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Abstract
Estimates of best approximations by exponential type analytic functions in Gaussian
random variables with respect to the Malliavin derivative in the form of Bernstein–
Jackson inequalities with exact constants are established. Formulas for constants
are expressed through basic parameters of approximation spaces. The relationship
between approximation Gaussian Hilbert spaces and classic Besov spaces are shown.

Keywords Bernstein–Jackson inequalities · Approximation by Gaussian random
variables · Best approximation constants

Mathematics Subject Classification 46N30 · 41A44 · 41A17

1 Introduction andMain Results

As is known (see [2, 7, 10, 26, 27]), the best approximations by differentiable functions
in the classic analysis is based on a concept of the E-functional which characterizes the
rapidity of approximations. This approach is constructive because it combines approx-
imations with interpolation methods that provide explicit formulas for evaluating the
approximations. In this area, many important inverse and direct theorems in the form
of Bernstein–Jackson inequalities have been proven, in particular, in [3, 5, 11, 18, 19].
But approximation constants were not calculated that gives only asymptotic estimates
of errors.

Our goal is to extend inverse and direct theorems in the form of Bernstein–Jackson
inequalities on a more general case of best approximations by entire analytic in a
Malliavin sense functions of random variables on Gaussian Hilbert spaces, and fur-
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thermore to calculate the explicit formulas for exact approximation constants in these
inequalities.

The main results are presented in Sect. 3. Namely, in Theorem 2 it is established
the bilateral version of Bernstein–Jackson inequalities

t−1+1/θ E(t, f ) ≤ Cθ,q‖ f ‖Eθ,q ≤ 21/θ | f |−1+1/θ
E p0 ‖ f ‖p1 , f ∈ E p0 ∩ L p1

E(t, f ) ≤ t1−1/θCθ,q‖ f ‖Eθ,q , f ∈ Eθ,q(E
p0 , L p1),

where the approximation Gaussian Hilbert space Eθ,q(E p0 , L p1) is represented as a
fractional power of the real interpolation space Kθ,q (E p0 , L p1) in the form

Eθ,q(E
p0 , L p1) � Kθ,q

(
E p0 , L p1

)1/θ
, p0 ∈ (1,∞), p1 ∈ (0,∞)

which is a generalization of the known classic isomorphism (see e.g. [2, Theorem
7.1.7]) on the case of Gaussian Hilbert spaces.

One of main results in Theorem 2 is also the explicit formula (12) for the best
approximation constants Cθ,q which for the case q = 2 receives the following simple
form

Cθ,2 =
(
sin πθ

πθ

)1/2θ

, 0 < θ < 1.

The above-mentioned Bernstein–Jackson inequalities two-sided characterize the
rapidity of approximations in the space L p1(�,F, P) by the dense quasi-normed
subspace (E p0 , | · |E p ) of convergent exponential types power series with respect to
the Malliavin derivative ∇,

∞∑

k=0

∇k f

k! zk, z ∈ C.

More specific, we consider Gaussian Hilbert spaces of random variables φh defined
on a complete probability space (�,F, P) such that φh ∼ N(0, ‖h‖2H ), where h
belongs to a separable real Hilbert space H and σ -field F is generated by a Gaussian
field H 
 h �→ φh . This means that φh is a family of Gaussian random variables with
covariance structure Eφhφg = 〈h | g〉, where Eφh is the expectation of φh relative to
(�,F, P) (see e.g. [15, Theorem 1.23]).

One of the main tools that is used to characterize on Gaussian Hilbert spaces of
entire analytic functions is the notion of an exponential type, introduced in Sect. 2.
This notion is a generalization of analytic vectors in the Nelson sense [21] for an
abstract linear unbounded operator on the case of Malliavin’s derivative ∇.

Note that the case of non-stochastic entire analytic vectors in the Nelson sense were
early analyzed in [8, 9].
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The following properties of exponential-type randomGaussian variables are proved
in Theorem 1. For this purpose, we introduce the quasi-normed space

E p(�,F, P) =
⋃

E ν,p(�,F, P)

of entire analytic functions in random variables of all exponential types ν > 0, which
is dense in L p(�,F, P) with p ∈ (0,∞) and the interpolation couple

(
E p0(�,F, P), L p1(�,F, P)

)
, p0 ∈ (1,∞), p1 ∈ (0,∞),

which is compatible in the interpolation theory sense. Using these spaces, we define
the best approximation E-functional to be

E
(
t, f ;E p0 , L p1

) = inf
{‖ f − f0‖p1 : | f0|E p0 < t

}
, f ∈ L p1 .

It is proved that each restriction ∇|E ν,p to the subspace E ν,p(�,F, P) with a
fixed exponential type ν > 0 has the finite norm ≤ ν and that E p(�,F, P) and
E ν,p(�,F, P) are complete. The completeness is proved with the help of Bernstein
compactness theorem for entire analytic functions of an exponential type [22, Theorem
3.3.6].

Notice additionally that in the considered case, the interpolation Gaussian Hilbert
space Kθ,q (E p0 , L p1) is determined through the quadratically modified (adapted to
the case of Hilbert spaces) form of the K -functional, which was used, in particular, in
[17].

Finally, the approach developed in this work naturally includes the case of functions
with independent random variables, defined on infinite dimensional Banach spaces
(see Example 1).

