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Abstract

Hardy’s inequality on H? spaces, p € (0, 1], in the context of orthogonal expansions
is investigated for general bases on a wide class of domains in RY with Lebesgue
measure. The obtained result is applied to various Hermite, Laguerre, and Jacobi
expansions. For that purpose some delicate estimates of the higher order derivatives
for the underlying functions and of the associated heat or Poison kernels are proved.
Moreover, sharpness of studied Hardy’s inequalities is justified by a construction of
an explicit counterexample, which is adjusted to all considered settings.
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1 Introduction

The classical Hardy inequality (see [15]) for Fourier coefficients states that
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where Re H! is the real Hardy space composed of the real parts of functions in the
Hardy space H'(ID). Here ID denotes the unit disk in the complex plane. Analogues
of (1.1) were considered by Kanjin [17], and f (k) were replaced by the expansion
coefficients in two orthonormal bases: the Hermite and standard Laguerre function
systems. In general, such inequalities are of the form

(ool
Z— Sy, (1.2)
keN (k+DF

where ¢y is an orthonormal basis in a certain L? space, (-, -) denotes the inner product
in this L2, H' is an appropriate Hardy space, and E is a positive number which we
refer to as the admissible exponent. The difficulty in establishing versions of (1.2)
is twofold. Firstly, given an orthonormal basis one can ask if such an inequality is
valid for a certain E. Secondly, there is a question of the sharpness of the admissible
exponent. We say that E is sharp if it is the smallest positive number for which (1.2)
holds. Moreover, some generalizations of (1.2) are possible, such as replacing H'! by
HP?, p € (0, 1], or considering the multi-dimensional situation.

In the last two decades many authors were interested in various Hardy’s inequalities.
As mentioned above, Kanjin initiated the studies for the Hermite functions (he obtained
E = 29/36) and the standard Laguerre functions (E = 1). For the latter system
Satake [37] generalized this result for p € (0, 1) with E = 2 — p, and for the former
expansions Radha [34] investigated the multi-dimensional situation d > 1 with £ >
(17d +12) /(24 4 12d). A few years later Radha and Thangavelu [35] proved Hardy’s
inequality associated with Hermite expansions for d > 2 and p € (0, 1] with the
admissible exponent E = 3d(2 — p) /4. The lacking case d = 1 was partially covered
by Balasubramanian and Radha [3], but the exponent was strictly larger than the
expected value 3(2 — p)/4 (see also Kanjin [18]). The inequality with this admissible
exponent was proved ten years later by Z. Li, Y. Yu, and Y. Shi [23]. On the other hand,
the Jacobi trigonometric function expansions were studied by Kanjin and K. Sato [19,
20]. There are also some other papers concerning various Hardy’s inequalities in the
context of orthogonal expansions, see for instance [9, 22, 38, 39].

The author has already written a few articles on this topic. In [30] the system of
Laguerre functions of Hermite type was studied. Secondly, in [33] a general multi-
dimensional method of proving Hardy’s inequalities on H ! was introduced. It consists
in estimating integral kernels of a certain family of operators closely related to the
associated heat (or Poison) semigroup. The method was applied to two Laguerre sys-
tems: standard and of convolution type. We stress that in the latter case the underlying
measure is not Lebesgue measure. Furthermore, in the same paper sharpness of the
obtained admissible exponents was proved. Up to our knowledge, it was the first
explicit construction of such counterexamples known in the topic. On the other hand,
the long study of Hardy’s inequality for Hermite expansions were concluded by the
author in [31], where it was justified that the known exponent £ = 3d /4 (for p = 1)
is sharp. Finally, four Jacobi systems were also investigated, see [32].

In this paper we prove Hardy’s inequalities in frameworks of various orthogonal
function systems including generalized Hermite, standard Laguerre, Laguerre of Her-
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mite type, and trigonometric Jacobi expansions in H? spaces, p € (0, 1]. We focus on
systems associated with Lebesgue measure. The main reason behind this restriction is
that the atomic H? spaces are not well defined for all p € (0, 1) when the underlying
measure is only assumed to be doubling. On the other hand, if p = 1, then there is no
need for such restraint, see [33, Theorem 2.2].

Although we prove Hardy’s inequality for certain orthogonal systems, we are inter-
ested in establishing a general method which works in the known settings. Therefore,
we enhance the approach from [33] and adjust it for the case p € (0, 1]. It requires
estimating derivatives of an arbitrary order of the kernels R, (x, y) (see (2.3) for the
definition). In most cases it turns out to be not as difficult as one could expect once
we have analogous asymptotics for the functions composing the considered basis.
However, for the Laguerre expansions of Hermite type it is much more involved, see
the proof of Proposition 4.6. This result can be viewed in terms of the heat kernel, see
Sect. 4.3. Moreover, by some minor modifications we were able to add the parameter
s € [p, 2] in Theorem 2.4.

Another novelty of the paper is the unified approach to sharpness. Instead of finding
separate counterexamples in each setting, we construct one sequence of piecewise
constant atoms which, with an additional assumption, justifies that the admissible
exponent is sharp. In order to verify the added condition in the specific settings we
have to subtly bound the derivatives of the functions in orthonormal basis, see Lemmas
3.4,4.3, and 5.2. These estimates can be interesting on their own.

The main result of the paper is Hardy’s inequality for a general setting, see Theorem
2.4, and sharpness of the admissible exponent, see Propositions 2.5 and 2.6. This
theorem is then applied in several settings, see Theorems 3.5, 4.9, 4.13, and 5.9,
which generalize many results already known in the literature (see [3, 17, 18, 20,
23, 34, 35, 37]), but also answer some open questions (for instance sharpness of the
multi-dimensional inequality on H? for Laguerre expansions).

Organization of the paper is as follows. In Sect.2 we prepare the necessary tools
to prove Hardy’s inequality, like Hardy, BMO, and Lipschitz spaces. Moreover, we
enhance the method from [33] so that it works for H? spaces with p € (0, 1]. Fur-
thermore, we construct a counterexample to justify that the obtained formula for the
admissible exponent is sharp. In Sect.3 we discuss the standard Laguerre functions
and estimate their derivatives near zero. This allows us to apply the general theorem.
Section4 is devoted to Laguerre expansions of Hermite type. Similarly as before we
estimate the derivatives of the functions from the basis. However, this time it is not
immediate to obtain such bounds for the corresponding kernels R, (x, y). For that
purpose we need to use the integral formula for the Bessel function, see (4.9) and
Proposition 4.6. We also interpret this estimate in terms of the heat kernel. Moreover,
we deduce Hardy’s inequality in the generalized Hermite framework. Lastly, in Sect. 5
the Jacobi trigonometric function system is analysed. This time the analysis is focused
on the corresponding Poison kernels.
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Notation

Throughout this paper d > 1 denotes the dimension, u, v are real variables, and
x = x1,...,%0),y = (¥1, ..., yq) are vectors from RY. We use k, i, j for integers
belongingto N = N, U {0} ={0,1,...},andn = (n1,...,n4) € N9 for the multi-
indices. Let |n| = n1 + ...+ ng stand for the length of n. We denote the type indices
a and B with the same symbol in both situations d = 1 and d > 1. In the latter
case we use the same convention for || and |8] as for |n|. For u € R we denote the
largest integer not greater than u by |u], and the smallest integer not smaller than
u by [ul]. We write < for inequalities with non-negative entries which hold with a
multiplicative constant. It may depend on the quantities stated beforehand, but not on
the ones quantified afterwards. If X < Y and Y < X simultaneously, then we write
X~Y.

2 Hardy’s Inequality

In this section we develop a method of proving Hardy’s inequality on H? spaces,
0 < p < 1, associated with orthonormal expansions. This is a generalization of the
technique described in [33, Sect. 2]. However, Hardy spaces, even in the sense of
Coifman-Weiss [10], are not well defined for all p if the underlying measure is only
assumed to be doubling. Hence, we will focus our attention on orthogonal expansions
in L%(X), where X is a subset of R equipped with Lebesgue measure.

2.1 Hardy Spaces

Recall that given any Schwartz function & such that f @ # 0, one can define the
Hardy space H” (R?), 0 < p < 1, as the space of all distributions satisfying

sup | f * @] € LP(RY),

t>0

where ®;(x) = t~¢®(x/t). The LP-norm of the quantity above can be taken as a
(maximal) "norm" || - ||, g (ray in HP(R?). We remark that || - lm, 7rr (rey is indeed
anorm only for p = 1. In fact, H 1 (Rd ) is a Banach space. In general, if p < 1, then
I - ||§1,HP(R[,) is subadditive, hence d(f, g) = || f — defines a complete
metric on H? (RY).

A measurable function a supported in a Euclidean ball B is called a (p, g)-atom
for0 < p < landg € [1, co] N (p, oo], if it satisfies

P
g”m,H”(Rd)

1_1
/ a(x)x” dx =0 and “a”Lq(Rd) < |B|a_ﬁ,
B

where x" = x{'...x}, |n] < [d(p~! — 1)], and | B| denotes the Lebesgue measure
of B. In this paper we only consider (p, 2)-atoms, from now on simply called p-atoms.
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Every f € H”(R?) admits an atomic decomposition, namely there exist a sequence
of p-atoms {a;}en and a sequence of complex coefficients {2} jen such that

f) =) xjajx), D IalP < oo,

jeN jeN

where the former series is convergent in H?” (R9).
There are several possibilities to define "norms" in H?(R?), equivalent to
Il - llm, #r ey For our purposes we choose the atomic one, which is given by

1
1 arn ety = inf (32 12517) " @.1)

jeN

where the infimum is taken over all atomic decompositions of f.

Let X be a convex open set equipped with Lebesgue measure and the Euclidean
metric. There is a number of possible definitions of H? spaces on subsets of R?, see
for instance [6, 7, 25]. We select the following one (cf. Definition 3.1 in [7])

{F c H’(RY): F=0on (X)C}/{F € HP®RY): F=0on X}

We define H”(X) (in some sources denoted as HY (X)) to be composed of f = F|yx
with F as above.

In this paper we will work mostly with p-atoms. That is why our final assumption
on X (apart from that it is open and convex) is thatevery f € H?(X) admits an atomic
decomposition with atoms supported in X (the supporting balls are not necessarily
completely contained in X, but their centers are, cf. [16, Theorem 5.3]). We shall refer
to such X as the admissible domains.

