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Abstract
In this paper we use some ideas from [12, 13] and consider the description of Hör-
mander type pseudo-differential operators on R

d (d ≥ 1), including the case of the
magnetic pseudo-differential operators introduced in [15, 16], with respect to a tight
Gabor frame. We show that all these operators can be identified with some infinitely
dimensional matrices whose elements are strongly localized near the diagonal. Using
this matrix representation, one can give short and elegant proofs to classical results
like the Calderón-Vaillancourt theorem and Beals’ commutator criterion, and also
establish local trace-class criteria.
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1 Introduction

1.1 Main goals

In this work we continue the study of Gabor frame decomposition of Pseudo-
Differential Operators (in short �DO’s) on R

d (d ≥ 1), as proposed in [12, 13],
in order to characterize Hörmander type �DO’s with symbols in class S p

0 (R2d), with
p ∈ R, [14], including the “magnetic twisted case” introduced in [15, 16, 20].We recall
that these are symbols a(ξ, x) such that (1+ξ2)−p/2 a(ξ, x) is uniformly bounded, but
no decay is gained by differentiation, see Definition 3.1. Our main result (Theorem
3.1) shows that their infinitely dimensional matrices in the tight “magnetic” Gabor
frame (2.5) that we consider, are strongly localized around their diagonal, with some
precise growth condition.

This matrix representation leads almost immediately to a short proof for the “mag-
netic” version of the Calderón-Vaillancourt Theorem in [15] (Theorem 3.7 in this
paper) which completes our previous result in [7] regarding the Beals commutator
criterion (Theorem 3.8 in this paper).

At the same time, we shed new light on some previous results obtained in [7, 9–11]
and we include some developments of the ideas which were introduced there. For
example, in Corollary 3.6 we obtain in a straightforward way that the magnetic Moyal
product (see (3.15)) of a symbol of class S p

0 with a symbol of class Sq
0 produces a

symbol of class S p+q
0 . Moreover, in Theorem 3.9 we give a short and straightforward

proof of the fact that if p < −d, then the corresponding pseudo-differential operators
are locally trace class. We also hope that our approach could be relevant for the further
development of the magnetic super-operator calculus [17].

Let us emphasize that the type of arguments we develop in this paper are related in
spirit with the “partition of unity” techniques developed in [3–5, 18].

1.2 General Notation

For N ∈ N \ {0}, let S (RN ) be the space of Schwartz test functions on R
N with the

canonical Fréchet topology andS ′(RN ) its topological dual with its strong dual topol-
ogy and let us denote by 〈· , ·〉S ′,S : S ′(RN ) ×S (RN ) → C the canonical duality
map. We denote by L(V1;V2) the space of linear continuous operators between the
topological vector spaces V1 and V2 with its strong topology (of uniform convergence
on bounded sets).

For some d ≥ 2 we consider the d-dimensional real affine space X that we shall
freely identify with R

d considering fixed a “base point”. Let � := X × X∗ where
X∗ is the dual space of R

d . We shall always distinguish between position variables
and momentum variables. We recall the notation < x >:= √1 + |x |2 and similarly
for ξ ∈ X∗. We use the notation � := X × X∗.

We shall work with the usual Lebesgue measure on X and the associated Hilbert
space L2(X) with the scalar product considered anti-linear in the first factor and
denoted by

(·, ·)L2(X)
. We notice that:
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〈 f , φ〉S ′,S = ( f , φ
)

L2(Rd )
, ∀( f , φ) ∈ L2(Rd) × S (Rd). (1.1)

We will use the Hörmander multi-index notation ∂a
x := ∂

a1
x1 · . . . · ∂

ad
xd for x ∈ X

and ∂a
ξ := ∂

a1
ξ1

· . . . · ∂
ad
ξd

for ξ ∈ X∗ and |a| := a1 + . . . + ad for any a ∈ N
d .

Given any measurable function F : X → C we denote by F(Q) the operator of
multiplication with the function F . Let L(H) be the C∗-algebra of bounded linear
operators and U(H) the group of unitary operators on the complex Hilbert space H.

Let us fix our notations and normalization for the Fourier transform:

FX : L1(X) → C(X∗),
(
FX f

)
(ξ) := (2π)−d/2

∫

X

dx e−i<ξ,x> f (x),

FX∗ : L1(X∗) → C(X),
(
FX∗ f̂

)
(x) := (2π)−d/2

∫

X∗
dξ ei<ξ,x> f̂ (ξ).

(1.2)

They have unitary extensions to L2 which are inverse to each other.

1.3 TheMagnetic Field

We shall consider “regular” magnetic fields B, described by smooth closed 2-forms
onX ∼= R

d which have components of class BC∞(X), i.e.:

B :=
∑

1≤ j,k≤d

B jk(x)dx j ∧ dxk , |||B|||N := max
1≤ j,k≤d

‖B jk‖BC N (X) < ∞, ∀ N ≥ 0.

(1.3)

The topological triviality of the affine space X implies that these 2-forms are also
exact, hence we can always find a 1-form

A =
∑

j

A j (x)dx j (1.4a)

onX such that

B = d A, i.e. B jk(x) = (∂ j Ak)(x) − (∂k A j )(x).

This choice is far from being unique and we may consider gauge transformations
A �→ A′ = A+d F with F ∈ C∞(X) so that B = d A = d A′. The following explicit
choice:

Ak(x) =
∑

1≤ j≤d

∫ 1

0
s x j B jk(sx) ds, (1.4b)

proves that for any regular B we can always choose its vector potential to have smooth
components which grow at most polynomially at infinity.
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2 The Gabor Frame

2.1 Definition

We shall consider the lattice � = ∑

1≤ j≤d
Ze j ∼= Z

d defined by the canonical orthonor-

mal basis {e j }1≤ j≤d of X ∼= R
d and let �∗ be the dual lattice:

�∗ := {γ ∗ ∈ X∗ s.t. < γ ∗, γ >∈ 2πZ,∀γ ∈ �
}
.