In Example 2 it is also shown that for the Gaussian space L p
(
R
d ,F, γd

)
with

p ∈ (1,∞), endowed with the gaussian measure γd on the Borel σ -field F = B(Rd),
the previous approximation space has the form

Eθ,q(E
p, L p) =

{
fg ∈ L p

(
R
d ,F, γd

)
: g ∈ Bs

p,τ (R
d)

}
,

where the space Bs
p,τ (R

d) with s = −1+ 1/θ and τ = qθ exactly coincides with the
classic Besov space (see e.g. [33, p.197]). Above, the element fg = g(φh1, . . . , φhd ) ∈
E p

(
R
d ,F, γd

)
means the cylindrical random function determined by an entire ana-

lytic function g(z1, . . . , zd) on C
d of an exponential type. In this case for q = 2 and

τ = 2θ the Bernstein–Jackson inequalities take the form

‖ fg‖Eθ,2 ≤ 21/2θ
(

πθ

sin πθ

)1/2θ

| fg|−1+1/θ
E p ‖g‖L p(Rd ), fg ∈ E p,

E(t, fg) ≤ t1−1/θ
(
sin πθ

πθ

)1/2θ

‖g‖Bs
p,τ (Rd ), g ∈ Bs

p,τ (R
d).
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It is important to note that among other widely known universal approaches to
approximating functions in Gaussian variables, the known Stein method [31, 32] and
its subsequent modifications should be specially recorded. The following publications
of recent years [12, 13, 23, 24, 30] are devoted to the development of these studies
using the Malliavin calculus.

2 Exponential Type with Respect to theMalliavin Derivative

Let a real separable Hilbert space H with scalar product and norm, denoted by 〈· | ·〉
and ‖ · ‖H = 〈· | ·〉1/2, has an orthonormal basis {ei : i ∈ N}.

There exists a linear isometry H 
 h → φh into a Gaussian Hilbert space of real-
valued functions defined on a complete probability space (�,F, P), where the σ -field
F is generated by H (see e.g. [15, Theorem 1.23]). We suppose that φh is centered
and has the covariance Eφhφg = 〈h | g〉H (see [25, no1.1]).

The L p-norm of real-valued functions f on (�,F, P) is defined by

‖ f ‖p =
{

(E | f |p)1/p if p ∈ (0,∞)

ess sup | f | if p = ∞.

All L p-norms with p ∈ (0,∞) are proportional [15, Theorem 1.4], since ‖ f ‖p =
κ(p)‖ f ‖2, where κ(p) = √

2(Γ ((p + 1)/2)/
√

π)1/p. By definition, the space L p =
L p(�,F, P) is endowed with the L p-norm. The space of all measurable functions
L0 = L0(�,F, P) is equipped with the topology of convergence in probability,
metrizable by ‖ f ‖0 = Emin(| f |, 1).

The L p-norm of Y -valued functions ξ = f ⊗ y in (�,F, P) is defined to be

‖ξ‖p =
{

(E ‖ξ‖p
Y )1/p if p ∈ (0,∞)

ess sup ‖ξ‖Y if p = ∞ , where y belongs to a Banach space (Y , ‖·‖Y ).

Let L p(Y ) be the completion of linear span of ξ = φ⊗ y with respect to this L p-norm.
Consider the class of smooth functions of cylindrical forms

f = F(φh1, . . . , φhn ) with some n ∈ N,

where φh1, . . . , φhn ∈ L0 with hi ∈ H and F ∈ C∞
b (Rn) is a smooth function with

bounded partial derivatives ∂i . By definition the Malliavin derivative ∇ of f is the
H -valued random variable

∇ f =
n∑

i=1

∂i F(φh1, . . . , φhn )hi , h1, . . . , hn ∈ H

(see e.g. [25, no 1.2.1]). In particular, ∇φh = h for every h ∈ H .
For p ∈ [1,∞) the domain W 1,p of ∇ is the closure in L p of all functions with

respect to the graph-norm

‖ f ‖1,p = (E | f |p)1/p + (E ‖∇ f ‖p
H )1/p.
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The completion of linear spans of tensor products ψn = h1 ⊗ . . . ⊗ hn , (hı ∈ H)

endowed with ‖ψn‖H⊗n = 〈ψn | ψn〉1/2 is denoted by H⊗n , where 〈ψn | ψ ′
n〉 =

〈h1 | h′
1〉 . . . 〈hn | h′

n〉. Let h⊗n := h ⊗ . . . ⊗ h. The symmetric tensor power H�n ⊂
H⊗n is defined to be a range of the orthogonal projector

H⊗n 
 h1 ⊗ . . . ⊗ hn �→ h1 � . . . � hn := 1

n!
∑

σ∈Sn
hσ(1) ⊗ . . . ⊗ hσ(n),

where Sn means n-elements permutations. The corresponding symmetric Fock space
Γ (H) = ⊕∞

0 H�n of elements ψ = ⊕
ψn with ψn ∈ H�n and H�0 = R is

endowed with the norm

‖ψ‖Γ = 〈ψ | ψ〉1/2Γ , 〈ψ | ψ ′〉Γ =
∞∑

n=0

n!〈ψn | ψ ′
n〉. (1)

The iterated derivative ∇k f with k > 1 is a random variable with values in H�k .
Its domain Wk,p coincides with the closure of Malliavin-smooth random variables
with respect to the graph-norm

‖ f ‖k,p = (E | f |p)1/p + (E ‖∇k f ‖p
H�k )

1/p, p ∈ [1,∞).

The operators ∇k : Wk,p → L p(H�k) are closed and
⋂∞

k=0 W
k,p is dense in

L p(�,F, P) because one contains all Hermite polynomials (see e.g. [25, 1.5]).