There are many examples of such domains. For instance, special Lipschitz domains
(i.e. the set above a graph of a Lipschitz function on R?~!) or bounded Lipschitz
domains, see [7]. In our paper we consider atoms supported on balls, not cubes, so we
can also allow rotations of special Lipschitz domains. In our applications, the examples
of X shall be (0, co)? and (0, 7)?.

We set || f | ur(x) similarly as in (2.1). Observe that for f and F as above we have

IF ey < 1 lEP(x), 2.2)

since for F the underlying infimum is taken over a possibly larger set.

2.2 Dual Type Spaces

We need to give some meaning to the paring ( f, ¢, ) for ¢, from a given orthonormal
basis and f € HP”(R?) or, more generally, for f € HP(X). For this purpose we
shall make use of the duality relation between H” (R%) and BM O (R?) and Lipschitz
spaces.
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Recall that a locally integrable function f is in BM O (R?) (bounded mean oscil-
lation space) if

1
I fllBpmomdy = sup—/ |f(x) — fldx < oo,
B |BlJB

where the supremum is taken over all balls B ¢ R¢ and fz = |B|™! fB f is the mean
value of f over B. Observe that the expression above vanishes for constant functions.
In fact, it is usual to define BM O (R?) as the quotient of the above space by the space
of constant functions. Then BM O (R¢) with the norm || - | BMo(Rd) becomes a Banach
space. For more details we refer to the literature, see [14, 40].

Now let A,,(Rd), v > 0, denote the Lipschitz space. If v ¢ N, then Ay (RY) is
composed of all bounded functions g € C'lV) (R?) satisfying the condition

0" g(x + 1) — 9" g(x)]

llglla, ®dy = l1gllpoo(ray + max su < o0,
e FRED lnl=Lv] x,heI];{d |h|v—|_uj
h£0

where || denotes the Euclidean norm of 4. If v € N, then the above condition is
replaced by

|0 g(x + h) — 20" g(x) + 3" g(x — h)| e
||

lglla,®dy = gl foo(ray + max — sup
Il=v=1\ herd
0

for bounded g € C"~V(R?). Finally, for v = 0 we set Ag(RY) := BM O (RY).

It is known that BM O (R?) is the dual of H'(R?) (see [11, 12]), whereas for
H? (Rd ), p < 1, the duals are the Campanato spaces (see [4] and for instance [24,
p- 55]). Nonetheless, the Lipschitz spaces described above and H” (Rd), p € (0, 1],
have a duality property too (see [13, 14, 40, 43]). Moreover, they are easier to handle
and completely sufficient for our purposes.

The aforementioned duality relation is the following: if g € A, ( % -1 (R%), then for

the linear functional

T, (f) =/ g(x) f(x)dx,
R4

there is
T (OIS Ngla o w)IEp R
a(5-1)

uniformly in finite linear combinations of p-atoms f. Furthermore, since those linear
combinations are dense in H” (Rd ) (seee.g. [24, p. 54]), the functional T, has a unique
bounded extension to the whole H? (R%) with the same bound.

Now we show two properties of one-dimensional functions which are in A, (R).
The first result is known (see for instance [14, Corollary 1.4.11]), and for the second
we provide a short justification.
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Lemma2.1 Letv > Oand g € Ay(R). Then, for0 <k < [v] —1, g% e A,_r(R)
and

lg®la, «® < Collgla,®, g€ Au(R),

for some positive constant C,, independent of g.

Lemma2.2 Letv > 0andgy, ..., g4 € Ay(R). Ifv = 1, then we additionally assume
that glf, i =1,...,d, exist and are bounded. Then the function

g =gi(x) ... galra), x €RY,
belongs to A, (R%) and

lglla, @) S H lgilla, @)

where the underlying constant does not depend on g if v # 1, although it may depend
onmaxi<j<d g/ llLomw) if v =1.

Proof Obviously g € L (R?). Firstly assume that v is a non-integer positive number.
Let n be a multi-index such that [n| = |v]. Then, for & = (hy, ..., hg) € RY\ {0},
we write the difference 0" g(x + h) — 3" g(x) as

(8" 0 + 1) — g\ o) gy 2+ ho) - gV (v + ha)
+ " D (8 (2 + ho) — g8 (12) ey (3 + 1) - g0 (v + ha)
+...
(n1) (ng—1) (ng) d)
+8" () g (xa—1) (84 (xa + ha) — (xa)).

If n; < |n|, then by the mean value theorem
& @i+ ki) = 8" G| < il |8 | ey < Wil 8V

(ni

Obviously, if | ;| is large, then we could immediately estimate this by 2||g;
On the other hand, if n; = |n|, then

Nau ®-

8" i+ ) — " )| < M g |

Avflnl(]R).
In each case, by Lemma 2.1 we have
il e (i ki) — 8" )| < iy ey

Hence,

9" g (x + h) — 3"g(X)|
N l_[”gl”A ®)>

d
D xheRe h#0.

) Birkhduser
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Next, suppose that v € N is such that v > 2. Then, for |n| = v — 1, we estimate an
expression of the form

= " ey 4 ) - g0 (a4 ha) — 28" ) - g8 ()
+ ginl)(xl —hy)-... génd)(xd — hg)|.

Observe that if n is a multi-index which has at least two non-zero components, then
by Lemma 2.1 the expression above is estimated by a constant times [ [/_; Igilla, ®)-
Indeed, it easily follows from the mean value theorem, or more precisely, from the
estimate

|gl.('1i)(xi +hi) — g,'(ni)(xi)| = ”gi(niH)” Loy il = & ||AU(R)|hi|’

which holds since n; < v — 2. Otherwise, we can assume that n=(u-— 1,0,...,0).
Hence, denoting x = (x2, ..., x4), §(x) = ]_[f:2 gi(x;) and h = (ha, ..., hg), we
write

g Ve + g+ k) — 28"V eDE® + "V 0 = h)EE - h)
=" D +h)(EE+ 1) — 3@) + (8" @+ ) — 280 V)
+81" =)@ — gV = ) (EE - 26 - ).

Again, it suffices to use the mean value theorem and Lemma 2.1 to get the required
bound.

Notice that this argument is valid also for v = 1 provided that we assume that g’
exist and are bounded. This finishes the proof. O

Now, we define the Lipschitz (and BM O) spaces on X and prove similar duality as
on R4, We say that a function g defined on X belongs to A, (X), v > 0, if there exists
G € A,(RY) such that G ] x = & Note that this type of definition differs from the one
of HP(X), where we assume that the extension vanishes outside X. In this case this
is not possible because of the smoothness requirement. This choice of A, (R?) agrees
for p = 1 with the space BM Oy, dual to Hll, see [2].

Moreover, we set

lglla,x) =inf |Gl A, wra),

where the infimum is taken over all G extending g to R¢. With those definitions the
following lemma holds.

Lemma23 Ifp € (0,1]and g € Ad(%_l)(X), then for the linear functional

Te(f) :=/Xg(x)f(X)dx,

there holds
ITe (O] S IIgIIAd( 71)(X)||f||HP(X),

1
P
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uniformly in finite linear combinations of p-atoms f supported in X. Conse-
quently, Ty has a (unique) bounded extension to whole HP (X) such that |T,(f)| S

lgla, ., colfllarc), /e HP(X).
i

Proof We have already mentioned before that the claim is valid for X = R?. Fix
p € (0, 1]. Let f be afinite linear combination of p-atoms supported in X . We trivially
extend f to F € HP(R%) sothat F = 0on X¢. Hence, F is a finite linear combination
of p-atoms as well. Similarly, for any g € Ad(%_l)(X) let G € Ad(%_l)(Rd) be an

extension of g to R?. Then we have

| /X fg)dx| =| fR P0G dx| S ¥ bn Il e

< ||f||HP(X)||G||Ad(%7l)(]Rd)’

where in the last inequality we used (2.2). By taking the infimum over G we obtain
the required bound.

Now let f be an arbitrary element of H”(X) and F be the trivial extension to
HP(R?). For G € A d(s- l)(Rd) let fé be the linear functional on H”(R?) corre-

sponding to G so that there holds

TN SN lr @i Gla, @y F € HYRD.
.

We choose an extension G of g and define T, on H? (X) by T, (f) = fG (F) with the
notation as above. Hence,

Te (NI S IIFIIHp(Rd)IIGIIAd( )(Rd) < ”f”H!’(X)”G”Ad< )(Rd)-

1_ 1_
7! 7!

It suffices to take the infimum over G to get the claim. O

One comment is in order here. Note that T defined as in the proof of Lemma 2.3
does not depend on the chosen extension G. Indeed, let G| and G be some extensions
of g to R?. Fix f € HP(X) and let F € HP(R?) be its trivial extension to RY. We
chose an atomic decomposition of F with atoms supported in X, and set { Fi }xen to
be the partial sums of the decomposition. Now fix ¢ > 0 and choose N € N so that

&

I1F — FNnllgrwey < .
1G1lla ®dy T 11G2ll 5 (RY)
a(5-1) a(5-1)

P! 1
Observe that
TG, (F) — Tg,(F)| < |Tg,(Fn) — T,(FN)| + |Tg, (F — Fx)| + |Tg,(F — Fy)| S e,

since fGl (Fy) = sz (Fn) as Fy is a finite linear combination of atoms. This justifies
that 7, (f) does not depend on the chosen extension G.

Birkhauser
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2.3 Main Theorem

Fix p € (0, 1] and let {¢,},cne¢, Where ¢, € Ad(ifl)(X)’ be an orthonormal basis in
P
L2(X). We define the family of operators {R, },¢(0,1) via

R f =Y r"f on)en, 23)

neNd

where

(f> @n) =/Xf(x)s0n(x)dx.

Note that the integral makes sense for finite linear combinations of p-atoms. In order
to apply R, to all elements of H”(X) we need to give a more general meaning to
(f, ¢n). This can be done by the means of Lemma 2.3, namely

(s @n) = Ty, ().

