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Abstract
OnRN equipped with a root system R and a multiplicity function k > 0, we study the
generalized (Dunkl) translations τxg(−y) of not necessarily radial kernels g. Under
certain regularity assumptions on g, we derive bounds for τxg(−y) by means the
Euclidean distance ‖x − y‖ and the distance d(x, y) = minσ∈G ‖x − σ(y)‖, where
G is the reflection group associated with R. Moreover, we prove that τ does not
preserve positivity, that is, there is a non-negative Schwartz class function ϕ, such that
τxϕ(−y) < 0 for some points x, y ∈ R

N .

Keywords Rational Dunkl theory · Dunkl transform · Heat kernels · Root systems ·
Generalized translations · Singular integrals · Multipliers
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1 Introduction

We consider RN equipped with a root system R and a multiplicity function k > 0.
Behavior of the generalized Dunkl translations τxg(−y) and, consequently, bounded-
ness of the generalized convolution operators

f �−→ f ∗ g(x) =
∫
RN

f (y)τxg(−y) dw(y),
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on various function spaces are ones of the main problems in the harmonic analysis
in the Dunkl setting. Here and subsequently, dw is the measure associated with the
system (R, k) (see (2.2)). If f ∈ L p(dw), g ∈ L1(dw) and one of them is radial then,
thanks to the Rösler formula (see (2.22)) on translations of radial functions, one has

‖ f ∗ g‖L p(dw) ≤ C‖ f ‖L p(dw)‖g‖L1(dw) (1.1)

with C = 1. Further, since the generalized translations of any radial non-negative
function g are non-negative, some pointwise estimates for τxg(−y) can be derived
from the bounds of the heat kernel ht (x, y) (see Proposition 4.3). In particular, if g
is a radial function such that |g(x)| ≤ CM (1 + ‖x‖)−M for all M > 0, then for any
M ′ > 0,

|τxg(−y)| ≤ C ′
M ′w(B(x, 1))−1(1 + ‖x − y‖)−2(1 + d(x, y))−M ′

, (1.2)

where d(x, y) = minσ∈G ‖x − σ(y)‖, G is the reflection group associated with R
(see (2.29)).

On the other hand, the L p(dw)-bounds for the generalized translations τxg of non-
radial L p-functions for p 	= 2 is an open problem as well as the inequality (1.1).
However, if we assume some regularity of a (non-radial) function g in its smoothness
and decay, then

|τxg(−y)| ≤ Cw(B(x, 1))−1(1 + d(x, y))−M , (1.3)

(see [11, Proposition 5.1]) and, consequently,

‖ f ∗ g‖L p(dw) ≤ C‖ f ‖L p(dw). (1.4)

The estimates of the form (1.3), which make use of the distance d(x, y) of the orbits
and the measures of the balls, seem to be useful, because they allow one to reduce
some problems to the setting of spaces of homogeneous type and apply tools from
the theory of these spaces for obtaining some analytic-spirit results. For instance, in
[4] this approach was used in order to define and characterize the real (Dunkl) Hardy
space H1

�k
by means of boundary values of the Dunkl conjugate harmonic functions,

maximal functions associatedwith radial kernels, the relevant Riesz transforms, square
functions and atoms (which were defined in the spirit of [16]). From the point of view
of non-radial kernels g, in some cases, the estimates (1.3) can be used as a substitute
for L p-boundedness of the Dunkl translations (see [8]).

On the other hand, it was noticed that in some cases the estimates of the form
(1.3) are not strong enough to obtain some harmonic analysis results involving Dunkl
translations and convolutions. For example in order to prove that the Hardy space H1

�k
admits atomic decomposition into Coifman–Weiss atoms, the authors of [9] needed
the following estimates for the generalized translations of radial continuous functions
supported in the unit ball:

|τxg(−y)| ≤ Cw(B(x, 1))−1(1 + ‖x − y‖)−1χ[0,1](d(x, y)). (1.5)
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The estimate (1.5) is a slightlyweaker version of (1.2) because the factor (1+‖x−y‖) is
raised to the power negative one, however its presence is crucial for the proof the atomic
decomposition. Further, a presence of the factor (1+‖x−y‖)−δ (or its scaled version)
in estimates of some integral kernels helps to handle harmonic analysis problems in
the Dunkl setting (see e.g. [10, Section 5] and [25] for a study of singular integrals).

Another question can be asked for the exponent(s) associated with the Euclidean
distance(s) in estimates of generalized translations of g. It was proved in [12] that
for the Dunkl heat kernel ht (x, y) the exponents depend on sequences of reflections
needed to move y to aWeyl chamber of x. To be more precise, the following upper and
lower bounds for ht (x, y) hold: for all cl > 1/4 and 0 < cu < 1/4 there are constants
Cl ,Cu > 0 such that

Clw(B(x,
√
t))−1e−cl

d(x,y)2
t �(x, y, t)

≤ ht (x, y) ≤ Cuw(B(x,
√
t))−1e−cu

d(x,y)2
t �(x, y, t), (1.6)

where �(x, y, t) is expressed as a sum of products of specially selected factors of the
form (1+ ‖x− σ(y)‖/√t)−2 (see Sect. 2.7 for details). The estimate (1.6) improves
the known bound

ht (x, y) �
(
1 + ‖x − y‖2

t

)−1
1

max(w(B(x,
√
t)), w(B(y,

√
t)))

e− cd(x,y)2
t (1.7)

(see [9, Theorem 3.1] for a proof of (1.7)), which can be used, as we remarked out,
for proving estimates for translations of radial kernels. An alternative proof of (1.7)
which uses a Poincaré inequality was announced by W. Hebisch. Let us also point out
the presence of the same function�(x, y, t) in the upper and lower bounds (1.6). Thus
if d(x, y)2 ≤ t , the estimates (1.6) are sharp.

The goal of this paper is to present some properties of the generalized translations
τxg(−y) of non-radial kernels g, and, in particular, propose some methods which
allow to one to derive estimates for τxg(−y) and express them in terms of measures
w(B) of appropriate balls and the distances ‖x − y‖ and d(x, y). We expect that
information about generalized translations of non-radial functions can be useful in
further development of real harmonic analysis in the Dunkl setting; for example in
characterizations of some function spaces by means of non-radial kernels. We prove
that if a (non-radial) function g is sufficiently regular, then

|τxg(−y)| ≤ Cw(B(x, d(x, y) + 1))−1(1 + ‖x − y‖)−1(1 + d(x, y))−M (1.8)

(see Theorem 4.1).
Further we aim to obtain estimates for τxg(−y) for non-radial g and interpret them

in the context of (1.6). From one point of view, one can expect the upper estimates
making use of the same function �(x, y, 1). Since in the case of non-radial kernels
the Rösler’s formula is not available, we need a different approach, which is presented
in Sect. 3, for obtaining estimates for the generalized translations of any non-radial
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Schwartz-class function ϕ, which involve the function �1/2, that is,

|τxϕ(−y)| � w(B(x, 1))−1�(x, y, 1)1/2(1 + d(x, y))−M (1.9)

(see Theorem 4.5). Let us note that (1.9) improve the bounds (1.8).
Then we use the methods described in Sect. 3 in order to unify two approaches to

the theory of singular integrals from [10] and [25]. We prove that for a large class
of singular integral operators of convolution type (including the Dunkl transform
multiplier operators), their corresponding integral kernels K(x, y) satisfy Calderón-
Zygmund type conditions, which are expressed by means of the distances ‖x−y‖ and
d(x, y) and w(B(x, d(x, y)) (see Sects. 4.2 and 4.3).

Further, it turns out that our approach developed in Sect. 3 can be used in order to
prove non-positivity of theDunkl translations.We show that for any root system R 	= ∅
and k > 0 there is a non-negative Schwartz class function ϕ such that τxϕ(−y) < 0
for some x, y (see Sect. 4.4 for details).

2 Preliminaries and Notation

2.1 Dunkl Theory

In this section we present basic facts concerning the theory of the Dunkl operators.
For more details we refer the reader to [6, 21, 23, 24].

We consider the Euclidean space RN with the scalar product 〈x, y〉 = ∑N
j=1 x j y j ,

where x = (x1, . . . , xN ), y = (y1, . . . , yN ), and the norm ‖x‖2 = 〈x, x〉.
A normalized root system in R

N is a finite set R ⊂ R
N \ {0} such that R ∩ αR =

{±α}, σα(R) = R, and ‖α‖ = √
2 for all α ∈ R, where σα is defined by

σα(x) = x − 2
〈x, α〉
‖α‖2 α. (2.1)

The finite group G generated by the reflections σα , α ∈ R, is called the Coxeter
group (reflection group) of the root system.

A multiplicity function is a G-invariant function k : R → C which will be fixed
and positive throughout this paper.

