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Abstract In this study, we describe the synthesis of

mono- and bis-1H-1,2,3-triazole-tethered b-lactam–isatin

conjugates using copper-catalysed azide-alkyne cycload-

dition reaction between mono- and di-propargylated az-

etidin-2-ones and N-alkylazido isatins. The synthesized

conjugates were evaluated for their preliminary in vitro

analysis against Trichomonas vaginalis at 50 lM. The

efficacy of synthesized hybrids was observed to depend on

the substituent at N-1 position of b-lactam ring, as well as

the presence of single/double 1H-1,2,3-triazole linker.

Among the synthesized conjugates, the presence of a p-

tolyl substituent at N-1 of b-lactam ring was preferred for

good activity profiles while the increase in spacer length

did not influence the efficacy of the compounds. Com-

pounds with high levels of potency were further analysed

to determine their IC50 values, as well as cytotoxicity

profiles against mammalian cells. The most active com-

pound in the synthesized conjugates displayed an IC50

value of 10.49 lM against cultured G3 strain of T. vagi-

nalis and was non-toxic to cultured mammalian HeLa cells

at the same concentration.

Keywords b-lactam � Isatin � Trichomonas vaginalis �
Cytotoxicity � Structure–activity relationship

Introduction

With approximately 248 million new cases occurring

worldwide annually (WHO, Geneva, 2012), human

trichomoniasis is a far more prevalent sexually transmitted

disease (STD) than either chlamydia (caused by Chlamydia

trachomatis) or gonorrhoea (caused by Neisseria gonor-

rhoeae) (Soper, 2004). The causative organism for the

disease in humans, Trichomonas vaginalis, is primarily

acquired through transmission of trophozoites by direct

sexual contact, although neonatal infection has also been

reported (McLaren et al., 1983). Metronidazole (MTZ), the

current and only FDA-approved treatment for this disease,

has been used for more than 40 years. However, there are

ample reports on the development of resistant isolates to

MTZ which in certain cases have shown to be tackled with

prolonged therapy and higher dosage (Wright et al., 2010;

Upcroft et al., 2009). Further, it is now entrenched that

trichomoniasis-infected patients are more susceptible

towards human immunodeficiency virus (HIV) as it

appeared as a cofactor in HIV transmission and acquisition

(Sorvillo et al., 2001; van der Pol et al., 2008). The sig-

nificant increase in the vulnerability to HIV with tricho-

moniasis (McClelland et al., 2007; Guenthner et al., 2005)

has increased the importance of this disease dramatically.

As evident, the identification and development of novel

scaffolds with toxicity against T. vaginalis, and minimal

cytotoxicity against human cells, is a challenging task and

provides a strong impetus for re-engineering and re-posi-

tioning of previously characterized drug families (Upcroft

et al., 2006).
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Isatin is a privileged scaffold with well tolerance in

humans and its analogues demonstrate a diverse range of

biological and pharmacological properties such as anti-

HIV (Bal et al., 2005), anti-viral (Quenelle et al., 2006),

anti-cancer (Vine and Locke, 2007; Kopka et al., 2006),

anti-fungal (Raj et al., 2003), anticonvulsants (Verma

et al., 2004), anti-Parkinson’s disease therapeutic (Igosh-

eva et al., 2005), b-lactamase inhibitors (Casey et al.,

1993; Hadfield et al., 2002) and effective SARS corona-

virus 3CL protease inhibitor (Chen et al., 2005). The

enthralling applications of isatins in organic synthesis, its

biological properties, as well as its occurrence in natural

products such as spirotryprostatins, horsfiline, gelsemine,

gelseverine, rhynchophylline, elacomine, etc. have gener-

ated tremendous interest among synthetic organic and

medicinal chemists (Fensome et al., 2008; Kumari et al.,

2011; Ding et al., 2005; Vintonyak et al., 2010; Rottmann

et al., 2010). Particular examples of 2-oxoindole deriva-

tives are SU-5416 (semaxanib) and SU-11248 (Sunitinib)

that were reported to have tyrosine kinase inhibitory and

anti-angiogenic properties (Ma et al., 2003; Prenen et al.,

2006).

Azetidin-2-one (b-lactam) is the crucial structural unit

present widely in the b-lactam class of antibiotics (Palomo

et al., 1999; Palomo et al., 2004). Following the discovery

of penicillin, an array of naturally occurring b-lactam

antibiotics has been introduced as chemotherapeutics of

incomparable effectiveness for the treatment of bacterial

infections. Current interest in this family is focused on the

synthesis and modification of the b-lactam ring to obtain

compounds with diverse pharmacological potential such as

tumour necrosis factor-alpha (TNF-alpha) converting

enzyme (TACE) inhibitors (Rao et al., 2007), anti-cancer

(O’Boyle et al., 2013; Singh et al., 2011b), anti-coccidial

(Liang et al., 2008), cardiovascular (Takai et al., 2004),

anti-viral (D’hooghe et al. 2012), mutagenic (Gutierrez

et al., 2013), anti-fungal (O’Driscoll et al., 2008) and anti-

malarial activities (Jarrahpour et al., 2012). Besides its

eminence as a heterocyclic system with numerous biolog-

ical potential, b-lactam have also been employed as syn-

thetic precursor for the synthesis of a wide variety of

heterocyclic scaffolds (Singh, 2003; Alcaide et al., 2007;

D’hooghe et al., 2010; Singh et al., 2011a).

