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Abstract
Hardy’s inequality on H p spaces, p ∈ (0, 1], in the context of orthogonal expansions
is investigated for general bases on a wide class of domains in R

d with Lebesgue
measure. The obtained result is applied to various Hermite, Laguerre, and Jacobi
expansions. For that purpose some delicate estimates of the higher order derivatives
for the underlying functions and of the associated heat or Poison kernels are proved.
Moreover, sharpness of studied Hardy’s inequalities is justified by a construction of
an explicit counterexample, which is adjusted to all considered settings.
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1 Introduction

The classical Hardy inequality (see [15]) for Fourier coefficients states that

∑

k∈Z

| f̂ (k)|
|k| + 1

� ‖ f ‖Re H1 , (1.1)
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where Re H1 is the real Hardy space composed of the real parts of functions in the
Hardy space H1(D). Here D denotes the unit disk in the complex plane. Analogues
of (1.1) were considered by Kanjin [17], and f̂ (k) were replaced by the expansion
coefficients in two orthonormal bases: the Hermite and standard Laguerre function
systems. In general, such inequalities are of the form

∑

k∈N

|〈 f , ϕk〉|
(k + 1)E

� ‖ f ‖H1 , (1.2)

where ϕk is an orthonormal basis in a certain L2 space, 〈·, ·〉 denotes the inner product
in this L2, H1 is an appropriate Hardy space, and E is a positive number which we
refer to as the admissible exponent. The difficulty in establishing versions of (1.2)
is twofold. Firstly, given an orthonormal basis one can ask if such an inequality is
valid for a certain E . Secondly, there is a question of the sharpness of the admissible
exponent. We say that E is sharp if it is the smallest positive number for which (1.2)
holds. Moreover, some generalizations of (1.2) are possible, such as replacing H1 by
H p, p ∈ (0, 1], or considering the multi-dimensional situation.

In the last two decadesmany authorswere interested in variousHardy’s inequalities.
Asmentioned above,Kanjin initiated the studies for theHermite functions (he obtained
E = 29/36) and the standard Laguerre functions (E = 1). For the latter system
Satake [37] generalized this result for p ∈ (0, 1) with E = 2 − p, and for the former
expansions Radha [34] investigated the multi-dimensional situation d ≥ 1 with E >

(17d+12)/(24+12d). A few years later Radha and Thangavelu [35] proved Hardy’s
inequality associated with Hermite expansions for d ≥ 2 and p ∈ (0, 1] with the
admissible exponent E = 3d(2− p)/4. The lacking case d = 1 was partially covered
by Balasubramanian and Radha [3], but the exponent was strictly larger than the
expected value 3(2− p)/4 (see also Kanjin [18]). The inequality with this admissible
exponent was proved ten years later by Z. Li, Y. Yu, and Y. Shi [23]. On the other hand,
the Jacobi trigonometric function expansions were studied by Kanjin and K. Sato [19,
20]. There are also some other papers concerning various Hardy’s inequalities in the
context of orthogonal expansions, see for instance [9, 22, 38, 39].

The author has already written a few articles on this topic. In [30] the system of
Laguerre functions of Hermite type was studied. Secondly, in [33] a general multi-
dimensional method of proving Hardy’s inequalities on H1 was introduced. It consists
in estimating integral kernels of a certain family of operators closely related to the
associated heat (or Poison) semigroup. The method was applied to two Laguerre sys-
tems: standard and of convolution type. We stress that in the latter case the underlying
measure is not Lebesgue measure. Furthermore, in the same paper sharpness of the
obtained admissible exponents was proved. Up to our knowledge, it was the first
explicit construction of such counterexamples known in the topic. On the other hand,
the long study of Hardy’s inequality for Hermite expansions were concluded by the
author in [31], where it was justified that the known exponent E = 3d/4 (for p = 1)
is sharp. Finally, four Jacobi systems were also investigated, see [32].

In this paper we prove Hardy’s inequalities in frameworks of various orthogonal
function systems including generalized Hermite, standard Laguerre, Laguerre of Her-
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mite type, and trigonometric Jacobi expansions in H p spaces, p ∈ (0, 1]. We focus on
systems associated with Lebesgue measure. The main reason behind this restriction is
that the atomic H p spaces are not well defined for all p ∈ (0, 1) when the underlying
measure is only assumed to be doubling. On the other hand, if p = 1, then there is no
need for such restraint, see [33, Theorem 2.2].

Although we prove Hardy’s inequality for certain orthogonal systems, we are inter-
ested in establishing a general method which works in the known settings. Therefore,
we enhance the approach from [33] and adjust it for the case p ∈ (0, 1]. It requires
estimating derivatives of an arbitrary order of the kernels Rr (x, y) (see (2.3) for the
definition). In most cases it turns out to be not as difficult as one could expect once
we have analogous asymptotics for the functions composing the considered basis.
However, for the Laguerre expansions of Hermite type it is much more involved, see
the proof of Proposition 4.6. This result can be viewed in terms of the heat kernel, see
Sect. 4.3. Moreover, by some minor modifications we were able to add the parameter
s ∈ [p, 2] in Theorem 2.4.

Another novelty of the paper is the unified approach to sharpness. Instead of finding
separate counterexamples in each setting, we construct one sequence of piecewise
constant atoms which, with an additional assumption, justifies that the admissible
exponent is sharp. In order to verify the added condition in the specific settings we
have to subtly bound the derivatives of the functions in orthonormal basis, see Lemmas
3.4, 4.3, and 5.2. These estimates can be interesting on their own.

Themain result of the paper is Hardy’s inequality for a general setting, see Theorem
2.4, and sharpness of the admissible exponent, see Propositions 2.5 and 2.6. This
theorem is then applied in several settings, see Theorems 3.5, 4.9, 4.13, and 5.9,
which generalize many results already known in the literature (see [3, 17, 18, 20,
23, 34, 35, 37]), but also answer some open questions (for instance sharpness of the
multi-dimensional inequality on H p for Laguerre expansions).

Organization of the paper is as follows. In Sect. 2 we prepare the necessary tools
to prove Hardy’s inequality, like Hardy, BMO, and Lipschitz spaces. Moreover, we
enhance the method from [33] so that it works for H p spaces with p ∈ (0, 1]. Fur-
thermore, we construct a counterexample to justify that the obtained formula for the
admissible exponent is sharp. In Sect. 3 we discuss the standard Laguerre functions
and estimate their derivatives near zero. This allows us to apply the general theorem.
Section4 is devoted to Laguerre expansions of Hermite type. Similarly as before we
estimate the derivatives of the functions from the basis. However, this time it is not
immediate to obtain such bounds for the corresponding kernels Rr (x, y). For that
purpose we need to use the integral formula for the Bessel function, see (4.9) and
Proposition 4.6. We also interpret this estimate in terms of the heat kernel. Moreover,
we deduce Hardy’s inequality in the generalized Hermite framework. Lastly, in Sect. 5
the Jacobi trigonometric function system is analysed. This time the analysis is focused
on the corresponding Poison kernels.
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Notation

Throughout this paper d ≥ 1 denotes the dimension, u, v are real variables, and
x = (x1, . . . , xd), y = (y1, . . . , yd) are vectors from R

d . We use k, i, j for integers
belonging to N = N+ ∪ {0} = {0, 1, . . .}, and n = (n1, . . . , nd) ∈ N

d for the multi-
indices. Let |n| = n1 + . . . + nd stand for the length of n. We denote the type indices
α and β with the same symbol in both situations d = 1 and d ≥ 1. In the latter
case we use the same convention for |α| and |β| as for |n|. For u ∈ R we denote the
largest integer not greater than u by �u	, and the smallest integer not smaller than
u by 
u�. We write � for inequalities with non-negative entries which hold with a
multiplicative constant. It may depend on the quantities stated beforehand, but not on
the ones quantified afterwards. If X � Y and Y � X simultaneously, then we write
X � Y .

2 Hardy’s Inequality

In this section we develop a method of proving Hardy’s inequality on H p spaces,
0 < p ≤ 1, associated with orthonormal expansions. This is a generalization of the
technique described in [33, Sect. 2]. However, Hardy spaces, even in the sense of
Coifman-Weiss [10], are not well defined for all p if the underlying measure is only
assumed to be doubling. Hence, we will focus our attention on orthogonal expansions
in L2(X), where X is a subset of Rd equipped with Lebesgue measure.

2.1 Hardy Spaces

Recall that given any Schwartz function � such that
∫

� �= 0, one can define the
Hardy space H p(Rd), 0 < p ≤ 1, as the space of all distributions satisfying

sup
t>0

| f ∗ �t | ∈ L p(Rd),

where �t (x) = t−d�(x/t). The L p-norm of the quantity above can be taken as a
(maximal) "norm" ‖ · ‖m,H p(Rd ) in H p(Rd). We remark that ‖ · ‖m,H p(Rd ) is indeed
a norm only for p = 1. In fact, H1(Rd) is a Banach space. In general, if p ≤ 1, then
‖ · ‖p

m,H p(Rd )
is subadditive, hence d( f , g) = ‖ f − g‖p

m,H p(Rd )
defines a complete

metric on H p(Rd).
A measurable function a supported in a Euclidean ball B is called a (p, q)-atom

for 0 < p ≤ 1 and q ∈ [1,∞] ∩ (p,∞], if it satisfies
∫

B
a(x)xn dx = 0 and ‖a‖Lq (Rd ) ≤ |B| 1q − 1

p ,

where xn = xn11 . . . xndd , |n| ≤ �d(p−1 − 1)	, and |B| denotes the Lebesgue measure
of B. In this paper we only consider (p, 2)-atoms, from now on simply called p-atoms.



Journal of Fourier Analysis and Applications (2024) 30 :1 Page 5 of 43 1

Every f ∈ H p(Rd) admits an atomic decomposition, namely there exist a sequence
of p-atoms {a j } j∈N and a sequence of complex coefficients {λ j } j∈N such that

f (x) =
∑

j∈N
λ j a j (x),

∑

j∈N
|λ j |p < ∞,

where the former series is convergent in H p(Rd).
There are several possibilities to define "norms" in H p(Rd), equivalent to

‖ · ‖m,H p(Rd ). For our purposes we choose the atomic one, which is given by

‖ f ‖H p(Rd ) = inf
(∑

j∈N
|λ j |p

) 1
p
, (2.1)

where the infimum is taken over all atomic decompositions of f .
Let X be a convex open set equipped with Lebesgue measure and the Euclidean

metric. There is a number of possible definitions of H p spaces on subsets of Rd , see
for instance [6, 7, 25]. We select the following one (cf. Definition 3.1 in [7])

{
F ∈ H p(Rd) : F ≡ 0 on (X̄)c

}
/
{
F ∈ H p(Rd) : F ≡ 0 on X

}
.

We define H p(X) (in some sources denoted as H p
z (X)) to be composed of f = F |X

with F as above.
In this paper we will work mostly with p-atoms. That is why our final assumption

on X (apart from that it is open and convex) is that every f ∈ H p(X) admits an atomic
decomposition with atoms supported in X (the supporting balls are not necessarily
completely contained in X , but their centers are, cf. [16, Theorem 5.3]). We shall refer
to such X as the admissible domains.

There are many examples of such domains. For instance, special Lipschitz domains
(i.e. the set above a graph of a Lipschitz function on R

d−1) or bounded Lipschitz
domains, see [7]. In our paper we consider atoms supported on balls, not cubes, so we
can also allow rotations of special Lipschitz domains. In our applications, the examples
of X shall be (0,∞)d and (0, π)d .

We set ‖ f ‖H p(X) similarly as in (2.1). Observe that for f and F as above we have

‖F‖H p(Rd ) ≤ ‖ f ‖H p(X), (2.2)

since for F the underlying infimum is taken over a possibly larger set.

2.2 Dual Type Spaces

We need to give some meaning to the paring 〈 f , ϕn〉 for ϕn from a given orthonormal
basis and f ∈ H p(Rd) or, more generally, for f ∈ H p(X). For this purpose we
shall make use of the duality relation between H p(Rd) and BMO(Rd) and Lipschitz
spaces.
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Recall that a locally integrable function f is in BMO(Rd) (bounded mean oscil-
lation space) if

‖ f ‖BMO(Rd ) := sup
B

1

|B|
∫

B
| f (x) − fB | dx < ∞,

where the supremum is taken over all balls B ⊂ R
d and fB = |B|−1

∫
B f is the mean

value of f over B. Observe that the expression above vanishes for constant functions.
In fact, it is usual to define BMO(Rd) as the quotient of the above space by the space
of constant functions. Then BMO(Rd)with the norm ‖·‖BMO(Rd ) becomes a Banach
space. For more details we refer to the literature, see [14, 40].

Now let �ν(R
d), ν > 0, denote the Lipschitz space. If ν /∈ N+, then �ν(R

d) is
composed of all bounded functions g ∈ C(�ν	)(Rd) satisfying the condition

‖g‖�ν(Rd ) := ‖g‖L∞(Rd ) + max|n|=�ν	 sup
x,h∈Rd

h �=0

∣∣∂ng(x + h) − ∂ng(x)
∣∣

|h|ν−�ν	 < ∞,

where |h| denotes the Euclidean norm of h. If ν ∈ N+, then the above condition is
replaced by

‖g‖�ν(Rd ) := ‖g‖L∞(Rd ) + max|n|=ν−1
sup

x,h∈Rd

h �=0

∣∣∂ng(x + h) − 2∂ng(x) + ∂ng(x − h)
∣∣

|h| < ∞

for bounded g ∈ C(ν−1)(Rd). Finally, for ν = 0 we set �0(R
d) := BMO(Rd).