The associated measure dw is defined by dw(x) = w(x) dx, where

w(x) =
∏
α∈R

|〈x, α〉|k(α). (2.2)

Let N = N + ∑
α∈R k(α). Then,

w(B(tx, tr)) = tNw(B(x, r)) for all x ∈ R
N , t, r > 0, (2.3)
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where, here and subsequently, B(x, r) = {y ∈ R
N : ‖x− y‖ ≤ r}. Observe that there

is a constant C > 0 such that for all x ∈ R
N and r > 0 we have

C−1w(B(x, r)) ≤ r N
∏
α∈R

(|〈x, α〉| + r)k(α) ≤ Cw(B(x, r)), (2.4)

so dw(x) is doubling, that is, there is a constant C > 0 such that

w(B(x, 2r)) ≤ Cw(B(x, r)) for all x ∈ R
N , r > 0. (2.5)

Moreover, there exists a constant C ≥ 1 such that, for every x ∈ R
N and for all

r2 ≥ r1 > 0,

C−1
(r2
r1

)N ≤ w(B(x, r2))
w(B(x, r1))

≤ C
(r2
r1

)N
. (2.6)

For ξ ∈ R
N , the Dunkl operators Tξ are the following k-deformations of the

directional derivatives ∂ξ by difference operators:

Tξ f (x) = ∂ξ f (x) +
∑
α∈R

k(α)

2
〈α, ξ 〉 f {α}(x), (2.7)

where, here and subsequently,

f {α}(x) := f (x) − f (σα(x))
〈α, x〉 . (2.8)

The Dunkl operators Tξ , which were introduced in [6], commute and are skew-
symmetric with respect to the G-invariant measure dw, i.e. for reasonable functions
f , g (for instance, f , g ∈ S(RN )) we have

∫
RN

Tξ f (x)g(x) dw(x) = −
∫
RN

f (x)Tξ g(x) dw(x). (2.9)

Let us denote Tj = Te j , where {e j }1≤ j≤N is a canonical orthonormal basis of RN .
For f , g ∈ C1(RN ), we have the following Leibniz-type rule

Tj ( f g)(x) = (Tj f )(x)g(x) + f (x)∂ j g(x) +
∑
α∈R

k(α)

2
〈α, e j 〉 f (σα(x))

g(x) − g(σα(x))
〈x, α〉 .

(2.10)
For multi-index β = (β1, β2, . . . , βN ) ∈ N

N
0 = (N ∪ {0})N , we denote

|β| = β1+ . . .+βN , T 0
j = id, ∂β = ∂

β1
1 ◦ . . .◦∂

βN
N , T β = T β1

1 ◦ . . .◦T βN
N . (2.11)

For fixed y ∈ R
N , the Dunkl kernel x �→ E(x, y) is a unique analytic solution to the

system
Tξ f = 〈ξ, y〉 f , f (0) = 1. (2.12)
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The function E(x, y), which generalizes the exponential function e〈x,y〉, has a unique
extension to a holomorphic function on C

N × C
N . It was proved in [21, Corollary

5.3] that for all x, y ∈ R
N and ν ∈ N

N
0 we have

|∂ν
y E(x, iy)| ≤ ‖x‖|ν|. (2.13)

2.2 Dunkl Transform

Let f ∈ L1(dw). We define the Dunkl transform F f of f by

F f (ξ) = c−1
k

∫
RN

f (x)E(x,−iξ) dw(x), (2.14)

where

ck =
∫
RN

e− ‖x‖2
2 dw(x)> 0

is so calledMehta-Macdonald integral. The Dunkl transform is a generalization of the
Fourier transform on RN . It was introduced in [7] for k ≥ 0 and further studied in [5]
in a more general context. It was proved in [7, Corollary 2.7] (see also [5, Theorem
4.26]) that it extends uniquely to an isometry on L2(dw), i.e.,

‖ f ‖L2(dw) = ‖F f ‖L2(dw) for all f ∈ L2(dw) ∩ L1(dw). (2.15)

We have also the following inversion theorem ( [5, Theorem4.20]): for all f ∈ L1(dw)

such that F f ∈ L1(dw) we have

f (x) = (F)2 f (−x) for almost all x ∈ R
N . (2.16)

So, the inverse F−1 of F has the form

F−1 f (x) = c−1
k

∫
RN

f (ξ)E(iξ, x) dw(ξ) = F f (−x) for f ∈ L1(dw). (2.17)

It can be easily checked using (2.12) that for compactly supported f ∈ L1(dw) we
have

Tj (F f )(ξ) = Fg(ξ), where g(x) = −i x j f (x). (2.18)

2.3 Dunkl translations

Suppose that f ∈ S(RN ) (the Schwartz class of functions on R
N ) and x ∈ R

N . We
define the Dunkl translation τx f of f to be

τx f (−y) = c−1
k

∫
RN

E(iξ, x) E(−iξ, y)F f (ξ) dw(ξ) = F−1(E(i ·, x)F f )(−y).

(2.19)
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The Dunkl translation was introduced in [20]. The definition can be extended to the
functions which are not necessary in S(RN ). For instance, thanks to the Plancherel’s
theorem (see (2.15)), one can define the Dunkl translation of any L2(dw) function f
by

τx f (−y) = F−1(E(i ·, x)F f (·))(−y) (2.20)

(see [20] and [26, Definition 3.1]). In particular, it follows from (2.20), (2.13),
and (2.15) that for all x ∈ R

N the operators f �→ τx f are contractions on L2(dw).
Here and subsequently, we write g(x, y) := τxg(−y).

We will need the following result concerning the support of the Dunkl translated
of a compactly supported function.

Theorem 2.1 ([8] Theorem 1.7) Let f ∈ L2(dw), supp f ⊆ B(0, r), and x ∈ R
N .

Then
supp τx f (− ·) ⊆ O(B(x, r)). (2.21)

Here and subsequently, for a measurable set A ⊆ R
N we denote

O(A) = {σ(z) : σ ∈ G, z ∈ A}.

2.4 Dunkl Translations of Radial Functions

The following specific formula was obtained by Rösler [22] for the Dunkl translations
of (reasonable) radial functions f (x) = f̃ (‖x‖):

τx f (−y) =
∫
RN

( f̃ ◦ A)(x, y, η) dμx(η) for all x, y ∈ R
N . (2.22)

Here

A(x, y, η) =
√

‖x‖2 + ‖y‖2 − 2〈y, η〉 =
√

‖x‖2 − ‖η‖2 + ‖y − η‖2

and μx is a probability measure, which is supported in the set convO(x) (the convex
hull of the orbit of x under the action of G).

2.5 Dunkl Convolution

Assume that f , g ∈ L2(dw). The generalized convolution (or Dunkl convolution)
f ∗ g is defined by the formula

f ∗ g(x) = ckF−1((F f )(Fg)
)
(x), (2.23)

equivalently, by

( f ∗ g)(x) =
∫
RN

f (y) τxg(−y) dw(y) =
∫
RN

g(y) τx f (−y) dw(y). (2.24)
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Generalized convolution of f , g ∈ S(RN ) was considered in [20, 28], the definition
was extended to f , g ∈ L2(dw) in [26].

2.6 Generalized Heat Semigroup and Heat Kernel

The Dunkl Laplacian associated with R and k is the differential-difference operator
�k = ∑N

j=1 T
2
j , which acts on C2(RN )-functions by

�k f (x) = �eucl f (x) +
∑
α∈R

k(α)δα f (x),

δα f (x) = ∂α f (x)
〈α, x〉 − ‖α‖2

2

f (x) − f (σα(x))
〈α, x〉2 .

The operator �k is essentially self-adjoint on L2(dw) (see for instance [1, Theo-
rem 3.1]) and generates a semigroup Ht of linear self-adjoint contractions on L2(dw).
The semigroup has the form

Ht f (x) =
∫
RN

ht (x, y) f (y) dw(y),

where the heat kernel

ht (x, y) = c−1
k (2t)−N/2E

( x√
2t

,
y√
2t

)
e−(‖x‖2+‖y‖2)/(4t) (2.25)

is a C∞-function of all the variables x, y ∈ R
N , t > 0, and satisfies

0 < ht (x, y) = ht (y, x). (2.26)

In terms of the generalized translations we have

ht (x, y) = τxht (−y), where ht (x) = h̃t (‖x‖) = c−1
k (2t)−N/2 e− ‖x‖2

4t , (2.27)

and, in terms of the Dunkl transform,

Fht (ξ) = c−1
k e−t‖ξ‖2 . (2.28)

2.7 Upper and Lower Heat Kernel Bounds

The closures of connected components of

{x ∈ R
N : 〈x, α〉 	= 0 for all α ∈ R}
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are called (closed)Weyl chambers. We define the distance of the orbit of x to the orbit
of y by

d(x, y) = min{‖x − σ(y)‖ : σ ∈ G}. (2.29)

For a finite sequence α = (α1, α2, . . . , αm) of elements of R, x, y ∈ R
N and t > 0,

let �(α) := m be the length of α,

σα := σαm ◦ σαm−1 ◦ . . . ◦ σα1 , (2.30)

and

ρα(x, y, t)

:=
(
1 + ‖x − y‖√

t

)−2 (
1 + ‖x − σα1(y)‖√

t

)−2 (
1 + ‖x − σα2 ◦ σα1(y)‖√

t

)−2
× . . .

×
(
1 + ‖x − σαm−1 ◦ . . . ◦ σα1(y)‖√

t

)−2
.