Recently, pharmacophore hybridization has been

appeared as an attractive paradigm for medicinal chemists.

The main incentives for using this strategy relates to the

marked improvement in therapeutic potential, potency,

mode of action and pharmacokinetics (Meunier, 2008;

Muregi and Ishih, 2010; Morphy and Rankovic, 2006).

Continuing with our efforts in the synthesis of novel

molecular conjugates with biological potential (Raj et al.,

2013c; Raj et al., 2013a; Nisha et al., 2013; Kumar et al.,

2013; Kumar et al. 2012), we recently discussed the

synthesis of 1H-1,2,3-triazole-tethered b-lactam–isatin

conjugates and their in vitro evaluation against T. vaginalis

Raj et al., 2013b). Most of the synthesized compounds

exhibited 100 % growth inhibition at 100 lM with the

most potent and non-cytotoxic compound (Fig. 1) dis-

played an IC50 value of 7.69 lM.

The present communication is an extension of the above

approach comprising of the synthesis of mono- and bis-1H-

1,2,3-triazole-tethered bifunctional hybrids of isatin with

N-1 substituted b-lactams (Fig. 2) and their preliminary

in vitro evaluation studies against T. vaginalis. The ratio-

nale behind the use of 1H-1,2,3-triazole linker is its active

participation in hydrogen bonding, dipole–dipole interac-

tion and stability against hydrolysis and oxidative/reduc-

tive conditions (Kolb et al., 2001; Kolb and Sharpless,

2003; Wang et al., 2005; Bock et al. 2006).

Experimental section

Melting points were determined by open capillary using a

Veego precision digital melting point apparatus (MP-D) and

are uncorrected. IR spectra were recorded on a Shimadzu

D-8001 spectrophotometer. 1H NMR spectra were recorded

in deuterochloroform and dimethylsulphoxide-d6 with a Jeol

300 (300 MHz) spectrometer using TMS as an internal

standard. Chemical shift values are expressed as parts per

million downfield from TMS and J values are in hertz.

Splitting patterns are indicated as s singlet, d doublet, t trip-

let, m multiplet, dd double doublet, ddd doublet of a doublet

of a doublet and br broad peak. 13C NMR spectra were

recorded on Jeol 300 (75 MHz) spectrometer in deutero-

chloroform and dimethylsulphoxide using TMS as internal

standard. High-resolution mass spectra were recorded on

Bruker-micrOTOF-Q II spectrometer. Column chromatog-

raphy was performed on a silica gel (60-120 mesh).

General method for the preparation of b-lactam–isatin

conjugates 6 and 7

To a stirred solution of azide 5 (1 mmol for 2 and 2 mmol

for 3) in ethanol–water (10:1) was added in succession

appropriate acetylenic lactam 2 or 3 (1 mmol), copper

N
O

N

F

N
N
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O

Fig. 1 Recently disclosed most potent and non-cytotoxic 1H-1,2,3-

triazole-tethered b-lactam–isatin conjugate
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sulphate (0.055 mmol for 2 and 0.1 mmol for 3) and

sodium ascorbate (0.13 mmol for 2 and 0.26 for 3) at room

temperature. On completion, as monitored by tlc, water

was added to the reaction mixture and extracted with

chloroform. Combined organic layers were dried over

anhydrous sodium sulphate and concentrated under

reduced pressure to result in a crude product which was

purified by silica gel column chromatography.

1-(2-{4-[(2-Oxo-4-styryl-1-p-tolyl-azetidin-3-ylamino)-

methyl]-[1,2,3]triazol-1-yl}-ethyl)-1H-indole-2,3-dione

(6a)

Brick red colour, yield 74 %; IR (KBr) mmax: 1738,

1612 cm-1; mp 214–215 �C; 1H NMR (CDCl3, 300 MHz):

d 2.23 (s, 3H, -CH3); 3.76 (s, 2H, –CH2–); 4.10–4.13 (m,

2H, –CH2–); 4.40–4.57 (m, 2H, –CH2–); 4.61 (d,

J = 5.1 Hz, 1H, H4); 4.82 (dd, J = 5.1, 8.1 Hz, 1H, H3);

6.16 (dd, J = 8.1, 15.9 Hz, 1H, H2); 6.48 (d, J = 8.1 Hz,

1H, ArH); 6.64 (d, J = 15.9 Hz, 1H, H1); 6.90–7.42 (m,

12H, ArH); 7.58 (s, 1H, triazole-H); 13C NMR (CDCl3,

75 MHz): d ppm = 21.1 (CH3), 37.6 (C-13), 46.5 (C-9),

48.3 (C-10), 61.6 (C-15), 71.8 (C-14), 110.1 (C-4), 117.2

(C-16), 117.7 (C-2), 123.6 (C-24), 124.0 (C-19), 124.5 (C-

17), 125.3 (C-21), 126.7 (C-20), 128.1 (C-6), 128.7 (C-1),

129.1 (C-25), 133.9 (C-26), 134.5 (C-3), 135.1 (C-11),

135.8 (C-18), 138.6 (C-23), 144.1 (C-5), 151.5 (C-12),

158.1 (C-8), 164.4 (C-22), 182.2 (C-7). HRMS calculated

for C31H28N6O3 [M]? 532.2223 found 532.2230; Anal.

Calcd. (%) for: C, 69.91; H, 5.30; N, 15.78, found: C,

69.99; H, 5.38; N, 15.73.