Once fixed the lattice � ⊂ X as above, let us choose a quadratic partition of unity
associated with the lattice �, i.e. a function g ∈ C∞

0 (X) such that

supp g ⊂ (−1, 1)d ,
∑

γ∈�

g(x − γ )2 = 1, ∀x ∈ X. (2.1)

With any f ∈ L2(X) we associate the �-indexed sequence:

fγ = g τγ ( f ), (τγ f )(x) = f (x + γ ), γ ∈ �.

Each fγ has compact support in (−1, 1)d ⊂ (−π, π)d . On this support it coincides
with its own 2πZ

d periodization that we denote by f̊γ . We can then define its Fourier
sequence:

[̂ fγ ]
γ ∗ := (ϑγ ∗ , fγ

)
L2((−π,π)d )

, γ ∗ ∈ �∗,

ϑγ ∗(x) := (2π)−d/2ei(2π)−1<γ ∗,x> (2.2)

for which we can write

f̊γ =
∑

γ ∗∈�∗
[̂ fγ ]

γ ∗ ϑγ ∗ , (2.3)

with convergence of the series in L2.
We are now ready to introduce our “magnetic” Gabor frame (for a general intro-

duction to Gabor frames, see [6]). We use an extra uni-modular factor containing a
’local gauge’, which reminds on the choice proposed by Luttinger [19]. Given A as in
(1.4), we shall consider the following family of unitary operators on L2(X), indexed
by γ ∈ �:

(
�A

γ f
)
(x) := �A(x, γ ) f (x), ∀ f ∈ L2(X).

where we use the shortcut notation:

�A(x, γ ) := e−i
∫
[x,γ ] A

. (2.4)
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We warn the reader that in [7] we used the notation eiϕ(x,γ ) instead, with ϕ(x, γ ) =∫
[γ,x] A; see [7, Eq. (1.4)].

Definition 2.1 Given � ⊂ X and g ∈ C∞
0 (X; [0, 1]) as in (2.1), the family of func-

tions:

GA
γ,γ ∗ := �A

γ τ−γ (ϑγ ∗ g) ∈ S (X) (2.5)

is called the magnetic Gabor frame on L2(X) associated with (�, g).

We shall use the notation �̃ := � × �∗, with elements of the form α̃ := (α, α∗), β̃ :=
(β, β∗), . . ..We againwarn the reader about two other changes of notation compared to
[7]. There, we directly identified an element of the form (2π)−1γ ∗ with somem ∈ Z

d ,
thus theGabor frameelements introduced in [7] are indexedby twocopies ofZd instead
of � and �∗. Also, in that paper, the translation τγ acts like (τγ f )(x) = f (x − γ ).

2.2 Properties of the Magnetic Gabor Frame

In this subsection we extend a technical result of [7] in order to cover the L2 case.

Proposition 2.2 We have the following properties:

(i) The Gabor frame
{
GA

γ̃

}
indexed by γ̃ := (γ, γ ∗) ∈ �̃ is a Parseval frame in

L2(X), i.e. the map:

UA
g,� : L2(X) � f �→ {(

GA
α̃ , f

)
L2(X)

} ∈ �2
(
�̃
)

is an isometry.

(ii) Given the magnetic Gabor frame
{
GA

γ̃

}
, we have for any f ∈ L2(X) the identity:

f =
∑

α̃∈�̃

(
GA

α̃ , f
)

L2(X)
GA

α̃

with the above series converging in the L2(X) norm.

Proof Instead of (i), we shall prove the following apparently stronger result:

∀v, f ∈ L2(X),
(
v, f
)

L2(X)
=
∑

α̃∈�̃

(
v, GA

α̃

)
L2(X)

(
GA

α̃ , f
)

L2(X)
(2.6)
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with the series converging for the �2(�̃) norm. Let us compute the finite sums:

∑

|α|≤N

∑

|α∗|≤M

(
v , GA

α,α∗
)

L2(X)

(
GA

α,α∗ , f
)

L2(X)
=

(2π)−d
∫

X

dx
∫

X

dy v(x) f (y)
∑

|α|≤N

(
�A(x, α)�A(y, α)

)
g(x − α)g(y − α)

×
∑

|α∗|≤M

e(i/(2π))<α∗,x−y>.

Define

Fα := g τα

(
�A(·, α) f

)
, Vα := g τα

(
�A(·, α)v

)
.

Then the above double series reads as

∑

|α|≤N

∑

|α∗|≤M

[̂Vα]α∗ [̂Fα]α∗ .

The hypothesis concerning the functions v, f , g,�A(·, α) and the Parseval identity
related to (2.3) imply that the limit of the integral for M ↗ ∞ exists and is equal to:

lim
M↗∞

∑

|α|≤N

∑

|α∗|≤M

(
v , GA

α,α∗
)

L2(X)

(
GA

α,α∗ , f
)

L2(X)
=

∑

|α|≤N

∫

X

dx v(x + α) f (x + α) g(x)2 =
∫

X

dx v(x) f (x)
∑

|α|≤N

g(x − α)2.

The quadratic �-partition of unity property (2.1) of g together with the Dominated
Convergence Theorem imply (2.6) and thus (i).