Definition 1 A function f ∈ ⋂∞
k=0 W

k,p with p ∈ (1,∞) of Gaussian random vari-
ables on (�,F, P) we call the exponential type ν > 0 with respect to the Malliavin
derivative ∇ if the power series

f̂ (z) :=
∞∑

k=0

zk

k!
(
E ‖∇k f ‖p

H�k

)2/p
,

(
E |∇0 f |p

)2/p = ‖ f ‖2p (2)

is an entire analytic function in the complex variable z ∈ C of the exponential type ν,
that is, for which the following condition is satisfied (see, e.g. [4, Theorem 1.1.1]),

ν = lim sup
r→∞

lnμ(r)

r
with μ(r) = max|z|=r

| f̂ (z)|.

Definition 1 can be considered as a generalization of analytic vectors for a linear
unbounded operator in the sense of Nelson (see [21]) on the case of derivative ∇. As
we will see below, the series

∞∑

k=0

zk

k! ∇
k f , f ∈

∞⋂

k=0

Wk,p

is pointwise absolutely convergent on a non-trivial dense subspace of L p.
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Definition 2 (i) Let E ν,p with p ∈ (1,∞) be the subspace in L p of functions f in
random variables with the finite Hilbertian norm

‖ f ‖E ν,p =
( ∞∑

k=0

1

ν2k

(
E ‖∇k f ‖p

H�k

)2/p )1/2

, ν > 0. (3)

(ii) Let the subspace of functions f in L p,

E p =
⋃

ν>0

E ν,p,

is endowed with the quasi-norm

| f |E p = ‖ f ‖p + inf
{
ν > 0 : f ∈ E ν,p}. (4)

Theorem 1 (a) The spaces (E ν,p, ‖ · ‖E ν,p ) and (E p, | · |E p ) are complete.
(b) Each restriction ∇|E ν,p is a linear operator with a finite norm ≤ ν on the space

(E ν,p, ‖ · ‖E ν,p ). The following contractive inclusions hold,

E ν,p � E μ,p � L p, μ > ν > 1. (5)

(c) The space E p with p ∈ (1,∞) is dense in Lq for any q ∈ (0,∞).
(d) The interpolation couple (E p0 , L p1) for any p0 ∈ (1,∞) and p1 ∈ (0,∞) is

compatible.

Proof (a) Check that | · |E p is a quasi-norm. For any f ∈ E t,p and g ∈ E s,p,

| f + g|E p = ‖ f + g‖p + inf
{
t + s > 0 : f + g ∈ E (t+s),p}

≤ ‖ f ‖p + ‖g‖p + inf
{
t + s > 0 : f ∈ E t,p, g ∈ E s,p} ≤ | f |E p + |g|E p .

This in particular ensures that E p is a quasi-normed linear subspace.
Prove the completeness of the space E ν,p. Let ( fn) be a fundamental sequence in

E ν,p, i.e.,

∀ε > 0, ∃nε : ‖ fn − fm‖E ν,p < ε for all n,m > nε.

From the representation (3) for ‖ · ‖2E ν,p as a sum of positive addends, it follows that
the sequences ( fn) and

(∇k fn/νk
)
with k ≥ 1 are fundamental in L p and L p(H�k),

respectively.
Hence, there are elements f ∈ L p and gk ∈ L p(H�k) such that fn → f in L p

and ∇k fn/νk → gk in L p(H�k) for any k ≥ 1. By closeness of ∇k , the equality
gk = ∇k f /νk holds, i.e.,

∇k fn/ν
k −→
n→∞ ∇k f /νk for all k ≥ 0.
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Since ‖ fn‖E ν,p ≤ ‖ fn − fnε‖E ν,p + ‖ fnε‖E ν,p ≤ ε + ‖ fnε‖E ν,p for all n ≥ nε,
we find ‖ f ‖E ν,p ≤ ε + ‖ fnε‖E ν,p by taking the limit in L p as n → ∞. As a result,
f ∈ E ν,p, since fnε ∈ E ν,p. Thus, E ν,p is complete.
Further, we note that the Laplace transform of a function (2) has the form

L[ f̂ ](z) :=
∫ ∞

0
f̂ (t)e−zt dt =

∞∑

k=0

1

zk+1

(
E ‖∇k f ‖p

H�k

)2/p
. (6)

Hence, for the norm in E ν,p, we get the integral representation

‖ f ‖2E ν,p = ν2 · L[ f̂ ]
(
ν2

)
, ν > 0. (7)

Let now ( fn) be a fundamental sequence in the quasi-normed space E p. Hence,
there exists ν > 0 such that | fn|E p < ν for all n ∈ N thus

inf
{
μ : ( fn) ⊂ E p} < ν. (8)

It means that ( fn) ⊂ E ν,p. Consider the restriction toR of the correspondent sequence
of complex entire functions ( f̂n) of an exponential type ν, defined by (2). By (8), the
following sequence is bounded by a constant Kν > 0,

{
[0,∞) 
 t �−→ ( f̂n − f̂m)(t) exp

(
−tν2

)
: n ∈ N

}
.