1-(2-{4-[(1-Cyclohexyl-2-oxo-4-styryl-azetidin-3-ylamino)-

methyl]-[1,2,3]triazol-1-yl}-ethyl)-1H-indole-2,3-dione

(6b)

Brick red colour, yield 65 %; IR (KBr) mmax: 1737,

1616 cm-1; mp 219–220 �C; 1H NMR (CDCl3, 300 MHz):

d 1.26–1.97 (m, 10H, cyclohexyl), 3.48–3.63 (m, 1H,

cyclohexyl), 3.70 (s, 2H, –CH2–); 4.12–4.23 (m, 2H,

–CH2–); 4.28 (d, J = 5.1 Hz, 1H, H4); 4.60 (dd, J = 5.4,

11.4 Hz, 2H, –CH2–); 4.83 (dd, J = 5.1, 8.4 Hz, 1H, H3);

6.27 (dd, J = 8.4, 15.9 Hz, 1H, H2); 6.71 (d, J = 15.9 Hz,

1H, H1); 6.99–7.44 (m, 9H, ArH); 7.68 (s, 1H, triazole-H);
13C NMR (CDCl3, 75 MHz): d ppm = 24.1 (C-25), 24.8

(C-27), 25.4 (C-26), 30.2 (C-24), 31.3 (C-28), 39.4 (C-23),

45.4 (C-13), 47.5 (C-9), 51.6 (C-10), 61.7 (C-15), 72.0 (C-

14), 110.3 (C-4), 117.3 (C-16), 117.8 (C-2), 124.1 (C-19),

124.6 (C-17), 124.8 (C-21), 125.5 (C-20), 126.7 (C-6),

128.4 (C-1), 134.2 (C-3), 135.1 (C-11), 135.6 (C-18), 144.4

(C-5), 150.1 (C-12), 158.4 (C-8), 164.1 (C-22), 182.1 (C-

7). HRMS calculated for C30H32N6O3 [M]? 524.2536

found 524.2530; Anal. Calcd. (%) for: C, 68.68; H, 6.15; N,

16.02, found: C, 68.61; H, 6.24; N, 16.10.

1-[2-(4-{[1-(4-Fluoro-phenyl)-2-oxo-4-styryl-azetidin-3-

ylamino]-methyl}-[1,2,3]triazol-1-yl)-ethyl]-1H-indole-

2,3-dione (6c)

Brick red colour, yield 78 %; IR (KBr) mmax: 1733,

1612 cm-1; mp 203–204 �C; 1H NMR (300 MHz CDCl3): d
3.92 (s, 2H, –CH2–); 4.16–4.19 (m, 2H, –CH2–); 4.26 (d,

J = 5.1 Hz, 1H, H4); 4.47–4.64 (m, 2H, –CH2–); 4.70 (dd,
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Fig. 2 General structure of

target hybrid compounds

Med Chem Res (2014) 23:3671–3680 3673

123



J = 5.1, 7.5 Hz, 1H, H3); 6.19 (dd, J = 7.8, 16.2 Hz, 1H, H2);

6.51 (d, J = 8.1 Hz, 1H, ArH); 6.65 (d, J = 16.2 Hz, 1H,

H1); 6.95–7.50 (m, 12H, ArH); 7.55 (s, 1H, triazole-H); 13C

NMR (CDCl3, 75 MHz): d ppm = 37.1(C-13), 46.4 (C-9),

47.7 (C-10), 61.8 (C-15), 72.3 (C-14), 110.2 (C-4), 117.0 (C-

16), 117.6 (C-2), 123.8 (C-25), 124.1 (C-24), 124.6 (C-19),

125.4 (C-17), 126.9 (C-21), 128.1 (C-20), 128.6 (C-6), 129.0

(C-1), 134.4 (C-3), 135.2 (C-11), 135.8 (C-18), 138.9 (C-23),

144.0 (C-5), 148.7 (C-26), 151.1 (C-12), 158.2 (C-8), 164.9

(C-22), 182.1 (C-7). HRMS calculated for C30H25FN6O3

[M]? 536.1972 found 536.1979; Anal. Calcd. (%) for: C,

67.15; H, 4.70; N, 15.66, found: C, 67.06; H, 4.77; N, 15.60.

1-(3-{4-[(2-Oxo-4-styryl-1-p-tolyl-azetidin-3-ylamino)-

methyl]-[1,2,3]triazol-1-yl}-propyl)-1H-indole-2,3-dione

(6d)

Brick red colour, yield 72 %; IR (KBr) mmax: 1732,

1617 cm-1; mp 197–198 �C; 1H NMR (300 MHz CDCl3): d
2.24 (s, 3H, –CH3); 2.32 (dd, J = 6.6, 12.9 Hz, 2H, –CH2–);

3.75 (a pair of doublet, J = 15.0 Hz, 2H, –CH2–); 4.10–4.21

(m, 2H, –CH2–); 4.59 (dd, J = 5.1, 11.1 Hz, 2H, –CH2–);

4.68 (d, J = 5.1 Hz, 1H, H4); 4.84 (dd, J = 5.1, 8.4 Hz, 1H,

H3); 6.30 (dd, J = 8.4, 15.9 Hz, 1H, H2); 6.54 (d,

J = 8.1 Hz, 1H, ArH); 6.73 (d, J = 15.9 Hz, 1H, H1); 6.97

(d, J = 8.1 Hz, 1H, ArH); 7.09–7.45 (m, 11H, ArH); 7.76 (s,

1H, triazole-H); 13C NMR (CDCl3, 75 MHz): d ppm = 21.3

(CH3), 28.0 (C-10), 38.1 (C-14), 45.2 (C-9), 47.4 (C-11),

61.2 (C-16), 71.9 (C-15), 109.8 (C-4), 117.1 (C-17), 117.6

(C-2), 124.1 (C-25), 124.6 (C-20), 124.9 (C-18), 125.3 (C-

22), 126.7 (C-21), 128.2 (C-6), 128.6 (C-1), 129.5 (C-26),

134.1 (C-27), 135.4 (C-3), 135.6 (C-12), 135.9 (C-19), 138.4

(C-24), 144.2 (C-5), 150.2 (C-13), 158.1 (C-8), 164.6 (C-23),

182.1 (C-7). HRMS Calculated for C32H30N6O3 [M]?