Recall that Ty, is unique (see the comment below the lemma).
We assume that R, r € (0, 1), are integral operators

R f(x) = /X RGx. )£ () dy.

where the associated kernels R, (x, y) belong to C¥'(X) (as functions of x, for any
y € X) for P = |d(p~' — 1)], which means that all of their partial derivatives 97,
[n| < P, exist and are continuous. Then, at least formally,

Re(x,y) = Y e, (e ().

neNd

Moreover, we impose the following condition on R, (x, y): there existaconstanty > 0
and a finite set A composed of positive numbers 8 strictly greater thand(p~' —1)— P,
such that

"R, (x', ) .
Re(x,) — Xy C
H o |n|2<:13 mle gt ]_[(x, (2 PP ©
< Z(] _r)f(d+2k+25)y|x |P+8

JeA
uniformly in r € (0, 1) and x, x’ € X such that |x — x’| < 1/2. Since X is open and

convex, we stress that if R, (-, y) are in C*T1(X), then (C) with A = {1} is implied
by the easier estimate

sup 3% Ry (x, ) 2x) S (1 —r)~@H2nly,
xeX

Birkhauser
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uniformly inr € (0, 1) and for |n| = P + 1. Indeed, it suffices to use Taylor’s theorem.

Theorem2.4 Let p € (0,1], s € [p,2], and X be an admissible domain in R4,
Assume that the functions {¢,},cne belong to A act _1)(X), form an orthonormal
P

basis in L>(X), and the associated kernels R, (x, y) satisfy condition (C) with y > 0.
Then the inequality

©n)l
T e <o 4

holds uniformly in f € H”(X), where

E =

2 —p)sdy n 2- s)d‘

» 3 (2.5)

We remark that the above parameter y is not the same as y in [33, Theorem 2.2];
in fact if in the cited theorem p is Lebesgue measure (and hence N = d), then both
y’s are equal up to the multiplicative constant (d + 2).

Proof Fix p € (0, 1] and s € [p, 2]. Firstly, we prove the theorem for p-atoms, and
then we justify that it holds for all f € HP(X). Let a be a p-atom supported in a
ball B with the center in x’. Similarly as in [33] and [23] in the first step we use an
asymptotic estimate for the Beta function obtaining

Z (|na| fnnE ~ Z / P =0t a, g dr
2—s R
_ E-1 2Inl\ 2 sin| s % 5
S/0 (=n (Zr ) (Z(r la, gn)I%) ) dr

neNd neNd
1
s[a-r
0

1 @-pisdy _, s
= | (I=r)y » IR-allyz x, dr-

(X)

Observe that
11,
IRl < lalls y, < 1BIG5)°.

Thus, the claim holds if |B| > 1. On the other hand, by (C) we have
iRl = ([ [ ®evawa]a)
£ X BNX

([ A )

\n\<P

Z/ la()llx — x'|PH (1 =)~ <d+”’+25>ydx)

SeA

Birkhauser
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<Sa- r)—x<d+2p+za)y|B|s(¥+l—%)'
seA

Notice that by the definition of P and A there is £ +8 +1-— ; > 0 forevery § € A.
Hence,

Q—p)sdy 1

1
[ IRallyo, (=) 7 dr

1— |B\T 5,0 1 @-p)sdy )
<Z/ gy (FH175) (1 -y S asarang,
SeA
1_1 Q@=p)sdy
+f T S ey
1-|B| 24y

and this quantity is bounded by a universal constant uniformly in B such that |B| < 1.
The obtained estimate is independent of a. This finishes the proof of the theorem for
atoms.

In order to complete the proof let us now justify that the claim holds for any
f € HP(X).Fix f € HP(X) and its atomic decomposition f =} ;. A;a;. Denote
fr = Z]J':o Ajaj. Observe that for s € [p, 1] and J > I we have

|(fr = f1. ¢n)l*
2 (Inl+DE

J
= 2
neNd j=I+1
J
=I+

I(aj. gu)l*
1D TR
! XN: (In| +1)F

J

s/p

sy mrs( X wmr)
j=I+1 j=I+1

On the other hand, if s € [1, 2], then we use Minkowski’s inequality and get

[{f1 = fr.on)l* 1/5 aj, ¢n
<ZW> Z 1A |<Z(|nj|+l)5> Z Il

neNd j=I1+1 Jj=1+1

5( i ijl”)l/p-

j=I+1

This proves that {{(fj, On) Inend }JeN is a Cauchy sequence in £° (Nd, (|n|+1)_E), s €
[p. 2], soitis convergent there. Therefore, there exists {c, },ee € €5 (N, (In]+1)~F)

such that s
lim Z [{f7,@n) _gnl _
(In] +1)
eNd
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We justify that ¢, = (f, ¢,). The above equality yields

[(f7. @) —cul®

=0.
neNT (|| + 1)d+E (1 +lenly . (X))
a(5-1)

lim
J—o00

On the other hand, by Lemma 2.3 we see that

) I(fs = Foon)l
Jl>moo
neNd (|n| —+ 1)d+E (1 + ||<Pn||Ad(1_1>(X)>
P

I fr— f”i{p(x)“wn”id(L 1)()()
< lim !

~ Jooco Zd ’
"Nl + DFE T+ eally,
a(3-1)

and the latter limit is equal to zero. Hence, by the uniqueness of the limit we proved

that ¢, = (f, gu).
Finally, fix ¢ > 0 and J € N such that ||(f; — f, @)l

estimate for s € [p, 1]

S
B (nj41)-F) < & We

Z (el Z I(f = fr. en)l n Z |(f7. @n)l’

HE — HE 1HE
A (Il +DE T A (nl+ 1) (Il + 1)
! (@), on)l*
<e+ x| LAnrARSUAN

J
s/p
Se+ (X lr)
j=0
Se+ ||f||SHp(x)~

If s € [1, 2], then we proceed as before using Minkowski’s inequality. This finishes
the proof of the theorem. O

2.4 Sharpness

In this subsection we prove that the admissible exponent in Theorem 2.4 cannot be
lowered, provided that some additional assumptions on the basis {¢, },,c« are satisfied.
Infact, we focus only on the case ¢, (x) = ]—[?=1 ¢n; (x;). Therefore, we state our results
in the one-dimensional situation and then make an appropriate comment on the general
cased > 1.

) Birkhduser
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We remark that although conditions (2.9) and (2.12) may seem hard to meet, they
turn out to be very natural for the classical orthonormal bases, such as Laguerre,
Hermite, or Jacobi function expansions.

Firstly, we construct a one-dimensional auxiliary atom a. Let p € (0,1], P =
|_p_1 —1],A>1and0 < § < m. Consider the following function

—1, wue(,8A7h,
Cj, ue(GsA L, (j+1sA Y, j=1,...,P,

— = (P+2) 4 1/p
a(u) =2 A Cpit,ue ((P+1SA™H A7, 26)
0, otherwise,
where C;, i = 1,..., P + 1, are some constants to be determined. Note that if

|C;| < 2P*2, then we have the bound |ja||z~ < |B|~/?, where B = (0, A~1). If
additionally C; are such that f uka(u) du=0,k=0,..., P,thena is a p-atom.
Observe that by the equality

(i+1)§A™ 1
/ ukdu = —— ATF Ik (G 4 M i ki=0,..., P,
isA-! k+1

the cancellation properties come down to

P
>+ =i e (1= (P+ DO =85 k=0,....P.
i=1
2.7
This is a system of linear equations on Cyp, ..., Cpy1 and one can solve it using
Cramer’s rule. A calculation shows that

i
P+1\ ., 1 ,
Ci = el =1, P+ L
’ Z( ¢ >( o itw ! +

=0

Indeed, inserting this into left hand side of (2.7) we obtain

P i
k+1 L kL ke P+1y e
) ;((l-ﬁ-]) i )(Z( . )( 1) 1—E6>

=0
P+1
_ k+1 P+1> ll 1 >
+(1— (P +1)8) )(é( ;e T
P+1 k41
okl P+1>_ 11— (9)
=t 3 (M) )er i

P+1
P+1 .
3"“+Z$JZ< + )(—1)‘5—151.

=0 £=0
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Notice that for each j the inner sum vanishes since k < P and hence (2.7) holds.

We clearly see that |C;| < 2P+2 ¢ {1,..., P 4+ 1}. Thus, the function a defined
in (2.6) is a p-atom with this choice of C;.

Additionally, we will require a more precise estimate for Cp.1. Observe that

P+1 1
P+1 _ 1 _
Cpy1 = Z ( ‘ )(—1)6 lm = (—1)P/0 @ — P du.

=0
Since

-3

(—logu) < = < (—loguyu="@PHD e (0, 1), € (0, 2P +2)71),

it is easily seen that

|Cpal 87T 5€0,2P+2)7"). (2.8)

Proposition 2.5 Let the one-dimensional version of the assumptions of Theorem 2.4
be satisfied. Moreover, we assume that (0, ¢) C X for some ¢ > 0 and that there exists
T>2y(p ' =D 4+y— % such that for some 0 <m < M

212 1+2t -2y

1+ T
mk+ DT < lgew)| < Mk + DTu 7 2.9)

uniformly inu € (0,cK~2"), k < K and K € Ny, and ¢ (u) does not change the
sign in this interval. Then the admissible exponent in (2.4) cannot be lowered.

Proof In order to prove this lemma we construct an explicit sequence of atoms ag,
such that for E defined in (2.5) and any ¢ > 0

l{ak ., ¢}l
Zmsz, K€N+. (2.10)
keN

Let K € Ny and ag be an atom defined in (2.6) with A = K Zy /c and some
sufficiently small §. We will show that

2 1
lak o) Z K7 2777+ )T, 0<k<K. @.11)
This suffices to prove (2.10). Indeed, we get

|S

K
2y 1 2y(-p) 1
[{ak, ok) > Ks(]—f—i—r—y) st(f—%—)ﬁz)—lﬂ ~ K¢
(2—17)sy+%7€ ~

keN(k+1) » k=1
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Let us now justify (2.11). We have

Al

-~
/O ax W) du = Cpy f(

P (+1)8A~
wk<u>du+zcjf @i (u) du,
P+1)sA~! = joA~!

where Cop = —1. Thus, by using the fact that |C;| < 2P+2 0 < j < P, we see that
the absolute value of the quantity above is bounded from below by

1 142t42y 4M)/ m|CP+1 | 1+27+2y 142742y
A TV g 1’( L= ((P+D8) @ )= ((P+1)s) ¥ )
1+2V+2T(+> e (= (P+ 1)) ) = ((P + D)
! _l oy il m|Cpy1| _ 142t42y 142742y L2042y py )
SKF YT 1S (W((P—i-l) U e T )

Observe that by taking § sufficiently small we obtain (2.11) because of (2.8) and the
fact that t is large enough. O

Sometimes the condition (2.9) does not hold and hence Proposition 2.5 cannot
be applied in order to prove sharpness. However, estimate (2.9) can be replaced by
its analogue for the derivatives of ¢;. We describe this situation in the following
proposition.