Hence, in accordancewithBernstein’s compactness theorem [22, Theorem3.3.6] there

exists a convergent subsequence
{
( f̂ni − f̂mi )(t) exp(−tν2) : i ∈ N

}
with respect to

the uniform convergence in the variable t ∈ [0, r ] for any r > 0.
Thus, ∀ε > 0, ∃nε ∈ N :

sup
t∈[0,rε]

(
f̂ni − f̂mi

)
(t) exp(−tν2) < ε for all ni ,mi ≥ nε,

where r = rε is chosen large enough that Kν exp (−rεν2) < ε. Using the integral
representation (7), we obtain

∥∥ fni − fmi

∥∥2
E 2ν,p ≤ 4ν2

(∫ rε

0
+

∫ ∞

rε

) (
f̂ni − f̂mi

)
(t) exp(−2tν2) dt

≤ 4ν2ε
∫ rε

0
exp (−tν2) dt + 4ν2Kν

∫ ∞

rε
exp (−tν2) dt < 8ε

for all ni ,mi ≥ nε. As a result, ( fni ) is fundamental in E 2ν,p. According to the
completeness of E 2ν,p, there exists an element f ∈ E 2ν,p such that fni → f as i →
∞. Thus E p is complete.
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(b) First note that according to the known classical formula (see e.g. [4, Theorem
1.1.1]), the function (2) has the exponential type ν2 if and only if its Laplace transform
(6) satisfies the following condition

ν = lim sup
k→∞

(
E ‖∇k f ‖p

H�k

)1/pk
. (9)

It follows, in particular, that the formula (3) defines the norm on the space E ν,p

correctly. Moreover, using that for every f ∈ E ν,p the inequality

‖∇ f ‖2E ν,p = ν2
∞∑

k=0

1

ν2k

(
E ‖∇k f ‖p

H�k

)2/p ≤ ν2‖ f ‖2E ν,p

holds, the restriction ∇|E ν,p is a bounded operator with a norm ≤ ν. The recursive
reasoning gives ‖∇k f ‖E ν,p ≤ νk‖ f ‖E ν,p for all k ≥ 0. It follows that

lim sup
k→∞

‖∇k f ‖1/kE ν,p ≤ ν lim sup
k→∞

‖ f ‖1/kE ν,p = ν.

Thus, for μ > ν the following convergent series satisfies the inequality

‖ f ‖2p ≤ ‖ f ‖2p +
∞∑

k=1

1

μ2k

(
E ‖∇k f ‖p

H�k

)2/p

= ‖ f ‖2E μ,p ≤ ‖ f ‖2E ν,p

that give the inclusions (5) for μ > ν.
(c) Consider the Gaussian exponential defined for random variables φh ,

Gh = exp
(
φh − Eφ2

h/2
)

, h ∈ H .

As is known (see [15, Theorem 3.33]), the corresponding exponential series is con-
vergent in L2 thus in L p for p ∈ (0,∞). The equality

∇Gh = Gh ⊗ h, h ∈ H

follows from the property

∂g exp(φh) exp
(
− Eφ2

h/2
)

= 〈h | g〉 exp(φh) for all φh(g) = 〈h | g〉,

since the expression exp(− Eφ2
h/2) does not depend on all g ∈ H . Hence,

Gh ⊗ exp(th) =
∞∑

k=0

tk

k!∇
kGh, exp(h) :=

∞⊕

k=0

1

k!h
⊗k
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for any t ∈ R, where the tensor exponential series exp(h) is convergent in the sym-
metric Fock space Γ (H). Moreover, from the formula (1) for norm in Γ (H) it follows
‖ exp(h)‖Γ = exp ‖h‖. So, for f = Gh , we have the representation

f̂ (t) :=
∞∑

k=0

tk

k!
(
E ‖∇kGh‖p

H�k

)2/p

= (
E |Gh |p

)2/p exp(t‖h‖).

Applying the formula (9) to this power series, we get that f = Gh has the following
exponential type

ν2 = lim sup
k→∞

(
E ‖∇kGh‖p

H�k

)2/pk

= lim sup
k→∞

(
E |Gh |p

)2/pk ‖h⊗k‖2p/pk
H�k

= lim sup
k→∞

‖h⊗k‖2/k
H�k = ‖h‖2H .

Hence, Gh ∈ E ‖h‖,p for any h ∈ H .
On the other side, it is known (see [15, Theorem 2.12 & Corollary 3.40]) that

{
Gh : h = ei ∈ H , i ∈ N

}

is total in Lq for any q ∈ (0,∞), where {ei } is an orthogonal basis in H . More
specific, it follows from the fact that the family of all Hermite polynomials hn in
random variables

{
hn(φh) : h ∈ H , n ∈ N ∪ {0}} is total Lq for any q ∈ (0,∞), since

Lq -norms are proportional to the L2-norm (see [15, Theorem 1.4]). As a result, the
subspace

E p =
⋃

h∈H
E ‖h‖,p

with p ∈ (1,∞) is dense in Lq for any q ∈ (0,∞).
(d) This statement is a direct conclusion of (c). In fact, the couple quasi-normed

spaces (E p0 , L p1) on the same (�,F, P) can be consider as a dense subspace in the
algebraic sum of spaces L p0 + L p1 endowed with the quasi-norm

‖ f ‖L p0+L p1 = inf
f= f0+ f1

(‖ f0‖L p0 + ‖ f1‖L p1

)

which guarantees the compatibility (see e.g. [2, Lemma 3.10.3] or [16, no 1]). ��
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3 Exact Estimates of Best Approximations on Gaussian Hilbert Spaces

In what follows, our goal is to prove the inverse and direct approximation theorems
on Gaussian Hilbert spaces by Malliavin-entire functions of random variables in the
form of Bernstein–Jackson inequalities with exact constants.