Now let us prove (ii). From (2.6) we know that the sequence

fN ,M :=
∑

|α|≤N

∑

|α∗|≤M

(
GA

α,α∗ , f
)

L2(X)
GA

α,α∗ ∈ L2(X)

converges to f ∈ L2(X) in the weak topology on L2(X). To prove its convergence
for the norm topology on L2(X) we show that it is a Cauchy sequence. Let us choose
N < N ′ and M < M ′ and compute:
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∥∥ fN ′,M ′ − fN ,M
∥∥

L2(X)

= sup
‖v‖L2(X)

=1

∣∣(v , fN ′,M ′ − fN ,M
)

L2(X)

∣∣

= sup
‖v‖L2(X)

=1

∣∣∣
∑

|α|≤N ′

∑

|α∗|≤M ′

(
v , GA

α,α∗
)

L2(X)

(
GA

α,α∗ , f
)

L2(X)

−
∑

|α|≤N

∑

|α∗|≤M

(
v , GA

α,α∗
)

L2(X)

(
GA

α,α∗ , f
)

L2(X)

∣∣∣

= sup
‖v‖L2(X)

=1

∣∣∣
( ∑

N<|α|≤N ′

∑

|α∗|≤M ′
+
∑

|α|≤N

∑

M<|α∗|≤M ′

)

(
v , GA

α,α∗
)

L2(X)

(
GA

α,α∗ , f
)

L2(X)

∣∣∣

≤
⎛

⎝
( ∑

N<|α|

∑

α∗∈�∗
+
∑

α∈�

∑

M<|α∗|

) ∣∣(GA
α,α∗ , f

)
L2(X)

∣∣2
⎞

⎠

1/2

,

where in the last inequality we used the Cauchy-Schwarz inequality and (i) in order to
get rid of v. Using once again (i) we may conclude that the above remainder converges
to 0 for N and M going to ∞, thus fN ,M converges in norm, and its strong limit must
equal f .

2.3 Infinite Matrices AssociatedWith Operators in a Magnetic Gabor Frame

Suppose that we have a continuous operator T : S (X) → S ′(X). Notice that any
T ∈ L

(
L2(X)

)
and the closure of any symmetric operator on S (X) are examples

of such operators. Given the magnetic Gabor frame (2.5) we can associate with it the
following “infinite matrix”:

M
A[T ]α̃,β̃ := 〈TGA

β̃
, GA

α̃

〉
S ′,S . (2.7)

Frequently we shall write the above matrix elements using Formula (1.1).

Notation 2.3 We shall denote by M� the complex linear space of infinite matrices
with complex entries indexed by a regular lattice �. We shall work with the lattices
�,�∗ and �̃ = � × �∗.

Given any linear operator T : S (X) → L2(X), one may consider it as an operator
in the Hilbert space L2(X) with domainS (X) and define its adjoint T ∗ : D(T ∗) →
L2(X) putting:

D(T ∗) := {v ∈ L2(X),
∣∣(v, T ϕ

)
L2(X)

∣∣ ≤ C(T , v)‖ϕ‖L2(X), ∀ϕ ∈ S (X)
}

and
(
T ∗v, ϕ

)
L2(X)

:= (v, T ϕ
)

L2(X)
for any ϕ ∈ S (X).
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Proposition 2.4 Let T : S (X) → L2(X) be as above and assume that S (X) ⊂
D(T ∗). Then for any ϕ ∈ S (X), we have the identity in L2(X):

T ϕ =
∑

α̃∈�̃

⎛

⎝
∑

β̃∈�̃

M
A[T ]α̃,β̃

(
GA

β̃
, ϕ
)

L2(X)

⎞

⎠ GA
α̃ , (2.8)

where the series indexed by �̃ converge in the norms of �2(�̃) and L2(X) resp. . Also,
if ψ, ϕ ∈ S (X) then

(
ψ, T ϕ

)
L2(X)

=
∑

α̃∈�̃

(
ψ , GA

α̃

)

L2(X)

⎛

⎝
∑

β̃∈�̃

M
A[T ]α̃,β̃

(
GA

β̃
, ϕ
)

L2(X)

⎞

⎠ . (2.9)

Proof We use Proposition 2.2 for T ϕ ∈ L2(X) and write:

T ϕ =
∑

α̃∈�̃

(
GA

α̃ , T ϕ
)

L2(X)
GA

α̃ =
∑

α̃∈�̃

(
T ∗GA

α̃ , ϕ
)

L2(X)
GA

α̃

with the series converging in L2(X). Using once again Proposition 2.2 for ϕ ∈ S (X)

we obtain that

(
T ∗GA

α̃ , ϕ
)

L2(X)
=
∑

β̃∈�̃

(
T ∗GA

α̃ ,
(
GA

β̃
, ϕ
)

L2(X)
GA

β̃

)
L2(X)

=
∑

β̃∈�̃

(
GA

α̃ , TGA
β̃

)
L2(X)

(
GA

β̃
, ϕ
)

L2(X)

with the series converging in the norm of �2(�̃). This proves (2.8). Concerning (2.9),
we use again Proposition 2.2 and write

(
ψ, T ϕ

)
L2(X)

=
∑

α̃∈�̃

(
ψ , GA

α̃

)

L2(X)

(
T ∗GA

α̃ , ϕ
)

L2(X)

=
∑

α̃∈�̃

(
ψ , GA

α̃

)

L2(X)

∑

β̃∈�̃

M
A[T ]α̃,β̃

(
GA

β̃
, ϕ
)

L2(X)
.
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3 TheMatrix Form of theMagnetic Weyl Calculus in aMagnetic Gabor
Frame

3.1 Brief Reminder of theMagneticWeyl Calculus

Let us recall themagneticWeyl quantization [15, 16, 20]. Given� ∈ S (�), we define
its quantization OpA(�) ∈ L

(
S (X);S (X)

)
, by

(
OpA(�)ϕ

)
(x) := (2π)−d

∫

X∗
dξ

∫

X

dy �A(x, y) ei<ξ,x−y>

×�
(
(x + y)/2, ξ

)
ϕ(y),∀ϕ ∈ S (X)

where we used the notation introduced in (2.4). It has been proven in [20] (Proposi-
tion 3.5) that this “quantization” � �→ OpA(�) may be extended to the following
isomorphism of topological linear spacesOpA fromS ′(�) ontoL

(
S (X);S ′(X)

)

defined by

〈OpA(�)φ,ψ〉S ′,S = (2π)−d
∫

X∗
dξ

∫

X

dx
∫

X

dy �A(x, y)

× ei<ξ,x−y>�

(
x + y

2
, ξ

)
φ(y)ψ(x),

∀(φ,ψ) ∈ S (X) × S (X).