Proposition 2.6 Let the one-dimensional version of the assumptions of Theorem 2.4 be
satisfied. Moreover, we assume that (0, c) C X for some ¢ > 0, g are (P + 1)-times
differentiable, where P = | p~' — 1], and that there exists T > 2y (p~' = 1) +y — %
such that for some 0 < m < M there holds

m(k 4+ DT w7 P < P ) < gy T E 2u1)

uniformly inu € (0,cK~2"), k < K and K € Ny, and (p,EPH)(u) does not change
the sign in this interval. Then the admissible exponent in (2.4) cannot be lowered.

Proof Fix p € (0, 1]andset P = [p~! —1]. Let K € N and ag be the same H” (X)
atom as in Proposition 2.5. We verify (2.11). Observe that we have for some &, between
u and (P + 1)8/A the following equality

A1 Al P () ((P+D)s )
fo aK(u)wk(u)du=/0 aK(u)(tﬂk(u)—jX:(:)(pk (J.!A )(u—(PZI)(S)J)d“

A 1 (P + 1)8y P+1
_ (P+1) _
—/0 aK(u)(P+1)!<pk (Eu)<u I ) du

The absolute value of the latter integral can be estimated from below by

A1 14272

[ 2 (piny (P 18N PH
AP 1 v ( - —)

/;P:I)S 2P+2 (P + 1),( + 17 u 2 du
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(P+1)8

_/ M &+ 1)F S'ﬁ’yzy (P+1)<(P+1)8 M)P+ldu
0 (P+ 1! ! A
> —Al/P(k+1)T<—(P+1)6 S (mlCr
“(P+ 1! A M2P+2
™! P+ )8y P+1 P+ 1S P+l
X (u—ﬁ) du — : (—( +D —u) du
(P+1)s A 0 A
A
+27— 1 142742
B (P+2)'((P+1)5) FE I AT
m|Cp1] _
(W’A‘ZPH(U’ + 17— (P4 157F2) = (P + 1)3)
+2‘t+2y
> (k4 1)TAT

for § sufficiently small, since we have (2.8).
Hence, we obtained (2.11), and this finishes the proof of this proposition. O

Remark 2.7 In the multi-dimensional situation, if the functions ¢, are of the form
on(x) = ]_[?:1 ¢n; (x;), then sharpness of E can be easily justified. We have to assume
that each @,;, 1 < i < d satisfies (2.9) or (2.12) with 7; > 2yd(p~' =D +y — %
Indeed, denote Ag (x) = ]_[fl: 1 ak (x;), where ak is the same as in Propositions 2.5
and 2.6, but this time with P = [d(p~! —1)]. Then Ak is a scaled p-atom in R?. By
(2.11), for any ¢ > 0, we have the following lower bound

Z |<AKv¢n)|S >KS ( ) sit| Z 1_[1 l(nl 1) i > K¢

E—g ~ T NE ~ s
< (Il + DE=* o (nl+D)

uniformly in large K, where [t| =171 + ...+ 14.

Remark 2.8 Notice that (2.10), generalized to the multi-dimensional situation, and the
uniform boundedness principle (in a stronger version than usual, see for instance [36,
Theorem 2.5]) imply that there exists f € H”(X) such that

5 1ot
= (nl+ DF

This is consistent with what was proved in author’s articles concerning Hardy’s
inequality on H', see [30-33].

3 Standard Laguerre Functions

The standard Laguerre functions {L }xen of order @ > —1 are defined on R, by

F'tk+1) \1/2 —un
o = 7 LY u/2, o/2 1
Ly () <F(k+ot+ 1)) T (we u®'=, u>0, 3.1
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where L (u) are the Laguerre polynomials (see [42]). Moreover, in the multi-
dimensional case L% (x) are defined as the tensor products of the one-dimensional
functions, namely

d
Lo =J]esen,  x=x.....x) e RY = (0, 00)%;

i=1

here « = (ai,...,aq) € (=1,00)% and n = (n1,...,ng) € N The system
{£%},, e forms an orthonormal basis in L?(R%, dx). The following estimates are
known for the one-dimensional standard Laguerre functions (see [26, p. 435] and [1,
p- 699])

(uk")¥/?, 0<u<l/k,
(uk’)~1/4, 1k <u<k/2,
« <
ILE@I S k' (K3 u =KV K )2 < u < (3K'))2, (3-2)
exp(—yu), 3k'/2 < u < o0,
where k' = max(4k + 2« + 2,2) and ¥ > 0 depends only on «.
These estimates imply for all @ > 0 the bound (cf. [41, p. 94]),
ICE ey S 1, keN.
Moreover, using the formula (see [41, p. 95])
1
(L) () = =k 2= 2L ) + 5 (5 = 1) £ ), (3.3)
u

where E‘f‘lH =0, for o € {0} U [2, 0o) we obtain
L) o,y Sk+1, keN.

More generally, for j € Nand @ € {0,2,...,2j} U (2j, oo) there holds (see [37,
Lemma 1]) . ‘
IO Ne@y S Kk +1)7,  keN. (34

Now we justify that £ belong to the Lipschitz spaces AV(R‘j_). For that purpose

we will indicate an extension £ € A, (R) of £ to RY. Following the idea used in
[39, p. 94] in the case d = 1 we define

d
Lo =[] Lo,
i=1
where, if ¢; is not an even integer, then

< LY (x), x; >0,
Eﬁf (x) = {O’m( & x; <0,
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and, if ¢; is an even integer, then
Loi(xi) = Ynix) Ly (xi),  xi € R

In the latter case the definition of £;' is naturally extended to the whole real line by
the initial formula (3.1), and ¥ is a smooth function supported in [—1, 00) such that
¥ =1onRy and ||1//(-’)||Loo(R) < 1, j € N. For an example of such ¢ see [39].

In view of [39, Corollary 2.4] we see that given v > 0 we have ﬁZj e A, (R) for
a; € [2v, 00). Secondly, if ¢; is an even integer, then [fo: € Ay(R) forall v > 0.
Thus, by Lemma 2.2 if p € (0,1) and @ € ({O, 2,...,2P}U [Zd(p’1 — 1), oo))d,
where P = Ld(% — 1), then Zg € Ad(%fl)(Rd), and therefore £ € Ad(%fl)(Ri).
In order to verify the additional gssumption in Lemma 2.2, we use the fact that for
o; € {0}U[2, co) the functions (/.ng )" exist and are bounded. Finally, for o € [0, 00)4
the functions £ lie in L®(R%), so they are also in BM O (R?).

The family of operators {R¥} associated with {£%}, .y« and given by

RYf = r"Nr L)Ly, re©,

neNd

is composed of integral operators, with the kernels of the form

RE(Gxe,y) = Y rMLi () Le ().

neNd

It can be explicitly written as the product of the kernels RY (x;, yi) (cf. [33, 42])

1/2
R iy = (=~ Pexp (= 22 oy Y (P i),
21—r 1—r
where (1) denotes the modified Bessel function of the first kind and order s. For
s > —1, itis a real, positive, and smooth function in R;..

In fact, we do not need this explicit formula for RY (x, y) to prove Hardy’s inequality.
However, for the completeness of the presentation we gave it above. On the other hand,
its analogue for Laguerre functions of Hermite type will be of paramount importance.

Now we are ready to verify condition (C) for the standard Laguerre functions. We
begin with the two following observations.

Lemma3.1 For j e Nanda € {0,2,...,2j} U (2], 00) there holds

<a-n"2 re).

su
5 L2(Ry)

u>0

oL RE )|

Proof We simply apply Parseval’s identity and (3.4) obtaining

sup < (Zﬂk o)) ”ioo(m))l/z cante
keN

u>0

ol R, )|

L2Ry) ~

Birkhauser



1 Page 20 0f43 Journal of Fourier Analysis and Applications (2024) 30:1

uniformly in r € (0, 1). Notice that interchanging differentiation with summation is
possible due to polynomial growth in k of || (Lg)(” lzo®,),0 <i < j(see(3.4)),and
the Lebesgue dominated convergence theorem. Analogous remarks apply to similar
operations in this and the next sections. O

Lemma3.2 Let j € Nand o € (2j,2j + 2). Then the estimate

DRI = 0L REW )| LS (=T 2

LRy ™

holds uniformly inr € (0, 1) and u, u’ > 0.
Proof Fix j € N. By [39, Lemma 2.2] we have for « € (2, 2 + 2) the bound

(LHOV @) = LHV | S k+ D lu—u 1>, wu’ >0, kel

Hence, Parseval’s identity implies

0 R ) — B R )|

1/2 .
L2(R,) = (Zrzk(k + Da) e — w2
* keN
S (U= r)T TRy — g |22,

uniformly in u, u’ € R4. O
Now we easily obtain the following proposition.

Proposition3.3 [fk e Nand o € ({O, 2,...,2k} U (2k, oo))d, then

|

uniformly inr € (0, 1) and x, x' € R4, where

RY(x, ) — Z B"Ra(x/ ) H(x' X))

1H~2k+25
1—r) — x/|FH8,
nd' LZ(RJ Z ( |

p=k " seal

AY = {1} Ul;/2—k: aj € 2k, 2k+2), i=1,....d}.

Proof Fix o € ({0, 2,...,2k} U (2k, oo))d. Ifforalli = 1,...,d there is o; ¢
(2k, 2k + 2), then apply Taylor’s theorem with the reminder of (k + 1)-th order, and
Lemma 3.1 with j < k4 1. On the other hand, if some «; € (2k, 2k +2), then proceed
as before but with k-th order reminder, obtaining

d
> o L (G0 RE @ = o R )i = "),
|n|= k i=1
where for every i € {1,...,d} the number &; lies between x; and x. Now for each

difference above we apply Lemma 3.2 if o; € (2n;,2n; + 2), or the mean value
theorem and Lemma 3.1 in the opposite situation. O
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Although the following lemma will be applied strictly to prove sharpness of Hardy’s
inequality associated with the standard Laguerre expansions, we stress that this is an
interesting result and possibly it could be widely used in other problems concerning
the functions L.

Here and later on we use the following convention: A >~ — B for positive B means
that A is negative and (—A) ~ B.

Lemma3.4 Leta > 0and j, € € N be given. There exists a constant ¢ > 0 such that

LYW | e+ Dt if £z,
dud ue2=C = | (=1)I ke + )P e <,

uniformly ink € Nand u € (0, c(k + 1)™1).