Given the compatible interpolation couple of quasi-normed Gaussian spaces

(E p0 , L p1) with p0 ∈ (1,∞) and p1 ∈ (0,∞),

we define the best approximation E-functional

E(t, f ) := E
(
t, f ;E p0 , L p1

)

= inf
{‖ f − f0‖p1 : | f0|E p0 < t

}
, f ∈ L p1 ,

(10)

where f = f0 + f1 belongs to the algebraic sum E p0 + L p1 such that f0 ∈ E p0 and
f1 ∈ L p1 . For any pairs indexes

{0 < θ < 1, 0 < q < ∞} or {0 < θ ≤ 1, q = ∞}

the corresponding best approximation scale is defined to be the following scale of
quasi-normed Gaussian spaces

Eθ,q(E
p0 , L p1) = {

f ∈ E p0 + L p1 : ‖ f ‖Eθ,q < ∞}
,

‖ f ‖Eθ,q =

⎧
⎪⎪⎨

⎪⎪⎩

(∫ ∞

0

[
t−1+1/θ E(t, f )

]qθ dt

t

)1/qθ

if q < ∞,

sup
0<t<∞

t−1+1/θ E(t, f ) if q = ∞.

(11)

It is natural to call the space Eθ,q(E p0 , L p1) approximation for the compatible inter-
polation couple (E p0 , L p1) on the same probability space (�,F, P).

In what follows, we will prove that the approximation constants

Cθ,q =

⎧
⎪⎨

⎪⎩

21/2θ

(q2θ)1/qθ
N 1/θ

θ,q if q < ∞,

21/2θ if q = ∞,

(12)

determined by the normalization factor of Lions–Peetre’s interpolation method,

Nθ,q =
(∫ ∞

0
t−θ |g(t)|q dt

t

)−1/q

, g(t) = t√
1 + t2

, (13)
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are exact for both Bernstein–Jackson inequalities. Note that Nθ,q = N1−θ,q (see e.g.
[17, p.99]). The approximation constant for q = 2 receives the form

Cθ,2 =
(
sin πθ

πθ

)1/2θ

, 0 < θ < 1. (14)

In fact, by integrating the above functions (see e.g. [20, Example B.5, TheoremB.7] or
[17, p.99]) it follows that for q = 2 the normalization factor (14) in the interpolation
K -method employed here is equal to Nθ,2 = (2 sin πθ/π)1/2 .

The following approximation theorem is based on analytical properties of an expo-
nential type of Gaussian random variables with respect to the Malliavin derivative
which were established in Theorem 1.

Theorem 2 (a) The Bernstein–Jackson bilateral inequalities

t−1+1/θ E(t, f ) ≤ Cθ,q‖ f ‖Eθ,q ≤ 21/2θ | f |−1+1/θ
E p0 ‖ f ‖p1 (15)

with the approximation constant (12) for all f ∈ E p0 ∩ L p1 hold.
(b) The following isomorphism is valid up to norm equivalence,

Eθ,q(E
p0 , L p1) � Kθ,q

(
E p0 , L p1

)1/θ
. (16)

(c) There is a unique extension of the left inequality in (15) to the following Jackson-
type inequality on the whole Gaussian approximative space

E(t, f ) ≤ t1−1/θCθ,q‖ f ‖Eθ,q for all f ∈ Eθ,q(E
p0 , L p1). (17)

Proof (a) We will use the classical integral of the Lions–Peetre real interpolation
method

‖ f ‖θ,q =
(∫ ∞

0
t−qθ | f (t)|q dt

t

)1/q

, 0 < θ < 1, 1 ≤ q < ∞. (18)

Consider the quadratic K -functional (see e.g. [17] or [20, App. B]) for the interpo-
lation couple of quasi-normed spaces (E p0 , L p1) with p0 ∈ [1,∞) and p1 ∈ (0,∞),

K (t, f ) := K (t, f ;E p0 , L p1)

= inf
f= f0+ f1

{(| f0|2E p0 + t2‖ f1‖2p1
)1/2 : f0 ∈ E p0 , f1 ∈ L p1

}
,

determining the real interpolation space (both alternative notations are used),

(
E p0 , L p1

)
θ,q := Kθ,q

(
E p0 , L p1

)

= {
f = f0 + f1 : ‖K (·, f )‖θ,q < ∞}
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which is endowed with the norm

‖ f ‖Kθ,q =
⎧
⎨

⎩

Nθ,q‖K (·, f )‖θ,q if q < ∞,

sup
t∈(0,∞)

t−ϑK (t, f ) if q = ∞.

First, let 0 < q < ∞. By integration both sides of the following inequality

g
(v

t

)q
K (t, f )q ≤ K (v, f )q ,

we successively find

∫ ∞

0
v−qθg

(v

t

)q dv

v
K (t, f )q ≤

∫ ∞

0
v−qθK (v, f )q

dv

v
= N−q

θ,q‖ f ‖qKθ,q
,

∫ ∞

0
v−qθg

(v

t

)q dv

v
= (tθ Nθ,q)

−q ,

∫ ∞

0
v−qθg

(v

t

)q dv

v
K (t, f )q = K (t, f )q

(tθ Nθ,q)q
≤ ‖ f ‖qKθ,q

.

After summing up, it follows the inequality

K (t, f ) ≤ tθ N−1
θ,q‖ f ‖Kθ,q , f ∈ (

E p0 , L p1
)
θ,q , t > 0. (19)

Let K∞(t, f ) := inf f = f0+ f1 max
{| f0|E p0 , t‖ f1‖p1

}
. It is easy to see that

K∞(t, f ) ≤ K (t, f ) ≤ 21/2K∞(t, f ), f ∈ (
E p0 , L p1

)
θ,q . (20)

By [2, Lemma 7.1.2] for every t > 0 there exists v > 0 such that

v−1+1/θ E(v, f )θ ≤ t−θK∞(t, f ). (21)

Using (19) and (21), we get

v1−θ E(v, f )θ ≤ t−θK∞(t, f ) ≤ t−θK (t, f ) ≤ N−1
θ,q‖ f ‖Kθ,q .