Weshall call F ∈ S ′(�) the distribution symbol of OpA(F) ∈ L
(
S (X);S ′(X)

)
.

Later on we shall work more particularly with the Hörmander classes of symbols
indexed by p ∈ R:

S p
0 (X × X∗) := {F ∈ C∞(�) s.t. ν p,ρ

n,m(F) < ∞, ∀(n, m) ∈ N × N
}
,

where: ν p
n,m(F) := max|α|≤n

max|β|≤m
sup

(x,ξ)∈�

< ξ >−p
∣∣(∂α

x ∂
β
ξ F
)
(x, ξ)

∣∣. (3.1)

3.2 TheMain Results

Let us come back to our Gabor frame
{
GA

γ,γ ∗
}
(γ,γ ∗)∈�×�∗ and compute the associated

matrix for an operator of the form OpA(�) for some � ∈ S ′(�) (using (1.1)):

M
A[OpA(�)]α̃,β̃ :=

(
GA

α̃ , OpA(�)GA
β̃

)

L2(X)

= (2π)−2d
∫

X

dx
∫

X

dy
∫

X∗
dη �A(α, x) e− i

2π <α∗,x−α>g(x − α)

�A(x, y) ei<η,x−y> �
(
(x + y)/2, η

)
�A(y, β)

e
i
2π <β∗,y−β>g(y − β). (3.2)
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Let us denote by < x, y, z >:= {u := x + t(y − x) + st(z − y) ∈ X, (t, s) ∈
[0, 1] × [0, 1]} the triangle with vertices {x, y, z} and by

�B(x, y, z) := e−i
∫
<x,y,z> B

.

Then we notice that Stokes’ formula implies the identity:

�A(α, x)�A(x, y)�A(y, β) = �A(α, β)�B(α, x, y)�B(α, y, β) (3.3)

and for our class of magnetic fields introduced in Subsection 1.3 we also have the
following estimates:

∣∣∂a
x ∂b

y ∂c
z �B(x, y, z)

∣∣

≤ Cab(B)
(
1 + diameter(< x, y, z >) + area(< x, y, z >)

)|a+b+c|
. (3.4)

Here is the main result of the paper.

Theorem 3.1 Given some p ∈ R and some � ∈ S ′(�), the following two statements
are equivalent:

(i) � belongs to S p
0 (X × X∗).

(ii) For any (n1, n2) ∈ N
2 there exists some constant Cn1,n2(�, B) > 0 such that

the �̃-indexed matrix of OpA(�) in the magnetic Gabor frame
{
GA

γ̃

}
γ̃∈�̃

has the
following behavior:

sup
(α̃,β̃)∈�̃2

< α − β >n1< α∗ − β∗ >n2< α∗ + β∗ >−p
∣∣MA[OpA(�)]α̃,β̃

∣∣

≤ Cn1,n2(�, B). (3.5)

Proof that (i) implies (ii).
Let us assume that (i) holds. Let us start from (3.2) and make the following change

of variables:

X × X � (x, y) �→ (z, v) := ((x + y − α − β)/2, x − y − α + β
) ∈ X × X

and also the following similar bijective change of indices for the �̃×�̃-indexed series:

� × � � (α, β) �→ (μ, ν) := (α + β, α − β
) ∈ [�]2◦,

�∗ × �∗ � (α∗, β∗) �→ (μ∗, ν∗) := (α∗ + β∗, β∗ − α∗) ∈ [�∗]2◦, (3.6)

where

[�]2◦ := {(μ, ν) ∈ � × �, where μ j and ν j for 1

≤ j ≤ d are simultaneously even or odd}
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and similarly for �∗. With these new indices we consider the corresponding matrix

M̃[OpA(�)]μ̃(α̃,β̃),ν̃(α̃,β̃) := M[OpA(�)]α̃,β̃ .

Using (3.3) and making the change ζ = η − μ∗/(4π) we obtain that:

M̃[OpA(�)]μ̃,ν̃ = (2π)−2d�A((μ + ν)/2, (μ − ν)/2
)

e
i
4π <μ∗,ν> × (3.7)

× e
i
2π <ν∗,z>

∫

X

dz
∫

X∗
dζ ei<ζ,ν>

∫

X

dv ei<ζ,v> ×
× g(z + v/2)g(z − v/2)�B

μ,ν(z, v)�
(
z + μ/2, ζ + μ∗/(4π)

)
,

where

�B
μ,ν(z, v) := �B(α(μ, ν), x(z, v), y(z, v))�B(α(μ, ν), y(z, v), β(μ, ν)).