(2.31)
For x, y ∈ R

N , let n(x, y) = 0 if d(x, y) = ‖x − y‖ and

n(x, y) = min{m ∈ Z : d(x, y) = ‖x − σαm ◦ . . . ◦ σα2 ◦ σα1(y)‖, α j ∈ R} (2.32)

otherwise. In other words, n(x, y) is the smallest number of reflections σα which are
needed to move y to a (closed) Weyl chamber of x. We also allow α to be the empty
sequence, denoted by α = ∅. Then for α = ∅, we set: σα = id (the identity operator),
�(α) = 0, and ρα(x, y, t) = 1 for all x, y ∈ R

N and t > 0.
We say that a finite sequence α = (α1, α2, . . . , αm) of roots is admissible for a

pair (x, y) ∈ R
N × R

N if n(x, σα(y)) = 0. In other words, the composition σαm ◦
σαm−1 ◦ . . . ◦ σα1 of the reflections σα j maps y to a Weyl chamber of x. The set of the
all admissible sequences α for the pair (x, y) will be denoted by A(x, y). Note that if
n(x, y) = 0, then α = ∅ ∈ A(x, y).

Let us define
�(x, y, t) :=

∑
α∈A(x,y), �(α)≤|G|

ρα(x, y, t). (2.33)

The following upper and lower bounds for ht (x, y) were proved in [12].

Theorem 2.2 ([12, 13] Theorem 1.1 and Remark 2.3) Assume that 0 < cu < 1/4 and
cl > 1/4. There are constants Cu,Cl > 0 such that for all x, y ∈ R

N and t > 0 we
have

Clw(B(x,
√
t))−1e−cl

d(x,y)2
t �(x, y, t) ≤ ht (x, y), (2.34)

ht (x, y) ≤ Cuw(B(x,
√
t))−1e−cu

d(x,y)2
t �(x, y, t). (2.35)

We also have the following regularity estimate for ht (x, y) ( [12, Theorem 6.1]).



52 Page 10 of 35 Journal of Fourier Analysis and Applications (2023) 29 :52

Lemma 2.3 Let ε1 ∈ (0, 1]. There is a constant C > 0 such that for all x, y, y′ ∈ R
N

and t > 0 we have

|ht (x, y) − ht (x, y′)| ≤ C

(‖y − y′‖√
t

)ε1 (
h2t (x, y) + h2t (x, y′)

)
. (2.36)

As an application of Theorem 2.2 and (2.22) it is possible to describe a behavior
of the measure μx near the points σ(x) for σ ∈ G (see also [17, Theorem 2.1]). The
behavior, stated in Theorem 2.4, gives another proof of the theorem of Gallardo and
Rejeb (see [14, Theorem A 3)]), which says that all the points σ(x), σ ∈ G, belong to
the support of the measure μx.

Theorem 2.4 ([12]) For x ∈ R
N and t > 0 we set

U (x, t) := {η ∈ convO(x) : ‖x‖2 − 〈x, η〉 ≤ t}. (2.37)

There is a constant C > 0 such that for all x ∈ R
N , t > 0, and σ ∈ G we have

C−1 t
N/2�(x, σ (x), t)

w(B(x,
√
t))

≤ μx(U (σ (x), t)) ≤ C
tN/2�(x, σ (x), t)

w(B(x,
√
t))

. (2.38)

2.8 Kernel of the Dunkl–Bessel Potential

For an even positive integer s, we set

J {s} := F−1(1 + ‖ · ‖2)−s/2, i.e. F J {s}(ξ) = (1 + ‖ξ‖2)−s/2. (2.39)

It can be easily checked that for x, y ∈ R
N we have

J {s}(x) = �
( s

2

)−1
∫ ∞

0
e−t ht (x)t s/2

dt

t
and J {s}(x, y) = �

( s

2

)−1
∫ ∞

0
e−t ht (x, y)t s/2

dt

t
.

(2.40)
Since ξ �−→ (1 + ‖ξ‖2)−s/2 is radial, thanks to (2.7), for all 1 ≤ j ≤ N we have

|Tj (1+‖ξ‖2)−s/2| = |∂ j (1+‖ξ‖2)−s/2| ≤ C(1+‖ξ‖2)−(s+1)/2 ≤ C(1+‖ξ‖2)−s/2.

(2.41)

3 Some Formulas and Estimates for Dunkl Translations of Regular
Enough Functions

In the present section we prove formulas and derive basic estimates for translations
of certain functions. Then, in the next section, we shall use them for more advanced
estimations.

We start by the following lemma, which is a consequence of the generalized heat
kernel regularity estimates (2.36).
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Lemma 3.1 Let ε1 ∈ (0, 1]. There is a constant C > 0 such that for all t > 0 and
y, y′ ∈ R

N , we have

(∫
B(0,1/t)

|E(−iξ, y)|2 dw(ξ)

)1/2

≤ C

w(B(y, t))1/2
, (3.1)

(∫
B(0,1/t)

|E(−iξ, y) − E(−iξ, y′)|2 dw(ξ)

)1/2

≤
(‖y − y′‖

t

)ε1
(

C

w(B(y, t))1/2
+ C

w(B(y′, t))1/2

)
. (3.2)

Proof We prove just (3.2), the proof of (3.1) is analogous (in fact, it was proved in [8,
(3.6)]). By (2.28), the Plancherel’s equality (2.15), and (2.36) we get

(∫
B(0,1/t)

|E(−iξ, y) − E(−iξ, y′)|2 dw(ξ)

)1/2

≤ e

(∫
B(0,1/t)

|E(−iξ, y) − E(−iξ, y′)|2e−2t2‖ξ‖2 dw(ξ)

)1/2

≤ e

(∫
RN

|E(−iξ, y) − E(−iξ, y′)|2e−2t2‖ξ‖2 dw(ξ)

)1/2

= e

(∫
RN

|ht2(x, y) − ht2(x, y
′)|2 dw(x)

)1/2

≤ C

(‖y − y′‖
t

)ε1
(∫

RN
|h2t2(x, y)|2 dw(x)

)1/2

+ C

(‖y − y′‖
t

)ε1
(∫

RN
|h2t2(x, y′)|2 dw(x)

)1/2

≤ C ′( 1

w(B(y, t))1/2
+ 1

w(B(y′, t))1/2
)(‖y − y′‖

t

)ε1

.

��
In order to estimate translations of non-radial functionswe need further preparation.

The following lemma and its proof, which is based on the fundamental theorem of
calculus (see e.g. [11, pages 284-285]), will play a crucial role in our study. Recall
that for a function f , f {α} is defined in (2.8).

Lemma 3.2 Let � ∈ N0, M > 0. If f ∈ C�+1(RN ) is such that ∂ j f are bounded
functions for all 1 ≤ j ≤ N, then f {α} belongs to C�(RN ) for all α ∈ R and there is
a constant C > 0 independent of f such that

‖ f {α}‖L∞ ≤ C
N∑
j=1

‖∂ j f ‖L∞ .



52 Page 12 of 35 Journal of Fourier Analysis and Applications (2023) 29 :52

Moreover, there is a constant C > 0 independent of � and f such that if

|∂β f (x)| ≤ (1 + ‖x‖)−N−M for all |β| ≤ � + 1

then |T β f {α}(x)| ≤ C(1 + ‖x‖)−N−M for all |β| ≤ �, α ∈ R, and x ∈ R
N .

Proposition 3.3 Let φ ∈ S(RN ) and 1 ≤ j ≤ N. Then for all x, y ∈ R
N we have

i(x j − y j )φ(x, y) = −φ j (x, y) −
∑
α∈R

k(α)

2
〈α, e j 〉φα(x, σα(y)), (3.3)

where φ j , φα are Schwartz class functions defined by

Fφ j (ξ) = ∂ j,ξFφ(ξ), Fφα(ξ) = Fφ(ξ) − Fφ(σα(ξ))

〈ξ, α〉 . (3.4)

Moreover, if φ is G-invariant, then

i(x j − y j )φ(x, y) = −φ j (x, y), (3.5)

where Fφ j (ξ) = ∂ j,ξFφ(ξ) = Tj,ξFφ(ξ), i.e. φ j (x) = −i x jφ(x).

Proof It is obvious, that φ j defined in (3.4) belong to S(RN ). Further, the functions

R
N � ξ �→ Fφ(ξ) − Fφ(σα(ξ))

〈ξ, α〉

belong the Schwartz class (see Lemma 3.2). Hence, φα ∈ S(RN ) for all α ∈ R.
Thanks to the inversion formula and definition of Dunkl kernel (see (2.17) and (2.12))
we get

i x jφ(x, y) = c−1
k

∫
RN

i x j E(iξ, x)E(iξ,−y)Fφ(ξ) dw(ξ)

= c−1
k

∫
RN

(
Tj,ξ [E(iξ, x)])E(iξ,−y)Fφ(ξ) dw(ξ).

It follows from (2.13) that for fixed x ∈ R
N we have (E(−i ·, x)Fφ(·)) ∈ S(RN ).

Hence, by the integration by parts formula (2.9) and the Leibniz-type rule (2.10) we
get
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i x jφ(x, y) = −c−1
k

∫
RN

E(iξ, x)Tj,ξ [E(iξ,−y)(Fφ)(ξ)] dw(ξ)

= −c−1
k

∫
RN

E(iξ, x)Tj,ξ E(iξ,−y)Fφ(ξ) dw(ξ)

− c−1
k

∫
RN

E(iξ, x)E(iξ,−y)∂ j,ξ (Fφ)(ξ) dw(ξ)

− c−1
k

∫
RN

E(iξ, x)
∑
α∈R

k(α)

2
〈α, e j 〉E(iξ,−σα(y))

(Fφ)(ξ) − (Fφ)(σα(ξ))

〈ξ, α〉 dw(ξ).