546.2379 found 546.2372; Anal. Calcd. (%) for: C, 70.31; H,

5.53; N, 15.37, found: C, 70.37; H, 5.59; N, 15.29.

1-(3-{4-[(1-Cyclohexyl-2-oxo-4-styryl-azetidin-3-ylamino)-

methyl]-[1,2,3]triazol-1-yl}-propyl)-1H-indole-2,3-dione

(6e)

Brick red colour, yield 74 %; IR (KBr) mmax: 1731,

1610 cm-1; mp 211–212 �C; 1H NMR (300 MHz CDCl3):

d 1.27–1.95 (m, 10H, cyclohexyl), 2.33 (dd, J = 6.3,

13.2 Hz, 2H, –CH2–); 3.47–3.63 (m, 1H, cyclohexyl), 3.73

(s, 2H, –CH2–); 4.13–4.24 (m, 2H, –CH2–); 4.34 (d,

J = 5.1 Hz, 1H, H4); 4.56 (m, 2H, –CH2–); 4.87 (dd,

J = 5.1, 8.4 Hz, 1H, H3); 6.25 (dd, J = 8.4, 15.6 Hz, 1H,

H2); 6.69 (d, J = 15.6 Hz, 1H, H1); 7.06–7.53 (m, 9H,

ArH); 7.71 (s, 1H, triazole-H); 13C NMR (CDCl3,

75 MHz): d ppm = 23.7 (C-26), 24.8 (C-28), 25.5 (C-27),

28.2 (C-10), 31.1 (C-25), 31.9 (C-29), 39.1 (C-24), 45.6 (C-

14), 47.4 (C-9), 51.2 (C-11), 62.9 (C-16), 72.4 (C-15),

109.9 (C-4), 117.1 (C-17), 117.8 (C-2), 124.1 (C-20), 124.7

(C-18), 124.8 (C-22), 125.3 (C-21), 126.2 (C-6), 128.5 (C-

1), 133.8 (C-3), 135.2 (C-12), 135.8 (C-19), 144.5 (C-5),

150.2 (C-13), 158.6 (C-8), 164.2 (C-23), 182.0 (C-7).

HRMS Calculated for C31H34N6O3 [M]? 538.2692 found

538.2699; Anal. Calcd. (%) for: C, 69.12; H, 6.36; N,

15.60, found: C, 69.19; H, 6.28; N, 15.67.

1-[3-(4-{[1-(4-Fluoro-phenyl)-2-oxo-4-styryl-azetidin-3-

ylamino]-methyl}-[1,2,3]triazol-1-yl)-propyl]-1H-indole-

2,3-dione (6f)

Brick red colour, yield 81 %; IR (KBr) mmax: 1730,

1616 cm-1; mp 206–207 �C; 1H NMR (300 MHz CDCl3): d
2.35 (dd, J = 6.6, 13.2 Hz, 2H, –CH2–); 3.84 (s, 2H, –CH2–);

4.10–4.21 (m, 2H, –CH2–); 4.25 (d, J = 5.1 Hz, 1H, H4);

4.46–4.63 (m, 2H, –CH2–); 4.73 (dd, J = 5.1, 8.1 Hz, 1H,

H3); 6.24 (dd, J = 8.1, 15.9 Hz, 1H, H2); 6.58 (d,

J = 8.1 Hz, 1H, ArH); 6.69 (d, J = 15.9 Hz, 1H, H1);

6.94–7.44 (m, 12H, ArH); 7.66 (s, 1H, triazole-H); 13C NMR

(CDCl3, 75 MHz): d ppm = 27.6 (C-10), 37.2 (C-14), 46.6

(C-9), 47.8 (C-11), 61.6 (C-16), 72.1 (C-15), 110.0 (C-4),

117.0 (C-17), 117.7 (C-2), 123.5 (C-26), 124.2 (C-25), 124.7

(C-20), 125.4 (C-18), 126.8 (C-22), 128.0 (C-21), 128.8 (C-

6), 129.1 (C-1), 134.5 (C-3), 135.1 (C-12), 135.7 (C-19),

138.8 (C-24), 144.2 (C-5), 148.8 (C-27), 151.4 (C-13), 158.3

(C-8), 164.7 (C-23), 182.3 (C-7). HRMS calculated for

C31H27FN6O3 [M]? 550.2129 found 550.2122; Anal. Calcd.

(%) for: C, 67.63; H, 4.94; N, 15.26, found: C, 67.70; H, 4.88;

N, 15.31.