Let us fix some arbitrary (n1, n2) ∈ N
2 and rewrite (3.7) (for any (m1, m2, m3) ∈

N
3):

∣∣∣M̃A[OpA(�)]μ̃,ν̃

∣∣∣ ≤ (2π)−2d

×
∣∣∣
∫

X∗
dζ

∫

X×X

dz dv

[(
1 − �z

< ν∗ >2

)m1

e
i
2π <ν∗,z>

]

[(
1 − �ζ

< ν >2

)m2

ei<ζ,ν>

] [(
1 − �v

< ζ >2

)m3

ei<ζ,v>

]

× g(z + v/2)g(z − v/2)�B
μ,ν(z, v)�

(
z + μ/2, ζ + μ∗/(4π)

)∣∣∣. (3.8)

Since the support of g is included in (−1, 1)d , we may assume |z j ± v j/2| ≤ 1 for
all 1 ≤ j ≤ d. Thus

2|z j | = |z j − v j/2 + z j + v j/2| ≤ 2, |v j | = |z j + v j/2 − (z j − v j/2)| ≤ 2,

and the integral with respect to z and v in (3.8) is restricted to |z j | ≤ 1 and |v j | ≤ 2
for all 1 ≤ j ≤ d. Using the bounds in (3.4) and restricting to |z j | ≤ 1, |v j | ≤ 2
implies:

∣∣∂a
z ∂b

v �B
μ,ν(z, v)

∣∣ ≤ Cab(B) < z + v/2 >|a+b|< v >|a+b|< ν >|a+b|< z − v/2 >|a+b|

≤ C ′
a,b(B) < ν >|a+b| .

(3.9)

Integratingbypartswith respect to z weobtain a decay inν∗ of the type< ν∗ >−2m1 ,
at the price of up to 2m1 derivatives acting on �B

μ,ν(z, v), which produce a growth
like < ν >2m1 . Then integrating by parts with respect to v we produce a decaying
factor < ζ >−2m3 at a price of up to 2m3 derivatives acting on �B

μ,ν(z, v), which
produce another growth like < ν >2m3 . Finally, integrating by parts with respect to ζ
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will produce a decay < ν >−2m2 together with some powers of v (they are bounded
on the domain of integration), while the decay < ζ >−2m3 is not affected (it can only
be improved). Hence (3.8) reads as:

∣∣∣M̃A[OpA(�)]μ̃,ν̃

∣∣∣ ≤ C < ν∗ >−2m1< ν >2m1+2m3−2m2

∫

X∗
dζ < ζ >−2m3 < ζ + μ∗/(4π) >p.

Now we choose 2m1 ≥ n1, 2m3 > |p| + d + 1 and 2m2 > 2m1 + 2m3 + n2. The
decay in ν∗ and ν holds, the function < ζ >−d−1 is integrable, hence we only need
to check that the quantity

< μ∗/(4π) >−p < ζ >−|p| < ζ + μ∗/(4π) >p (3.10)

is uniformly bounded in ζ and μ∗ for any p ∈ R.
Let us show that for every s ∈ R we have

< x + y >s ≤ 2|s|/2 < x >s < y >|s|, or equivalently

< x + y >s < x >−s < y >−|s|≤ 2|s|/2.
(3.11)

When s > 0 we can reduce it to 1 + |x + y|2 ≤ 2(1 + |x |2)(1 + |y|2), while when
s < 0 we use that s = −|s| and

< x >|s|=< (x + y) + (−y) >|s|≤ 2|s|/2 < x + y >|s| < y >|s| .

Now use s = p, x = −μ∗/(4π) and y = ζ + μ∗/(4π) in (3.11) and we get that the
quantity in (3.10) is bounded by 2|p|/2. This ends the proof of (ii).
Proof that (ii) implies (i).

Suppose that � ∈ S ′(�) is such that (3.5) is valid. Then OpA(�) ∈
L
(
S (X);S ′(X)

)
and has a distribution kernel given by:

KA[�] = (2π)−d/2�A [(ϒ∗ ◦ (1lX ⊗ F∗
X∗)
)
�
]

where ϒ∗ : S ′(X × X) → S ′(X × X) is the extension to tempered distributions
of the change of variables mapX ×X � (x, y) �→ (

(x + y)/2, (x − y)
) ∈ X ×X.

Using the magnetic Gabor frame and Proposition 2.4 we can write:

KA[�] =
∑

(α̃,β̃)∈�̃×�̃

M
A[OpA(�)]α̃,β̃

(
GA

α̃ ⊗ GA
β̃

)

where each term belongs toS (X ×X) and the series converges in the weak distri-
butional sense. Thus, we shall approximate the distribution kernel KA[�], in the weak
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tempered distribution topology, by a family KA
N [�] indexed by N ∈ N of integral

kernels of class S (X × X) defined by:

KA
N [�] :=

∑

|α̃|≤N ,|β̃|≤N

M
A[OpA(�)]α̃,β̃

(
GA

α̃ ⊗ GA
β̃

)
.

The symbols associated to the distribution kernels KA
N [�], denoted by �N ∈ S (�),

are defined by:

�N (z, ζ ) : =
∫

X

dv e−i<ζ,v> �A(z − v/2, z + v/2
)
KA

N [�](z + v/2, z − v/2
)

=
∑

|α̃|≤N ,|β̃|≤N

M
A[OpA(�)]α̃,β̃ ×

×
∫

X

dv e−i<ζ,v> �A(z − v/2, z + v/2
)
GA

α̃

(
z + v/2

)
GA

β̃

(
z − v/2

)
.

Let us compute:

∫

X

dv e−i<ζ,v> �A(z − v/2, z + v/2
)
GA

α̃

(
z + v/2

)
GA

β̃

(
z − v/2

)
(3.12)

= (2π)−d
∫

X

dv e−i<ζ,v> �A(z − v/2, z + v/2
)
�A(z + v/2, α

)
�A(β, z − v/2

)×

× e
i
2π <α∗,z+v/2−α> e− i

2π <β∗,z−v/2−β> g
(
z + v/2 − α

)
g
(
z − v/2 − β

)
.