(3.6)

Using (2.12) and inverse formula (2.17) we obtain

− c−1
k

∫
RN

E(iξ, x)(Fφ)(ξ)Tj,ξ E(iξ,−y) dw(ξ)

= −c−1
k

∫
RN

E(iξ, x)(Fφ)(ξ)[−iy j E(iξ,−y)] dw(ξ) = iy jφ(x, y).
(3.7)

Therefore, (3.3) is a consequence of (3.6) and (3.7). The proof of (3.5) follows
from (3.3) and (3.4), since Fφ is G-invariant, so φα ≡ 0 and ∂ j,ξFφ(ξ) = TjFφ(ξ)

in this case. ��

Let us note that Proposition 3.3 togetherwith its proof can be generalized toφ which
not necessary belongs to S(RN ), but the quantities which appear in the proof make
sense. One of such a possible generalization is presented in the proposition below,
which will be used in the proof of Theorem 4.6.

Proposition 3.4 Let δ > 0. Assume that f ∈ L1(dw) is compactly supported and g ∈
L1(dw) is G-invariant function such that |Fg(ξ)| ≤ (1+ ‖ξ‖)−N−δ , Fg ∈ C1(RN ),
and |TjFg(ξ)| ≤ (1 + ‖ξ‖)−N−δ for all 1 ≤ j ≤ Nand ξ ∈ R

N . Then

i(x j − y j )( f ∗ g)(x, y) = −c−1
k

∫
RN

E(iξ, x)E(−iξ, y)(∂ jF f )(ξ)Fg(ξ) dw(ξ)

− c−1
k

∑
α∈R

k(α)

2
〈α, e j 〉

∫
RN

E(iξ, x)
(F f )(ξ) − (F f )(σα(ξ))

〈ξ, α〉 E(−iξ, σα(y))Fg(ξ) dw(ξ)

− c−1
k

∫
RN

E(iξ, x)E(−iξ, y)F f (ξ)(TjFg)(ξ) dw(ξ).

(3.8)

Proof First, let us observe that for every multi index ν ∈ N
N
0 , a function f ∈ L1(dw),

supp f ⊆ B(0, r), and ξ ∈ R
N one has

|∂νF f (ξ)| ≤ c−1
k r |ν|‖ f ‖L1(dw). (3.9)
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Indeed, by (2.13),

|∂νF f (ξ)| =
∣∣∣c−1

k ∂ν

∫
RN

E(−iξ, x) f (x) dw(x)

∣∣∣∣
=

∣∣∣∣c−1
k

∫
B(0,r)

∂ν
ξ E(−iξ, x) f (x) dw(x)

∣∣∣∣
≤ c−1

k

∫
B(0,r)

‖x‖|ν|| f (x)| dw(x) ≤ c−1
k r |ν|‖ f ‖L1(dw).

(3.10)

Similarly, by Lemma 3.2,

∣∣∣ (F f )(ξ) − (F f )(σα(ξ))

〈ξ, α〉
∣∣∣ ≤ C

N∑
j=1

‖∂ jF f ‖L∞ ≤ Cr‖ f ‖L1(dw) (3.11)

Consequently, all of the integrals in (3.8) can be interpreted as the Dunkl transforms
of L1(dw)-functions. Hence, in order to establish (3.8), it is enough to note that
applying the Leibniz-type rule (2.10) twice: firstly to the functions: E(−i ·, y)F f (not
necessarilyG-invariant) andFg (G-invariant) and then to the functions E(−i ·, y) and
F f , we obtain

Tj,ξ (E(−i ·, y)(F f )(Fg))(ξ) = Tj,ξ (E(−iξ, y))(ξ)(F f )(ξ)(Fg)(ξ)

+ E(−iξ, y)∂ j,ξ (F f )(ξ)(Fg)(ξ)

+
∑
α∈R

k(α)

2
〈α, e j 〉 (F f )(ξ) − (F f )(σα(ξ))

〈ξ, α〉 E(−iξ, σα(y))(Fg)(ξ)

+ E(−iξ, y)(F f )(ξ)Tj,ξ (Fg)(ξ),

and repeat the proof of Proposition 3.3. ��
Proposition 3.5 Let δ > 0 and 0 < ε1 ≤ 1. Assume that f ∈ L1(dw) and g ∈ L1(dw)

is such that |Fg(ξ)| ≤ (1+ ‖ξ‖)−N−δ for all ξ ∈ R
N . Then the following statements

hold.

(a) There is a constant C1 > 0 independent of f , g such that for all 1 ≤ j ≤ N and
x, y ∈ R

N , one has

|( f ∗ g)(x, y)| ≤ Cw(B(x, 1))−1/2w(B(y, 1))−1/2‖ f ‖L1(dw). (3.12)

(b) If additionally g is G-invariant, Fg ∈ C1(RN ), and satisfies |TjFg(ξ)| ≤ (1 +
‖ξ‖)−N−δ for all ξ ∈ R

N , then there is a constant C2 > 0 independent of f , g
such that for all f ∈ L1(dw) such that supp f ⊆ B(0, r) and x, y ∈ R

N , we have

|(x j−y j )( f ∗g)(x, y)| ≤ C2rw(B(x, 1))−1/2w(B(y, 1))−1/2‖ f ‖L1(dw). (3.13)
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(c) Assume δ > ε1. If g is G-invariant, Fg ∈ C1(RN ), and |TjFg(ξ)| ≤ (1 +
‖ξ‖)−N−δ for all ξ ∈ R

N , then there is a constant C3 > 0 independent of f , g
such that for all f ∈ L1(dw) such that supp f ⊆ B(0, r) and x, y, y′ ∈ R

N , we
have

|x j − y j ||( f ∗ g)(x, y) − ( f ∗ g)(x, y′)|
≤ C3r‖y − y′‖ε1w(B(x, 1))−1/2w(B(y, 1))−1/2‖ f ‖L1(dw)

+ C3r‖y − y′‖ε1w(B(x, 1))−1/2w(B(y′, 1))−1/2‖ f ‖L1(dw).

(3.14)

Proof Let U0 = B(0, 1) and U� = B(0, 2�)\B(0, 2�−1) for � ∈ N. In order to
prove (3.12), we use the Cauchy–Schwarz inequality, (3.1), and (2.6) (cf. [8, Propo-
sition 3.7]),

| f ∗ g(x, y)| =
∣∣∣∣c−1

k

∫
RN

E(iξ, x)E(−iξ, y)(F f )(ξ)Fg(ξ) dw(ξ)

∣∣∣∣
≤

∞∑
�=0

c−1
k

∣∣∣
∫
U�

E(iξ, x)E(−iξ, y)(F f )(ξ)Fg(ξ) dw(ξ)

∣∣∣

≤
∞∑

�=0

c−1
k ‖F f ‖L∞

(∫
U�

|E(iξ, x)|2
(1 + ‖ξ‖)2N+2δ

dw(ξ)

)1/2 (∫
B(0,2�)

|E(−iξ, y)|2 dw(ξ)

)1/2

≤ C
∞∑

�=0

2−�(N+δ)w(B(x, 2−�))−1/2w(B(y, 2−�))−1/2‖ f ‖L1(dw)

≤ C ′w(B(x, 1))−1/2w(B(y, 1))−1/2‖ f ‖L1(dw),

(3.15)

so (3.12) is proved. In order to prove (3.13), we use (3.8). We shall estimate the first
component of the right-hand side of (3.8), the others are treated in the sameway. Recall
that ‖∂ jF f ‖L∞ ≤ c−1

k r‖ f ‖L1(dw) (see (3.10)). Therefore, similarly as in (3.15), we
obtain

∣∣∣
∫
RN

E(iξ, x)E(−iξ, y)(∂ jF f )(ξ)Fg(ξ) dw(ξ)

∣∣∣

≤
∞∑

�=0

∣∣∣
∫
U�

E(iξ, x)E(−iξ, y)(∂ jF f )(ξ)Fg(ξ) dw(ξ)

∣∣∣

≤ Cr
∞∑

�=0

2−�(N+δ)rw(B(x, 2−�))−1/2w(B(y, 2−�))−1/2‖ f ‖L1(dw)

≤ C ′rw(B(x, 1))−1/2w(B(y, 1))−1/2‖ f ‖L1(dw).

(3.16)

We now turn to prove (3.14). We write
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|x j − y j ||( f ∗ g)(x, y) − ( f ∗ g)(x, y′)| ≤ |(x j − y j )( f ∗ g)(x, y) − (x j − y′
j )( f ∗ g)(x, y′)|

+ |y′
j − y j ||( f ∗ g)(x, y′)| =: I1 + I2.