It is known that BMO(Rd) is the dual of H1(Rd) (see [11, 12]), whereas for
H p(Rd), p < 1, the duals are the Campanato spaces (see [4] and for instance [24,
p. 55]). Nonetheless, the Lipschitz spaces described above and H p(Rd), p ∈ (0, 1],
have a duality property too (see [13, 14, 40, 43]). Moreover, they are easier to handle
and completely sufficient for our purposes.

The aforementioned duality relation is the following: if g ∈ �d( 1
p −1)(R

d), then for

the linear functional

Tg( f ) =
∫

Rd
g(x) f (x) dx,

there is
|Tg( f )| � ‖g‖�

d
(
1
p −1

)(Rd )‖ f ‖H p(Rd ),

uniformly in finite linear combinations of p-atoms f . Furthermore, since those linear
combinations are dense in H p(Rd) (see e.g. [24, p. 54]), the functional Tg has a unique
bounded extension to the whole H p(Rd) with the same bound.

Now we show two properties of one-dimensional functions which are in �ν(R).
The first result is known (see for instance [14, Corollary 1.4.11]), and for the second
we provide a short justification.
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Lemma 2.1 Let ν > 0 and g ∈ �ν(R). Then, for 0 ≤ k ≤ 
ν� − 1, g(k) ∈ �ν−k(R)

and
‖g(k)‖�ν−k (R) ≤ Cν‖g‖�ν(R), g ∈ �ν(R),

for some positive constant Cν independent of g.

Lemma 2.2 Let ν > 0 and g1, . . . , gd ∈ �ν(R). If ν = 1, then we additionally assume
that g′

i , i = 1, . . . , d, exist and are bounded. Then the function

g(x) = g1(x1) · . . . · gd(xd), x ∈ R
d ,

belongs to �ν(R
d) and

‖g‖�ν(Rd ) �
d∏

i=1

‖gi‖�ν(R),

where the underlying constant does not depend on g if ν �= 1, although it may depend
on max1≤i≤d ‖g′

i‖L∞(R) if ν = 1.

Proof Obviously g ∈ L∞(Rd). Firstly assume that ν is a non-integer positive number.
Let n be a multi-index such that |n| = �ν	. Then, for h = (h1, . . . , hd) ∈ R

d \ {0},
we write the difference ∂ng(x + h) − ∂ng(x) as

(
g(n1)
1 (x1 + h1) − g(n1)

1 (x1)
)
g(n2)
2 (x2 + h2) · . . . · g(nd )

d (xd + hd)

+ g(n1)
1 (x1)

(
g(n2)
2 (x2 + h2) − g(n2)

2 (x2)
)
g(n3)
3 (x3 + h3) · . . . · g(nd )

d (xd + hd)

+ . . .

+ g(n1)
1 (x1) · . . . · g(nd−1)

d−1 (xd−1)
(
g(nd )
d (xd + hd) − g(nd )

d (xd)
)
.

If ni < |n|, then by the mean value theorem

∣∣g(ni )
i (xi + hi ) − g(ni )

i (xi )
∣∣ ≤ |hi |

∥∥g(ni+1)
i

∥∥
L∞(R)

≤ |hi |
∥∥g(ni+1)

i

∥∥
�ν−ni−1(R)

.

Obviously, if |hi | is large, thenwe could immediately estimate this by 2‖g(ni )
i ‖�ν−ni (R).

On the other hand, if ni = |n|, then
∣∣g(ni )

i (xi + hi ) − g(ni )
i (xi )

∣∣ ≤ |hi |ν−|n|∥∥g(|n|)
i

∥∥
�ν−|n|(R)

.

In each case, by Lemma 2.1 we have

|hi |ν−�ν	∣∣g(ni )
i (xi + hi ) − g(ni )

i (xi )
∣∣ ≤ ∥∥gi

∥∥
�ν(R)

.

Hence,

∣∣∂ng(x + h) − ∂ng(x)
∣∣

|h|ν−�ν	 �
d∏

i=1

‖gi‖�ν(R), x, h ∈ R
d , h �= 0.
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Next, suppose that ν ∈ N is such that ν ≥ 2. Then, for |n| = ν − 1, we estimate an
expression of the form

|h|−1
∣∣g(n1)

1 (x1 + h1) · . . . · g(nd )
d (xd + hd) − 2g(n1)

1 (x1) · . . . · g(nd )
d (xd)

+ g(n1)
1 (x1 − h1) · . . . · g(nd )

d (xd − hd)
∣∣.

Observe that if n is a multi-index which has at least two non-zero components, then
by Lemma 2.1 the expression above is estimated by a constant times

∏d
i=1 ‖gi‖�ν(R).

Indeed, it easily follows from the mean value theorem, or more precisely, from the
estimate

∣∣g(ni )
i (xi + hi ) − g(ni )

i (xi )
∣∣ ≤ ∥∥g(ni+1)

i

∥∥
L∞(R)

|hi | ≤ ∥∥gi
∥∥

�ν(R)
|hi |,

which holds since ni ≤ ν − 2. Otherwise, we can assume that n = (ν − 1, 0, . . . , 0).
Hence, denoting x̄ = (x2, . . . , xd), ḡ(x̄) = ∏d

i=2 gi (xi ) and h̄ = (h2, . . . , hd), we
write

g(ν−1)
1 (x1 + h1)ḡ(x̄ + h̄) − 2g(ν−1)

1 (x1)ḡ(x̄) + g(ν−1)
1 (x1 − h1)ḡ(x̄ − h̄)

= g(ν−1)
1 (x1 + h1)

(
ḡ(x̄ + h̄) − ḡ(x̄)

) + (
g(ν−1)
1 (x1 + h1) − 2g(ν−1)

1 (x1)

+ g(ν−1)
1 (x1 − h1)

)
ḡ(x̄) − g(ν−1)

1 (x1 − h1)
(
ḡ(x̄) − ḡ(x̄ − h̄)

)
.

Again, it suffices to use the mean value theorem and Lemma 2.1 to get the required
bound.

Notice that this argument is valid also for ν = 1 provided that we assume that g′
i

exist and are bounded. This finishes the proof. ��
Now, we define the Lipschitz (and BMO) spaces on X and prove similar duality as

on Rd . We say that a function g defined on X belongs to �ν(X), ν ≥ 0, if there exists
G ∈ �ν(R

d) such that G
∣∣
X = g. Note that this type of definition differs from the one

of H p(X), where we assume that the extension vanishes outside X . In this case this
is not possible because of the smoothness requirement. This choice of �ν(R

d) agrees
for p = 1 with the space BMOr, dual to H1

z , see [2].
Moreover, we set

‖g‖�ν(X) = inf ‖G‖�ν(Rd ),

where the infimum is taken over all G extending g to R
d . With those definitions the

following lemma holds.

Lemma 2.3 If p ∈ (0, 1] and g ∈ �d( 1
p −1)(X), then for the linear functional

Tg( f ) :=
∫

X
g(x) f (x) dx,

there holds
|Tg( f )| � ‖g‖�

d
(
1
p −1

)(X)‖ f ‖H p(X),
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uniformly in finite linear combinations of p-atoms f supported in X. Conse-
quently, Tg has a (unique) bounded extension to whole H p(X) such that |Tg( f )| �
‖g‖�

d( 1p −1)
(X)‖ f ‖H p(X), f ∈ H p(X).

Proof We have already mentioned before that the claim is valid for X = R
d . Fix

p ∈ (0, 1]. Let f be a finite linear combination of p-atoms supported in X .We trivially
extend f to F ∈ H p(Rd) so that F = 0 on Xc. Hence, F is a finite linear combination
of p-atoms as well. Similarly, for any g ∈ �d( 1

p −1)(X) let G ∈ �d( 1
p −1)(R

d) be an

extension of g to Rd . Then we have

∣∣∣
∫

X
f (x)g(x) dx

∣∣∣ =
∣∣∣
∫

Rd
F(x)G(x) dx

∣∣∣ � ‖F‖H p(Rd )‖G‖�
d
(
1
p −1

)(Rd )

≤ ‖ f ‖H p(X)‖G‖�
d
(
1
p −1

)(Rd ),

where in the last inequality we used (2.2). By taking the infimum over G we obtain
the required bound.

Now let f be an arbitrary element of H p(X) and F be the trivial extension to
H p(Rd). For G̃ ∈ �d( 1

p −1)(R
d) let T̃G̃ be the linear functional on H p(Rd) corre-

sponding to G̃ so that there holds

|T̃G̃(F̃)| � ‖F̃‖H p(Rd )‖G̃‖�
d
(
1
p −1

)(Rd ), F̃ ∈ H p(Rd).

We choose an extension G of g and define Tg on H p(X) by Tg( f ) = T̃G(F) with the
notation as above. Hence,

|Tg( f )| � ‖F‖H p(Rd )‖G‖�
d
(
1
p −1

)(Rd ) ≤ ‖ f ‖H p(X)‖G‖�
d
(
1
p −1

)(Rd ).

It suffices to take the infimum over G to get the claim. ��
One comment is in order here. Note that Tg defined as in the proof of Lemma 2.3

does not depend on the chosen extensionG. Indeed, letG1 andG2 be some extensions
of g to R

d . Fix f ∈ H p(X) and let F ∈ H p(Rd) be its trivial extension to R
d . We

chose an atomic decomposition of F with atoms supported in X , and set {Fk}k∈N to
be the partial sums of the decomposition. Now fix ε > 0 and choose N ∈ N so that

‖F − FN‖H p(Rd ) ≤ ε

‖G1‖�
d
(
1
p −1

)(Rd ) + ‖G2‖�
d
(
1
p −1

)(Rd )

.

Observe that

|T̃G1 (F) − T̃G2 (F)| ≤ |T̃G1 (FN ) − T̃G2 (FN )| + |T̃G1 (F − FN )| + |T̃G2 (F − FN )| � ε,

since T̃G1(FN ) = T̃G2(FN ) as FN is a finite linear combination of atoms. This justifies
that Tg( f ) does not depend on the chosen extension G.
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2.3 Main Theorem

Fix p ∈ (0, 1] and let {ϕn}n∈Nd , where ϕn ∈ �d( 1
p −1)(X), be an orthonormal basis in

L2(X). We define the family of operators {Rr }r∈(0,1) via

Rr f =
∑

n∈Nd

r |n|〈 f , ϕn〉ϕn, (2.3)

where

〈 f , ϕn〉 =
∫

X
f (x)ϕn(x) dx .

Note that the integral makes sense for finite linear combinations of p-atoms. In order
to apply Rr to all elements of H p(X) we need to give a more general meaning to
〈 f , ϕn〉. This can be done by the means of Lemma 2.3, namely

〈 f , ϕn〉 = Tϕn ( f ).

Recall that Tϕn is unique (see the comment below the lemma).
We assume that Rr , r ∈ (0, 1), are integral operators

Rr f (x) =
∫

X
R(x, y) f (y) dy,

where the associated kernels Rr (x, y) belong to CP (X) (as functions of x , for any
y ∈ X ) for P = �d(p−1 − 1)	, which means that all of their partial derivatives ∂nx ,
|n| ≤ P , exist and are continuous. Then, at least formally,

Rr (x, y) =
∑

n∈Nd

r |n|ϕn(x)ϕn(y).

Moreover, we impose the following condition on Rr (x, y): there exist a constant γ > 0
and a finite set composed of positive numbers δ strictly greater than d(p−1−1)−P ,
such that

∥∥∥Rr (x, ·) −
∑

|n|≤P

∂nx Rr (x ′, ·)
n1! · . . . · nd !

d∏

j=1

(x j − x ′
j )
n j

∥∥∥
L2(X)

(C)

�
∑

δ∈

(1 − r)−(d+2k+2δ)γ |x − x ′|P+δ,

uniformly in r ∈ (0, 1) and x, x ′ ∈ X such that |x − x ′| ≤ 1/2. Since X is open and
convex, we stress that if Rr (·, y) are in CP+1(X), then (C) with  = {1} is implied
by the easier estimate

sup
x∈X

‖∂nx Rr (x, ·)‖L2(X) � (1 − r)−(d+2|n|)γ ,
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uniformly in r ∈ (0, 1) and for |n| = P+1. Indeed, it suffices to use Taylor’s theorem.

Theorem 2.4 Let p ∈ (0, 1], s ∈ [p, 2], and X be an admissible domain in R
d .

Assume that the functions {ϕn}n∈Nd belong to �d( 1
p −1)(X), form an orthonormal

basis in L2(X), and the associated kernels Rr (x, y) satisfy condition (C) with γ > 0.
Then the inequality

∑

n∈Nd

|〈 f , ϕn〉|s
(|n| + 1)E

� ‖ f ‖sH p(X), (2.4)

holds uniformly in f ∈ H p(X), where

E = (2 − p)sdγ

p
+ (2 − s)d

2
. (2.5)

We remark that the above parameter γ is not the same as γ in [33, Theorem 2.2];
in fact if in the cited theorem μ is Lebesgue measure (and hence N = d), then both
γ ’s are equal up to the multiplicative constant (d + 2).

Proof Fix p ∈ (0, 1] and s ∈ [p, 2]. Firstly, we prove the theorem for p-atoms, and
then we justify that it holds for all f ∈ H p(X). Let a be a p-atom supported in a
ball B with the center in x ′. Similarly as in [33] and [23] in the first step we use an
asymptotic estimate for the Beta function obtaining

∑

n∈Nd

|〈a, ϕn〉|s
(|n| + 1)E

�
∑

n∈Nd

∫ 1

0
r2|n|(1 − r)E−1|〈a, ϕn〉|s dr

≤
∫ 1

0
(1 − r)E−1

( ∑

n∈Nd

r2|n|)
2−s
2

( ∑

n∈Nd

(
rs|n||〈a, ϕn〉|s

) 2
s
) s

2
dr

�
∫ 1

0
(1 − r)E−1(1 − r)−

(2−s)d
2 ‖Rra‖sL2(X)

dr

=
∫ 1

0
(1 − r)

(2−p)sdγ
p −1‖Rra‖sL2(X)

dr .