3-{Bis-[1-(3-[2,3-dioxo-1H-indol-1-yl]-ethyl)-1H-

[1,2,3]triazol-4-ylmethyl]-amino}-4-styryl-1-p-tolyl-

azetidin-2-one (7a)

Brick red colour, yield 75 %; IR (KBr) mmax: 1730,

1621 cm-1; mp [230 �C; 1H NMR (300 MHz CDCl3): d
2.27 (s, 3H, -CH3); 3.73 (a pair of doublet, J = 15.0 Hz, 4H,

2x–CH2–); 4.10–4.21 (m, 5H, H4 ? 2x–CH2–); 4.56 (dd,

J = 5.1, 10.8 Hz, 4H, 2x–CH2–); 4.82 (dd, J = 5.1, 8.1 Hz,

1H, H3); 6.29 (dd, J = 8.4, 15.9 Hz, 1H, H2); 6.56 (d,

J = 7.8 Hz, 2H, ArH); 6.69 (d, J = 16.2 Hz, 1H, H1); 6.97 (t,

J = 7.8 Hz, 2H, ArH); 7.07 (d, J = 8.1 Hz, 2H, ArH);

7.25–7.47 (m, 11H, ArH); 7.68 (s, 2H, triazole-H); 13C NMR

(CDCl3, 75 MHz): d ppm = 20.8 (CH3), 40.6 (C-13), 45.3

(C-9), 47.5 (C-10), 61.3 (C15), 71.5 (C14), 109.4 (C-4), 117.0

(C-16), 117.4 (C-2), 124.0 (C-24), 124.7 (C-19), 124.8 (C-17),

125.5 (C-21), 126.6 (C-20), 128.3 (C-6), 128.7 (C-1), 129.5

(C-25), 133.9 (C-26), 135.1 (C-3), 135.3 (C-11), 135.9 (C-18),

138.5 (C-23), 144.3 (C-5), 149.9 (C-12), 158.4 (C-8), 164.7

(C-22), 182.5 (C-7). HRMS calculated for C44H38N10O5 [M]?

786.3027 found 786.3034; Anal. Calcd. (%) for: C, 67.16; H,

4.87; N, 17.80, found: C, 67.07; H, 4.90; N, 17.87.
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3-{Bis-[1-(3-[2,3-dioxo-1H-indol-1-yl]-ethyl)-1H-

[1,2,3]triazol-4-ylmethyl]-amino}-1-cyclohexyl-4-styryl-

azetidin-2-one (7b)

Brick red colour, yield 75 %; IR (KBr) mmax: 1739,

1614 cm-1; mp [230 �C; 1H NMR (300 MHz CDCl3): d
1.27–1.98 (m, 10H, cyclohexyl), 3.47–3.62 (m, 1H,

cyclohexyl), 3.71 (a pair of doublet, J = 15.0 Hz, 4H, 2x–

CH2–); 4.11-4.22 (m, 4H, 2x–CH2–); 4.27 (d, J = 5.1 Hz,

1H, H4); 4.58 (dd, J = 5.4, 11.1 Hz, 4H, 2x–CH2–); 4.84

(dd, J = 5.1, 8.4 Hz, 1H, H3); 6.31 (dd, J = 8.4, 15.9 Hz,

1H, H2); 6.68 (d, J = 15.9 Hz, 1H, H1); 7.03–7.46 (m,

13H, ArH); 7.75 (s, 2H, triazole-H); 13C NMR (CDCl3,

75 MHz): d ppm = 24.4 (C-25), 24.9 (C-27), 25.3 (C-26),

30.1 (C-24), 31.4 (C-28), 39.8 (C-23), 45.2 (C-13), 47.3 (C-

9), 51.5 (C-10), 61.6 (C-15), 71.8 (C-14), 110.2 (C-4),

117.1 (C-16), 117.5 (C-2), 124.2 (C-19), 124.7 (C-17),

124.9 (C-21), 125.7 (C-20), 126.6 (C-6), 128.5 (C-1), 134.0

(C-3), 135.2 (C-11), 135.8 (C-18), 144.5 (C-5), 150.2 (C-

12), 158.6 (C-8), 164.3 (C-22), 182.0 (C-7). HRMS cal-

culated for C43H42N10O5 [M]? 778.3340 found 778.3347;

Anal. Calcd. (%) for: C, 66.31; H, 5.44; N, 17.98, found: C,

66.37; H, 5.39; N, 17.93.

3-{Bis-[1-(3-[2,3-dioxo-1H-indol-1-yl]-ethyl)-1H-

[1,2,3]triazol-4-ylmethyl]-amino}-1-(4-fluoro-phenyl)-4-

styryl-azetidin-2-one (7c)

Brick red colour, yield 66 %; IR (KBr) mmax: 1732,

1618 cm-1; mp [230 �C; 1H NMR (300 MHz CDCl3): d
3.98 (s, 4H, –CH2–); 4.10–4.21 (m, 5H, H4 ? 2x–CH2–);

4.39 (d, J = 5.1 Hz, 1H, H4); 4.56 (dd, J = 5.1, 10.8 Hz,

4H, 2x–CH2–); 4.92 (dd, J = 5.1, 8.4 Hz, 1H, H3); 6.32 (dd,

J = 8.4, 15.6 Hz, 1H, H2); 6.50 (d, J = 7.8 Hz, 2H, ArH);

6.71 (d, J = 16.2 Hz, 1H, H1); 6.99-7.49 (m, 15H, ArH);

7.59 (s, 2H, triazole-H); 13C NMR (CDCl3, 75 MHz): d
ppm = 41.2 (C-13), 45.8 (C-9), 47.6 (C-10), 61.1 (C-15),

72.3 (C-14), 110.2 (C-4), 117.1 (C-16), 117.5 (C-2), 124.1

(C-25), 124.6 (C-24), 124.8 (C-19), 125.7 (C-17), 126.8 (C-

21), 128.1 (C-20), 128.6 (C-6), 129.4 (C-1), 135.2 (C-3),

135.6 (C-11), 136.0 (C-18), 138.4 (C-23), 144.1 (C-5), 149.0

(C-26), 150.4 (C-12), 159.2 (C-8), 164.7 (C-22), 181.9 (C-7).