It follows that

v−1+1/θ E(v, f ) ≤ N−1/θ
θ,q ‖ f ‖1/θKθ,q

, f ∈ (
E p0 , L p1

)
θ,q , v > 0. (22)

Integrating by parts with the change of variables v = t/E(t, f ) and using the
known properties of functionals that v−θK∞(v, f ) → 0 as v → 0 or v → ∞ and
t−1+1/θ E(t, f ) → 0 as t → 0 or t → ∞ (see [2, Theorem 7.1.7]), we get

∫ ∞

0

(
v−θ K∞(v, f )

)q dv

v
= − 1

qθ

∫ ∞

0
K∞(v, f )qdv−qθ
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= 1

qθ

∫ ∞

0
v−qθdK∞(v, x)q = 1

qθ

∫ ∞

0

(
t

E(t, f )

)−qθ

dtq

= 1

q2θ

∫ ∞

0

(
t−1+1/θ E(t, f )

)qθ dt

t
.

Therefore, according to the first inequality (20) and the notation (11),

1

q2θ
‖ f ‖qθ

Eθ,q
= 1

q2θ

∫ ∞

0

(
t−1+1/θ E(t, f )

)qθ dt

t

=
∫ ∞

0

(
v−θK∞(v, f )

)q dv

v

≤
∫ ∞

0

(
v−θK (v, f )

)q dv

v
= N−q

θ,q‖ f ‖qKθ,q
.

On the other hand, from the second inequality (20) it follows

N−q
θ,q‖ f ‖qKθ,q

=
∫ ∞

0

(
v−θK (v, f )

)q dv

v

≤ 2q/2
∫ ∞

0

(
v−θK∞(v, f )

)q dv

v

= 2q/2 1

q2θ

∫ ∞

0

(
t−1+1/θ E(t, f )

)qθ dt

t
= 2q/2 1

q2θ
‖ f ‖qθ

Eθ,q
.

Taking the root and combining the previous inequalities, we get

N−1
θ,q‖ f ‖Kθ,q ≤ 21/2(q2θ)−1/q‖ f ‖θ

Eθ,q
≤ 21/2N−1

θ,q‖ f ‖Kθ,q . (23)

As a result, we obtain the isomorphism (16), which proves the claim (b), i.e., that

Eθ,q(E
p0 , L p1) � (

E p0 , L p1
)1/θ
θ,q := Kθ,q

(
E p0 , L p1

)1/θ
.

Let α = | f |E p0 /‖ f ‖p1 . Since K (t, f ) ≤ min
{| f |E p0 , t‖ f ‖p1

}
, we find

N−q
θ,q‖ f ‖qKθ,q

≤ ‖ f ‖qp1
∫ α

0
t−1+q(1−θ)dt + | f |qE p0

∫ ∞

α

t−1−θq dt

= 1

q(1 − θ)
αq(1−θ)‖ f ‖qp1 + 1

θq
α−θq | f |qE p0

= ‖ f ‖qp1
q(1 − θ)

( | f |E p0

‖ f ‖p1

)q(1−θ)

+ | f |qE p0

θq

( | f |E p0

‖ f ‖p1

)−θq

= 1

qθ(1 − θ)

(
| f |1−θ

E p0 ‖ f ‖θ
p1

)q
.
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Taking the root above, this can be rewritten as

N−1
θ,q‖ f ‖Kθ,q ≤ [qθ(1 − θ)]−1/q | f |1−θ

E p0 ‖ f ‖θ
p1 , (24)

where [qθ(1− θ)]−1/q = ‖min{1, ·}‖θ,q . Applying the integral (18) to the inequality
2−1/2 min{1, ·} ≤ g(·), we find Nθ,q ≤ 21/2‖min{1, ·}‖−1

θ,q . Hence,

[qθ(1 − θ)]−1/q = ‖min{1, ·}‖θ,q

≤ 21/2‖g‖Kθ,q = 21/2N−1
θ,q .

Now, by the second inequality in (23) and (12),(24), we find that

(q2θ)−1/q‖ f ‖θ
Eθ,q

≤ N−1
θ,q‖ f ‖Kθ,q ≤ 21/2N−1

θ,q | f |1−θ
E p0 ‖ f ‖θ

p1 ,

Cθ,q‖ f ‖Eθ,q ≤ 21/2θ | f |−1+1/θ
E p0 ‖ f ‖p1 .

On the other hand, by (22), we have

v−1+1/θ E(v, f ) ≤ N−1+1/θ
θ,q ‖ f ‖1/θKθ,q

≤ Cθ,q‖ f ‖Eθ,q .

Combining the last inequalities, we get the desired inequality (15).
Let us consider the case q = ∞. Denoteα = ‖ f ‖p1/| f |E p0 with a nonzero element

f ∈ E p0 ∩ L p1 . Since

K (t, f )2 = inf
f= f0+ f1

(
| f0|2E p0 + t2‖ f1‖2p1

)

≤ | f |2E p0 min(1, α2t2) = min
(
| f |2E p0 , t

2‖ f ‖2p1
)

or otherwise K (t, f ) ≤ | f |E p0 min(1, αt) = min
(| f |E p0 , t‖ f ‖p1

)
, we get

t−ϑK (t, f ) ≤ min
(
t−ϑ | f |E p0 , t1−ϑ‖ f ‖p1

)
.

Taking t = | f |E p0 /‖ f ‖p1 , we obtain

t−ϑK (t, f ) ≤ | f |1−ϑ
E p0 ‖ f ‖ϑ

p1 .