Observe that

‖Rra‖sL2(X)
≤ ‖a‖sL2(X)

≤ |B|
(
1
2− 1

p

)
s
.

Thus, the claim holds if |B| ≥ 1. On the other hand, by (C) we have

‖Rra‖sL2(X)
=

( ∫

X

∣∣∣
∫

B∩X
Rr (x, y)a(x) dx

∣∣∣
2
dy

) s
2

=
( ∫

X

∣∣∣
∫

B∩X

(
Rr (x, y) −

∑

n∈Nd

|n|≤P

∂nx Rr (x ′, y)
n1! · . . . · nd !

d∏

i=1

(xi − x ′
i )
ni
)
a(x) dx

∣∣∣
2
dy

) s
2

�
(∑

δ∈

∫

B∩X
|a(x)||x − x ′|P+δ(1 − r)−(d+2P+2δ)γ dx

)s
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�
∑

δ∈

(1 − r)−s(d+2P+2δ)γ |B|s
(

P+δ
d +1− 1

p

)

.

Notice that by the definition of P and  there is P+δ
d + 1 − 1

p > 0 for every δ ∈ .
Hence,

∫ 1

0
‖Rra‖sL2(X)

(1 − r)
(2−p)sdγ

p −1dr

�
∑

δ∈

∫ 1−|B|
1

2dγ

0
|B|s

(
P+δ
d +1− 1

p

)

(1 − r)
(2−p)sdγ

p −1−sγ (d+2P+2δ)dr

+
∫ 1

1−|B|
1

2dγ

|B|s
(
1
2− 1

p

)
(1 − r)

(2−p)sdγ
p −1dr

and this quantity is bounded by a universal constant uniformly in B such that |B| ≤ 1.
The obtained estimate is independent of a. This finishes the proof of the theorem for
atoms.

In order to complete the proof let us now justify that the claim holds for any
f ∈ H p(X). Fix f ∈ H p(X) and its atomic decomposition f = ∑

j∈N λ j a j . Denote

f J = ∑J
j=0 λ j a j . Observe that for s ∈ [p, 1] and J > I we have

∑

n∈Nd

|〈 f J − f I , ϕn〉|s
(|n| + 1)E

≤
J∑

j=I+1

|λ j |s
∑

n∈Nd

|〈a j , ϕn〉|s
(|n| + 1)E

�
J∑

j=I+1

|λ j |s ≤
( J∑

j=I+1

|λ j |p
)s/p

.

On the other hand, if s ∈ [1, 2], then we use Minkowski’s inequality and get

( ∑

n∈Nd

|〈 f J − f I , ϕn〉|s
(|n| + 1)E

)1/s ≤
J∑

j=I+1

|λ j |
( ∑

n∈Nd

|〈a j , ϕn〉|s
(|n| + 1)E

)1/s
�

J∑

j=I+1

|λ j |

≤
( J∑

j=I+1

|λ j |p
)1/p

.

This proves that
{{〈 f J , ϕn〉}n∈Nd

}
J∈N is aCauchy sequence in �s

(
N
d , (|n|+1)−E

)
, s ∈

[p, 2], so it is convergent there. Therefore, there exists {cn}n∈Nd ∈ �s
(
N
d , (|n|+1)−E

)

such that

lim
J→∞

∑

n∈Nd

|〈 f J , ϕn〉 − cn|s
(|n| + 1)E

= 0.
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We justify that cn = 〈 f , ϕn〉. The above equality yields

lim
J→∞

∑

n∈Nd

|〈 f J , ϕn〉 − cn|s

(|n| + 1)d+E

(
1 + ‖ϕn‖s�

d
(
1
p −1

)(X)

) = 0.

On the other hand, by Lemma 2.3 we see that

lim
J→∞

∑

n∈Nd

|〈 f J − f , ϕn〉|s

(|n| + 1)d+E

(
1 + ‖ϕn‖�

d
(
1
p −1

)(X)

)

� lim
J→∞

∑

n∈Nd

‖ f J − f ‖sH p(X)‖ϕn‖s�
d
(
1
p −1

)(X)

(|n| + 1)d+E

(
1 + ‖ϕn‖s�

d
(
1
p −1

)(X)

) ,

and the latter limit is equal to zero. Hence, by the uniqueness of the limit we proved
that cn = 〈 f , ϕn〉.

Finally, fix ε > 0 and J ∈ N such that ‖〈 f J − f , ϕn〉‖s�s (Nd ,(|n|+1)−E )
< ε. We

estimate for s ∈ [p, 1]

∑

n∈Nd

|〈 f , ϕn〉|s
(|n| + 1)E

≤
∑

n∈Nd

|〈 f − f J , ϕn〉|s
(|n| + 1)E

+
∑

n∈Nd

|〈 f J , ϕn〉|s
(|n| + 1)E

≤ ε +
J∑

j=0

|λ j |s
∑

n∈Nd

|〈a j , ϕn〉|s
(|n| + 1)E

� ε +
( J∑

j=0

|λ j |p
)s/p

� ε + ‖ f ‖sH p(X).

If s ∈ [1, 2], then we proceed as before using Minkowski’s inequality. This finishes
the proof of the theorem. ��

2.4 Sharpness

In this subsection we prove that the admissible exponent in Theorem 2.4 cannot be
lowered, provided that some additional assumptions on the basis {ϕn}n∈Nd are satisfied.
In fact,we focus only on the caseϕn(x) = ∏d

i=1 ϕni (xi ). Therefore,we state our results
in the one-dimensional situation and thenmake an appropriate comment on the general
case d ≥ 1.
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We remark that although conditions (2.9) and (2.12) may seem hard to meet, they
turn out to be very natural for the classical orthonormal bases, such as Laguerre,
Hermite, or Jacobi function expansions.

Firstly, we construct a one-dimensional auxiliary atom a. Let p ∈ (0, 1], P =
�p−1 − 1	, A ≥ 1 and 0 < δ ≤ 1

2(P+1) . Consider the following function

a(u) = 2−(P+2)A1/p

⎧
⎪⎪⎨

⎪⎪⎩

−1, u ∈ (0, δA−1),

C j , u ∈ ( jδA−1, ( j + 1)δA−1), j = 1, . . . , P,

CP+1, u ∈ ((P + 1)δA−1, A−1),

0, otherwise,

(2.6)

where Ci , i = 1, . . . , P + 1, are some constants to be determined. Note that if
|Ci | ≤ 2P+2, then we have the bound ‖a‖L∞ ≤ |B|−1/p, where B = (0, A−1). If
additionally Ci are such that

∫
uka(u) du = 0, k = 0, . . . , P , then a is a p-atom.

Observe that by the equality

∫ (i+1)δA−1

iδA−1
uk du = 1

k + 1
A−k−1δk+1((i + 1)k+1 − i k+1), k, i = 0, . . . , P,

the cancellation properties come down to

P∑

i=1

Ciδ
k+1((i+1)k+1−i k+1)+CP+1(1−((P+1)δ)k+1) = δk+1, k = 0, . . . , P.

(2.7)
This is a system of linear equations on C1, . . . ,CP+1 and one can solve it using
Cramer’s rule. A calculation shows that

Ci =
i∑

�=0

(
P + 1

�

)
(−1)�−1 1

1 − �δ
, i = 1, . . . , P + 1.

Indeed, inserting this into left hand side of (2.7) we obtain

δk+1
P∑

i=1

(
(i + 1)k+1 − i k+1)

( i∑

�=0

(
P + 1

�

)
(−1)�−1 1

1 − �δ

)

+ (1 − ((P + 1)δ)k+1)

( P+1∑

�=0

(
P + 1

�

)
(−1)�−1 1

1 − �δ

)

= δk+1 +
P+1∑

�=0

(
P + 1

�

)
(−1)�−1 1 − (�δ)k+1

1 − �δ

= δk+1 +
k∑

j=0

δ j
P+1∑

�=0

(
P + 1

�

)
(−1)�−1� j .
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Notice that for each j the inner sum vanishes since k ≤ P and hence (2.7) holds.
We clearly see that |Ci | ≤ 2P+2, i ∈ {1, . . . , P + 1}. Thus, the function a defined

in (2.6) is a p-atom with this choice of Ci .
Additionally, we will require a more precise estimate for CP+1. Observe that

CP+1 =
P+1∑

�=0

(
P + 1

�

)
(−1)�−1 1

1 − �δ
= (−1)P

∫ 1

0
(u−δ − 1)P+1 du.

Since

(− log u) ≤ u−δ − 1

δ
≤ (− log u)u−1/(2P+2), u ∈ (0, 1), δ ∈ (0, (2P + 2)−1),

it is easily seen that

|CP+1| � δP+1, δ ∈ (0, (2P + 2)−1). (2.8)

Proposition 2.5 Let the one-dimensional version of the assumptions of Theorem 2.4
be satisfied. Moreover, we assume that (0, c) ⊂ X for some c > 0 and that there exists
τ > 2γ (p−1 − 1) + γ − 1

2 such that for some 0 < m ≤ M

m(k + 1)τu
1+2τ−2γ

4γ ≤ |ϕk(u)| ≤ M(k + 1)τu
1+2τ−2γ

4γ , (2.9)

uniformly in u ∈ (0, cK−2γ ), k ≤ K and K ∈ N+, and ϕk(u) does not change the
sign in this interval. Then the admissible exponent in (2.4) cannot be lowered.

Proof In order to prove this lemma we construct an explicit sequence of atoms aK ,
such that for E defined in (2.5) and any ε > 0

∑

k∈N

|〈aK , ϕk〉|s
(k + 1)E−ε

� K ε, K ∈ N+. (2.10)

Let K ∈ N+ and aK be an atom defined in (2.6) with A = K 2γ /c and some
sufficiently small δ. We will show that

|〈aK , ϕk〉| � K
2γ
p − 1

2−τ−γ
(k + 1)τ , 0 ≤ k ≤ K . (2.11)

This suffices to prove (2.10). Indeed, we get

∑

k∈N

|〈aK , ϕk〉|s
(k + 1)

(2−p)sγ
p + 2−s

2 −ε
� Ks

(
2γ
p − 1

2−τ−γ
) K∑

k=1

ks
(
τ− 2γ (1−p)

p −γ+ 1
2

)
−1+ε � K ε.
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Let us now justify (2.11). We have

∫ A−1

0
aK (u)ϕk(u) du = CP+1

∫ A−1

(P+1)δA−1
ϕk(u) du +

P∑

j=0

C j

∫ ( j+1)δA−1

jδA−1
ϕk(u) du,

where C0 = −1. Thus, by using the fact that |C j | ≤ 2P+2, 0 ≤ j ≤ P , we see that
the absolute value of the quantity above is bounded from below by

A
1
p − 1+2τ+2γ

4γ
4Mγ

1 + 2γ + 2τ
(k + 1)τ

(m|CP+1|
M2P+2

(
1 − ((P + 1)δ)

1+2τ+2γ
4γ

) − (
(P + 1)δ

) 1+2τ+2γ
4γ

)

� K
2γ
p − 1

2 −τ−γ
(k + 1)τ δP+1

( m|CP+1|
M2P+2δP+1

(
(P + 1)−

1+2τ+2γ
4γ − δ

1+2τ+2γ
4γ

) − δ
1+2τ+2γ

4γ −(P+1)
)
.

Observe that by taking δ sufficiently small we obtain (2.11) because of (2.8) and the
fact that τ is large enough. ��

Sometimes the condition (2.9) does not hold and hence Proposition 2.5 cannot
be applied in order to prove sharpness. However, estimate (2.9) can be replaced by
its analogue for the derivatives of ϕk . We describe this situation in the following
proposition.

Proposition 2.6 Let the one-dimensional version of the assumptions of Theorem 2.4 be
satisfied. Moreover, we assume that (0, c) ⊂ X for some c > 0, ϕk are (P + 1)-times
differentiable, where P = �p−1 − 1	, and that there exists τ > 2γ (p−1 − 1)+ γ − 1

2
such that for some 0 < m ≤ M there holds

m(k + 1)τu
1+2τ−2γ

4γ −(P+1) ≤ |ϕ(P+1)
k (u)| ≤ M(k + 1)τu

1+2τ−2γ
4γ −(P+1)

, (2.12)

uniformly in u ∈ (0, cK−2γ ), k ≤ K and K ∈ N+, and ϕ
(P+1)
k (u) does not change

the sign in this interval. Then the admissible exponent in (2.4) cannot be lowered.

Proof Fix p ∈ (0, 1] and set P = �p−1 − 1	. Let K ∈ N and aK be the same H p(X)

atom as in Proposition 2.5.We verify (2.11). Observe that we have for some ξu between
u and (P + 1)δ/A the following equality

∫ A−1

0
aK (u)ϕk(u) du =

∫ A−1

0
aK (u)

(
ϕk(u) −

P∑

j=0

ϕ
( j)
k

(
(P+1)δ

A

)

j !
(
u − (P + 1)δ

A

) j)
du

=
∫ A−1

0
aK (u)

1

(P + 1)!ϕ
(P+1)
k (ξu)

(
u − (P + 1)δ

A

)P+1
du.