HRMS calculated for C43H35FN10O5 [M]? 790.2776 found

7990.2770; Anal. Calcd. (%) for: C, 65.31; H, 4.46; N, 17.71,

found: C, 65.37; H, 4.53; N, 17.64.

3-{Bis-[1-(3-[2,3-dioxo-1H-indolw-1-yl]-propyl)-1H-

[1,2,3]triazol-4-ylmethyl]-amino}-4-styryl-1-p-tolyl-

azetidin-2-one (7d)

Brick red colour, yield 70 %; IR (KBr) mmax: 1737,

1610 cm-1; mp [230 �C; 1H NMR (300 MHz CDCl3): d
2.26 (s, 3H, –CH3); 2.32 (dd, J = 6.6, 13.2 Hz, 4H, 2x–

CH2–); 3.70–3.75 (m, 4H, –CH2–); 4.04–4.10 (m, 4H, 2x–

CH2–); 4.27 (t, J = 6.6 Hz, 4H, 2x–CH2–); 4.66 (d,

J = 5.1 Hz, 1H, H4); 4.82 (dd, J = 5.1, 8.1 Hz, 1H, H3);

6.31 (dd, J = 8.4, 15.9 Hz, 1H, H2); 6.68 (d, J = 15.9 Hz,

1H, H1); 6.87 (d, J = 8.4 Hz, 2H, ArH); 7.04-7.60 (m,

15H, ArH); 7.82 (s, 2H, triazole-H); 13C NMR (CDCl3,

75 MHz): d ppm = 20.8 (CH3), 27.5 (C-10), 37.3 (C-14),

46.0 (C-9), 47.3 (C-11), 61.8 (C-16), 72.5 (C-15), 110.1 (C-

4), 117.1 (C-17), 117.6 (C-2), 123.9 (C-25), 124.2 (C-20),

124.8 (C-18), 125.5 (C-22), 126.5 (C-21), 128.2 (C-6),

128.7 (C-1), 129.5 (C-26), 133.8 (C-27), 134.8 (C-3), 135.3

(C-12), 135.9 (C-19), 138.5 (C-24), 144.3 (C-5), 150.2 (C-

13), 158.3 (C-8), 164.8 (C-23), 182.9 (C-7). HRMS cal-

culated for C46H42N10O5 [M]? 814.3340 found 814.3347;

Anal. Calcd. (%) for: C, 67.80; H, 5.19; N, 17.19, found: C,

67.85; H, 5.24; N, 17.11.

3-{Bis-[1-(3-[2,3-dioxo-1H-indol-1-yl]-propyl)-1H-

[1,2,3]triazol-4-ylmethyl]-amino}-1-cyclohexyl-4-styryl-

azetidin-2-one (7e)

Brick red colour, yield 78 %; IR (KBr) mmax: 1739,

1614 cm-1; mp [230 �C; 1H NMR (300 MHz CDCl3): d
1.29–1.97 (m, 10H, cyclohexyl), 2.34 (dd, J = 6.3,

12.9 Hz, 4H, 2x–CH2–); 3.46-3.61 (m, 1H, cyclohexyl);

3.84 (s, 4H, –CH2–); 4.15–4.26 (m, 4H, 2x–CH2–); 4.58

(m, 4H, 2x–CH2–); 4.67 (d, J = 5.1 Hz, 1H, H4); 4.91 (dd,

J = 5.1, 8.7 Hz, 1H, H3); 6.28 (dd, J = 8.7, 15.6 Hz, 1H,

H2); 6.70 (d, J = 15.6 Hz, 1H, H1); 7.01-7.51 (m, 13H,

ArH); 7.63 (s, 2H, triazole-H); 13C NMR (CDCl3,

75 MHz): d ppm = 24.1 (C-26), 24.6 (C-28), 25.5 (C-27),

27.9 (C-10), 30.8 (C-25), 31.6 (C-29), 39.3 (C-24), 45.1 (C-

14), 47.5 (C-9), 51.7 (C-11), 62.8 (C-16), 72.1 (C-15),

109.8 (C-4), 117.2 (C-17), 117.7 (C-2), 124.0 (C-20), 124.6

(C-18), 124.8 (C-22), 125.4 (C-21), 126.3 (C-6), 128.4 (C-

1), 133.7 (C-3), 135.3 (C-12), 135.9 (C-19), 144.6 (C-5),

150.1 (C-13), 158.8 (C-8), 164.1 (C-23), 182.3 (C-7).

HRMS calculated for C45H46N10O5 [M]? 806.3653 found

806.3645; Anal. Calcd. (%) for: C, 66.98; H, 5.75; N,

17.36, found: C, 66.90; H, 5.82; N, 17.49.