We make the change of variables:

{
X � z �→ z′ := z − (α + β)/2 ∈ X,

X � v �→ v′ := v − (α − β) ∈ X,

and
{

� × � � (α, β) �→ (μ, ν) := (α + β, α − β
) ∈ � × �,

�∗ × �∗ � (α∗, β∗) �→ (μ∗, ν∗) := (α∗ + β∗, α∗ − β∗) ∈ �∗ × �∗,

and introduce

�B(z′, v′, μ, ν) := �A(β, α)�A(z − v/2, z + v/2
)
�A(z + v/2, α

)
�A(β, z − v/2

)

= �B(z′ − v′/2 + β, z′ + v′/2 + α, α
)
�B(z′ − v′/2 + β, α, β

)
.

Then the integral in (3.12) reads as:

(2π)−d�A(α, β)

∫

X

dv′ e−i<ζ,v′+ν> e
i
2π <ν∗,z′> e

i
4π <μ∗,v′>×

× �B(z′, v′, μ, ν) g(z′ + v′/2) g(z′ − v′/2). (3.13)
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On the support of g ∈ C∞
0 (X) we have z′ ± v′/2 ∈ (−1, 1)d . Thus we must have

|v′
j | < 2 and |z′

j | < 1, where the second inequality implies

2z j − 2 < μ j < 2z j + 2, ∀ 1 ≤ j ≤ d.

This last condition implies that there exists some finite set�(z) ⊂ �with #�(z) ≤ 5d

such that for μ /∈ �(z) the above integral vanishes.
From the definition of�N we see thatwe need to controlmultiple series involvingμ,

ν, ν∗ andμ∗. We have just seen that there are only finitely manyμ’s which contribute,
uniformly in z and ζ . The series in ν and ν∗ will be controlled by using the strong
decay of the matrix elements, so we only need to worry about the sum over μ∗. In
order to get some decay in μ∗ we have to perform some partial integration.

Let us consider the “image” lattices

�̂2 := {(μ, ν) ∈ � × �,
(
(μ + ν)/2, (μ − ν)/2

) ∈ � × �
}

�̂2
N := {(μ, ν) ∈ �̂2, |(μ + ν)/2| ≤ N , |(μ − ν)/2| ≤ N

}
,

and similarly [�̂∗]2 and [�̂∗]2N . Then we can write:

�N (z, ζ ) = (2π)−d
∑

μ∈�(z),(μ,ν)∈�̂2
N

�A((μ + ν)/2, (μ − ν)/2
)∑

(μ∗,ν∗)∈[�̂∗]2N
M

A[OpA(�)]μ̃(α̃,β̃),ν̃(α̃,β̃)

×
∫

∏

1≤ j≤d
{|v′

j |≤2}
dv′e−i<ζ−μ∗/(4π),v′> e−i<ζ,ν> e

i
2π <ν∗,z′> g

(
z′ + v′/2

)
g
(
z′ − v′/2

)
�B(z′, v′, μ, ν).

A crucial observation is that, for anymulti-indices (a, b) ∈ N
d ×N

d , if we consider(
∂a

z ∂b
ζ �N

)
(z, ζ ), we can generate powers of v′, of ν and ν∗. On the support of g, the

variables v′
j are bounded. Integrating by parts M ≥ d + 1+ |p| times with respect to

v′ we can make appear a factor of the type < ζ − μ∗/(4π) >−d−1−|p|, at the price
of some extra powers of ν. Due to (3.5) we see that the summation over the indices ν

and ν∗ are under control, and we only need to bound the series

∑

μ∗∈�∗
< ζ − μ∗/(4π) >−d−1 < μ∗/(4π) >p< ζ − μ∗/(4π) >−|p| .

Using (3.11) with x = −ζ and y = ζ − μ∗/(4π) we have

< μ∗/(4π) >p< ζ − μ∗/(4π) >−|p|≤ 2|p|/2 < ζ >p,

thus the series with respect to μ∗ can also be bounded by a constant times < ζ >p,
hence we have just proved that for any pair of multi-indices a, b there exists a constant
Ca,b such that for any N ≥ 1 we have

∣∣(∂a
z ∂b

ζ �N
)
(z, ζ )

∣∣ ≤ Ca,b < ζ >p, ∀(z, ζ ) ∈ �.



Journal of Fourier Analysis and Applications (2024) 30 :21 Page 15 of 21 21

Notice, that the above estimate is uniform for z and ζ restricted to compact sets, and
the symbol � will be the uniform limit of �N on compact sets when N → +∞.

Notation 3.2 For p ∈ R, we denote by M
p
�̃,∞ the complex linear space of infinite

matrices indexed by the lattice �̃ and verifying the estimate (3.5). We say that they
have rapid off-diagonal decay.

Proposition 3.3 Let p, q ∈ R, and let (M, M
′) ∈ M

p
�̃,∞ × M

q
�̃,∞. Then their matrix

product is an element of M p+q
�̃,∞ .

Proof We apply the inequality (3.11) twice, first with s = p, x = α∗ + γ ∗ and
y = −γ ∗ +β∗, and second with s = q, x = β∗ +γ ∗ and y = −γ ∗ +α∗, and obtain

< α∗ + β∗ >p+q ≤ 2(|p|+|q|)/2 < α∗ + γ ∗ >p< β∗ − γ ∗ >|p|

< β∗ + γ ∗ >q< α∗ − γ ∗ >|q| .

Then for any (m1, m2) ∈ N × N we have the bound:

< α − β >m1 < α∗ − β∗ >m2 < α∗ + β∗ >p+q
∣∣(M · M

′)α̃,β̃

∣∣

≤ 2(|p|+|q|+m1+m2)/2
∑

γ̃∈�̃

(
< α − γ >m1 < α∗ − γ ∗ >m2+|q| < α∗ + γ ∗ >p |Mα̃,γ̃ |

)

×
(

< γ − β >m1 < γ ∗ − β∗ >m2+|p| < γ ∗ + β∗ >q |M′
γ̃ ,β̃

|
)
.