So, the right side inequality in (15) holds. On the other hand,

t−1+1/θ E(t, f ) ≤ sup
t>0

t−1+1/θ E(t, f ) = ‖ f ‖Eθ,∞ , f ∈ Eθ,∞.

Thus, the inequality (17) also is valid for this case.
(c) ByTheorem1,E p0 is complete, so Kθ,q (E p0 , L p1) is complete, as interpolation

of complete spaces. ��
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Remark 1 The relationship between the weight function g(t) = t2/(1 + t2) and the
square K -functional, and therefore also the E-functional, is explained by the formula

Nθ,q = ‖g‖−1
θ,q = ‖K (·, 1)‖−1

θ,q

[20,ExampleB.4]. It follows fromminz=z0+z1

(
α0|z0|2 + α1|z1|2

) = α0α1|z|2α0 + α1
for a fixed α0, α1 > 0 and a complex z. This minimum is achieved when α0z0 =
α1z1 = α0α1z/(α0 + α1). Thus, K (t, 1) is minimized when f0, f1 are such that

f0 = t2 f1 = t2

1 + t2
.

For the space L2(�,F, P) previous results can be made more specific.

Corollary 3 On the space Eθ,2(E 2, L2) endowed with the quasi-norm

‖ f ‖Eθ,2 =
(∫ ∞

0

[
t−1+1/θ E(t, f ;E 2, L2)

]2θ dt

t

)1/2θ

, 0 < θ < 1,

defined by the best approximation E-functional

E(t, f ;E 2, L2) = inf
{‖ f − f0‖2 : | f0|E 2 < t

}
, f ∈ L2,

the following Bernstein–Jackson type inequalities are satisfied,

‖ f ‖Eθ,2 ≤ 21/2θ
(

πθ

sin πθ

)1/2θ

| f |−1+1/θ
E 2 ‖ f ‖2, f ∈ E 2 (25)

E(ν, f ) ≤ ν1−1/θ
(
sin πθ

πθ

)1/2θ

‖ f ‖Eθ,2 , f ∈ Eθ,2(E
2, L2). (26)

Proof The inequalities (25) - (26) directly follow from Theorem 2(a,c). ��
Corollary 4 The norm on the Hilbert space E ν,2 satisfies the equality

‖ f ‖E ν,2 :=
( ∞∑

k=0

1

ν2k
E ‖∇k f ‖2H�k

)1/2

= ‖F̂‖H2(Dν ), Dν = {z ∈ C : |z| < ν},
(27)

where ‖ · ‖H2(Dν ) in (27) is the Hilbertian norm for analytic functions

F̂ : z �−→ 1

z
· L[ f̂ ]

(
1

z

)
, |z| < ν



58 Page 16 of 21 Journal of Fourier Analysis and Applications (2023) 29 :58

belonging to the Hardy space H2(Dν). Herewith, the isometric isomorphism

E ν,2 � H2(Dν), (28)

determined by the linear mapping f �−→ F̂ , holds.

Proof The isometry (27) follows from the properties (2) and (7) of the Laplace trans-
form L for entire analytic functions, as well as, from the elementary fact that for every
power series F̂(z) = ∑

ckzk fromH2(Dν) its norm satisfies the equality

‖F̂‖2H2(Dν )
=

∑
|ck |2ν2k .

The isometric equation (28) is a consequence of the equality (7) for the norm ‖ · ‖E ν,2 .
��

Corollary 5 The quasi-norm on (E 2, | · |E 2) admits the representation

| f |E 2 := inf
{
ν > 0 : f ∈ E ν,2

}

= lim sup
k→∞

(
E ‖∇k f ‖2H�k

)1/2k
.

(29)

Moreover, E 2 has also a stronger nuclear topology of the inductive limits

lim−→E ν,2 � lim−→H2(D1/ν) as ν → ∞
with compact inclusions.

Proof The proof of (29) follows from the known formula (9) [4, Theorem 1.1.1]
for Taylor coefficients of complex entire analytic functions of an exponential type,
expressed through its Laplace-image (see, the proof of Theorem 1(b)).

The compactness of inclusions (5) is proved Theorem 1(c) based on Bernstein’s
compactness theorem [22, Theorem3.3.6].Nuclearity of inductive limitswith compact
inclusions are a well-known fact (see e.g. [29, no 7.4]). ��
Corollary 6 The 1-parameter family of linear operators Ts : L2 → L2(Γ (H)),
uniquely defined by the mapping

Ts (Gh) = Gh ⊗ e−sN exp(h), s > 0, h ∈ H , (30)

satisfies the following invariant property

Ts
(
E 2

)
= E 2 ⊗ e−sN exp(h), (31)

where the number operator N is determined on the Fock space Γ (H). Moreover, the
derivative ∇ : W 1,2 → L2(H) coincides with a universal annihilator of Ts , i.e.,

dTs f

ds

∣
∣∣
s=0

= ∇ f , f ∈ W 1,2. (32)
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Proof From the proof of Theorem 1(c), we directly get

TsGh = e−s∇Gh = Gh ⊗ exp(−sh)

and, as a consequence, (31). On the other hand, N is the infinitesimal generator of
the 1-parameter second-quantization semigroup Γ (e−s IH ) = e−s∇ with the identical
operator IH on H (see [25, no 1.4]), thus

e−s∇Gh = Gh ⊗ e−sN exp(h), h ∈ H .

It follows the equality (30). The uniqueness of extension Ts onto L2 is due to totality
Gh in L2 and Gh ⊗ exp(h) in L2(Γ (H)).