The required estimate for I2 follows from (3.12). To deal with I1, we use (3.8) and
obtain

I1 ≤ c−1
k

∫
RN

|E(iξ, x)||E(−iξ, y) − E(−iξ, y′)||(∂ j,ξF f )(ξ)||Fg(ξ)| dw(ξ)

+c−1
k

∑
α∈R

k(α)

2
|〈α, e j 〉|

∫
RN

|E(iξ, x)|
∣∣∣∣ (F f )(ξ) − (F f )(σα(ξ))

〈ξ, α〉
∣∣∣∣

|E(−iξ, σα(y)) − E(−iξ, σα(y′))||Fg(ξ)| dw(ξ)

+c−1
k

∫
RN

|E(iξ, x)||E(−iξ, y) − E(−iξ, y′)||F f (ξ)||(TjFg)(ξ)| dw(ξ)

=: I1,1 + I1,2 + I1,3. (3.17)

In order to estimate I1,1, we proceed similarly to (3.15) and (3.16). By the Cauchy–
Schwarz inequality together with (3.1), (3.2), and (2.6) we have

I1,1 ≤ c−1
k

∞∑
�=0

∫
U�

|E(iξ, x)||(E(−iξ, y) − E(−iξ, y′))||(∂ j,ξF f )(ξ)||Fg(ξ)| dw(ξ)

≤
∞∑

�=0

c−1
k ‖∂ j,ξF f ‖L∞

⎛
⎜⎝

∫

U�

|E(iξ, x)|2
(1 + ‖ξ‖)2N+2δ

dw(ξ)

⎞
⎟⎠
1/2 ⎛

⎜⎝
∫

B(0,2�)

|E(−iξ, y) − E(−iξ, y′)|2 dw(ξ)

⎞
⎟⎠
1/2

≤ Cr‖y − y′‖ε1

∞∑
�=0

2−�(N+δ−ε1)

w(B(x, 2−�))−1/2(w(B(y, 2−�))−1/2 + w(B(y′, 2−�))−1/2)‖ f ‖L1(dw)

≤ C ′r‖y − y′‖ε1w(B(x, 1))−1/2(w(B(y, 1))−1/2 + w(B(y′, 1))−1/2)‖ f ‖L1(dw).

The estimate for I1,3 goes identically. In order to deal with I1,2, we recall that

∣∣∣∣ (F f )(ξ) − (F f )(σα(ξ))

〈ξ, α〉
∣∣∣∣ ≤ Cr‖ f ‖L1(dw) for all ξ ∈ R

N

(see (3.11)). Moreover, ‖σα(y) − σα(y′)‖ = ‖y − y′‖ for all y, y′ ∈ R
N and α ∈ R.

Consequently, for I1,2 one can repeat the same proof as for I1,1. ��
Since any sufficiently regular function can be written as a convolution of a nice

radial function with an L1-function, as a consequence of Proposition 3.5 we obtain
the following theorem.
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Theorem 3.6 Let s be an even integer greater than N. Then for any 0 ≤ ε1 < s − N,
ε1 ≤ 1, there is a constant C > 0 such that for all f ∈ Cs(RN ) such that supp f ⊆
B(0, 1), and for all x, y, y′ ∈ R

N we have

| f (x, y)| ≤ C‖ f ‖Cs (RN )(1 + ‖x − y‖)−1w(B(x, 1))−1/2w(B(y, 1))−1/2χ[0,1](d(x, y)),

(3.18)

| f (x, y) − f (x, y′)| ≤ C
‖ f ‖Cs (RN )‖y − y′‖ε1

(1 + ‖x − y‖)ε1 w(B(x, 1))−1/2

(
w(B(y, 1))−1/2 + w(B(y′, 1))−1/2

)
. (3.19)

Proof For x, y ∈ R
N we write

f (x, y) = c−1
k

∫
RN

E(iξ, x)E(−iξ, y)(F f )(ξ) dw(ξ)

= c−1
k

∫
RN

E(iξ, x)E(−iξ, y)
[
(F f )(ξ)(1 + ‖ξ‖2)s/2

]
(1 + ‖ξ‖2)−s/2 dw(ξ)

= ck
(
f̃ ∗ J {s}) (x, y),

where J {s} is defined in (2.39) and

F f̃ (ξ) = (F f )(ξ)(1 + ‖ξ‖2)s/2.

Therefore, by (2.18) we have f̃ = (1 − �k)
s/2 f . Consequently, by the assumption

supp f ⊆ B(0, 1) and Lemma 3.2, there is a constant C > 0 such that

‖ f̃ ‖L1 ≤ C‖ f ‖Cs (RN ). (3.20)

Hence, applying Proposition 3.5 with f̃ , J {s} (which is G-invariant), δ := s − N,
and any 0 < ε1 < δ (the assumptions are satisfied thanks to the definition of J {s}
and (2.41)), we obtain (3.18) and (3.19). ��

4 Applications of Formulas and Estimates from Section 3

4.1 Estimates for Dunkl Translations of Schwartz-Class Functions

As a consequence of Theorem 3.6, we obtain the following theorem.

Theorem 4.1 Let s be an even integer greater than N. Assume that for a certain
κ ≥ −N/2 − 1 and a function g ∈ Cs(RN ) one has

|∂βg(x)| ≤ (1 + ‖x‖)−N−|β|−1−κ for all x ∈ R and |β| ≤ s. (4.1)
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Then there is a constant C > 0 (independent of g) such that for all x, y ∈ R
N and

t > 0 we have

|gt (x, y)| ≤ C

(
1 + ‖x − y‖

t

)−1 (
1 + d(x, y)

t

)−κ 1

w(B(x, d(x, y) + t))
, (4.2)

where gt (x) = t−Ng(x/t).

Remark 4.2 Let us note that by (2.6), w(B(x, t + d(x, y)))−1 ≤ w(B(x, t))−1(1 +
d(x, y)/t)−N hence, under assumptions of Theorem 4.1, we have

|gt (x, y)| ≤ C

(
1 + ‖x − y‖

t

)−1 (
1 + d(x, y)

t

)−N−κ 1

w(B(x, t))
. (4.3)

Proof of Theorem 4.1 By scaling it is enough to prove (4.2) for t = 1. Let �̃0 ∈
C∞
c ((− 1

2 ,
1
2 )) and �̃ ∈ C∞

c (( 18 , 1)) be such that

1 = �̃0(‖x‖) +
∞∑

�=1

�̃(2−�‖x‖) =
∞∑

�=0

�̃�(‖x‖) =:
∞∑

�=0

��(x) for all x ∈ R
N . (4.4)

Then

g(x) =
∞∑

�=0

g(x)��(x) =
∞∑

�=0

g�(x), (4.5)

where the convergence is in L2(dw(x)). By continuity of the generalized translations
on L2(dw) for all y ∈ R

N we have

g(x, y) =
∞∑

�=0

(g · ��)(x, y) =:
∞∑

�=0

g�(x, y), (4.6)

where the convergence is in L2(dw(x)). We turn to prove that the series converges
absolutely for all x, y ∈ R

N . Indeed, for fixed � ∈ N0 we consider g̃�(x) = g�(2�x).
Then g̃� is supported by B(0, 1) and it follows from (4.1) that there is a constantC > 0
such that for all � ∈ N0 we have

‖∂β g̃�‖L∞ ≤ C2−�(N+1+κ).

Applying Theorem 3.6 we get

|̃g�(x, y)| ≤ C2−�(N+1+κ) (1 + ‖x − y‖)−1 w(B(x, 1))−1/2w(B(y, 1))−1/2χ[0,1](d(x, y)),
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therefore, by scaling and (2.3),

|g�(x, y)| ≤ C2−�κ
(
2� + ‖x − y‖

)−1
w(B(x, 2�))−1/2w(B(y, 2�))−1/2χ[0,2�](d(x, y)).

Finally, by (2.6),

∞∑
�=0

|g�(x, y)| =
∑

2�≥d(x,y),�≥0

|g�(x, y)|

≤ C
∑

2�≥d(x,y),�≥0

2−�κ
(
2� + ‖x − y‖

)−1
w(B(x, 2�))−1/2w(B(y, 2�))−1/2

≤ C
∑

2�≥d(x,y),�≥0

2−�κ (d(x, y) + 1)N

2�N (1 + ‖x − y‖)−1

w(B(x, d(x, y) + 1))−1/2w(B(y, d(x, y) + 1))−1/2

≤ C(1 + ‖x − y‖)−1(1 + d(x, y))−κw(B(x, d(x, y) + 1))−1,

where in the last step we have used the fact that the quantities w(B(x, d(x, y) + 1))
and w(B(y, d(x, y) + 1)) are comparable. ��

Assume ϕ ∈ S(RN ). It follows from Theorem 4.1 that for any M > 0 there is a
constant CM > 0 such that for all x, y ∈ R

N we have

|ϕ(x, y)| ≤ CM

w(B(x, 1))
(1 + ‖x − y‖)−1 (1 + d(x, y))−M . (4.7)

Moreover, if additionally a Schwartz class function ϕ is G-invariant, then

|ϕ(x, y)| ≤ CM

w(B(x, 1))
(1 + ‖x − y‖)−2 (1 + d(x, y))−M . (4.8)

Let us remark that if g is radial then the bound for τx(−y) can be improved under a
weaker assumption on g. This is stated in the following proposition.

Proposition 4.3 Assume that κ > 2 − N and κ > −N/2. Then there is a constant
C > 0 such that for all radial functions g satisfying |g(x)| ≤ (1+ ‖x‖)−N−κ one has

|g(x, y)| ≤ Cw(B(x, 1 + d(x, y)))−1(1 + ‖x − y‖)−2(1 + d(x, y))−κ+2. (4.9)

Proof The proof follows the same pattern as that of Theorem 4.1. To this end we
note that from the estimates for the Dunkl heat kernel (1.7) and the fact that the
generalized translation of a non-negative radial function is non-negative combined
with Theorem 2.1 we have

|g�(x, y)| ≤ C2−κ�+2�w(B(x, 2�))−1
(
2� + ‖x − y‖

)−2
χ[0,2�](d(x, y)), (4.10)
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where g� are define as in (4.5). Summing up the estimates we arrive in the desired
bound. ��

Now we provide the estimates for the Dunkl translations of the (non-necessarily
radial) Schwartz-class functions ϕ, which make use of the function �(x, y, 1)
(see (2.33)). The following lemma has an easy proof (see [12, 13]).