Proof Fix ¢ € N. We will apply the induction over j separately in both cases. Note
that the claim holds for j = O (this is a known result, see [26, pp. 435, 453]). Suppose
that it is valid for some j < ¢ and we will justify it for j 4+ 1. Observe that by (3.3)
we have

A L 4 L@ G pd LN
duj+1 yo/2—t dul ye/2—t+1 2 duj ye/2—¢ dul yla+1)/2-¢

Notice that if £ > j + 1, then the components on the right hand side of (3.5) are of
the sizes: (k + 1)/ 2ut=7=1 (k + 1)*/?u*=7, and (k + 1)*/?>T1u*~7  respectively, and
the first one is the dominating.

It remains to justify the situation j > £. Note that the case j = £ is covered by the
first part of the proof. Let us assume that for some j > ¢ the estimate holds. Then the
second and the third summand on the right hand side of (3.5) are of the sizes (and the
signs): (— 1)/~ (k + 1)/~ and (—1)7 1 (k 4 1)¢/>H1+7 =€ respectively. On
the other hand, the first component we decompose and get

&, Lfw i = Lie 1 LEw o czil‘(u))
dul  ue/2—t+1 T 7 g,i-1 we/2—t+2 o ya/2—¢ ulet+/2—t )"

Again, the first summand can be decomposed, and the two remaining are of the same
size (and sign) as before. Moreover, note that the i-th decomposition of the first result-
ing component brings the multiplicative constant £ — i 4 1. But this proves that the
component vanishes, since j > £. Hence, in this case (3.5) is of the size and the sign
(= 1)/ = (k 4 1)%/2+1+J=¢ This finishes the proof of the lemma. o

We are now ready to prove Hardy’s inequality associated with the standard Laguerre
functions.

Theorem 3.5 Let p € (0, 1), s € [p, 2], and denote P := Ld(p*] —1)]. For
ae((0,2,....,2PYUQd(p~" = 1), 00))"
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there holds

B

s p(md
T DE S Wy € HIED,

neNd

where E = d + sd(p_1 - 1), and the exponent is sharp.

Proof Proposition 3.3 ensures that the appropriate version of (C) holds for the standard
Laguerre functions with y = 1/2, and hence by Theorem 2.4 we obtain the associated
Hardy’s inequality.

On the other hand, by Lemma 3.4 (with j = £ = 0) we have

m((k + D)™ < £2u) < M((k + D)2, 0<u < % (3.6)

where m, M, ¢ > 0. Observe that, since y = 1/2, condition (2.9) holds for {L} }xeN

with T = «/2. Hence, by Proposition 2.5 sharpness of the exponent E in the one-

dimensional case follows fora > 2(p~! —1). Moreover, if « is an even integer smaller

that 2(p~! — 1), then we apply Proposition 2.6 with = P 4 1 and Lemma 3.4 (with
{=oa/2and j =P +1).

This reasoning can be adapted to the multi-dimensional situation, see Remark 2.7.

O

4 Laguerre Functions of Hermite Type

The Laguerre functions of Hermite type ¢p, k € N, are defined by the following
relation with the standard Laguerre functions

2Tk + 1)

—)1/2Lg(u2)e—“2/2u“+1/2, 4.1
Ck+a+1)

o) = VauLg ) =

where u > 0 and @ > —1. In the multi-dimensional situation ¢}, (x) are defined as the
tensor products of (pffl’ (x;). The system {5 },,cne 1s an orthonormal basis in LZ(Ri).
The functions ¢ are bounded on R for « > —1/2. Moreover, by (4.1) and (3.2)

we have
lof ey S k+D7Y12 0 keN. 4.2)

The following recurrence formula for the derivatives of ¢}’ holds (see [41, p. 100])

200 + 1

@) (u) = =2k (u) + ( — u) o (u), (4.3)

where (pf‘lH = 0. Hence, for « € {—1/2} U [1/2, 00), by using (4.1) and (3.2) one
obtains
[ @) [ @, S K+ DY, kel

We discuss the boundedness of higher order derivatives in Lemma 4.4.
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4.1 Lipschitz and BMO Properties

Obviously, 5 € BM O(Ri) fora € [—1/2, oo)d , since ¢ are bounded. In order
to justify that ¢ € AU(]Rf{_) for v > 0 and certain «’s, we shall consider the one-
dimensional situation, and then apply Lemma 2.2. To prove that ¢ € A,(R;) we
will construct an extension ¢; of ¢ to R, such that g7 € A, (R).

For o 4+ 1/2 ¢ N we simply put

- oY (u), u >0,
¢’k(”)={0f‘ —

Mind that ¢ € C le+1/2](R). On the other hand, if o 4 1/2 is an integer, then we can
naturally extend the definition of ¢ (4.1) to the whole R, and put

Pruw) =), wuek,

In this case ¢; € C*(R).
Our first aim in this section is to prove the following lemma.

Lemmad.l Leta > —1/2. Ifa+1/2 ¢ N, then ¢y € Ay(R) for0 <v <a+1/2,
whereas ifa +1/2 € N, then ¢p € A, (R) forall v > 0.

Notice that for « € {—1/2} U [1/2, co) the functions (go,‘;‘)’ exist and are bounded,
and observe that Lemmas 4.1 and 2.2 yield that for a given p € (0, 1] and

oe(l-

where P = |d(p~! — 1)], we have ¢ € Ad(lfl)(Ri).
P
For the proof of Lemma 4.1 we need some auxiliary results.

,%,...,P—%}U[d(%—l)—%,oo))d,

N =

Lemma4.2 Leta > —1/2 and j € N. Then, for any ¢ € (0, 1], we have

' H2=j (k4 1)/2, y € (0 c(k + 1)_1/2)
axDpnl < JuPI G+ ,u € (0, ;
[CORUCHIRS {(k+1)f/2“/4, ue (ck+1D7121),

uniformly in u and k € N.
Proof Fixc € (0, 1]. We apply the induction over j. For j = 0 the estimates are known

(see [30, (1)], and for the original result [1, p. 699] and [26, p. 435]). We assume that
the claim holds for j € N and prove it for j + 1. By (4.3) we have

(i d’ w 200+ 1 N
(@)D W) = ﬁ( — 2V () + ( T u)gok (u)).
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Thus, |(<p,‘j)(j +1)(u)| can be estimated from above by a constant multiple of

J
Vi@ rh P @] + @)YV @] + ul (@) )| + > u @)Y @)
=0

9

where we set (go,‘z‘)(_l) = 0. Finally, by the inductive hypothesis we obtain
GOV @] S a2 e D2 (ke D+ ) ST e+ D,

uniformly in u € (0, c(k + 1)—1/2), and
}((p,‘j)(Hl)(u)’ < (k + 1)(j+1)/271/4’

uniformly inu € (c(k + 1)~V 2 1). This finishes the proof. O
The following result is an analogue of Lemma 3.4.

Lemma4.3 Leta > —1/2and j, £ € N be given. There exists a small constant ¢ > 0
such that there holds

Q) (k+D*2ut, if €= ],
—_— : . . _(_ i—0
dud pa+12—t (=) 2V (ke 4+ /2707, . if <],

uniformly ink € N and u € (0, c(k + 1)~1/2).

Proof The proof is similar to that of Lemma 3.4, therefore we will only sketch it. Fix
£ € N.If j = 0, then the estimate is well known (cf. (3.6)). For j > 1 we use the
induction over j. By (4.3) we have

W
4.4)
Note that if j + 1 < ¢, then the first component on the right hand side of the above
identity is of the greatest size, (k + 1)%/2u*~/=1, and the others are strictly smaller.
This proves the first bound in the lemma.
On the other hand, if j > ¢, then we consider the (j + 1)-th derivative as in (4.4).
Notice that the second summand on the right hand side of (4.4) is of the size (and the

sign)

ditt o (u) =edj of (u) d/ o (u) VR

dui+1 yoe+1/2—¢ dud wet12=0+1 "~ gy ye—t=12 ~

j—t—1

ol

) "_/—(—1—‘ I—(—1)J—t-1
a2+ 5 R

and the third

j—t—1

RS S PR S I A
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We see that the latter is the leading one. Moreover, by the simple identity (%] +1=
(%1, i € N, it can be written in the following form:

j+1—¢

(—1)( : W(k +1)

jtl—t CpiHl—t
o/2+[ —‘ul st

Furthermore, the first component in (4.4) can be decomposed similarly as in the proof
of Lemma 4.3, and it gives the same growth and the size as the remaining summands.
This finishes the proof of the lemma. O

Lemma4.4 Let j € N. For o > —1/2 there holds

[0y S EH DO ke, 45)
o ,00

whereas fora € {—1/2,1/2,...,j —1/2}yU (j — 1/2, 00) there is

” (@ Hmom |5 ket D©=D2 - eN. (4.6)
+

Proof In order to prove (4.5) we justify an auxiliary result: for every £ € N there is

sup_[u (o) )] £ (k4 DOUFO-D/2,
u>1/2

We use the induction over j. For j = 0 we simply apply (4.1) and (3.2). Now assume
that the claim holds for some j € N. Observe that by (4.3) we have for any £ € N

W] = ot~ 2vrgw + (2L ) w)

J

< (k+ 1)(6(1+5)+5)/12 + Z ulm it |(<P/?)(l)(u)| 4+ yttl |((,010;)(1)(M)|
i=0

< (k4 1)6UFO+/12,

uniformly in k € N and u > 1/2. This proves the auxiliary claim. Notice that for
£ = 0 we obtain (4.5).