Moreover, according to [1, no 3], the derivative ∇ is a universal annihilator and the
equality (32) is valid. ��

4 Application Examples

Example 1 Let us consider the space L p(X ,F, γ ) with 1 ≤ p ≤ ∞ of functions f in
Gaussian random variables X 
 x �→ φh(x) for all h ∈ H , defined on the probability
space (X ,F, γ ) over an abstract Wiener space (X , H) in the sense of Gross’s theory
[14]. Here, let X be a separable real Banach space, H ⊂ X is a Cameron-Martin type
reproducing kernel subspace, F = B(X) is the Borel σ -field on X and, in addition,
the probability measure γ on F is characterized by the property

∫

X
exp (iφh(x)) dγ (x) = exp

(

−‖h‖2H
2

)

, x ∈ X .

Themeasure γ is Gaussian in the sense that each continuous linear functional x∗ ∈ X∗,
regarded as a random variable x �→ x∗(x) on (X ,F, γ ), is Gaussian. The expectation
for this case is defined to be

E f =
∫

X
f dγ, f ∈ L p(X ,F, γ )

for all p ≥ 1, where L p ⊂ L1 because γ (X) = 1 (see e.g. [34, Theorem 2]).
In this case, the interpolation structure of the approximative Gaussian space is

described by the isomorphism

Eθ,q(E
p0 , L p1) � Kθ,q

(
E p0 , L p1

)1/θ
, p0 ∈ (1,∞), p1 ∈ [1,∞],

where {0 < θ < 1, 0 < q < ∞} or {0 < θ ≤ 1, q = ∞}. According to Theorem 2
and Corrolary 3 the Bernstein–Jackson inequalities take the form

‖ f ‖Eθ,q ≤ 21/2θC−1
θ,q | f |−1+1/θ

E p0 ‖ f ‖p1 , f ∈ E p0 ∩ L p1,
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E(t, f ) ≤ t1−1/θCθ,q‖ f ‖Eθ,q , f ∈ Eθ,q(E
p0 , L p1)

with the exact approximation constant Cθ,q of the form (12), or (14) for the case
p0 = p1 = 2.

Example 2 A special case of Example 1 is obtained for X = (Rd , | · |). Consider the
Banach space L p = L p

(
R
d ,F, γd

)
with p ∈ (1,∞) and F = B(Rd), which is

just the space of measurable functions in random variables relative to the gaussian
measure

γd(x) = (2π)−d/2e−|x |2/2, x = (x1, . . . , xd) ∈ R
d .

Each function G ∈ L p can be approximated by entire analytic functions g of an
exponential type t > 0 with restrictions to R

d belonging to L p (see e.g. [22]). The
best approximations can be characterized by the functional

E
(
t,G;E p, L p) = inf

{‖G − g‖p : |g|E p < t
}
,

where the subspace E p = ⋃
t>0E

p,t of L p is endowed with the quasi-norm

|g|E p = ‖g‖p + sup
{|ζ | : ζ ∈ supp ĝ

}
, g ∈ E p, (33)

defined using the support of the Fourier-image ĝ (see [2, no 7.2]). By Paley–Wiener
theorem for entire analytic functions of an exponential type, this quasi-norm can be
rewritten in the form (4) (see e.g. [9]).

Now, taking any cylindrical random function fg = g(φh1, . . . , φhd ) determined by
functions g of an exponential type t and applying the formula (9), we get

(
E ‖∇k fg‖p

H�k

)1/pk

= lim sup
k→∞

( ∫

R
d

∣∣
∣∂k1+...+kd

h1,...,hd
g
∣∣
∣
p
dγd

)1/pk∥∥
∥h⊗k1

1 � . . . � h⊗kd
d

∥∥
∥
1/k

H�k

= t · lim sup
k→∞

( 1

d! ‖h1‖
k1
H . . . ‖hd‖kdH

)1/k = t, k = k1 + . . . + kd ,

i.e., fg ∈ E p,t . The subspace of all functions fg with such g and any t is dense in E p,
since it contains all polynomials of the random variables φh1, . . . , φhd .

On the other hand, it is known that if the space E p, consisting of all entire analytic
functions g of an exponential type onCd , is endowedwith the quasi-norm (33) then the
suitable approximation space Eθ,q(E p, L p) exactly coincides with the classic Besov
space denoted by

Bs
p,τ (R

d) with s = −1 + 1/θ, τ = qθ
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(see [33, p. 197]). Hence, the equality (16) from Theorem 2 may be rewritten in the
form

Eθ,q(E
p, L p) =

{
fg ∈ L p

(
R
d ,B, γd

)
: g ∈ Bs

p,τ (R
d)

}
.

Then the corresponding Bernstein–Jackson inequalities take the form

‖ fg‖Eθ,q ≤ 21/2θC−1
θ,q | fg|−1+1/θ

E p ‖g‖L p(Rd ), fg ∈ E p,

E(t, fg) ≤ t1−1/θCθ,q‖g‖Bs
p,τ (Rd ), g ∈ Bs

p,τ (R
d),

where the constant Cθ,q has the form (12), or (14) for the case p = 2.

Remark 2 The last example also shows that the Gaussian space

Eθ,q(E
p0 , L p1) � Kθ,q

(
E p0 , L p1

)1/θ
, p0 ∈ (1,∞), p1 ∈ (0,∞)

with {0 < θ < 1, 0 < q < ∞} or {0 < θ ≤ 1, q = ∞}, which characterizes the best
approximations in L p1 = L p1(�,F, P) with two-sided precision by entire analytic
functions relative to the Malliavin derivative, are the closest generalization of Besov
spaces on the case of functions in Gaussian random variables.

Significant new generalizations and connections between the approximation and
Besov-type spaces in awider context are presented in [13] (see also references therein).
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