Lemma 4.4 For any sequence {σ j }mj=0 of elements of the group G, m ≥ |G|2 + 1,
satisfying the condition σ0 = id and

σ j+1 = g j+1 ◦ σ j for j ≥ 0, (4.11)

where g j+1 ∈ {id} ∪ {σα : α ∈ R}, and x, y ∈ R
N , there is a sequence α ∈ A(x, y)

of elements of R such that �(α) ≤ |G| and for all t > 0 we have

m∏
j=0

(
1 + ‖x − σ j (y)‖√

t

)−2

≤ ρα(x, y, t) ≤ �(x, y, t). (4.12)

Theorem 4.5 Let ϕ ∈ S(RN ) and M > 0. Let ϕt := t−Nϕ(·/t) There is a constant
CM,ϕ > 0 such that for all x, y ∈ R

N and t > 0, we have

|ϕt (x, y)| ≤ CM,ϕ�(x, y, t2)1/2
(
1 + d(x, y)

t

)−M 1

w(B(x, t))
. (4.13)

Proof By scaling, without loss of generality, we may assume t = 1. It follows by (3.3)
that there is a constant C > 0 independent of x, y ∈ R

N and φ ∈ S(RN ) such that

|φ(x, y)| ≤ C (1 + ‖x − y‖)−1

⎛
⎝ N∑

j=1

|φ j (x, y)| +
∑
α∈R

|φα(x, σα(y))|
⎞
⎠ , (4.14)

where φ j , φα are defined in (3.4).
Fix a functionϕ from the Schwartz classS(RN ). In the first stepwe estimateϕ(x, y)

by (4.14). In the second step we apply the formula (4.14) to ϕ j and ϕα obtaining

|ϕ(x, y)| ≤ (1 + ‖x − y‖)−1
{ N∑

j=1

(1 + ‖x − y‖)−1
( N∑

j1=1

|ϕ j, j1 (x, y)| +
∑
α′∈R

|ϕ j,α′ (x, σα(y))|
)

+
∑
α∈R

(1 + ‖x − σα(y)‖)−1
( N∑

j1=1

|ϕα, j1 (x, σα(y))| +
∑
α′∈R

|ϕα,α′ (x, σ ′
α(σα(y)))|

)}
,

where ϕ j, j1 , ϕ j,α′ , ϕα, j1 , ϕα,α′ ∈ S(RN ). Then we continue this procedure with
the use of (4.14) to estimate ϕ j, j1, ϕ j,α′ , ϕα, j1 , ϕα,α′ and so on. Set m = |G|2. Let
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B be the set of all sequences {σ j }mj=0 of length m + 1 satisfying the assumptions of
Lemma 4.4. Finally, after all together (m + 1)–steps described above, we get

|ϕ(x, y)| ≤ C ′

⎛
⎜⎝ ∑

{σ j }mj=0∈B

m∏
j=0

(
1 + ‖x − σ j (y)‖

)−1

⎞
⎟⎠

⎛
⎝ n∑

�=0

∑
g∈G

|ψg,�(x, g(y))|
⎞
⎠ ,

(4.15)
whereψg,� ∈ S(RN ) and n = (N +|R|)m+1. Since d(x, g(y)) = d(x, y) (see (2.29)),
by (4.7) we get

⎛
⎝ n∑

�=0

∑
g∈G

|ψg,�(x, g(y))|
⎞
⎠ ≤ C (1 + d(x, y))−M 1

w(B(x, 1))
. (4.16)

Moreover, by Lemma 4.4 we have

∑
{σ j }mj=0∈B

m∏
j=0

(
1 + ‖x − σ j (y)‖

)−1 ≤ C
∑

α∈A(x,y), �(α)≤|G|
ρα(x, y, 1)−1/2 ≤ C ′�(x, y, 1)1/2.

(4.17)
Hence, taking into account (4.15), (4.16), and (4.17) we obtain (4.13). ��

4.2 Singular Integral Operators

Basic examples of singular integral operators are Riesz transforms. The Riesz trans-
forms

R j f (x) = Tj (−�k)
−1/2 f (x) = F−1

(
−i

ξ j

‖ξ‖F f (ξ)

)
(x)

in the Dunkl setting were studied by Thangavelu and Xu [27] (in dimension 1 and
in the product case) and by Amri and Sifi [2] (in higher dimensions) who proved the
bounds on L p(dw) spaces. Further, in [4] the Riesz transforms R j were used for
characterization of the Hardy space H1

�k
.

Recently, some various approaches to the theory of singular integrals, which use
the d(x, y), ‖x − y‖ and w(B(x, 1)) were investigated. For instance, in [10], the
convolution–type singular integrals f �→ K ∗ f were studied under some assumptions
on the kernel K (see (A), (D), and (L) in Sect. 4.2.1 below). On the other hand, in [25],
the authors proposed certain assumptions on kernels of non-necessarily convolution–
type singular integrals (see (CZ1), (CZ2), (CZ3) below) which are relevant for proving
some harmonic analysis spirit results in the Dunkl setting. As an example, it was
proved there that the kernels of Riesz transformsR j have the expected properties. In
this section, we will use the results of Sect. 3 to unify these two approaches and prove
that the kernel estimates of [25] are satisfied for the Dunkl type convolution operators
considered in [10]. Consequently, we obtain a large class of examples of operators



52 Page 22 of 35 Journal of Fourier Analysis and Applications (2023) 29 :52

satisfying the assumptions (CZ1), (CZ2), and (CZ3). Moreover, thanks to the results
of [25], we obtain several Fourier analysis spirit theorems for the convolution type
operators.

4.2.1 Assumptions of [10]

Let s0 be an even positive integer larger than N, which will be fixed in this section.
Consider a function K ∈ Cs0(RN\{0}) such that

sup
0<a<b<∞

∣∣∣
∫
a<‖x‖<b

K (x) dw(x)
∣∣∣ < ∞, (A)

∣∣∣ ∂β

∂xβ
K (x)

∣∣∣ ≤ Cβ‖x‖−N−|β| for all |β| ≤ s0, (D)

lim
ε→0

∫
ε<‖x‖<1

K (x) dw(x) = L for some L ∈ C. (L)

Set

K {t}(x) = K (x)(1 − φ(t−1x)),

where φ is a fixed radial C∞-function supported by the unit ball B(0, 1) such that
φ(x) = 1 for ‖x‖ < 1/2. It was proved in [10, Theorems 4.1 and 4.2] that under (A)
and (D) the operators f �→ f ∗ K {t} are bounded on L p(dw) for 1 < p < ∞ and
they are of weak–type (1, 1) with the bounds independent of t > 0. Further, assuming
additionally (L), the limit limt→0 f ∗ K {t}(x) exists and defines a bounded operator
T on L p(dw) for 1 < p < ∞, which is of weak-type (1,1) as well [10, Theorem 4.3
and Theorem 3.7]. Moreover, in this case, the maximal operator

K ∗ f (x) = sup
t>0

| f ∗ K {t}(x)|

is bounded on L p(dw) for 1 < p < ∞ and of weak-type (1, 1) (Theorem 5.1 of [10]).

4.2.2 Assumptions of [25]

In [25] (see also [15]) the following definition of Dunkl–Calderón–Zygmund singu-
lar integral operators was proposed. Let η > 0. Let Ċη

0 (RN ) denote the space of
continuous functions f with compact support satisfying

‖ f ‖η := sup
x 	=y

| f (x) − f (y)|
‖x − y‖η

< ∞.
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We say that a sequence { fn}n∈N converges to f in Ċη
0 (RN ), if the functions are

supported in the same compact set inRN and limn→∞ ‖ fn− f ‖η = 0. Let Ċη
0 (RN )′ be

its dual space endowedwith weak-* topology. An operatorT : Ċη
0 (RN ) �−→ Ċη

0 (RN )′
is said to be a Dunkl–Calderón-Zygmund singular integral operator associated with a
kernel K(x, y) (which is not necessary the Dunkl translation of some function) if the
following estimates are satisfied: for some 0 < ε ≤ 1:

|K(x, y)| ≤ C

(
d(x, y)
‖x − y‖

)ε 1

w(B(x, d(x, y)))
for all x 	= y, (CZ1)

|K(x, y) − K(x, y′)| ≤ C

(‖y − y′‖
‖x − y‖

)ε 1

w(B(x, d(x, y)))
for all ‖y − y′‖ <

d(x, y)
2

,

(CZ2)

|K(x, y) − K(x′, y)| ≤ C

(‖x − x′‖
‖x − y‖

)ε 1

w(B(x, d(x, y)))
for all ‖x − x′‖ <

d(x, y)
2

,

(CZ3)

and, furthermore,

〈T f , g〉 =
∫
RN

∫
RN

K(x, y) f (x)g(y) dw(x) dw(y) if supp f ∩ supp g = ∅. (4.18)

Wefinish this subsection by the remark that the conditions (CZ1), (CZ2), and (CZ3)
imply the following Calderón-Zygmund integral bounds for K(x, y) on the space of
homogeneous type (RN , ‖x − y‖, dw) (see [25]): there is a constant A > 0 such that
for all r > 0 one has

∫
r<‖x−y‖<2r

(|K(x, y)| + |K(y, x)|) dw(x) ≤ A, (4.19)
∫
‖y0−x‖>2r

(|K(x, y) − K(x, y0)|
+|K(y, x) − K(y0, x)|) dw(x) ≤ A whenever y ∈ B(y0, r). (4.20)

4.2.3 Assumptions (CZ1), (CZ2), and (CZ3) for Convolution Kernels

Theorem 4.6 Assume that a kernel K ∈ Cs0(RN\{0}) satisfies (D) for a certain even
integer s0 > N. Then the kernel defined by

K(x, y) = lim
t→0

τxK
{t}(−y) = lim

t→0
K {t}(x, y) (4.21)
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for x, y ∈ R
N , x 	= y, satisfies the assumptions (CZ1), (CZ2), and (CZ3) with some

0 < ε < min(1, s0 − N). Moreover, if additionally (A) and (L) are satisfied, then
K(x, y) is a kernel associated with the Dunkl-Calderón–Zygmund operator T.