To justify (4.6), it suffices to verify that for the considered « the required bound
holds on the interval (0, 1/2). In fact, this is true even with the smaller exponent
(2j — 1)/4. Indeed, if « > j — 1/2, then we invoke Lemma 4.2, whereas in the case
Jj > a+ 1/2 € N we additionally apply Lemma 4.3 with £ = « + 1/2. This finishes
the proof of the lemma. O

Lemma4.5 For j e Nanda € (j — 1/2, j + 1/2] there holds
(e ) = (@)D W] S e+ DFT ¥ — i |+ (k + )P — o |42

uniformly ink € Nand u, u’ € (0, 1).
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Proof Fix 1 > u > u’ > 0. Observe that (4.3) and Lemma 4.2 permit to estimate

200+ 1
2s

) ) — (i) )| = | / jTjj(— ke o) + (5 = 5)e ) ds|

J
< (m(wgﬂw(m+;s+1|<¢g)w><s)}

+ @)UV + 5|V s)]) ds

J u
<u—u|(k 4+ DHEHDA 4 2/ sT @0 s) | ds,
=0 u’
where we set (go,‘j)(_l) = 0. Now notice that Lemma 4.2 implies

u
/ sT @YU (s)| ds
u/

sTE @O ()| ds

/[u’,u]ﬂ[(k—i—l)—'/z,l)

+ f sT Y ()] ds
[’ ,ulN(O, (k+1)~1/2)

u
Sl —u|(k+ DDA 4 (k4 1)“/2/ 59120 g

u

Finally, since « € (j — 1/2, j 4+ 1/2], we see that

u
/ Sa—l/Z—] ds S lu — u/|a+1/2—].
u

/

Combining the above gives the claim. O

Proof of Lemma 4.1 We verify that the functions ¢} satisfy the condition in definition
of Ay(R). If @ + 1/2 is an integer then the claim follows from (4.6). On the other
hand, if @ + 1/2 ¢ N, then we apply (4.6), (4.5), and Lemma 4.5. O

4.2 Hardy’s Inequality

The kernels of the operators Ry (cf. (2.3)) associated with the Laguerre functions of
Hermite type, are defined by

RE(e,y) =Y ref(n)es (), (4.7)

neNd

and, in the one-dimensional case, admit the explicit form (cf. [42])

2(uv)!/? 11+r 2rt/?
Rf‘(u,v):mexp —El_r(uz—i—vz) Iy I uv ). (4.8)
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Unfortunately, it is highly complicated to proceed as in [30] while estimating deriva-
tives of RY of order higher than 2. The cancellations between the underlying Bessel
functions are not well understood yet. Therefore, we choose an approach similar to
the one applied in the case of the Jacobi expansions [32]. This method relies on the
following formula

1
I,(z2) = z“/ e YTy (ds), largz| < 7, o > —1/2, 4.9)
-1

where Iy in the case @ > —1/2 is a measure with the density given by

(1 —s2)*~12ds

[y (ds) = )
)= e G 12)
whereas for « = —1/2 it is an atomic measure of the form IT_;, = %
Hence, by (4.8) we have for o« > —1/2
2a+l(uv)a+l/2
R} (u,v) = WE;X(M, v),

where by EY (u, v) we denote

_ 1 o 2va—1/2
exp( 11+r( —u)?— 1= uv)/ exp(— 2\/;ruv(s—i-l))u.
_1 -

(14 /r)? 1 VAT (e +1/2)
(4.10)
Note that if « = —1/2, then
172 _ 2z 11+ ) 2/ruv
(u,v) = ﬁmexp< 512 + v ))cosh( ) 4.11)

Now we have the following proposition.

Proposition4.6 For j e Nanda € {—1/2,1/2,...,j —1/2}U (j — 1/2, 0c0) there
holds

1+2)
2R)<(1—r)—%, re (0, 1).

(R,

u>0

Proof Observe that Parseval’s identity and (4.6) yield

o R, )|

sup
u>0

1/2
—2k
S (22 I P ngy) S L

uniformly in » € (0, 1/2]. Hence, we can focus only on the case r € (1/2, 1).
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We shall firstly consider the situation when @ > 1/2 and j € N4 (for j = O see
[30, Lemma 3.1]). Note that for £ € N such that £ < j we can write afE‘," (u, v),
where E¥(u, v) is defined in (4.10), as

! 1 1—r 27
[Lon(-gimre-w T T e )
¢ — (1—r)?
x k;ﬂ e (=7 (= v + RN G 1)) (

k+2i=¢t

Y @),

where ci’ ; are certain constants (cf. [29, p. 812]). Consequently,

uEf‘(u,v)‘

1
x/ exp(— 1{}Truv(s —+ l))(l — sHe1/2 g

-1
< (1= 1) exp < _ % (vl—_ur)2> /_11 - ( ~

uniformly inu, v > Oandr € (1/2, 1), where in the last inequality we used the simple
estimate

{;ruv(s + 1))(1 +5)*" 12 gs,

min(@+b,b"HY<a+1, a,b>0. 4.12)

The latter integral is bounded by a constant. On the other hand, again uniformly in
u,v>0andr € (1/2,1),

/_1 exp ( — lxi;ruv(s + 1))(1 +5)%7 V2 ds < <1u—vr)a—1/2 /000 exp(— I\fruvs) ds

<1 _r>a+1/2
=~ .

Now we are ready to establish the bound for 8,{ R (u, v). Combining the above we
obtain

<

P patlya+1/2 g ot a1
ol R 0| = S WH}: ) L, )] |

S - r)f(jH)/z(ﬂ)aH/z min (1, (1 — r)a+1/2> exp ( — 1 e u)2>

1—r uv 2 1—=r

XZ( lfr)
uv ’ >a+l/zexp(_ l(v—u)z)

S (1= )72 min ( -
= 2 1—r

Cl

u

max
4
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where £ € {0, ..., j}if j <a+1/2,andl € {j — (¢ + 1/2),...,j}ifa+1/2is
an integer and j > « + 1/2. Observe thatif u > /1 — r, then

NG —u)z)'

[0 R . 0] S (1 =)~ exp (= S5

In the other case, u < /1 — r we estimate firstly assuming that j < o + 1/2

|9 RE (u, v)|5(1—r)—(j+1)/2(1”__”r)fexp<_1(v—u)2>< l—r)j

2 1—r u
iy —u|+u\J 1 (v—u)?
<(1- <1+1)/2(|” ul ) (__ )
Sd=r) Jior ) P\
2
<(1- r)—(j+1)/2 exp ( _ lu)
4 1—r

If @ + 1/2 € Ny is smaller than j, then analogously

; i uv \a+l/2 1 (v—u)?\ //T—r\etl)2
0 R e, )| S (1= )R Fexp (- 5 )()

2 1—r u
. — atl1)2 1 (v —u)?
<(1- r)*(JJrl)/z(W) exp ( _ _u>
V1 —r 2 1—r
2
<(1- r)_(j+l)/2 exp ( _ 1@)
4 1—r

Combining the above we arrive at

1w —u)z)’

0 R e, )| S (1 =)D Pexp (= 2555

w,v >0, refl/2,1).
(4.13)

Hence,

%(Ul_—b:)2> dv)l/z

u>0

sup |9 Ry (. ) | 2 g, S (1 =)~ YFD 2 sup (/ exp ( -
u>0 Ry

~ (- r)_(2j+l)/4,

(4.14)

and this completes the proof of the proposition for o > 1/2.
Now we move on to the case @ < 1/2. In fact, we need to consider only « = —1/2
and j € N, since for @ € (—1/2,1/2) only j = 0 is allowed, and this was already
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done in author’s previous paper (see [30, Lemma 3.1]). By (4.11) we obtain, for some
constants ¢j ; and & ;, the following equality

1/z(u v) = : (ex (_112(”_”)2— s ”v_4ﬁuv)
S \PUT 2 (14 /1) L—r
jo(l1+r 1—r 4 Nk 14N
chk,i(ﬁ(“ v)+(1+ﬁ)2v+1—rv) <l—r)
11 1—r
o (=57 e

Xza,g,,<1+ w—v >+(l+—[r)2 ) (F))

where in both sums the summation goes over all k, i > O such that k +2i = j. Hence,

JTr —w?
= e (-3

<(1— r)_(.H-l)/Z(% n 1>f exp( ;(vl—_uf)

0] R, v)| < (1 - r)—<i+1>/2(1 +min (

~

iy 1(v—u)2
A= U e (= 2 m),

where in the second inequality we used (4.12).
The last step is the same as in (4.14). This concludes the proof of the proposition.
O

Before we state Hardy’s inequality associated with the Laguerre functions of Her-
mite type we prove some auxiliary results. The next one complements the estimate
from Proposition 4.6. Essentially, it says that the mentioned bound holds also for
ae(j—3/2,j—1/2),j € Ny, but only away from the origin.

Lemmad.7 If j e Nandoa € (j —1/2, j + 1/2), then

342j
2Ry SA-=-r)y 4, re,1).
"

o R, )|

u=1/2

Proof Tt suffices to proceed as in the proof of Proposition 4.6 with some minor changes.
For r € (0, 1/2] use (4.5) instead of (4.6). If r € (1/2, 1), then we arrive at

= 1—r u
uv at1/2
X min( 1)
1—r
Jj+1 2
VT = ry\i+l—t V1 —=r\t 1 (v—u)
(j+2)/2 _
-n" Z( ) (1+ ” )e"p< 2 1-r )

) 1 (v—u)?
5(1—r>*<f“>/2exp(—5(" "),

1—r
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since +/1 —r < u. Then we estimate like in (4.14). This finishes the proof of the
lemma. o

Notice that for j e Nand @ € (j — 1/2, j 4+ 1/2) Lemmas 4.7 and 4.5 yield

|93 RS ) = 9 RE )] o

<SA=r)" =+ (A=) F = a2, (4.15)
uniformly inr € (0, 1) and u, v’ > Osuch that |u —u’| < 1/2.Indeed, if u, u’ € (0, 1)

then we apply Lemma 4.5 and Parseval’s identity. On the other hand, if u, u’ > 1/2,
invoke the mean value theorem and Lemma 4.7.

Proposition 4.8 Ifk € Nanda € ({—1/2,1/2, ...,k —1/2}U (k — 1/2, 50))", then

|

uniformly inr € (0, 1) and x, x' € Ri such that |x — x'| < 1/2, where

Rg(x’-)— Z anROt(x’ ) l_l(x[ _ l{n,'

!
n - n
o 1! d!

d+7k+26
) <Y a-n" x — ¥,
e A"

AY = (1) Ufoey +1/2—k: i € (k—1/2,k+1/2), i=1,....d}. (4.16)

Proof The proof is analogous to the one of Proposition 3.3, thus we only sketch it.
Observe thatif ; ¢ (k—1/2,k+ 1/2) foralli =1, ..., d, then the claim, with
= {1}, follows from Taylor’s theorem and Proposition 4.6 applied for j = k + 1.
On the other hand, if o; € (k — 1/2,k + 1/2) for some i then we apply Taylor’s
theorem, Proposition 4.6, and (4.15). Then the set A} is as in (4.16). We omit the
details. O

Now we are ready to state Hardy’s inequality associated with the system of Laguerre
functions of Hermite type.