Using (3.5) with n1 > m1 + d and n2 > m2 + |p| + |q| + d, we see that the series on
the right hand side converges and is uniform in α, α∗, β, β∗.

Proposition 3.4 Let p, q ∈ R, let (�,�) ∈ S p
0 (X×X∗)×Sq

0 (X×X∗), and consider
their infinite matrices with respect to a magnetic Gabor frame

{
GA

α,α∗
}
(α,α∗)∈�×�∗ .

Then:

M
A(OpA(�)OpA(�)

) = M
A(OpA(�)

) · M
A(OpA(�)

)
(3.14a)

where

(
M1 · M2

)
α,α∗;β,β∗ :=

∑

(γ,γ ∗)∈�×�∗

(
M1
)
α,α∗;γ,γ ∗

(
M2
)
γ,γ ∗;β,β∗ . (3.14b)
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Proof Let us start with the definition of the left hand side in (3.14a) and write:

(
M

A(OpA(�)OpA(�)
))

α,α∗;β,β∗

= (GA
α,α∗ , OpA(�)OpA(�)GA

β,β∗
)

L2(X)

= (OpA(�)GA
α,α∗ , OpA(�)GA

β,β∗
)

L2(X)

=
∑

(γ,γ ∗)∈�×�∗

(
GA

γ,γ ∗ , OpA(�)GA
α,α∗
)

L2(X)

(
GA

γ,γ ∗ , OpA(�)GA
α,α∗
)

L2(X)

=
∑

(γ,γ ∗)∈�×�∗

(
M

A(OpA(�)
))

α,α∗;γ,γ ∗
(
M

A(OpA(�)
))

γ,γ ∗;β,β∗ .

Remark 3.5 We notice that for any � ∈ S0
0 (X

∗,X) we have the equalities:

(
M

A
(
OpA(�)

))
α,α∗;γ,γ ∗ = (MA

(
OpA(�)∗

))
α,α∗;γ,γ ∗ = (MA

(
OpA(�)

))
γ,γ ∗;α,α∗ .

Let us recall from [15, 20] that the “magnetic” Moyal product �B is defined by the
equality:

OpA(φ�Bψ
) := OpA(φ)OpA(ψ), ∀(φ,ψ) ∈ S (�) × S (�).

It is given explicitly by the following integral:

(
φ�Bψ

)
(X) = π−2d

∫
�×�

dY dY ′ e−2i(<ξ−η,x−y′>−<ξ−η′,x−z>) ×
×ωB

x (y, y′) φ(Y ) ψ(Y ′) (3.15)

where ωB
x (y, y′) is the exponential of (−i) multiplied with the flux of B through the

triangle with vertices x − y − y′, x − y + y′, x + y − y′.
As shown in [15, 20], this “magnetic” Moyal product may be extended as a com-

position law on a large class of tempered distributions on X × X∗ that contains the
Hörmander classes for all p ∈ R.

By using a direct combination of Propositions 3.4 and 3.3 with Theorem 3.1, we
get:

Corollary 3.6 Given (p, q) ∈ R × R and (�,�) ∈ S p
0 (X ×X∗) × Sq

0 (X ×X∗) we

have that ��B� ∈ S p+q
0 (X × X∗).

3.3 AMagnetic Version of the Calderón-Vaillancourt Theorem

Let us consider a symbol F ∈ S0
0 (X

∗,X) and a regularmagnetic field B obeying (1.3).
In [15] the following result is proven, using pseudo-differential calculus techniques:

Theorem 3.7 Under the above assumptions, we have that OpA(F) is bounded in
L2(X). Moreover, there exist c(d) > 0, p(d) ∈ N, and N ≥ 0, such that for all
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F ∈ S0
0 (X

∗,X) and any regular B obeying (1.3) we have

∥∥OpA(F)
∥∥
L(L2(X))

≤ c(d)
(
1 + |||B|||N

)
max|α|≤p(d)

max|β|≤p(d)
sup
X∈�

∣∣(∂α
x ∂

β
ξ F
)
(X)
∣∣.

Proof Let us present here a simple proof of the boundedness of the operatorOpA(F)

in L2(X), based on the use of magnetic Gabor matrices. Given any f ∈ S (X) we
have OpA(F) f ∈ L2(X) and

∥∥OpA(F) f
∥∥

L2(X)
= sup

g∈S (X), ‖g‖L2(X)
=1

∣∣(g,OpA(F) f
)

L2(X)

∣∣.

From (2.9) we have:

∣∣(g,OpA(F) f
)

L2(X)

∣∣ ≤
∑

(γ,γ ∗), (α,α∗)∈�×�∗

∣∣(GA
γ,γ ∗ , g

)
L2(X)

∣∣ ∣∣MA[F]γ,γ ∗;α,α∗
∣∣

∣∣(GA
α,α∗ , f

)
L2(X)

∣∣.

The estimate (3.5) applied with p = 0 implies that there exists a constant Cd(F, B)

depending on a finite number of seminorms of F and B such that

∣∣MA[F]γ,γ ∗;α,α∗
∣∣ ≤ Cd(F, B) < γ − α >−d−1 < γ ∗ − α∗ >−d−1 .

Applying the Schur test in �2(� × �∗) and using the isometric property from Propo-
sition 2.2(i) we obtain that

∣∣(g,OpA(F) f
)

L2(X)

∣∣ ≤ Cd(F, B)‖g‖L2(X) ‖ f ‖L2(X)

and we are done, up to a density argument.

3.4 On the Beals Commutator Criterion

Finally let us now complete the result in [7] and also prove the reciprocal statement
for the Beals criterion.