Proof Let 0 < ε < min(1, s0 − N). For any t > 0 let us denote

K {t/2,t} := K {t/2} − K {t}.

Then K {t/2,t} is Cs0(RN )-function supported by B(0, t) \ B(0, t/4) (cf. [10, (3.1)]),
henceFK {t/2,t} ∈ L1(dw). Firstly, let us consider K {t/2,t} for t = 1. By Theorem 3.6
applied with s = s0, ε1 = ε, and assumption (D) there is a constant C̃ > 0 such that

|K {1/2,1}(x, y)| ≤ C̃(1 + ‖x − y‖)−1w(B(x, 1))−1/2w(B(y, 1))−1/2, (4.22)

|K {1/2,1}(x, y) − K {1/2,1}(x, y′)|
≤ C̃‖y − y′‖ε(1 + ‖x − y‖)−εw(B(x, 1))−1/2

(
w(B(y, 1))−1/2 + w(B(y′, 1))−1/2

)

(4.23)

for all x, y, y′ ∈ R. For the other t > 0, note that Kt (x) = t−NK (x/t) satisfies the
assumption (D) with the same constants Cβ as K . Hence, proceeding by scaling, for
all x, y, y′ ∈ R

N we obtain

|K {t/2,t}(x, y)| ≤ C̃

(
1 + ‖x − y‖

t

)−1
w(B(x, t))−1/2w(B(y, t))−1/2, (4.24)

|K {t/2,t}(x, y) − K {t/2,t}(x, y′)|
≤ C̃

‖y − y′‖ε

tε

(
1 + ‖x − y‖

t

)−ε

w(B(x, t))−1/2
(
w(B(y, t))−1/2 + w(B(y′, t))−1/2

)
.

(4.25)

We now turn to prove that K(x, y) is well defined (see (4.21)). Since supp K {t/2,t} ⊆
B(0, t), by Theorem 2.1 concerning the support of the Dunkl translated function, we
have

K {t/2,t}(x, y) = 0 for t < d(x, y). (4.26)

For x, y ∈ R
N such that d(x, y) > 0, let us set

K(x, y) :=
∑
�∈Z

K {2�−1,2�}(x, y) =
∑

2�≥d(x,y)

K {2�−1,2�}(x, y),

where the series converges absolutely. Indeed, thanks to (4.24) and then (2.6) we have
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|K(x, y)| ≤
∑
�∈Z

|K {2�−1,2�}(x, y)|

=
∑

2�≥‖x−y‖
|K {2�−1,2�}(x, y)| +

∑
‖x−y‖>2�≥d(x,y)

|K {2�−1,2�}(x, y)|

≤ C
∑

2�≥‖x−y‖
w(B(x, 2�))−1/2w(B(y, 2�))−1/2

+ C
∑

‖x−y‖>2�≥d(x,y)

w(B(x, 2�))−1/2w(B(y, 2�))−1/2 2�ε

‖x − y‖ε

≤ C ′ ∑
2�≥‖x−y‖

d(x, y)N

2�N
w(B(x, d(x, y)))−1

+ C ′ ∑
‖x−y‖>2�≥d(x,y)

d(x, y)N

2�N
w(B(x, d(x, y)))−1 2�ε

‖x − y‖ε

≤ C ′′w(B(x, d(x, y)))−1 d(x, y)ε

‖x − y‖ε
,

(4.27)

where we have used the fact that dw is G-invariant and doubling (see (2.5)), so
the quantities w(B(x, d(x, y))) and w(B(y, d(x, y))) are comparable. Since τx is a
contraction on L2(dw), we conclude that

K {t}(x, y) =
∞∑

�=0

K {2�t,2�+1t}(x, y) (4.28)

for any fixed x ∈ R
N with convergence in L2(dw(y)). Now, from (4.24) and (4.26)

we deduce that for t < d(x, y)/4 we have

K {t}(x, y) =
∑

2�>d(x,y)/4

K {2�−1,2�}(x, y) = K(x, y),

hence the limit in (4.21) exists and K(x, y) = K(x, y) for d(x, y) > 0.
We now prove thatK(x, y) is the kernel associated with the operator T. To this end

let f , g ∈ L2(dw) be such that g is compactly supported and supp g ∩ supp f = ∅.
Then there is η > 0 such that ‖x− y‖ > δ for y ∈ supp f and x ∈ supp g. Thus, from
the results stated in Sect. 4.2.1, we have

∫
RN

(T f )(x)g(x) dw(x) = lim
�→∞

∫∫
‖x−y‖>δ

K {2−�}
(x, y) f (y)g(x) dw(y) dw(x).

(4.29)
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The functions K {2−�}
(x, y) f (y)g(x) converge pointwise to K(x, y) f (y)g(x) and are

dominated by the integrable function

w(B(x, d(x, y))−1 d(x, y)ε

‖x − y‖ε
| f (y)||g(x)|χ(δ,∞)(‖x − y‖),

since g has compact support. Hence, (4.18) holds, by the Lebesgue dominated con-
vergence theorem.

The proof of (CZ2) is similar but it uses (4.25) instead of (4.24). Indeed, assume
‖y − y′‖ <

d(x,y)
2 . Then 1

2d(x, y) ≤ d(x, y′) and, by Theorem 2.1,

K {t/2,t}(x, y) = K {t/2,t}(x, y′) = 0 if t <
d(x, y)

2
.

Consequently, by (4.25),

|K (x, y) − K (x, y′)| ≤
∑
�∈Z

|K {2�−1,2�}(x, y) − K {2�−1,2�}(x, y′)|

≤
∑

2�≥ d(x,y)
2

|K {2�−1,2�}(x, y) − K {2�−1,2�}(x, y′)|

≤ C
‖y − y′‖ε

‖x − y‖ε

∑
2�≥ d(x,y)

2

w(B(x, 2�))−1/2(w(B(y, 2�))−1/2 + w(B(y′, 2�))−1/2)

≤ C ′ ‖y − y′‖ε

‖x − y‖ε

∑
2�≥ d(x,y)

2

d(x, y)N

2�N
w(B(x, d(x, y)))−1

≤ C ′′ ‖y − y′‖ε

‖x − y‖ε
w(B(x, d(x, y)))−1,

where we have used the fact that thank to the assumption ‖y − y′‖ <
d(x,y)

2 the
quantitiesw(B(x, d(x, y))),w(B(y, d(x, y))), andw(B(y′, d(x, y))) are comparable.
Finally, (CZ3) is a consequence of the fact K (x, y) = K (−y,−x). ��

4.3 Dunkl TransformMultiplier Operators

Our aim of this subsection is to prove that for bounded functions m the Dunkl trans-
form multiplier operators f �→ F−1(m(ξ)F f (ξ)) admit associated kernels K (x, y)
satisfying (depending on the regularity of m) (CZ1)–(CZ3) or (4.19)–(4.20).

4.3.1 Multipliers-Pointwise Type Estimates

For an L1(dw)-function f we set

F−1 f (x, y) =
∫
RN

f (ξ)E(iξ, x)E(−iξ, y) dw(ξ).
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Theorem 4.7 Assume n is a positive integer and 0 < ε ≤ 1. There is a constants C > 0
such that for f ∈ Cn(RN ) such that supp f ⊆ B(0, 4) and for all x, y, y′ ∈ R

N ,
‖y − y′‖ ≤ 1, we have

∣∣∣F−1 f (x, y)
∣∣∣ ≤ C‖ f ‖Cn(RN )

w(B(x, 1))1/2w(B(y, 1))1/2
(1 + ‖x − y‖)−1 (1 + d(x, y))−n+1 ,

(4.30)

∣∣∣F−1 f (x, y) − F−1 f (x, y′)
∣∣∣

≤ C‖ f ‖Cn(RN )‖y − y′‖ε

w(B(x, 1))1/2w(B(y, 1))1/2
(1 + ‖x − y‖)−1 (1 + d(x, y))−n+1 . (4.31)

For the proof we need the following lemma.