Theorem 4.9 Let p € (0, 1), s € [p, 2], and denote P := Ld(% —1)]. For

e({=1/2,1/2,...,P—1/2Ud(p " = 1) = 1/2, oo))d,
there holds F o
Z G DE S W ey € HI®D,
where E = d —|— (2 — 3p), and the exponent is sharp.
Proof Similarly as in the proof of Theorem 3.5: the inequality follows from Theorem

2.4 and Proposition 4.8 (here y = 1/4), whereas sharpness is a consequence of
Propositions 2.5, 2.6, Lemma 4.3, and Remark 2.7. O
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4.3 Heat Kernel Estimates

In this article we estimate the kernels R, (x, y) in various contexts. In the case of the
standard Laguerre functions it was very easy and, as the reader shall see, the same
is true for the Jacobi expansions. On the other hand, here the situation was more
involved. In Proposition 4.6 we have obtained a result which can be interesting on its
own, especially when expressed in terms of the associated heat kernel.

Recall that the heat semigroup {7*};>¢ is spectrally defined by

Tof = ) e MR r ot f e LPRY).

neNd

It is known (cf. [28, p. 403]) that T; are integral operators:

W= [ Grensmdy, f e 2@, xRl

+

where
Gy (x,y)= Y e !Wnt2el2dgu ) g (y),

neNd

and explicitly (cf. [21, (4.17.6)])

d
. B 1 X Vi
G?‘(x, y) = (sinh 2¢) d exp ( — E COth(21‘)(|JC|2 + |y|2)> E VXiYily; (sinl}i)l%)‘

Observe that by the definition of GY and (4.7) we have the following relation
Gy (x,y) = e 2 IHDRY (x, ).

Hence, the results obtained for Ry (x, y) can be easily transferred to G¥(x, y). There-
fore, by (4.13) we have the following one-dimensional estimate. By an obvious
modification, this lemma can be generalized to d > 1.

Proposition4.10 If j e Nanda € {—1/2,1/2,...,j —1/2}U (j — 1/2, 00), then

. _ £t (u—v)2
|0 G (u, v)| < r exP<_cT>’t51’
efzt(aJrl)efc(ufv)z, 1> 1,

uniformly in u, v, t > 0 and for some positive constant c. Moreover,

2j+1
i TTa 1
sup |97 G (u, ) S sy TSV
u>p0 |9 G HL2(R+) o2t >
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4.4 Generalized Hermite Functions

In this subsection we focus on the generalized Hermite function system. This basis
was already studied in the context of Hardy’s inequality on H'(R¢) in [23, 31]. Due
to its relation with the Laguerre expansions of Hermite type, we essentially deduce
the desired results from that obtained above.

The generalized Hermite functions h*, k € N, of order A > 0 on R are defined via

_ —1/2
() = (=1} 2712r 12 (),

_ 1/2
Wy ) = (1% 27 2sgn(uypl T/

(lu]), wueR,

where for u = 0 we naturally extend the definition of ¢’ from (4.1). In higher dimen-
sions these functions are defined as tensor products, similarly as in the previous
sections. The system {ht}, e forms an orthonormal basis in L2(R?). We remark

The generahzed Hermite functions {h }kEN are bounded (cf. (4.2)), and therefore
they are in BM O (R). Moreover, for 1 € {0,2,...} U [p’1 — 1, 00) they belong to
the Lipschitz spaces A1_(R), see [22, Proposition 1.2]. Hence, by Lemma 2.2 in

P

the multi-dimensional situation we see that hﬁ e A ak _1)(Rd ) for A € ({0, 2,...1uU
P

[d (p_1 —1), oo))d and p € (0, 1] (note that the additional assumption in the lemma
is satisfied).

The family of kernels R, (u, v) associated with the generalized Hermite functions,
in the case d = 1, is given by

RY(u,v) =Y r*hp )iy (v).

keN

We use the symbol R instead of R to distinguish this kernel from the one associated
with the functions {¢} }xen, which will be of use in this subsection. Notice that

R, = 3 (R 0ul ) 4 senoyr R ul w), @)

where r € (0, 1) and u, v € R. We naturally extended the definition of R, MELZ for

u = 0 and v = 0. Observe that if A is an even integer, then Rﬁ‘ € C*°[R x R).
Moreover, given j € N we see that R} € C/(R x R) for A > j.
Fix j e Nand A € {0, 2, ...} U(j, 00). For u # 0 we have

(sgnu)’
2

i B 1/2 1/2
0 R} (. v) = (o0 RS2l 10D + senowyra] R (ul, 1uD ).

whereas for u = 0 we see that
R0, v) = —afR 1200, o)),
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where in both cases r € (0, 1) and v € R. In the latter equality we naturally extended
the formula from (4.8) to u = 0.

Lemma4.11 Let j € N. For > € {0,2,...} U (j, 00) we have

sup | 3 R (u, -)||L2(R) < (1= )24
ueR

uniformly inr € (0, 1). Moreover, for A € (j, j + 1] we have

Wiz € A=nT2 u—u |+ 1 =) D —u' 7

|0 R, ) — 07 RE ',
uniformly inr € (0, 1) and u, u’ € R such that lu —u'| < 1.

Proof The first part is implied by (4.17) and Proposition 4.6. For the second one see
(4.15). O

Now the version of (C) corresponding to the generalized Hermite setting follows
easily. Then we immediately obtain the associated Hardy’s inequality.

Proposition 4.12 Ifk € Nand A € ({0,2, ...} U (k, oo))d, then

uniformly inr € (0, 1) and x, x' € RY such that |x — x| < 1/2, where

a7 R)”(x 7d+2k+28
(x,) — Z il ]‘[(x, O S a-n — x|,

|n|<k SeAy

A ={1}Ufr —k: A € (kk+ 1))
Theorem4.13 Let p € (0, 1), s € [p, 2], and P = |d(p~ ' — 1)]. For
€ ({0,2,....2[P/2} U d(p~" = 1), 00))"
there holds

h)“ s
Z <|j]+ 1>)'E Uy f € HPERD,

where E = d + (2 — 3p), and the exponent is sharp.

Proof The inequality is a consequence of Proposition 4.12 and Theorem 2.4 and sharp-
ness follows immediately from sharpness of the exponent in Theorem 4.9. O

We remark that for L. = (0, ..., 0), that is in the case of the Hermite functions, the
result agrees with the ones already known in the literature ([35] for d > 2, [23] for
d=1).
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5 Jacobi Trigonometric Functions

The Jacobi functions ¢"*, k € N, a, B > —1, are defined by

5 Pl@).  6e ), (5.1

B @ N\a+1/2 O\B+1/2
o (9)=(sm§) (c )

where
PEF©O) = P POP (cos ),

and P,f[ # denotes the Jacobi polynomial of type o, f and degree k. Here cg’ﬁ is the
normalizing constant,

B ((2k+a+ﬁ+ DIk +a+ B+ DI+ 1))1/2
L Tk+a+ DIGk+B+1) ’

where fork = Oand o+ 8 = —1 we write 1 in place of 2k+a+8+ 1) (k+a++1)
in the numerator. Note that cg’ﬂ ~ (k+ '2, k € N. The system {d’l?’ﬂ}keN is an
orthonormal basis in L2((0, r)). In higher dimensions ¢Z"ﬁ (0) are defined as tensor
products of ¢’ o).

We are now interested in the L°° norms of the derivatives of gb,‘:’ﬁ in various ranges

of the parameters « and $ and on different subintervals of (0, ). Firstly, recall that
for a, B > —1/2 there is (see [27, (2.8)])

((k+D6) 2 0<0<®k+17,
6P )] < | 1. k+D'<fsa—G+D (52
(k+ 1) 7 —k+ 1) <0 <7
Hence, for o, 8 > —1/2

165 P o S 1, kel

Secondly, we make use of the formula (cf. [42, (4.21.7)] or [8, p. 364] after an obvious
simplification)

2

2a4+1 6 28B+1 0
(icot P+ tanz)q&g’ﬁ(@),

(5.3)

d
%qs,‘j‘*” 6) = ko sy P 0) +

where we put 9“7 = 0 and ky 5 = A @ + B + D). Observe that (5.3) and
(5.2) give fora € {—1/2} U [1/2, 00) and B > —1/2 the bound

Ol,ﬂ / <
| @™ ||Loo(0’2?n)~(k+l), k €N,
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and symmetrically fora > —1/2 and g € {—1/2} U[1/2, 00),
[ @) | iozmy S K +D. kN

For similar estimates for higher order derivatives see Lemma 5.3.
We will frequently make use of the formula

¢,‘j‘*’3(9) =¢, (r—0), 6¢€(0,m). (5.4)

5.1 Lipschitz and BMO Properties

Let us firstly give some auxiliary lemmas and justify that the Jacobi functions belong
to the Lipschitz spaces A, ((0, 7)) for certain v.

Lemma5.1 Let j € Nand a, B > —1/2. Then, for any ¢ € (0, 1], we have

0oT12= (k + D)*+12 9 € (0, c(k + DY),

@By())
|(¢k )j (9)| S {(k+1)], 0 e [C(k+1)71, ZTT[)’

and

OPFI2=i(k + P2 0 e (m — clk+ D7 ),

B (j)
|(¢k )](e)ig{(k—i—l)j, Qe(%,n—c(k—l—l)*l],

uniformly in 0 and k € N.

Proof Notice that by (5.4) it suffices to verify the first estimate. We use the induction.
For j = 0 see (5.2). Assume that the claim holds for j € N. By (5.3) we have

eI O) = ke sy P THY O)

df<<2a+1 6 28+1
doJ

0\ ap
4 2T T tan§)¢k (9)>’

where we used (5.3). Mind that for any given i € N there is

[(1an(0/2))” <o, (5.5)

S1oand|(cot(®/2)"

uniformly in 6 € (0, 2?”) Hence,
(@I O)| S e+ @)

+ ig—(i+l) ‘((pzl»ﬂ)(j—i)(e)‘ + Xl: ‘((pli‘vﬂ)(i)(g)”
i=0 i=0
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. . 2
uniformly in k € Nand 6 € (0, ). Thus,

(¢]z:,ﬂ)(j+1)(9)‘ <k + 1)at1/2ga+1/2=) ((k 1% 4+67" + 1)
< (k + 1)a+1/29a+1/2—j—1’

uniformly in k € Nand 6 € (0, c(k + 1)~!). Similarly,
(@D O] kDI

uniformly in k € Nand 6 € (c(k +1n L= ) This finishes the proof. O
The following result is an analogue of Lemmas 3.4 and 4.3.