In order to state this criterion let us recall the “basic symbols”:

• The position coordinates Q j := OpA(q j ) = Op0(q j ) with q j (x, ξ) := x j for
1 ≤ j ≤ d

• The “magnetic” momenta P A
j := OpA(p j ) = Op0(p j )− A j with p j (x, ξ) := ξ j

for 1 ≤ j ≤ d.

Let us notice that the symbols q j for 1 ≤ j ≤ d are not Hörmander type symbols
and that the above operators are continuous as operators inS (X) and respectively in
S ′(X).
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Theorem 3.8 If � ∈ S0
0 (X×X∗), thenOpA(�) defines a bounded linear operator on

L2(X) having bounded repeated commutators of the form [L1, [L2, . . . [L N , T ] . . .]]
for any N ∈ N and any family {L1, . . . , L N

}
(void if N = 0) with Lm any of the basic

observables
{

Q1, . . . , Qd , P A
1 , . . . , P A

d

}
.

Conversely, assume that a linear map T : S (X) �→ S ′(X) can be extended to
a bounded operator on L2(X), and all its possible commutators as above have the
same property; then T is a magnetic pseudo-differential operator with a symbol of
class S0

0 (X × X∗).

Proof Let us prove the direct implication. Using (3.15) we have:

[
Q j ,OpA(�)

] = OpA(q j�
B� − ��Bq j

)
,

with

(
q j�

B� − ��Bq j
)
(X)

= π−2d
∫

�×�

dY dY ′ e−2i(<ξ−η,x−y′>−<ξ−η′,x−y>) ωB
x (y, y′)

(
y j�(y′, η′) − y′

j�(y, η)
)

= i(∂ξ j �)(x, ξ) ,

and

[
P A

j ,OpA(�)
] = OpA(p j�

B� − ��B p j
)
,

with

(
p j�

B� − ��B p j
)
(x, ξ) =

= π−2d
∫

�×�

dY dY ′ e−2i(<ξ−η,x−y′>−<ξ−η′,x−y>) ωB
x (y, y′)×

× (η j�(y′, η′) − η′
j�(y, η)

)

= −i
(
∂x j �

)
(x, ξ) + (2π)−d

∫

X

dv

∫

X∗
dη e−i<ξ−η,v>�(x, η)×

×
∑

1≤k≤d

vk

∫ 1/2

−1/2
dr Bkj (x + rv)

= −i
(
∂x j �

)
(x, ξ) + i(2π)−d

∫

X

dv

∫

X∗
dη e−i<ξ−η,v> ×

×
∑

1≤k≤d

(
∂ηk �

)
(x, η)

∫ 1/2

−1/2
dr Bkj (x + rv).

We see that both above commutators have symbols in S0
0 (X×X∗), which remains

true regardless how many commutators we perform afterwards. Then the Calderón-
Vaillancourt theorem implies that these commutators can be extended to bounded
operators on L2(X).
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The converse statement has been proved in [7], but now we can give a more trans-
parent explanation of the strategy used there. The main idea was to first show that the
matrix elements of M

A(T ) obey an estimate like in (3.5), and secondly, to construct
a symbol “by hand”, similarly with what we do here in Theorem 3.1(ii).

The main idea behind the proof of (3.5) is the following: knowing that operators
like [Q j1, [Q j2 , [. . . , [Q jn , T ] . . .] extend to bounded operators on L2(X), the matrix
element of T must decay faster than any power of < α −α′ >. Also, the boundedness
of [P A

j1
, [P A

j2
, [. . . , [P A

jn
, T ] . . .] plus integration by parts, leads to fast decay in <

α∗ − β∗ >. All details may be found in [7].

3.5 Local Schatten-Class Properties

For the non-magnetic case, a lot of results of this type are available in the literature
[1, 21]. They not only give optimal decay conditions on the symbol, but also on its
minimal regularity. Within our class of magnetic operators, we give a result which is
close to be optimal even for the non-magnetic case:

Theorem 3.9 Let � ∈ S p
0 (X×X∗) with p < −d. Then for every q > d, the operators

< · >−q OpA(�) and < · >−q/2 OpA(�) < · >−q/2 are trace class. Moreover, if
p < −d/2 and r > d/2, then OpA(�) < · >−r is Hilbert-Schmidt.

Proof The integral kernel of < · >−q OpA(�) is

∑

(α̃,β̃)∈�̃×�̃

M
A[OpA(�)]α̃,β̃ < x >−q GA

α̃ (x)GA
β̃

(y),

hence this operator can be seen as a series of rank-one operators. There exists a constant
C such that the trace norm of these rank-one operators is bounded by C < α >−q

uniformly in α∗ and β̃ = (β, β∗). Hence < · >−q OpA(�) is trace class if we can
prove that

∑

α∗,β∗∈�∗

∑

α,β∈�

< α >−q
∣∣MA[OpA(�)]α̃,β̃

∣∣ < ∞.

Let us choose n1 = n2 = d + 1 in (3.5). Then we have

< α >−q
∣∣MA[OpA(�)]α̃,β̃

∣∣

≤ Cn1n2(�, B) < β − α >−d−1< α >−q< α∗ − β∗ >−d−1< α∗ + β∗ >p .

Since p < −d and q > d, the series is convergent.
The proof for < · >−q/2 OpA(�) < · >−q/2 is similar; here we need to show

∑

α,β∈�

< β >−q/2< β − α >−d−1< α >−q/2< ∞,
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which again is a consequence of the Young inequality for convolutions. Finally,
denoting by T the operator OpA(�) < · >−r , we have T ∗T =< · >−r

OpA(�)OpA(�) < · >−r . The symbol of the product in the middle belongs to
S2p
0 with 2p < −d while r > d/2, hence T ∗T is trace-class. ��
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