The absolute value of the latter integral can be estimated from below by

∫ A−1

(P+1)δ
A

|CP+1|
2P+2 A1/p m

(P + 1)! (k + 1)τ ξ
1+2τ−2γ

4γ −(P+1)
u

(
u − (P + 1)δ

A

)P+1
du
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−
∫ (P+1)δ

A

0
A1/p M

(P + 1)! (k + 1)τ ξ
1+2τ−2γ

4γ −(P+1)
u

( (P + 1)δ

A
− u

)P+1
du

≥ M

(P + 1)! A
1/p(k + 1)τ

( (P + 1)δ

A

) 1+2τ−2γ
4γ −(P+1)

(
m|CP+1|
M2P+2

×
∫ A−1

(P+1)δ
A

(
u − (P + 1)δ

A

)P+1
du −

∫ (P+1)δ
A

0

( (P + 1)δ

A
− u

)P+1
du

)

= M

(P + 2)! ((P + 1)δ)
1+2τ−2γ

4γ +P+1
(k + 1)τ A

1
p − 1+2τ+2γ

4γ

×
( m|CP+1|
M2P+2δP+1

(
(P + 1)−(P+1) − (P + 1)δP+2

)
− (P + 1)δ

)

� (k + 1)τ A
1
p − 1+2τ+2γ

4γ ,

for δ sufficiently small, since we have (2.8).
Hence, we obtained (2.11), and this finishes the proof of this proposition. ��

Remark 2.7 In the multi-dimensional situation, if the functions ϕn are of the form
ϕn(x) = ∏d

i=1 ϕni (xi ), then sharpness of E can be easily justified. We have to assume
that each ϕni , 1 ≤ i ≤ d satisfies (2.9) or (2.12) with τi > 2γ d(p−1 − 1) + γ − 1

2 .

Indeed, denote AK (x) = ∏d
i=1 aK (xi ), where aK is the same as in Propositions 2.5

and 2.6, but this time with P = �d(p−1 − 1)	. Then AK is a scaled p-atom in Rd . By
(2.11), for any ε > 0, we have the following lower bound

∑

n∈N

|〈AK , ϕn〉|s
(|n| + 1)E−ε

� K
sd

(
2γ
p − 1

2−γ
)
−s|τ | ∑

K/2≤ni≤K

∏d
i=1(ni + 1)sτi

(|n| + 1)E
� K ε,

uniformly in large K , where |τ | = τ1 + . . . + τd .

Remark 2.8 Notice that (2.10), generalized to the multi-dimensional situation, and the
uniform boundedness principle (in a stronger version than usual, see for instance [36,
Theorem 2.5]) imply that there exists f ∈ H p(X) such that

∑

n∈Nd

|〈 f , ϕn〉|s
(|n| + 1)E

= ∞.

This is consistent with what was proved in author’s articles concerning Hardy’s
inequality on H1, see [30–33].

3 Standard Laguerre Functions

The standard Laguerre functions {Lα
k }k∈N of order α > −1 are defined on R+ by

Lα
k (u) =

( �(k + 1)

�(k + α + 1)

)1/2
Lα
k (u)e−u/2uα/2, u > 0, (3.1)
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where Lα
k (u) are the Laguerre polynomials (see [42]). Moreover, in the multi-

dimensional case Lα
n (x) are defined as the tensor products of the one-dimensional

functions, namely

Lα
n (x) =

d∏

i=1

Lαi
ni (xi ), x = (x1, . . . , xd) ∈ R

d+ = (0,∞)d ;

here α = (α1, . . . , αd) ∈ (−1,∞)d and n = (n1, . . . , nd) ∈ N
d . The system

{Lα
n }n∈Nd forms an orthonormal basis in L2(Rd+, dx). The following estimates are

known for the one-dimensional standard Laguerre functions (see [26, p. 435] and [1,
p. 699])

|Lα
k (u)| �

⎧
⎪⎪⎨

⎪⎪⎩

(uk′)α/2, 0 < u ≤ 1/k′,
(uk′)−1/4, 1/k′ < u ≤ k′/2,
(k′(k′1/3 + |u − k′|))−1/4, k′/2 < u ≤ (3k′)/2,
exp(−γ u), 3k′/2 < u < ∞,

(3.2)

where k′ = max(4k + 2α + 2, 2) and γ > 0 depends only on α.
These estimates imply for all α ≥ 0 the bound (cf. [41, p. 94]),

‖Lα
k ‖L∞(R+) � 1, k ∈ N.

Moreover, using the formula (see [41, p. 95])

(Lα
k )′(u) = −k1/2u−1/2Lα+1

k−1 (u) + 1

2

(α

u
− 1

)
Lα
k (u), (3.3)

where Lα+1
−1 ≡ 0, for α ∈ {0} ∪ [2,∞) we obtain

‖(Lα
k )′‖L∞(R+) � k + 1, k ∈ N.

More generally, for j ∈ N and α ∈ {0, 2, . . . , 2 j} ∪ (2 j,∞) there holds (see [37,
Lemma 1])

‖(Lα
k )( j)‖L∞(R+) � (k + 1) j , k ∈ N. (3.4)

Now we justify that Lα
n belong to the Lipschitz spaces �ν(R

d+). For that purpose
we will indicate an extension L̃α

n ∈ �ν(R
d) of Lα

n to R
d . Following the idea used in

[39, p. 94] in the case d = 1 we define

L̃α
n (x) =

d∏

i=1

L̃αi
ni (xi ),

where, if αi is not an even integer, then

L̃αi
ni (xi ) =

{Lαi
ni (xi ), xi > 0,

0, xi ≤ 0,
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and, if αi is an even integer, then

L̃αi
ni (xi ) = ψ(ni xi )Lαi

ni (xi ), xi ∈ R.

In the latter case the definition of Lαi
ni is naturally extended to the whole real line by

the initial formula (3.1), and ψ is a smooth function supported in [−1,∞) such that
ψ ≡ 1 on R+ and ‖ψ( j)‖L∞(R) � 1, j ∈ N. For an example of such ψ see [39].

In view of [39, Corollary 2.4] we see that given ν > 0 we have L̃αi
ni ∈ �ν(R) for

αi ∈ [2ν,∞). Secondly, if αi is an even integer, then L̃αi
ni ∈ �ν(R) for all ν > 0.

Thus, by Lemma 2.2 if p ∈ (0, 1) and α ∈ ({0, 2, . . . , 2P} ∪ [2d(p−1 − 1),∞)
)d ,

where P = �d( 1p − 1)	, then L̃α
n ∈ �d( 1

p −1)(R
d), and therefore Lα

n ∈ �d( 1
p −1)(R

d+).

In order to verify the additional assumption in Lemma 2.2, we use the fact that for
αi ∈ {0}∪ [2,∞) the functions (L̃αi

ni )
′ exist and are bounded. Finally, for α ∈ [0,∞)d

the functions L̃α
n lie in L∞(Rd), so they are also in BMO(Rd).

The family of operators {Rα
r } associated with {Lα

n }n∈Nd and given by

Rα
r f =

∑

n∈Nd

r |n|〈 f ,Lα
n 〉Lα

n , r ∈ (0, 1),

is composed of integral operators, with the kernels of the form

Rα
r (x, y) =

∑

n∈Nd

r |n|Lα
n (x)Lα

n (y).

It can be explicitly written as the product of the kernels Rαi
r (xi , yi ) (cf. [33, 42])

Rαi
r (xi , yi ) = (1 − r)−1r−αi /2 exp

(
− 1

2

1 + r

1 − r
(xi + yi )

)
Iαi

(2r1/2

1 − r

√
xi yi

)
,

where Is(u) denotes the modified Bessel function of the first kind and order s. For
s > −1, it is a real, positive, and smooth function in R+.

In fact,we donot need this explicit formula for Rα
r (x, y) to proveHardy’s inequality.

However, for the completeness of the presentation we gave it above. On the other hand,
its analogue for Laguerre functions of Hermite type will be of paramount importance.

Now we are ready to verify condition (C) for the standard Laguerre functions. We
begin with the two following observations.

Lemma 3.1 For j ∈ N and α ∈ {0, 2, . . . , 2 j} ∪ (2 j,∞) there holds

sup
u>0

∥∥∥∂
j
u R

α
r (u, ·)

∥∥∥
L2(R+)

� (1 − r)−
1+2 j
2 , r ∈ (0, 1).

Proof We simply apply Parseval’s identity and (3.4) obtaining

sup
u>0

∥∥∥∂
j
u R

α
r (u, ·)

∥∥∥
L2(R+)

≤
(∑

k∈N
r2k

∥∥(Lα
k )( j)

∥∥2
L∞(R+)

)1/2
� (1 − r)−

1+2 j
2 ,
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uniformly in r ∈ (0, 1). Notice that interchanging differentiation with summation is
possible due to polynomial growth in k of ‖(Lα

k )(i)‖L∞(R+), 0 ≤ i ≤ j (see (3.4)), and
the Lebesgue dominated convergence theorem. Analogous remarks apply to similar
operations in this and the next sections. ��
Lemma 3.2 Let j ∈ N and α ∈ (2 j, 2 j + 2). Then the estimate

∥∥∥∂
j
u R

α
r (u, ·) − ∂

j
u R

α
r (u′, ·)

∥∥∥
L2(R+)

� (1 − r)−(1+α)/2|u − u′|α/2− j ,

holds uniformly in r ∈ (0, 1) and u, u′ > 0.

Proof Fix j ∈ N. By [39, Lemma 2.2] we have for α ∈ (2 j, 2 j + 2) the bound

∣∣(Lα
k )( j)(u) − (Lα

k )( j)(u′)
∣∣ � (k + 1)α/2|u − u′|α/2− j , u, u′ > 0, k ∈ N.

Hence, Parseval’s identity implies

∥∥∥∂
j
u R

α
r (u, ·) − ∂

j
u R

α
r (u′, ·)

∥∥∥
L2(R+)

≤
(∑

k∈N
r2k(k + 1)α

)1/2|u − u′|α/2− j

� (1 − r)−(1+α)/2|u − u′|α/2− j ,

uniformly in u, u′ ∈ R+. ��
Now we easily obtain the following proposition.

Proposition 3.3 If k ∈ N and α ∈ ({0, 2, . . . , 2k} ∪ (2k,∞)
)d
, then

∥∥∥Rα
r (x, ·) −

∑

|n|≤k

∂nx R
α
r (x ′, ·)

n1! · . . . · nd !
d∏

i=1

(xi − x ′
i )
ni
∥∥∥
L2(Rd+)

�
∑

δ∈α
k

(1 − r)−
d+2k+2δ

2 |x − x ′|k+δ,

uniformly in r ∈ (0, 1) and x, x ′ ∈ R
d+, where

α
k = {1} ∪ {αi/2 − k : αi ∈ (2k, 2k + 2), i = 1, . . . , d}.

Proof Fix α ∈ ({0, 2, . . . , 2k} ∪ (2k,∞)
)d . If for all i = 1, . . . , d there is αi /∈

(2k, 2k + 2), then apply Taylor’s theorem with the reminder of (k + 1)-th order, and
Lemma 3.1 with j ≤ k+1. On the other hand, if some αi ∈ (2k, 2k+2), then proceed
as before but with k-th order reminder, obtaining

∑

|n|=k

k!
n1! · . . . · nd !

d∏

i=1

((
∂nixi R

αi
r (ξi , yi ) − ∂nixi R

αi
r (x ′

i , yi )
)
(xi − x ′

i )
ni
)
,

where for every i ∈ {1, . . . , d} the number ξi lies between xi and x ′
i . Now for each

difference above we apply Lemma 3.2 if αi ∈ (2ni , 2ni + 2), or the mean value
theorem and Lemma 3.1 in the opposite situation. ��
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Although the following lemmawill be applied strictly to prove sharpness ofHardy’s
inequality associated with the standard Laguerre expansions, we stress that this is an
interesting result and possibly it could be widely used in other problems concerning
the functions Lα

k .
Here and later on we use the following convention: A � −B for positive B means

that A is negative and (−A) � B.

Lemma 3.4 Let α ≥ 0 and j, � ∈ N be given. There exists a constant c > 0 such that

d j

du j

Lα
k (u)

uα/2−�
�

{
(k + 1)α/2u�− j , if � ≥ j,
(−1) j−�(k + 1)α/2+ j−�, if � ≤ j,

uniformly in k ∈ N and u ∈ (0, c(k + 1)−1).

Proof Fix � ∈ N. We will apply the induction over j separately in both cases. Note
that the claim holds for j = 0 (this is a known result, see [26, pp. 435, 453]). Suppose
that it is valid for some j ≤ � and we will justify it for j + 1. Observe that by (3.3)
we have

d j+1

du j+1

Lα
k (u)

uα/2−�
= d j

du j
�

Lα
k (u)

uα/2−�+1 − 1

2

d j

du j

Lα
k (u)

uα/2−�
− √

k
d j

du j

Lα+1
k−1 (u)

u(α+1)/2−�
. (3.5)

Notice that if � ≥ j + 1, then the components on the right hand side of (3.5) are of
the sizes: (k + 1)α/2u�− j−1, (k + 1)α/2u�− j , and (k + 1)α/2+1u�− j , respectively, and
the first one is the dominating.

It remains to justify the situation j ≥ �. Note that the case j = � is covered by the
first part of the proof. Let us assume that for some j ≥ � the estimate holds. Then the
second and the third summand on the right hand side of (3.5) are of the sizes (and the
signs): (−1) j−�+1(k + 1)α/2+ j−� and (−1) j−�+1(k + 1)α/2+1+ j−�, respectively. On
the other hand, the first component we decompose and get

d j

du j
�

Lα
k (u)

uα/2−�+1 = �
d j−1

du j−1

(
(� − 1)

Lα
k (u)

uα/2−�+2 − 1

2

Lα
k (u)

uα/2−�
− √

k
Lα+1
k−1 (u)

u(α+1)/2−�

)
.