Lemma5.2 Let j, ¢ € Nand a, B > —1/2. There exists ¢ > 0 such that

R A0 (e + D129t =
— s it =t j—t
407 (sin %)a+1/2—z (_1)( - W(/H_ 1)a+1/2+2[ = ]01 it i
uniformly ink € N and 6 € (0, clk + 1)_1), and
ai pPe) (k+ DFF2 (o — ), t=j,
.— ~ j—t —0
467 (o 8)PHI72 1 )(%W(kJr 1)ﬁ+1/2+2[17—‘(n _pyte bi- e

uniformly ink € Nand 0 € (n —c(k+ 171, rr).

Proof 1t is sufficient to prove the first estimate. The reasoning is similar to the ones
used in the proofs of Lemmas 3.4 and 4.3, therefore we only sketch it.

Fix £, o, B as in the hypothesis. We use the induction over j. For j = 0 see [32,
(A.1) and (A.2)]. For the inductive step observe that

att gt a (e cos§ ¢ P 0)  2p+1 s 0
doi+1 (Sin %)0(-‘1-1/2—[ doJ 2(sm 2)(¥+3/2 ¢ 4 COS%(SIH 2)(1 1/2—¢

k ¢a+l ,3+1(0)

(Sll’l 2)Ot+1/2 L ]

If j < € — 1, then the first implied component is the largest on the right hand side of
the above equality. It is positive and of the desired size (k + 1)**t1/29¢=/~1 Secondly,
the case j = £ can be checked directly. On the other hand, if j > ¢ + 1, then the
first term, after £ iterations, vanishes as did its counterparts from Lemma 3.4 and 4.3.
Furthermore, for sufficiently small ¢ > 0 the second summand is of the sign and the
size .

e

ol T g

i1 ittt
a+1/2+2( W@ ) ’
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and the third
j—t—1

ol g

a+5/2+2[ S5 WG i
The latter is dominant and it can be rewritten as

j+1-¢

at1/242[ Bt 1oyt

(—1)[ : w(k+ 1) 0 ,
which finishes the inductive step. O
Lemma5.3 Let j € N. Fora € {—1/2,1/2,...,j —1/2} U (j — 1/2,00), and
B > —1/2, there is
@.p (")H <(k+1)Y, keN
|07 oy 5 6 17, ,

whereas fora > —1/2and B € {—1/2,1/2,...,j —1/2} U (j — 1/2, 00), we have

|65 ey SV KEN

Proof Observe that the latter estimate follows from the former by (5.4). Thus we fix
j €N, a, and B as in the first hypothesis. We justify the bound on (0, Z%). Note that
for @ > j — 1/2 it suffices to use Lemma 5.1. On the other hand, if j > ¢ +1/2 € N,
then use Lemma 5.2 with £ = o + 1/2. This concludes the proof. O

Lemma54 Let je N.Ifa e (j —1/2,j+1/2)and B = —1/2, then
|7 O) — (@ P)Y DO S (k+ 1IN0 — 0] + (k + 1)+ |0 — g/j2 /2]

uniformly ink € N and 0,0’ € (0, 2?”). Similarly, for a > —1/2 and B € (j —
1/2,j+1/2),

@ HD6) = @)V O] S e+ 1718 =01+ Kk + DFFj0 - 0

uniformly ink € Nand 0,60 € (%, ).

Proof Again, by (5.4) we verify only the first estimate. Fix j, , 8 as in the hypoth-

esis. For 0 < 0/ < 6 < &, by using (5.3), we write the difference (¢Z’ﬂ)(j)(9) -

@FF) D) as

0 qi 20+ 1 o 28+1 1)
/el ﬁ( — ka gt P () + (T cot 3 — /34 tan E)qs,‘j’ﬁ(w)) do.

Thus, by the first bound in Lemma 5.1 and (5.5) we obtain

% (cot %q;,‘j*ﬂ(w)) ‘ do,

6
(@D @) — @D O] < k+ 1) -0 + /9 /
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uniformly ink € Nand 6, 6" € (0, ), Using Lemma 5.1 we estimate the last integral
uniformly in the indicated ranges, up to a multiplicative constant, by

k + 1)f+‘|9—9’|+(k+1)“+‘/2f 027 do.

’

The conclusion follows since the last integral is bounded by a constant times |6 —
9/|a+1/2—j. O

Now we pass to the verification of Lipschitz and B M O properties of the Jacobi func-
tions. Observe that for @, 8 € [—1/2, 00)4, ¢2F € L>®((0, 7)) ¢ BMO((0, 7)?).
We justify that p2f e A, ((0, 1)), v > 0, forappropriate parameters o and B. For this
purpose we define an extension 43,?’3 of ¢,‘:”3 to the whole R such that ([5]‘:/5 e Ay(R),
and then apply Lemma 2.2 for the multi-dimensional situation.

Fix « and B such that o 4+ 1/2, B + 1/2 € N. We extend the initial definition of
q),‘:’ﬂ(G), see (5.1), to the whole R. Note that for j € Nand 0 € (jm, (j + 1)x) there
holds

oF O — jm), j=0 mod 4,
(=P ((j 4+ 1w —0), j=1 mod 4,

(—D)etFHg®P (g — ) j=2 mod 4,

(—D)H12¢2F(j 4+ 1w —6), j=3 mod 4.

") =

We remark that the second (fourth, resp.) line on the right hand side of the formula
above makes sense also when « + 1/2 (8 4 1/2, resp.) is not an integer. Moreover,
ifa+1/2 €e N(B+1/2 € N, resp.), then ¢Z"ﬂ(2j7r) (¢,‘:”3((2j + 1)m), resp.) is
naturally defined for j € N.

Now we define the extension 43,‘:’3 of d),?’ﬂ. If botho 4+ 1/2, 8+ 1/2 € N, then

a5 @)= ©O), 6eR
Secondly, ifo + 1/2 e Nand 8 + 1/2 ¢ N, then

B
zap oo _ el ©), 0 € (-, 7)),
o0 = { 0, 0¢(—mm).
Similarly, if « + 1/2 ¢ Nand 8 + 1/2 € N, then

B

o, B ;7 (0), 0 € (0,2m),
0) =1 %

o ©) { 0, 6¢(0,2n).

Finally, if both &« + 1/2, 8 + 1/2 ¢ N, then we put

o7 (0), 6 € (0, 7),

caf o
% (9)_{ 0, 6¢(,m).
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Notice that qS,‘jﬁ € Cmin(@.p) (R), where we used the one-off notationa = |a+1/2]
ifa +1/2 ¢ Nand @ = oo otherwise, and the same for f.
Now, by Lemmas 5.3, 5.4, and 2.2, we have the following result.
Lemma5.5 If p € (0,1 and o, B € ({—1/2, 1/2,...,P—1/2yUld(p~! = 1) —
1/2, oo))d, where P = |d(p~" — 1)}, then >F € A gy (O, 1)?).
P

5.2 Hardy’s Inequality

The one-dimensional kernels th’ﬁ @,p),r € (0,1),0,¢ € (0, ), associated with
the Jacobi functions are defined via (cf. (2.3))

R&P@.9) =Y ot 0)¢p " (9).

keN

For an explicit formula see [32].

Notice that by Parseval’s identity and interchanging the differentiation with the
summation, which is allowed due to Lemma 5.3 and the Lebesgue dominated conver-
gence theorem, we obtain the following lemma.

Lemma5.6 Ifj e N,anda, p € {—1/2,1/2, ..., j — 1/2} U (j — 1/2, 00), then

sup |9 REP O, )| 20y S A =1)7VFDre 0, 1),
6e(0,m)

In order to verify the appropriate version of (C) we firstly estimate differences
of the derivatives of Rf"ﬂ (6, ¢). We remark that in order to prove the below-stated
proposition, one could use [5, Lemma 3.4] and the explicit form of the investigated
kernels. However, Lemma 5.4 yields this result much quicker.

Proposition5.7 If j e Nand o, B € {—1/2,1/2,...,j —1/2}U(j — 1/2, 00), then

|| 89] R}?l,ﬁ(es ) - aejR;X’ﬁ(e/, )H Lz(((),n))
<A =r)y U9 —0'| 4+ (1 —r)y~@tDjg —g/|etl/2=J
+(1— r)*(ﬂ+1)|9 _ ,9/|f3+1/2*j’

uniformly inr € (0, 1) and 6,0’ € (0, ), where the second (third, resp.) summand
on the right hand side of the estimate appears only if o (B, resp.) belongs to (j —
1/2, j+1/2).

Proof Inthecase«, B ¢ (j —1/2, j + 1/2) we simply apply the mean value theorem
and Lemma 5.6. On the other hand, if one or both of the parameters o and B is in
(j —1/2, j + 1/2), then we apply Parseval’s identity and Lemma 5.4. O

Now the following proposition follows easily (compare with Propositions 3.3 and
4.8).
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Proposition5.8 Ifk € Nand o, f € ({—1/2, 1/2,...,k—1/2}yU (k — 1/2, oo))d,
then

01,3 /
Z 80 @, 1_[(9 _ )nl

ny!-...-ng!
<k ! d

>oa- r)‘d”’z{”‘s 10 — o'k,

seay?

L2((0,m)%)

uniformly inr € (0, 1) and 6,60’ € (0, n)d, where

AP (1 Uty + 172k aj € (k— 172,k +1/2)}
ULBi+1/2—k: Bie(k—1/2,k+1/2).

We are ready to state Hardy’s inequality associated with the Jacobi trigonometric
functions.

Theorem 5.9 Let p € (0,1), s € [p,2], and P = |d(p~"' — 1)]. For

a, Be({=1/2,1/2,..., P —1/20Ud(p~" — 1) = 1/2,00))",

there holds

Z |<f¢— ||f||Hp((0 ﬂ)d)’ f € HP((O’ ﬂ)d)’

o (nl+DE ™

where E = d + sd(p_1 - 1), and the exponent is sharp.

Proof Similarly as in the proofs of Theorems 3.5 and 4.9 the inequality follows from
Theorem 2.4 and Proposition 5.8, whereas sharpness is a consequence of Propositions
2.5,2.6, Lemma 5.2 and Remark 2.7. O
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