation of 1-amino-1H-1,2,4-triazole derivatives. Chem Pharm Bull 45:333–337

    Article  CAS  PubMed  Google Scholar 

  • Pasha FA, Muddassar M, Beg Y, Cho SJ (2008) DFT-based de novo QSAR of phenoloxidase inhibitors. Chem Biol Drug Des 71:483–493

    Article  CAS  PubMed  Google Scholar 

  • Pouget C, Yahiaoui S, Fagnere C, Habrioux G, Chulia AJ (2004) Synthesis and biological evaluation of 4-imidazolylflavans as nonsteroidal aromatase inhibitors. J Bioorg Chem 32:494–503

    Article  CAS  Google Scholar 

  • Recanatini M, Bisi A, Cavalli A, Belluti F, Gobbi S, Rampa A, Valenti P, Palzer M, Palusczak A, Hartmann RW (2001) A new class of nonsteroidal aromatase inhibitors: design and synthesis of chromone and xanthone derivatives and inhibition of the P450 enzymes aromatase and 17 alpha-hydroxylase/C17, 20-lyase. J Med Chem 44:672–680

    Article  CAS  PubMed  Google Scholar 

  • Roy P, Roy K (2008) On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 27:302–313

    Article  CAS  Google Scholar 

  • Roy K, Kara S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemom Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

  • Srivastava HK, Pasha FA, Mishra SK, Singh PP (2009) Novel applications of atomic softness and QSAR study of testosterone derivatives. Med Chem Res 18:455–466

    Article  CAS  Google Scholar 

  • Tropsha A, Gramatica P, Gombar VK (2003) The importance of being earnest: validation is the absolute essential for successful application and interpretation of QSAR models. QSAR Comb Sci 22:69–77

    Article  CAS  Google Scholar 

  • Wong ZW, Ellis MJ (2004) First-line endocrine treatment of breast cancer. Br J Cancer 90:20–25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yousefinejad S, Hemmateenejad B (2015) Chemometrics tools in QSAR/QSPR studies: a historical perspective. Chemom Intell Lab Syst 149:177–204

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Hemmateenejad.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 134 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghodsi, R., Hemmateenejad, B. QSAR study of diarylalkylimidazole and diarylalkyltriazole aromatase inhibitors. Med Chem Res 25, 834–842 (2016). https://doi.org/10.1007/s00044-016-1530-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-016-1530-1

Keywords

Navigation