Again, the first summand can be decomposed, and the two remaining are of the same
size (and sign) as before. Moreover, note that the i-th decomposition of the first result-
ing component brings the multiplicative constant � − i + 1. But this proves that the
component vanishes, since j ≥ �. Hence, in this case (3.5) is of the size and the sign
(−1) j−�+1(k + 1)α/2+1+ j−�. This finishes the proof of the lemma. ��

Weare now ready to proveHardy’s inequality associatedwith the standard Laguerre
functions.

Theorem 3.5 Let p ∈ (0, 1), s ∈ [p, 2], and denote P := �d(p−1 − 1)	. For

α ∈ ({0, 2, . . . , 2P} ∪ (2d(p−1 − 1),∞)
)d
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there holds ∑

n∈Nd

|〈 f ,Lα
n 〉|s

(|n| + 1)E
� ‖ f ‖s

H p(Rd+)
, f ∈ H p(Rd+),

where E = d + sd
(
p−1 − 1

)
, and the exponent is sharp.

Proof Proposition 3.3 ensures that the appropriate version of (C) holds for the standard
Laguerre functions with γ = 1/2, and hence by Theorem 2.4 we obtain the associated
Hardy’s inequality.

On the other hand, by Lemma 3.4 (with j = � = 0) we have

m((k + 1)u)α/2 ≤ Lα
k (u) ≤ M((k + 1)u)α/2, 0 < u ≤ c

k + 1
, (3.6)

where m, M, c > 0. Observe that, since γ = 1/2, condition (2.9) holds for {Lα
k }k∈N

with τ = α/2. Hence, by Proposition 2.5 sharpness of the exponent E in the one-
dimensional case follows for α > 2(p−1−1). Moreover, if α is an even integer smaller
that 2(p−1 − 1), then we apply Proposition 2.6 with τ = P + 1 and Lemma 3.4 (with
� = α/2 and j = P + 1).

This reasoning can be adapted to the multi-dimensional situation, see Remark 2.7.
��

4 Laguerre Functions of Hermite Type

The Laguerre functions of Hermite type ϕα
k , k ∈ N, are defined by the following

relation with the standard Laguerre functions

ϕα
k (u) = √

2uLα
k (u2) =

( 2�(k + 1)

�(k + α + 1)

)1/2
Lα
k (u2)e−u2/2uα+1/2, (4.1)

where u > 0 and α > −1. In the multi-dimensional situation ϕα
n (x) are defined as the

tensor products of ϕ
αi
ni (xi ). The system {ϕα

n }n∈Nd is an orthonormal basis in L2(Rd+).
The functions ϕk are bounded on R+ for α ≥ −1/2. Moreover, by (4.1) and (3.2)

we have
‖ϕα

k ‖L∞(R+) � (k + 1)−1/12, k ∈ N. (4.2)

The following recurrence formula for the derivatives of ϕα
k holds (see [41, p. 100])

(ϕα
k )′(u) = −2

√
kϕα+1

k−1 (u) +
(
2α + 1

2u
− u

)
ϕα
k (u), (4.3)

where ϕα+1
−1 ≡ 0. Hence, for α ∈ {−1/2} ∪ [1/2,∞), by using (4.1) and (3.2) one

obtains ∥∥(ϕα
k )′

∥∥
L∞(R+)

� (k + 1)5/12, k ∈ N.

We discuss the boundedness of higher order derivatives in Lemma 4.4.
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4.1 Lipschitz and BMO Properties

Obviously, ϕα
n ∈ BMO(Rd+) for α ∈ [−1/2,∞)d , since ϕα

n are bounded. In order
to justify that ϕα

n ∈ �ν(R
d+) for ν > 0 and certain α’s, we shall consider the one-

dimensional situation, and then apply Lemma 2.2. To prove that ϕα
k ∈ �ν(R+) we

will construct an extension ϕ̃α
k of ϕα

k to R, such that ϕ̃α
k ∈ �ν(R).

For α + 1/2 /∈ N we simply put

ϕ̃α
k (u) =

{
ϕα
k (u), u > 0,

0, u ≤ 0.

Mind that ϕ̃α
k ∈ C�α+1/2	(R). On the other hand, if α + 1/2 is an integer, then we can

naturally extend the definition of ϕk (4.1) to the whole R, and put

ϕ̃α
k (u) = ϕα

k (u), u ∈ R.

In this case ϕ̃α
k ∈ C∞(R).

Our first aim in this section is to prove the following lemma.

Lemma 4.1 Let α ≥ −1/2. If α + 1/2 /∈ N, then ϕ̃α
k ∈ �ν(R) for 0 ≤ ν ≤ α + 1/2,

whereas if α + 1/2 ∈ N, then ϕ̃α
k ∈ �ν(R) for all ν ≥ 0.

Notice that for α ∈ {−1/2} ∪ [1/2,∞) the functions (ϕα
k )′ exist and are bounded,

and observe that Lemmas 4.1 and 2.2 yield that for a given p ∈ (0, 1] and

α ∈
({

− 1

2
,
1

2
, . . . , P − 1

2

}
∪

[
d
( 1
p

− 1
) − 1

2
,∞

))d
,

where P = �d(p−1 − 1)	, we have ϕα
n ∈ �d( 1

p −1)(R
d+).

For the proof of Lemma 4.1 we need some auxiliary results.

Lemma 4.2 Let α ≥ −1/2 and j ∈ N. Then, for any c ∈ (0, 1], we have

∣∣(ϕα
k )( j)(u)

∣∣ �
{
uα+1/2− j (k + 1)α/2, u ∈ (

0, c(k + 1)−1/2
)
,

(k + 1) j/2−1/4, u ∈ (
c(k + 1)−1/2, 1

)
,

uniformly in u and k ∈ N.

Proof Fix c ∈ (0, 1].We apply the induction over j . For j = 0 the estimates are known
(see [30, (1)], and for the original result [1, p. 699] and [26, p. 435]). We assume that
the claim holds for j ∈ N and prove it for j + 1. By (4.3) we have

(ϕα
k )( j+1)(u) = d j

du j

(
− 2

√
kϕα+1

k−1 (u) +
(2α + 1

2u
− u

)
ϕα
k (u)

)
.
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Thus,
∣∣(ϕα

k )( j+1)(u)
∣∣ can be estimated from above by a constant multiple of

√
k
∣∣(ϕα+1

k−1 )( j)(u)
∣∣ + ∣∣(ϕα

k )( j−1)(u)
∣∣ + u

∣∣(ϕα
k )( j)(u)

∣∣ +
j∑

�=0

u−�−1
∣∣(ϕα

k )( j−�)(u)
∣∣,

where we set (ϕα
k )(−1) ≡ 0. Finally, by the inductive hypothesis we obtain

∣∣(ϕα
k )( j+1)(u)

∣∣ � uα+1/2− j (k + 1)α/2
(
u(k + 1) + u−1 + u

)
� uα−1/2− j (k + 1)α/2,

uniformly in u ∈ (0, c(k + 1)−1/2), and

∣∣(ϕα
k )( j+1)(u)

∣∣ � (k + 1)( j+1)/2−1/4,

uniformly in u ∈ (c(k + 1)−1/2, 1). This finishes the proof. ��

The following result is an analogue of Lemma 3.4.

Lemma 4.3 Let α ≥ −1/2 and j, � ∈ N be given. There exists a small constant c > 0
such that there holds

d j

du j

ϕα
k (u)

uα+1/2−�
�

{
(k + 1)α/2u�− j , if � ≥ j,

(−1)

j−�
2 �(k + 1)α/2+
 j−�

2 �u
1−(−1) j−�

2 , if � ≤ j,

uniformly in k ∈ N and u ∈ (0, c(k + 1)−1/2).

Proof The proof is similar to that of Lemma 3.4, therefore we will only sketch it. Fix
� ∈ N. If j = 0, then the estimate is well known (cf. (3.6)). For j ≥ 1 we use the
induction over j . By (4.3) we have

d j+1

du j+1

ϕα
k (u)

uα+1/2−�
= �

d j

du j

ϕα
k (u)

uα+1/2−�+1 − d j

du j

ϕα
k (u)

uα−�−1/2 − 2
√
k
d j

du j

ϕα+1
k−1 (u)

u(α+1)+1/2−�−1
.

(4.4)
Note that if j + 1 ≤ �, then the first component on the right hand side of the above
identity is of the greatest size, (k + 1)α/2u�− j−1, and the others are strictly smaller.
This proves the first bound in the lemma.

On the other hand, if j ≥ �, then we consider the ( j + 1)-th derivative as in (4.4).
Notice that the second summand on the right hand side of (4.4) is of the size (and the
sign)

(−1)

⌈
j−�−1

2

⌉
+1

(k + 1)
α/2+

⌈
j−�−1

2

⌉

u
1−(−1) j−�−1

2 ,

and the third

(−1)

⌈
j−�−1

2

⌉
+1

(k + 1)
α/2+1+

⌈
j−�−1

2

⌉

u
1−(−1) j−�−1

2 .
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We see that the latter is the leading one. Moreover, by the simple identity 
 i−1
2 �+1 =


 i+1
2 �, i ∈ N, it can be written in the following form:

(−1)

⌈
j+1−�

2

⌉

(k + 1)
α/2+

⌈
j+1−�

2

⌉

u
1−(−1) j+1−�

2 .

Furthermore, the first component in (4.4) can be decomposed similarly as in the proof
of Lemma 4.3, and it gives the same growth and the size as the remaining summands.

This finishes the proof of the lemma. ��
Lemma 4.4 Let j ∈ N. For α ≥ −1/2 there holds

∥∥∥(ϕα
k )( j)

∥∥∥
L∞(1/2,∞)

� (k + 1)(6 j−1)/12, k ∈ N, (4.5)

whereas for α ∈ {−1/2, 1/2, . . . , j − 1/2} ∪ ( j − 1/2,∞) there is

∥∥∥(ϕα
k )( j)

∥∥∥
L∞(R+)

� (k + 1)(6 j−1)/12, k ∈ N. (4.6)

Proof In order to prove (4.5) we justify an auxiliary result: for every � ∈ N there is

sup
u≥1/2

∣∣u�(ϕα
k )( j)(u)

∣∣ � (k + 1)(6( j+�)−1)/12.

We use the induction over j . For j = 0 we simply apply (4.1) and (3.2). Now assume
that the claim holds for some j ∈ N. Observe that by (4.3) we have for any � ∈ N

∣∣u�(ϕα
k )( j+1)(u)

∣∣ = u�
∣∣∣
d j

du j

(
− 2

√
kϕα+1

k−1 (u) +
(2α + 1

2u
− u

)
ϕα
k (u)

)∣∣∣

� (k + 1)(6( j+�)+5)/12 +
j∑

i=0

u�−1− j+i
∣∣(ϕα

k )(i)(u)
∣∣ + u�+1

∣∣(ϕα
k )( j)(u)

∣∣

� (k + 1)(6( j+�)+5)/12,

uniformly in k ∈ N and u ≥ 1/2. This proves the auxiliary claim. Notice that for
� = 0 we obtain (4.5).

To justify (4.6), it suffices to verify that for the considered α the required bound
holds on the interval (0, 1/2). In fact, this is true even with the smaller exponent
(2 j − 1)/4. Indeed, if α ≥ j − 1/2, then we invoke Lemma 4.2, whereas in the case
j > α + 1/2 ∈ N we additionally apply Lemma 4.3 with � = α + 1/2. This finishes
the proof of the lemma. ��
Lemma 4.5 For j ∈ N and α ∈ ( j − 1/2, j + 1/2] there holds
∣∣(ϕα

k )( j)(u) − (ϕα
k )( j)(u′)

∣∣ � (k + 1)(2 j+1)/4|u − u′| + (k + 1)α/2|u − u′|α+1/2− j ,

uniformly in k ∈ N and u, u′ ∈ (0, 1).
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Proof Fix 1 > u > u′ > 0. Observe that (4.3) and Lemma 4.2 permit to estimate

∣∣(ϕα
k )( j)(u) − (ϕα

k )( j)(u′)
∣∣ =

∣∣∣
∫ u

u′
d j

ds j

(
− 2

√
kϕα+1

k−1 (s) +
(2α + 1

2s
− s

)
ϕα
k (s)

)
ds

∣∣∣

�
∫ u

u′

(√
k
∣∣(ϕα+1

k−1 )( j)(s)
∣∣ +

j∑

�=0

s−�−1
∣∣(ϕα

k )( j−�)(s)
∣∣

+ ∣∣(ϕα
k )( j−1)(s)

∣∣ + s
∣∣(ϕα

k )( j)(s)
∣∣
)
ds

� |u − u′|(k + 1)(2 j+1)/4 +
j∑

�=0

∫ u

u′
s−�−1

∣∣(ϕα
k )( j−�)(s)

∣∣ ds,

where we set (ϕα
k )(−1) ≡ 0. Now notice that Lemma 4.2 implies

∫ u

u′
s−�−1

∣∣(ϕα
k )( j−�)(s)

∣∣ ds

=
∫

[u′,u]∩[(k+1)−1/2,1)
s−�−1

∣∣(ϕα
k )( j−�)(s)

∣∣ ds

+
∫

[u′,u]∩(0,(k+1)−1/2)

s−�−1
∣∣(ϕα

k )( j−�)(s)
∣∣ ds

� |u − u′|(k + 1)(2 j+1)/4 + (k + 1)α/2
∫ u

u′
sα−1/2− j ds.

Finally, since α ∈ ( j − 1/2, j + 1/2], we see that
∫ u

u′
sα−1/2− j ds � |u − u′|α+1/2− j .