3-{Bis-[1-(3-[2,3-dioxo-1H-indol-1-yl]-propyl)-1H-

[1,2,3]triazol-4-ylmethyl]-amino}-1-(4-fluoro-phenyl)-4-

styryl-azetidin-2-one (7f)

Brick red colour, yield 69 %; IR (KBr) mmax: 1734,

1613 cm-1; mp [230 �C; 1H NMR (300 MHz CDCl3): d
2.34 (dd, J = 6.0, 12.6 Hz, 4H, 2x–CH2–); 3.88 (s, 4H,

–CH2–); 4.07–4.18 (m, 4H, 2x–CH2–); 4.33 (d, J = 5.1 Hz,

1H, H4); 4.56 (m, 4H, 2x–CH2–); 4.90 (dd, J = 5.1,

8.4 Hz, 1H, H3); 6.34 (dd, J = 8.4, 15.6 Hz, 1H, H2); 6.51

(d, J = 8.1 Hz, 2H, ArH); 6.68 (d, J = 15.6 Hz, 1H, H1);

7.04–7.46 (m, 15H, ArH); 7.62 (s, 2H, triazole-H); 13C
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NMR (CDCl3, 75 MHz): d ppm = 27.4 (C-10), 41.5 (C-

14), 45.9 (C-9), 47.1 (C-11), 62.4 (C-16), 72.0 (C-15),

110.3 (C-4), 117.2 (C-17), 117.6 (C-2), 124.2 (C-26), 124.6

(C-25), 124.8 (C-20), 125.5 (C-18), 126.7 (C-22), 128.0

(C-21), 128.5 (C-6), 129.5 (C-1), 135.1 (C-3), 135.4 (C-

12), 136.3 (C-19), 138.1 (C-24), 144.5 (C-5), 148.4 (C-27),

149.8 (C-13), 159.1 (C-8), 164.4 (C-23), 182.3 (C-7).

HRMS calculated for C45H39FN10O5 [M]? 818.3089 found

818.3095; Anal. Calcd. (%) for: C, 66.00; H, 4.80; N,

17.11, found: C, 66.07; H, 4.74; N, 17.18.

Biological evaluation

In vitro protozoal parasite susceptibility assay

Protozoal parasites were cultured for 24 h at 37 �C. To

perform the initial susceptibility screens on T. vaginalis,

compounds were suspended in DMSO to obtain concen-

trations of 100 lM; 5 lL aliquots of these suspensions

were diluted in 5 mL of TYM diamond’s media to obtain a

final concentration of 100 lM. After 24 h, cells were

counted using a hemacytometer. Cell counts were nor-

malized to the DMSO controls, in order to allow direct

comparison and averaging of the various trials. These data

sets were then transformed using Prism Software by

Graphpad, by taking the log of the drug concentrations for

the trials, and inputting this transform into a log(inhibitor)

versus response—variable slope regression option. Within

this non-linear regression, constraints were set to force the

maximum value (top) to 1 and the minimum value (bottom)

to 0. The slope was left variable, and then determined

through which regression was performed. The sample size

consists of 4 independent trials carried out on four different

days (to account for possible variation in parasite culture).

The assays were performed in 15 mL culture tubes, with

both WT and DMSO control tubes to normalize for the

effects of the solvent and in vitro conditions. The IC50

value for active compounds were determined by running

assays of increasing drug concentrations, 5–40 lM, and

performing a regression analysis using Prism software,

from GraphPad.

Cytotoxic evaluation of 6a, the most potent compound

in the library, on cultured mammalian cells

The HeLa cells were maintained in Dulbecco’s modified

eagle medium that contained 1 % penicillin/streptomycin

and 10 % foetal bovine serum in a humified 5 % CO2

atmosphere at 37 �C. Doxorubicin, bleomycin, and 6a (the

most potent compound in the library) were added to the

medium of cells 24 h after culture. A trypan blue assay was

used 24 h after drug treatment to calculate cell viability.

This was done in three separate trials to ensure that cyto-

toxicity results were consistent. The accuracy of our

cytotoxic assay was further validated by using etoposide as

a positive control which exhibited an IC50 value of

0.61 lM comparable to its reported value (Travelli et al.,

2011).

N

N
H

O

N

N

OR

R
N

N

OR

(i)

(ii)

N

NH2

OR

1

2 3

3

+

R = p-C6H4-CH3, C6H11, p-C6H4-F

Scheme 1 Reagents and

conditions i K2CO3 (1.2 mmol),
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DMF, rt, 6 h, ii K2CO3

(2.2 mmol), propargyl bromide

(2.1 mmol), DMF, rt, 6 h
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Scheme 2 Reagents and conditions i NaH (3 mmol), dibromoalkane

(1.1 mmol), DMF, 60 �C, 12 h, ii NaN3 (3 mmol), DMF, 60 �C,

2–3 h
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Result and discussions

Chemistry

The mono- and di-propargylated precursors 2 and 3 were

prepared via our recently reported protocol involving the

treatment of 3-amino-2-azetidinone 1 (Singh et al., 2011c),

with 1.1 and 2.1 mmol of propargyl bromide, respectively.

The treatment with 1.1 mmol of propargyl bromide led to a

mixture of 2 and 3 in the ratio of 75:25, as evidenced by the
1H NMR analysis of the crude reaction mixture while the use

of 2.1 mmol of propargyl bromide resulted in the isolation

of exclusive di-propargylated product 3. The observed

coupling constant J = 5.4 Hz between H3 and H4 confirmed

the cis-stereochemistry of the products (Scheme 1).