Combining the above gives the claim. ��
Proof of Lemma 4.1 We verify that the functions ϕ̃α

k satisfy the condition in definition
of �ν(R). If α + 1/2 is an integer then the claim follows from (4.6). On the other
hand, if α + 1/2 /∈ N, then we apply (4.6), (4.5), and Lemma 4.5. ��

4.2 Hardy’s Inequality

The kernels of the operators Rα
r (cf. (2.3)) associated with the Laguerre functions of

Hermite type, are defined by

Rα
r (x, y) =

∑

n∈Nd

r |n|ϕα
n (x)ϕα

n (y), (4.7)

and, in the one-dimensional case, admit the explicit form (cf. [42])

Rα
r (u, v) = 2(uv)1/2

(1 − r)rα/2 exp

(
−1

2

1 + r

1 − r
(u2 + v2)

)
Iα

(
2r1/2

1 − r
uv

)
. (4.8)
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Unfortunately, it is highly complicated to proceed as in [30]while estimating deriva-
tives of Rα

r of order higher than 2. The cancellations between the underlying Bessel
functions are not well understood yet. Therefore, we choose an approach similar to
the one applied in the case of the Jacobi expansions [32]. This method relies on the
following formula

Iα(z) = zα
∫ 1

−1
e−zs�α(ds), | arg z| < π, α ≥ −1/2, (4.9)

where �α in the case α > −1/2 is a measure with the density given by

�α(ds) = (1 − s2)α−1/2ds√
π�(α + 1/2)

,

whereas for α = −1/2 it is an atomic measure of the form �−1/2 = δ−1+δ1√
2π

.
Hence, by (4.8) we have for α > −1/2

Rα
r (u, v) = 2α+1(uv)α+1/2

(1 − r)α+1 Eα
r (u, v),

where by Eα
r (u, v) we denote

exp
(

− 1

2

1 + r

1 − r
(v − u)2 − 1 − r

(1 + √
r)2

uv
) ∫ 1

−1
exp

(
− 2

√
r

1 − r
uv(s + 1)

) (1 − s2)α−1/2ds√
π�(α + 1/2)

.

(4.10)
Note that if α = −1/2, then

R−1/2
r (u, v) = 2√

π
√
1 − r

exp
(

− 1

2

1 + r

1 − r
(u2 + v2)

)
cosh

(2
√
ruv

1 − r

)
. (4.11)

Now we have the following proposition.

Proposition 4.6 For j ∈ N and α ∈ {−1/2, 1/2, . . . , j − 1/2} ∪ ( j − 1/2,∞) there
holds

sup
u>0

∥∥∥∂
j
u R

α
r (u, ·)

∥∥∥
L2(R+)

� (1 − r)−
1+2 j
4 , r ∈ (0, 1).

Proof Observe that Parseval’s identity and (4.6) yield

sup
u>0

∥∥∥∂
j
u R

α
r (u, ·)

∥∥∥
L2(R+)

≤
( ∞∑

k=0

2−2k‖(ϕα
n )( j)‖2L∞(R+)

)1/2
� 1,

uniformly in r ∈ (0, 1/2]. Hence, we can focus only on the case r ∈ (1/2, 1).
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We shall firstly consider the situation when α ≥ 1/2 and j ∈ N+ (for j = 0 see
[30, Lemma 3.1]). Note that for � ∈ N such that � ≤ j we can write ∂�

u E
α
r (u, v),

where Eα
r (u, v) is defined in (4.10), as

∫ 1

−1
exp

(
− 1

2

1 + r

1 − r
(v − u)2 − 1 − r

(1 + √
r)2

uv − 2
√
r

1 − r
uv(s + 1)

)

×
∑

k,i≥0
k+2i=�

c�
k,i (1 − r)−k

(
(1 + r)(u − v) + (1 − r)2

(1 + √
r)2

v + 2
√
rv(s + 1)

)k(1 + r

1 − r

)i
�α(ds),

where clk,i are certain constants (cf. [29, p. 812]). Consequently,

∣∣∣∂�
u E

α
r (u, v)

∣∣∣

� (1 − r)−�/2 exp
(

− 1

2

1 + r

1 − r
(v − u)2

)( |u − v|√
1 − r

+ min
( v√

1 − r
,

√
1 − r

u

))�

×
∫ 1

−1
exp

(
−

√
r

1 − r
uv(s + 1)

)
(1 − s2)α−1/2 ds

� (1 − r)−�/2 exp
(

− 1

2

(v − u)2

1 − r

) ∫ 1

−1
exp

(
−

√
r

1 − r
uv(s + 1)

)
(1 + s)α−1/2 ds,

uniformly in u, v > 0 and r ∈ (1/2, 1), where in the last inequality we used the simple
estimate

min(a + b, b−1) ≤ a + 1, a, b > 0. (4.12)

The latter integral is bounded by a constant. On the other hand, again uniformly in
u, v > 0 and r ∈ (1/2, 1),

∫ 1

−1
exp

(
−

√
r

1 − r
uv(s + 1)

)
(1 + s)α−1/2 ds �

(1 − r

uv

)α−1/2
∫ ∞

0
exp

(
−

√
r

1 − r
uvs

)
ds

�
(1 − r

uv

)α+1/2
.

Now we are ready to establish the bound for ∂
j
u Rα

r (u, v). Combining the above we
obtain

∣∣∂ j
u R

α
r (u, v)

∣∣ ≤ 2α+1vα+1/2

(1 − r)α+1

∑

�

(
j

�

)∣∣∂�
u E

α
r (u, v)

∣∣∣∣∂ j−�
u uα+1/2

∣∣

� (1 − r)−( j+1)/2
( uv

1 − r

)α+1/2
min

(
1,

(1 − r

uv

)α+1/2)
exp

(
− 1

2

(v − u)2

1 − r

)

×
∑

�

(√
1 − r

u

) j−�

� (1 − r)−( j+1)/2 min
( uv

1 − r
, 1

)α+1/2
exp

(
− 1

2

(v − u)2

1 − r

)
max

�

(√
1 − r

u

) j−�

,
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where � ∈ {0, . . . , j} if j ≤ α + 1/2, and � ∈ { j − (α + 1/2), . . . , j} if α + 1/2 is
an integer and j > α + 1/2. Observe that if u ≥ √

1 − r , then

∣∣∂ j
u R

α
r (u, v)

∣∣ � (1 − r)−( j+1)/2 exp
(

− 1

2

(v − u)2

1 − r

)
.

In the other case, u ≤ √
1 − r we estimate firstly assuming that j ≤ α + 1/2

∣∣∂ j
u R

α
r (u, v)

∣∣ � (1 − r)−( j+1)/2
( uv

1 − r

) j
exp

(
− 1

2

(v − u)2

1 − r

)(√
1 − r

u

) j

� (1 − r)−( j+1)/2
( |v − u| + u√

1 − r

) j
exp

(
− 1

2

(v − u)2

1 − r

)

� (1 − r)−( j+1)/2 exp
(

− 1

4

(v − u)2

1 − r

)
.

If α + 1/2 ∈ N+ is smaller than j , then analogously

∣∣∂ j
u R

α
r (u, v)

∣∣ � (1 − r)−( j+1)/2
( uv

1 − r

)α+1/2
exp

(
− 1

2

(v − u)2

1 − r

)(√
1 − r

u

)α+1/2

� (1 − r)−( j+1)/2
( |v − u| + u√

1 − r

)α+1/2
exp

(
− 1

2

(v − u)2

1 − r

)

� (1 − r)−( j+1)/2 exp
(

− 1

4

(v − u)2

1 − r

)
.

Combining the above we arrive at

∣∣∂ j
u R

α
r (u, v)

∣∣ � (1 − r)−( j+1)/2 exp
(

− 1

4

(v − u)2

1 − r

)
, u, v > 0, r ∈ [1/2, 1).

(4.13)
Hence,

sup
u>0

∥∥∂
j
u R

α
r (u, ·)∥∥L2(R+)

� (1 − r)−( j+1)/2 sup
u>0

( ∫

R+
exp

(
− 1

2

(v − u)2

1 − r

)
dv

)1/2

� (1 − r)−(2 j+1)/4,

(4.14)

and this completes the proof of the proposition for α ≥ 1/2.
Now we move on to the case α < 1/2. In fact, we need to consider only α = −1/2

and j ∈ N, since for α ∈ (−1/2, 1/2) only j = 0 is allowed, and this was already
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done in author’s previous paper (see [30, Lemma 3.1]). By (4.11) we obtain, for some
constants c jk,i and c̃ jk,i , the following equality

∂
j
u R

−1/2
r (u, v) = 1√

π
√
1 − r

(
exp

(
− 1

2

1 + r

1 − r
(v − u)2 − 1 − r

(1 + √
r)2

uv − 4
√
r

1 − r
uv

)

×
∑

c jk,i

(1 + r

1 − r
(u − v) + 1 − r

(1 + √
r)2

v + 4
√
r

1 − r
v
)k(1 + r

1 − r

)i

+ exp
(

− 1

2

1 + r

1 − r
(v − u)2 − 1 − r

(1 + √
r)2

uv
)

×
∑

c̃ jk,i

(1 + r

1 − r
(u − v) + 1 − r

(1 + √
r)2

v
)k(1 + r

1 − r

)i)
,

where in both sums the summation goes over all k, i ≥ 0 such that k+2i = j . Hence,

∣∣∂ j
u R

−1/2
r (u, v)

∣∣ � (1 − r)−( j+1)/2
(
1 + min

( v√
1 − r

,

√
1 − r

u

)) j
exp

(
− 1

2

(v − u)2

1 − r

)

� (1 − r)−( j+1)/2
( |v − u|√

1 − r
+ 1

) j
exp

(
− 1

2

(v − u)2

1 − r

)

� (1 − r)−( j+1)/2 exp
(

− 1

4

(v − u)2

1 − r

)
,

where in the second inequality we used (4.12).
The last step is the same as in (4.14). This concludes the proof of the proposition.

��
Before we state Hardy’s inequality associated with the Laguerre functions of Her-

mite type we prove some auxiliary results. The next one complements the estimate
from Proposition 4.6. Essentially, it says that the mentioned bound holds also for
α ∈ ( j − 3/2, j − 1/2), j ∈ N+, but only away from the origin.

Lemma 4.7 If j ∈ N and α ∈ ( j − 1/2, j + 1/2), then

sup
u≥1/2

∥∥∥∂
j+1
u Rα

r (u, ·)
∥∥∥
L2(R+)

� (1 − r)−
3+2 j
4 , r ∈ (0, 1).

Proof It suffices to proceed as in the proof of Proposition 4.6with someminor changes.
For r ∈ (0, 1/2] use (4.5) instead of (4.6). If r ∈ (1/2, 1), then we arrive at

∣∣∂ j+1
u Rα

r (u, v)
∣∣ �

j+1∑

�=0

(√
1 − r

u

) j+1−�

(1 − r)−( j+2)/2 exp
(

− 1

2

(v − u)2

1 − r

)(
1 +

√
1 − r

u

)�

× min
( uv

1 − r
, 1

)α+1/2

� (1 − r)−( j+2)/2
j+1∑

�=0

(√
1 − r

u

) j+1−�(
1 +

√
1 − r

u

)�

exp
(

− 1

2

(v − u)2

1 − r

)

� (1 − r)−( j+2)/2 exp
(

− 1

2

(v − u)2

1 − r

)
,
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since
√
1 − r � u. Then we estimate like in (4.14). This finishes the proof of the

lemma. ��
Notice that for j ∈ N and α ∈ ( j − 1/2, j + 1/2) Lemmas 4.7 and 4.5 yield

∥∥∂
j
u R

α
r (u, ·) − ∂

j
u R

α
r (u′, ·)∥∥L2(R+)

� (1 − r)−
2 j+3
4 |u − u′| + (1 − r)−

α+1
2 |u − u′|α+1/2− j , (4.15)

uniformly in r ∈ (0, 1) and u, u′ > 0 such that |u−u′| ≤ 1/2. Indeed, if u, u′ ∈ (0, 1)
then we apply Lemma 4.5 and Parseval’s identity. On the other hand, if u, u′ ≥ 1/2,
invoke the mean value theorem and Lemma 4.7.

Proposition 4.8 If k ∈ N and α ∈ ({−1/2, 1/2, . . . , k − 1/2} ∪ (k − 1/2,∞)
)d
, then

∥∥∥Rα
r (x, ·) −

∑

|n|≤k

∂nx R
α
r (x ′, ·)

n1! · . . . · nd !
d∏

i=1

(xi − x ′
i )
ni
∥∥∥
L2(Rd+)

�
∑

δ∈α
k

(1 − r)−
d+2k+2δ

4 |x − x ′|k+δ,

uniformly in r ∈ (0, 1) and x, x ′ ∈ R
d+ such that |x − x ′| ≤ 1/2, where

α
k = {1} ∪ {αi + 1/2 − k : αi ∈ (k − 1/2, k + 1/2), i = 1, . . . , d}. (4.16)

Proof The proof is analogous to the one of Proposition 3.3, thus we only sketch it.
Observe that if αi /∈ (k − 1/2, k + 1/2) for all i = 1, . . . , d, then the claim, with

α
k = {1}, follows from Taylor’s theorem and Proposition 4.6 applied for j = k + 1.

On the other hand, if αi ∈ (k − 1/2, k + 1/2) for some i then we apply Taylor’s
theorem, Proposition 4.6, and (4.15). Then the set α

k is as in (4.16). We omit the
details. ��

Nowwe are ready to stateHardy’s inequality associatedwith the systemof Laguerre
functions of Hermite type.