N-alkyl azido isatin 5, another precursor required for the

synthesis of target scaffolds, was prepared by an initial

base-assisted N-alkylation of isatin with dibromoalkane

followed by subsequent reaction with sodium azide in

DMF at 60 �C (Scheme 2) (Singh et al., 2012).

The synthesized precursors 2 and 3 were utilized in the

synthesis of desired mono- and bis-1H-1,2,3-triazole-teth-

ered b-lactam–isatin conjugates. Thus, the reaction of 2

with 5 (1 mmol) in the presence of copper sulphate and

sodium ascorbate in ethanol–water (10:1) mixture led to

the isolation of 6 (Scheme 3), while the reaction of 3 with 5

(2 mmol) under similar conditions led to the formation of 7

in good to excellent yields (Scheme 4).

The structures to the hybrids 6 and 7 were assigned on

the basis of spectral data and analytical evidence. Com-

pound 7d, for example, showed a molecular ion peak [M]?

814.8892 along with the characteristic peaks in 1H and 13C

NMR spectra. The 1H NMR spectrum exhibited the pre-

sence of a singlet at d 2.26 corresponding to methyl protons

along with characteristic peaks at d 2.32, 3.72, 4.05 and

N

N
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O

N
N

N
N

O
O

R
N

N
H

OR

(i)

2 6

R = p-C6H4-CH3, C6H11, p-C6H4-F
n = 1,2

n

Scheme 3 Reagents and

conditions i 5 (1 mmol),

CuSO4�5H2O (0.05 mmol),

sodium ascorbate (0.13 mmol),

EtOH: H2O, rt, 8 h

R = p-C6H4-CH3, C6H11, p-C6H4-F
n = 1,2
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N
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N

N
N

N

N
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N
N
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n

Scheme 4 Reagents and

conditions i 5 (2 mmol),

CuSO4�5H2O (0.1 mmol),

sodium ascorbate (0.26 mmol),

EtOH: H2O, rt, 8 h

Table 1 Biological evaluation of the compound library against T.

vaginalis at 50 lM

Code R n Yield (%) Average % inhibition

at 50 lM

6a p-C6H5–CH3 1 74 91.52 ± 2.78

6b C6H11 1 65 43.72 ± 4.18

6c p-C6H5–F 1 78 12.93 ± 1.93

6d p-C6H5–CH3 2 72 70.63 ± 3.80

6e C6H11 2 74 36.90 ± 7.12

6f p-C6H5–F 2 81 42.86 ± 5.23

7a p-C6H5–CH3 1 75 ND

7b C6H11 1 75 44.23 ± 8.50

7c p-C6H5–F 1 66 52.66 ± 1.47

7d p-C6H5–CH3 2 70 46.35 ± 1.16

7e C6H11 2 78 57.61 ± 3.30

7f p-C6H5–F 2 69 ND

Table 2 IC50 determination of active compounds against T. vaginalis

Compound IC50 (lM) (G3)

6a 10.49 ± 1.05

6d 25.60 ± 1.08

Metronidazolea 0.72

a Current FDA-approved treatment for T. vaginalis infections
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4.27 corresponding to methylene protons, and a singlet at d
7.82 corresponding to triazole ring proton. The presence of

a requisite number of carbons in 13C NMR spectrum along

with two characteristic peaks at d 164.8 and 182.9 assigned

to isatin ring carbonyls further corroborated the assigned

structure.

In vitro activity against T. vaginalis

The synthesized mono- and bis-1H-1,2,3-triazole-tethered

b-lactam–isatin conjugates were evaluated for their inhib-

itory influence on the axenic in vitro growth of T. vaginalis

strain G3 cultured in TYM Diamond’s media for 24 h at

37 �C. Table 1 lists the data obtained from the initial

percentage inhibition screens at 50 lM. As evident from

Table 1, the activity profiles of test compounds showed

dependence on the substituent at N-1 of b-lactam ring and

the presence of single/double 1H-1,2,3-triazole linker. The

increase in spacer length from n = 1 to n = 2 does not

have any considerable effect on the efficacy of test

compounds.

The most potent of the test compounds viz. 6a and 6d

have been selected from % age inhibition data for

determining their IC50 values, which is defined as the

minimum concentration required for 50 % growth inhi-

bition. These compounds have exhibited an IC50 values of

10.49 (6a) and 25.60 lM (6d), respectively, as shown in

Table 2, while their dose–response curves are depicted in

Fig. 3.

The most potent compound 6a was then further evalu-

ated for its cytotoxicity against HeLa cells. Results of these

cytotoxicity tests consistently showed between 80 and

90 % viability compared with untreated and DMSO-treated

cells. The same passage of cells was also tested with ble-

omycin and doxorubicin (at the same concentration) as

posititive controls for toxicity. We also carried out these

assays on three independent days with multiple trials in

each experiment. Compound 6a consistently showed

comparable toxicities to untreated and DMSO-treated

HeLa cells when tested at 10 lM.

Conclusion

The present communication describes the synthesis of

mono- and bis-1H-1,2,3-triazole-tethered b-lactam–isatin

conjugates along with their preliminary in vitro evaluation

against T. vaginalis at 50 lM. The synthesized scaffolds

have shown a preference for a p-tolyl substituent at N-1 of

b-lactam ring for good activity with the most potent and

non-cytotoxic compounds 6a and 6d exhibiting an IC50 of

10.49 and 25.60 lM, respectively. However, the exact

inhibition site (b-lactam or isatin) responsible for the

activity of these conjugates is still uncertain and further

studies are currently underway.
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