Theorem 4.9 Let p ∈ (0, 1), s ∈ [p, 2], and denote P := �d( 1p − 1)	. For

α ∈ ({−1/2, 1/2, . . . , P − 1/2} ∪ (d(p−1 − 1) − 1/2,∞)
)d

,

there holds ∑

n∈Nd

|〈 f , ϕα
n 〉|s

(|n| + 1)E
� ‖ f ‖s

H p(Rd+)
, f ∈ H p(Rd+),

where E = d + ds
4p (2 − 3p), and the exponent is sharp.

Proof Similarly as in the proof of Theorem 3.5: the inequality follows from Theorem
2.4 and Proposition 4.8 (here γ = 1/4), whereas sharpness is a consequence of
Propositions 2.5, 2.6, Lemma 4.3, and Remark 2.7. ��
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4.3 Heat Kernel Estimates

In this article we estimate the kernels Rr (x, y) in various contexts. In the case of the
standard Laguerre functions it was very easy and, as the reader shall see, the same
is true for the Jacobi expansions. On the other hand, here the situation was more
involved. In Proposition 4.6 we have obtained a result which can be interesting on its
own, especially when expressed in terms of the associated heat kernel.

Recall that the heat semigroup {T α
t }t≥0 is spectrally defined by

T α
t f =

∑

n∈Nd

e−t(4|n|+2|α|+2d)〈 f , ϕα
n 〉ϕα

n , f ∈ L2(Rd+).

It is known (cf. [28, p. 403]) that Tt are integral operators:

T α
t f (x) =

∫

R
d+
Gα

t (x, y) f (y) dy, f ∈ L2(Rd+), x ∈ R
d+,

where
Gα

t (x, y) =
∑

n∈Nd

e−t(4|n|+2|α|+2d)ϕα
n (x)ϕα

n (y),

and explicitly (cf. [21, (4.17.6)])

Gα
t (x, y) = (sinh 2t)−d exp

(
− 1

2
coth(2t)(|x |2 + |y|2)

) d∏

i=1

√
xi yi Iαi

( xi yi
sinh 2t

)
.

Observe that by the definition of Gα
t and (4.7) we have the following relation

Gα
t (x, y) = e−2t(|α|+d)Rα

e−4t (x, y).

Hence, the results obtained for Rα
r (x, y) can be easily transferred to Gα

t (x, y). There-
fore, by (4.13) we have the following one-dimensional estimate. By an obvious
modification, this lemma can be generalized to d ≥ 1.

Proposition 4.10 If j ∈ N and α ∈ {−1/2, 1/2, . . . , j − 1/2} ∪ ( j − 1/2,∞), then

∣∣∂ j
u G

α
t (u, v)

∣∣ �
{
t−

j+1
2 exp

(
− c (u−v)2

t

)
, t ≤ 1,

e−2t(α+1)e−c(u−v)2 , t ≥ 1,

uniformly in u, v, t > 0 and for some positive constant c. Moreover,

sup
u>0

∥∥∂
j
u G

α
t (u, ·)∥∥L2(R+)

�
{

t−
2 j+1
4 , t ≤ 1,

e−2t(α+1), t ≥ 1.
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4.4 Generalized Hermite Functions

In this subsection we focus on the generalized Hermite function system. This basis
was already studied in the context of Hardy’s inequality on H1(Rd) in [23, 31]. Due
to its relation with the Laguerre expansions of Hermite type, we essentially deduce
the desired results from that obtained above.

The generalized Hermite functions hλ
k , k ∈ N, of order λ ≥ 0 on R are defined via

hλ
2k(u) = (−1)k2−1/2ϕ

λ−1/2
k (|u|),

hλ
2k+1(u) = (−1)k2−1/2sgn(u)ϕ

λ+1/2
k (|u|), u ∈ R,

where for u = 0 we naturally extend the definition of ϕα
k from (4.1). In higher dimen-

sions these functions are defined as tensor products, similarly as in the previous
sections. The system {hλ

n}n∈Nd forms an orthonormal basis in L2(Rd). We remark

that {h(0,...,0)
n }n∈Nd is the Hermite function basis.

The generalized Hermite functions {hλ
k }k∈N are bounded (cf. (4.2)), and therefore

they are in BMO(R). Moreover, for λ ∈ {0, 2, . . .} ∪ [p−1 − 1,∞) they belong to
the Lipschitz spaces � 1

p −1(R), see [22, Proposition 1.2]. Hence, by Lemma 2.2 in

the multi-dimensional situation we see that hλ
n ∈ �d( 1

p −1)(R
d) for λ ∈ ({0, 2, . . .} ∪

[d(p−1 − 1),∞)
)d and p ∈ (0, 1] (note that the additional assumption in the lemma

is satisfied).
The family of kernels Rr (u, v) associated with the generalized Hermite functions,

in the case d = 1, is given by

R̃λ
r (u, v) =

∑

k∈N
rkhλ

k (u)hλ
k (v).

We use the symbol R̃ instead of R to distinguish this kernel from the one associated
with the functions {ϕα

k }k∈N, which will be of use in this subsection. Notice that

R̃λ
r (u, v) = 1

2

(
Rλ−1/2
r2

(|u|, |v|) + sgn(uv)r Rλ+1/2
r2

(|u|, |v|)
)
, (4.17)

where r ∈ (0, 1) and u, v ∈ R. We naturally extended the definition of Rλ±1/2
r for

u = 0 and v = 0. Observe that if λ is an even integer, then R̃λ
r ∈ C∞(R × R).

Moreover, given j ∈ N we see that R̃λ
r ∈ C j (R × R) for λ > j .

Fix j ∈ N and λ ∈ {0, 2, . . .} ∪ ( j,∞). For u �= 0 we have

∂
j
u R̃

λ
r (u, v) = (sgnu) j

2

(
∂
j
u R

λ−1/2
r2

(|u|, |v|) + sgn(vu)r∂ j
u R

λ+1/2
r2

(|u|, |v|)
)
,

whereas for u = 0 we see that

∂
j
u R̃

λ
r (0, v) = 1

2
∂
j
u R

λ−1/2
r2

(0, |v|),
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where in both cases r ∈ (0, 1) and v ∈ R. In the latter equality we naturally extended
the formula from (4.8) to u = 0.

Lemma 4.11 Let j ∈ N. For λ ∈ {0, 2, . . .} ∪ ( j,∞) we have

sup
u∈R

∥∥∂
j
u R̃

λ
r (u, ·)∥∥L2(R)

� (1 − r)(1+2 j)/4,

uniformly in r ∈ (0, 1). Moreover, for λ ∈ ( j, j + 1] we have
∥∥∂

j
u R̃

λ
r (u, ·)−∂

j
u R̃

λ
r (u′, ·)∥∥L2(R)

� (1−r)(1+2 j)/4|u−u′|+(1−r)(2λ+1)/4|u−u′|λ− j

uniformly in r ∈ (0, 1) and u, u′ ∈ R such that |u − u′| ≤ 1.

Proof The first part is implied by (4.17) and Proposition 4.6. For the second one see
(4.15). ��

Now the version of (C) corresponding to the generalized Hermite setting follows
easily. Then we immediately obtain the associated Hardy’s inequality.

Proposition 4.12 If k ∈ N and λ ∈ ({0, 2, . . .} ∪ (k,∞)
)d
, then

∥∥∥R̃λ
r (x, ·) −

∑

|n|≤k

∂nx R̃
λ
r (x ′, ·)

n1! · . . . · nd !
d∏

i=1

(xi − x ′
i )
ni
∥∥∥
L2(Rd )

�
∑

δ∈α
k

(1 − r)−
d+2k+2δ

4 |x − x ′|k+δ,

uniformly in r ∈ (0, 1) and x, x ′ ∈ R
d such that |x − x ′| ≤ 1/2, where

λ
k = {1} ∪ {λi − k : λi ∈ (k, k + 1)}.

Theorem 4.13 Let p ∈ (0, 1), s ∈ [p, 2], and P = �d(p−1 − 1)	. For

λ ∈ ({0, 2, . . . , 2�P/2	} ∪ (d(p−1 − 1),∞)
)d

there holds
∑

n∈Nd

|〈 f , hλ
n〉|s

(|n| + 1)E
� ‖ f ‖sH p(Rd )

, f ∈ H p(Rd),

where E = d + ds
4p (2 − 3p), and the exponent is sharp.

Proof The inequality is a consequence of Proposition 4.12 and Theorem 2.4 and sharp-
ness follows immediately from sharpness of the exponent in Theorem 4.9. ��

We remark that for λ = (0, . . . , 0), that is in the case of the Hermite functions, the
result agrees with the ones already known in the literature ([35] for d ≥ 2, [23] for
d = 1).
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5 Jacobi Trigonometric Functions

The Jacobi functions φ
α,β
k , k ∈ N, α, β > −1, are defined by

φ
α,β
k (θ) =

(
sin

θ

2

)α+1/2(
cos

θ

2

)β+1/2Pα,β
k (θ), θ ∈ (0, π), (5.1)

where
Pα,β
k (θ) = cα,β

k Pα,β
k (cos θ),

and Pα,β
k denotes the Jacobi polynomial of type α, β and degree k. Here cα,β

k is the
normalizing constant,

cα,β
k =

(
(2k + α + β + 1)�(k + α + β + 1)�(k + 1)

�(k + α + 1)�(k + β + 1)

)1/2

,

where for k = 0 andα+β = −1wewrite 1 in place of (2k+α+β+1)�(k+α+β+1)
in the numerator. Note that cα,β

k � (k + 1)1/2, k ∈ N. The system {φα,β
k }k∈N is an

orthonormal basis in L2((0, π)). In higher dimensions φ
α,β
n (θ) are defined as tensor

products of φ
αi ,βi
ni (θi ).

We are now interested in the L∞ norms of the derivatives of φ
α,β
k in various ranges

of the parameters α and β and on different subintervals of (0, π). Firstly, recall that
for α, β ≥ −1/2 there is (see [27, (2.8)])

∣∣φα,β
k (θ)

∣∣ �

⎧
⎪⎨

⎪⎩

(
(k + 1)θ

)α+1/2
, 0 < θ ≤ (k + 1)−1,

1, (k + 1)−1 ≤ θ ≤ π − (k + 1)−1,(
(k + 1)θ

)β+1/2
, π − (k + 1)−1 ≤ θ < π.

(5.2)

Hence, for α, β ≥ −1/2

‖φα,β
k ‖L∞(0,π) � 1, k ∈ N.

Secondly, we make use of the formula (cf. [42, (4.21.7)] or [8, p. 364] after an obvious
simplification)

d

dθ
φ

α,β
k (θ) = −kα,βφ

α+1,β+1
k−1 (θ) +

(2α + 1

4
cot

θ

2
− 2β + 1

4
tan

θ

2

)
φ

α,β
k (θ),

(5.3)

where we put φα+1,β+1
−1 ≡ 0 and kα,β = √

k(k + α + β + 1). Observe that (5.3) and
(5.2) give for α ∈ {−1/2} ∪ [1/2,∞) and β ≥ −1/2 the bound

∥∥(φ
α,β
k )′

∥∥
L∞

(
0, 2π3

) � (k + 1), k ∈ N,
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and symmetrically for α ≥ −1/2 and β ∈ {−1/2} ∪ [1/2,∞),

∥∥(φ
α,β
k )′

∥∥
L∞( π

3 ,π)
� (k + 1), k ∈ N.

For similar estimates for higher order derivatives see Lemma 5.3.
We will frequently make use of the formula

φ
α,β
k (θ) = φ

β,α
k (π − θ), θ ∈ (0, π). (5.4)

5.1 Lipschitz and BMO Properties

Let us firstly give some auxiliary lemmas and justify that the Jacobi functions belong
to the Lipschitz spaces �ν((0, π)) for certain ν.

Lemma 5.1 Let j ∈ N and α, β ≥ −1/2. Then, for any c ∈ (0, 1], we have
∣∣(φα,β

k )( j)(θ)
∣∣ �

{
θα+1/2− j (k + 1)α+1/2, θ ∈ (

0, c(k + 1)−1
)
,

(k + 1) j , θ ∈ [
c(k + 1)−1, 2π

3

)
,

and

∣∣(φα,β
k )( j)(θ)

∣∣ �
{

θβ+1/2− j (k + 1)β+1/2, θ ∈ (
π − c(k + 1)−1, π

)
,

(k + 1) j , θ ∈ (
π
3 , π − c(k + 1)−1

]
,

uniformly in θ and k ∈ N.

Proof Notice that by (5.4) it suffices to verify the first estimate. We use the induction.
For j = 0 see (5.2). Assume that the claim holds for j ∈ N. By (5.3) we have

(φ
α,β
k )( j+1)(θ) = −kα,β(φ

α+1,β+1
k−1 )( j)(θ)

+ d j

dθ j

((2α + 1

4
cot

θ

2
− 2β + 1

4
tan

θ

2

)
φ

α,β
k (θ)

)
,

where we used (5.3). Mind that for any given i ∈ N there is

∣∣∣
(
tan(θ/2)

)(i)∣∣∣ � 1 and
∣∣∣
(
cot(θ/2)

)(i)∣∣∣ � θ−(i+1), (5.5)

uniformly in θ ∈ (
0, 2π

3

)
. Hence,

∣∣∣(φα,β
k )( j+1)(θ)

∣∣∣ � (k + 1)
∣∣∣(φα+1,β+1

k−1 )( j)(θ)

∣∣∣

+
j∑

i=0

θ−(i+1)
∣∣∣(φα,β

k )( j−i)(θ)

∣∣∣ +
j∑

i=0

∣∣∣(φα,β
k )(i)(θ)

∣∣∣,
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uniformly in k ∈ N and θ ∈ (
0, 2π

3

)
. Thus,

∣∣∣(φα,β
k )( j+1)(θ)

∣∣∣ � (k + 1)α+1/2θα+1/2− j
(
(k + 1)2θ + θ−1 + 1

)

� (k + 1)α+1/2θα+1/2− j−1,

uniformly in k ∈ N and θ ∈ (
0, c(k + 1)−1

)
. Similarly,

∣∣∣(φα,β
k )( j+1)(θ)

∣∣∣ � (k + 1) j+1,

uniformly in k ∈ N and θ ∈ (
c(k + 1)−1, 2π

3

)
. This finishes the proof. ��

The following result is an analogue of Lemmas 3.4 and 4.3.

Lemma 5.2 Let j, � ∈ N and α, β ≥ −1/2. There exists c > 0 such that

d j

dθ j

φ
α,β
k (θ)

(
sin θ

2

)α+1/2−�
�

{
(k + 1)α+1/2 θ�− j , � ≥ j,

(−1)

⌈
j−�
2

⌉

(k + 1)
α+1/2+2

⌈
j−�
2

⌉

θ
1−(−1) j−�

2 , � ≤ j,

uniformly in k ∈ N and θ ∈ (
0, c(k + 1)−1

)
, and

d j

dθ j

φ
α,β
k (θ)

(
cos θ

2

)β+1/2−�
�

{
(k + 1)β+1/2 (π − θ)�− j , � ≥ j,

(−1)

⌈
j−�
2

⌉

(k + 1)
β+1/2+2

⌈
j−�
2

⌉

(π − θ)
1−(−1) j−�

2 , � ≤ j,

uniformly in k ∈ N and θ ∈ (
π − c(k + 1)−1, π

)
.

Proof It is sufficient to prove the first estimate. The reasoning is similar to the ones
used in the proofs of Lemmas 3.4 and 4.3, therefore we only sketch it.

Fix �, α, β as in the hypothesis. We use the induction over j . For j = 0 see [32,
(A.1) and (A.2)]. For the inductive step observe that

d j+1

dθ j+1

φ
α,β
k (θ)

(
sin θ

2

)α+1/2−�
= d j

dθ j

(�

2

cos θ
2 φ

α,β
k (θ)

(
sin θ

2

)α+3/2−�
− 2β + 1

4

φ
α,β
k (θ)

cos θ
2

(
sin θ

2

)α−1/2−�

− kα,βφ
α+1,β+1
k−1 (θ)

(
sin θ

2

)α+1/2−�

)
.

If j ≤ � − 1, then the first implied component is the largest on the right hand side of
the above equality. It is positive and of the desired size (k+1)α+1/2 θ�− j−1. Secondly,
the case j = � can be checked directly. On the other hand, if j ≥ � + 1, then the
first term, after � iterations, vanishes as did its counterparts from Lemma 3.4 and 4.3.
Furthermore, for sufficiently small c > 0 the second summand is of the sign and the
size

(−1)

⌈
j−�−1

2

⌉
+1

(k + 1)
α+1/2+2

⌈
j−�−1

2

⌉

θ
1−(−1) j−�−1

2 ,
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and the third

(−1)

⌈
j−�−1

2

⌉
+1

(k + 1)
α+5/2+2

⌈
j−�−1

2

⌉

θ
1−(−1) j−�−1

2 .

The latter is dominant and it can be rewritten as

(−1)

⌈
j+1−�

2

⌉

(k + 1)
α+1/2+2

⌈
j+1−�

2

⌉

θ
1−(−1) j+1−�

2 ,

which finishes the inductive step. ��
Lemma 5.3 Let j ∈ N. For α ∈ {−1/2, 1/2, . . . , j − 1/2} ∪ ( j − 1/2,∞), and
β ≥ −1/2, there is

∥∥∥
(
φ

α,β
k

)( j)∥∥∥
L∞

(
0, 2π3

) � (k + 1) j , k ∈ N,

whereas for α ≥ −1/2 and β ∈ {−1/2, 1/2, . . . , j − 1/2} ∪ ( j − 1/2,∞), we have

∥∥∥
(
φ

α,β
k

)( j)∥∥∥
L∞( π

3 ,π)
� (k + 1) j , k ∈ N.

Proof Observe that the latter estimate follows from the former by (5.4). Thus we fix
j ∈ N, α, and β as in the first hypothesis. We justify the bound on (0, 2π

3 ). Note that
for α ≥ j − 1/2 it suffices to use Lemma 5.1. On the other hand, if j > α + 1/2 ∈ N,
then use Lemma 5.2 with � = α + 1/2. This concludes the proof. ��
Lemma 5.4 Let j ∈ N. If α ∈ ( j − 1/2, j + 1/2) and β ≥ −1/2, then

∣∣(φα,β
k )( j)(θ) − (φ

α,β
k )( j)(θ ′)

∣∣ � (k + 1) j+1|θ − θ ′| + (k + 1)α+1/2|θ − θ ′|α+1/2− j ,

uniformly in k ∈ N and θ, θ ′ ∈ (0, 2π
3 ). Similarly, for α ≥ −1/2 and β ∈ ( j −

1/2, j + 1/2),

∣∣(φα,β
k )( j)(θ) − (φ

α,β
k )( j)(θ ′)

∣∣ � (k + 1) j+1|θ − θ ′| + (k + 1)β+1/2|θ − θ ′|β+1/2− j ,

uniformly in k ∈ N and θ, θ ′ ∈ (π
3 , π).

Proof Again, by (5.4) we verify only the first estimate. Fix j, α, β as in the hypoth-
esis. For 0 < θ ′ < θ < 2π

3 , by using (5.3), we write the difference (φ
α,β
k )( j)(θ) −

(φ
α,β
k )( j)(θ ′) as

∫ θ

θ ′
d j

dω j

(
− kα,βφ

α+1,β+1
k−1 (ω) +

(2α + 1

4
cot

ω

2
− 2β + 1

4
tan

ω

2

)
φ

α,β
k (ω)

)
dω.

Thus, by the first bound in Lemma 5.1 and (5.5) we obtain

∣∣(φα,β
k )( j)(θ) − (φ

α,β
k )( j)(θ ′)

∣∣ � (k + 1) j+1|θ − θ ′| +
∫ θ

θ ′

∣∣∣
d j

dω j

(
cot

ω

2
φ

α,β
k (ω)

)∣∣∣ dω,
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uniformly in k ∈ N and θ, θ ′ ∈ (0, 2π
3 ). Using Lemma 5.1 we estimate the last integral

uniformly in the indicated ranges, up to a multiplicative constant, by

(k + 1) j+1|θ − θ ′| + (k + 1)α+1/2
∫ θ

θ ′
ωα−1/2− j dω.

The conclusion follows since the last integral is bounded by a constant times |θ −
θ ′|α+1/2− j . ��

Nowwepass to the verification ofLipschitz and BMO properties of the Jacobi func-
tions. Observe that for α, β ∈ [−1/2,∞)d , φα,β

n ∈ L∞((0, π)d) ⊂ BMO((0, π)d).
We justify thatφα,β

n ∈ �ν

(
(0, π)d

)
, ν > 0, for appropriate parametersα andβ. For this

purpose we define an extension φ̃
α,β
k of φ

α,β
k to the whole R such that φ̃α,β

k ∈ �ν(R),
and then apply Lemma 2.2 for the multi-dimensional situation.

Fix α and β such that α + 1/2, β + 1/2 ∈ N. We extend the initial definition of
φ

α,β
k (θ), see (5.1), to the whole R. Note that for j ∈ N and θ ∈ ( jπ, ( j + 1)π) there

holds

φ
α,β
k (θ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φ
α,β
k (θ − jπ), j ≡ 0 mod 4,

(−1)β+1/2φ
α,β
k (( j + 1)π − θ), j ≡ 1 mod 4,

(−1)α+β+1φ
α,β
k (θ − jπ), j ≡ 2 mod 4,

(−1)α+1/2φ
α,β
k (( j + 1)π − θ), j ≡ 3 mod 4.

We remark that the second (fourth, resp.) line on the right hand side of the formula
above makes sense also when α + 1/2 (β + 1/2, resp.) is not an integer. Moreover,
if α + 1/2 ∈ N (β + 1/2 ∈ N, resp.), then φ

α,β
k (2 jπ) (φα,β

k ((2 j + 1)π), resp.) is
naturally defined for j ∈ N.

Now we define the extension φ̃
α,β
k of φ

α,β
k . If both α + 1/2, β + 1/2 ∈ N, then

φ̃
α,β
k (θ) = φ

α,β
k (θ), θ ∈ R.

Secondly, if α + 1/2 ∈ N and β + 1/2 /∈ N, then

φ̃
α,β
k (θ) =

{
φ

α,β
k (θ), θ ∈ (−π, π),

0, θ /∈ (−π, π).

Similarly, if α + 1/2 /∈ N and β + 1/2 ∈ N, then

φ̃
α,β
k (θ) =

{
φ

α,β
k (θ), θ ∈ (0, 2π),

0, θ /∈ (0, 2π).

Finally, if both α + 1/2, β + 1/2 /∈ N, then we put

φ̃
α,β
k (θ) =

{
φ

α,β
k (θ), θ ∈ (0, π),

0, θ /∈ (0, π).
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Notice that φ̃α,β
k ∈ Cmin(ᾱ,β̄)(R), wherewe used the one-off notation ᾱ = �α+1/2	

if α + 1/2 /∈ N and ᾱ = ∞ otherwise, and the same for β̄.
Now, by Lemmas 5.3, 5.4, and 2.2, we have the following result.

Lemma 5.5 If p ∈ (0, 1] and α, β ∈ ({−1/2, 1/2, . . . , P − 1/2} ∪ [d(p−1 − 1) −
1/2,∞)

)d
, where P = �d(p−1 − 1)	, then φ

α,β
n ∈ �d( 1

p−1)((0, π)d).

5.2 Hardy’s Inequality

The one-dimensional kernels Rα,β
r (θ, ϕ), r ∈ (0, 1), θ, ϕ ∈ (0, π), associated with

the Jacobi functions are defined via (cf. (2.3))

Rα,β
r (θ, ϕ) =

∑

k∈N
rkφα,β

k (θ)φ
α,β
k (ϕ).

For an explicit formula see [32].
Notice that by Parseval’s identity and interchanging the differentiation with the

summation, which is allowed due to Lemma 5.3 and the Lebesgue dominated conver-
gence theorem, we obtain the following lemma.

Lemma 5.6 If j ∈ N, and α, β ∈ {−1/2, 1/2, . . . , j − 1/2} ∪ ( j − 1/2,∞), then

sup
θ∈(0,π)

∥∥∂
j
θ R

α,β
r (θ, ·)∥∥L2((0,π))

� (1 − r)−( j+1/2), r ∈ (0, 1).

In order to verify the appropriate version of (C) we firstly estimate differences
of the derivatives of Rα,β

r (θ, ϕ). We remark that in order to prove the below-stated
proposition, one could use [5, Lemma 3.4] and the explicit form of the investigated
kernels. However, Lemma 5.4 yields this result much quicker.

Proposition 5.7 If j ∈ N and α, β ∈ {−1/2, 1/2, . . . , j − 1/2} ∪ ( j − 1/2,∞), then

∥∥∂
j
θ R

α,β
r (θ, ·) − ∂

j
θ R

α,β
r (θ ′, ·)∥∥L2((0,π))

� (1 − r)−( j+3/2)|θ − θ ′| + (1 − r)−(α+1)|θ − θ ′|α+1/2− j

+ (1 − r)−(β+1)|θ − θ ′|β+1/2− j ,

uniformly in r ∈ (0, 1) and θ, θ ′ ∈ (0, π), where the second (third, resp.) summand
on the right hand side of the estimate appears only if α (β, resp.) belongs to ( j −
1/2, j + 1/2).

Proof In the case α, β /∈ ( j − 1/2, j + 1/2) we simply apply the mean value theorem
and Lemma 5.6. On the other hand, if one or both of the parameters α and β is in
( j − 1/2, j + 1/2), then we apply Parseval’s identity and Lemma 5.4. ��

Now the following proposition follows easily (compare with Propositions 3.3 and
4.8).
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Proposition 5.8 If k ∈ N and α, β ∈ ({−1/2, 1/2, . . . , k − 1/2} ∪ (k − 1/2,∞)
)d
,

then

∥∥∥Rα,β
r (θ, ·) −

∑

|n|≤k

∂nθ R
α,β
r (θ ′, ·)

n1! · . . . · nd !
d∏

i=1

(θi − θ ′
i )
ni
∥∥∥
L2((0,π)d )

�
∑

δ∈
α,β
k

(1 − r)−
d+2k+2δ

2 |θ − θ ′|k+δ,

uniformly in r ∈ (0, 1) and θ, θ ′ ∈ (0, π)d , where


α,β
k = {1} ∪ {αi + 1/2 − k : αi ∈ (k − 1/2, k + 1/2)}

∪ {βi + 1/2 − k : βi ∈ (k − 1/2, k + 1/2)}.

We are ready to state Hardy’s inequality associated with the Jacobi trigonometric
functions.

Theorem 5.9 Let p ∈ (0, 1), s ∈ [p, 2], and P = �d(p−1 − 1)	. For

α, β ∈ ({−1/2, 1/2, . . . , P − 1/2} ∪ (d(p−1 − 1) − 1/2,∞)
)d

,

there holds

∑

n∈Nd

|〈 f , φα,β
n 〉|s

(|n| + 1)E
� ‖ f ‖sH p((0,π)d )

, f ∈ H p((0, π)d),

where E = d + sd
(
p−1 − 1

)
, and the exponent is sharp.

Proof Similarly as in the proofs of Theorems 3.5 and 4.9 the inequality follows from
Theorem 2.4 and Proposition 5.8, whereas sharpness is a consequence of Propositions
2.5, 2.6, Lemma 5.2 and Remark 2.7. ��
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