Lemma 4.8 Let n be a non-negative integer. Then there is a constant Cn > 0 such that
for f ∈ Cn(RN ), supp f ⊆ B(0, 4), and x, y ∈ R

N one has

∣∣∣F−1 f (x, y)
∣∣∣ ≤ Cn‖ f ‖Cn(RN )

w(B(x, 1))1/2w(B(y, 1))1/2
(1 + d(x, y))−n . (4.32)

Proof of Lemma 4.8 The proof goes by induction. If n = 0, then using the Cauchy-
Schwarz inequality, (3.1), and (2.6) we get

|F−1 f (x, y)| =
∣∣∣∣c−1

k

∫
B(0,4)

f (ξ)E(iξ, x)E(−iξ, y) dw(ξ)

∣∣∣∣
≤ c−1

k ‖ f ‖L∞
(∫

B(0,4)
|E(iξ, x)|2 dw(ξ)

)1/2 (∫
B(0,4)

|E(iξ,−y)|2 dw(ξ)

)1/2

≤ C‖ f ‖L∞w(B(x, 1))−1/2w(B(y, 1))−1/2.

(4.33)
Now assume that the inequality (4.32) holds for n. Let f ∈ Cn+1(RN ), supp f ⊆
B(0, 4). Then the functions f j = ∂ j f ∈ Cn(RN ) and f {α} ∈ Cn(RN ) (see (2.8)) are
supported in B(0, 4) and

‖ f j‖Cn (RN ) ≤ C‖ f ‖Cn+1(RN ) and ‖ f {α}‖Cn (RN ) ≤ C‖ f ‖Cn+1(RN ) for j ∈ {1, . . . , N }, α ∈ R
(4.34)

(see Lemma 3.2). The same calculation as in the proof of Proposition 3.3 gives

(x j − y j )F−1 f (x, y) = −F−1 f j (x, y) −
∑
α∈R

k(α)

2
〈α, e j 〉F−1 f {α}(x, σα(y)).

(4.35)
Recall that by (2.2) and (2.29) for all σ ∈ G wehavew(B(σ (y), 1)) = w(B(y, 1)) and
d(x, σ (y)) = d(x, y). Using (4.35), (4.34), and the induction hypothesis we deduce
that
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|F−1 f (x, y)| ≤ Cn+1(1 + ‖x − y‖)−1‖ f ‖Cn+1(RN )
w(B(x, 1))−1/2w(B(y, 1))−1/2(1 + d(x, y))−n

≤ Cn+1‖ f ‖Cn+1(RN )
w(B(x, 1))−1/2w(B(y, 1))−1/2(1 + d(x, y))−n−1.

(4.36)
��

Proof of Theorem 4.7 We start by proving (4.30) first. Let f j , f {α} be as in the proof
of Lemma 4.8. Then, by (4.35), (4.34), and Lemma 4.8 applied to f j , f {α} we get

|F−1 f (x, y)| ≤ C(1 + ‖x − y‖)−1

⎛
⎝ N∑

j=1

|F−1 f j (x, y)| +
∑
α∈R

|F−1 f {α}(x, σα(y))|
⎞
⎠

≤ Cn‖ f ‖Cn(RN )(1 + ‖x − y‖)−1w(B(x, 1))−1/2w(B(y, 1))−1/2(1 + d(x, y))−n+1,

so (4.30) is proved. Now let us prove (4.31). Fix 0 < ε ≤ 1. Consider x, y, y′ ∈ R
N ,

‖y − y′‖ ≤ d(x,y)
2 . Let f̃ (ξ) = f (ξ)e‖ξ‖2 . Then supp f̃ ∈ B(0, 4), ‖ f̃ ‖Cn(RN ) ≤

C ′
n‖ f ‖Cn(RN ), and

F−1 f (x, y) =
∫
RN

(F−1 f̃ )(x, z)h1(z, y) dw(z).

Applying (4.30) to f̃ and then (2.36), we obtain

(1 + ‖x − y‖)(1 + d(x, y))n−1|F−1 f (x, y) − F−1 f (x, y′)|
≤ (1 + ‖x − y‖)(1 + d(x, y))n−1

∫
RN

|F−1 f̃ (x, z)||h1(z, y) − h1(z, y
′)| dw(z)

≤
∫
RN

(1 + ‖x − z‖)(1 + d(x, z))n−1(1 + ‖z − y‖)(1 + d(z, y))n−1

|F−1 f̃ (x, z)||h1(z, y) − h1(z, y
′)| dw(z)

≤ C‖ f ‖Cn(RN )

∫
RN

w(B(x, 1))−1/2w(B(z, 1))−1/2(1 + ‖z − y‖)(1 + d(z, y))n−1

‖y − y′‖(h2(z, y) + h2(z, y
′)) dw(z). (4.37)

Since ‖y − y′‖ ≤ 1, for all z ∈ R
N we have

(1 + ‖z − y‖)(1 + d(z, y))n−1 ≤ C(1 + ‖z − y′‖)(1 + d(z, y′))n−1. (4.38)

It follows from the estimate on the heat kernel (see either (1.7) or Theorem 2.2) that

∫
RN

w(B(z, 1))−1/2(1 + ‖z − y‖)(1 + d(z, y))n−1h2(z, y)dw(z) ≤ Cw(B(y, 1))−1/2.

So we conclude the desired inequality (4.31) from (4.37) and (4.38), because
w(B(y, 1)) ∼ w(B(y′, 1)). ��



Journal of Fourier Analysis and Applications (2023) 29 :52 Page 29 of 35 52

Corollary 4.9 Suppose that n ∈ N is the smallest integer such that n > N and m ∈
Cn(RN\{0}) satisfies the following Mihlin–type condition: for all β ∈ N

N
0 , |β| ≤ n

there is a constant Cβ > 0 such that

‖ξ‖|β||∂βm(ξ)| ≤ Cβ for all ξ ∈ R
N \ {0}. (4.39)

Then the integral kernel K (x, y) of the multiplier operator Tm f = F−1((F f )m)

satisfies the conditions (CZ1), (CZ2), (CZ3).

Proof Let φ be a radialC∞(RN ) function, suppφ ⊆ B(0, 4)\B(0, 1/4), which forms
a resolution of the identity, that is,

∑
�∈Z

φ(2−�ξ) = 1, ξ ∈ R
N \ {0}. (4.40)

We write

m(ξ) =
∑
�∈Z

m(ξ)φ(2−�ξ) =:
∑
�∈Z

m�(2
−�ξ),

K�(x, y) = τ−yF−1
(
m(·)φ(2−�·)

)
(x), K̃�(x, y) = (F−1m�)(x, y).

Then K (x, y) = ∑
�∈Z K�(x, y) and, by homogeneity,

∑
�∈Z

K�(x, y) =
∑
�∈Z

2�N K̃�(2
�x, 2�y).

Let us note that the functions m� are supported by B(0, 4). Moreover, it follows
from (4.39) that sup�∈Z ‖m�‖Cn(RN ) ≤ C . Therefore, by Theorem 4.7, (2.3), and (2.6),

|K�(x, y)| = 2�N|K̃�(2
�x, 2�y)| ≤ C2�N (1 + 2�‖x − y‖)−1(1 + 2�d(x, y))−n+1

w(B(2�x, 1))1/2w(B(2�y, 1))1/2

≤ C
(1 + 2�‖x − y‖)−1(1 + 2�d(x, y))−n+1

w(B(x, 2−�))1/2w(B(y, 2−�))1/2

≤ C
(
2N�d(x, y)N + 2N�d(x, y)N

) (1 + 2�‖x − y‖)−1(1 + 2�d(x, y))−n+1

w(B(x, d(x, y)))
.

(4.41)
Similarly, using (4.31) if ‖2�y − 2�y′‖ ≤ 1, and (4.30) if ‖2�y − 2�y′‖ > 1, we get
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|K�(x, y) − K�(x, y′)| = 2�N|K̃�(2
�x, 2�y) − K̃�(2

�x, 2�y′)|

≤ C
‖y − y′‖ε

2−ε�

(
2N�d(x, y)N + 2N�d(x, y)N

) (1 + 2�‖x − y‖)−1(1 + 2�d(x, y))−n+1

w(B(x, d(x, y)))

+ C
‖y − y′‖ε

2−ε�

(
2N�d(x, y′)N + 2N�d(x, y′)N

) (1 + 2�‖x − y′‖)−1(1 + 2�d(x, y′))−n+1

w(B(x, d(x, y′)))
.

(4.42)
Finally, (CZ1) follows from (4.41). Indeed, fix 0 < ε ≤ 1, ε < N . Then

|K (x, y)| ≤
∑

�∈Z, 2�d(x,y)≤1

|K�(x, y)| +
∑

�∈Z, 2�d(x,y)>1

|K�(x, y)|

≤ C

w(B(x, d(x, y)))⎛
⎝ ∑

�∈Z, 2�d(x,y)≤1

2�Nd(x, y)N

2ε�‖x − y‖ε
+

∑
�∈Z, 2�d(x,y)>1

2�Nd(x, y)N

2�‖x − y‖2(n−1)�d(x, y)n−1

⎞
⎠

≤ C
d(x, y)ε

‖x − y‖ε

1

w(B(x, d(x, y)))
.

(4.43)
The proof of (CZ2) with ε ≤ n−N, 0 < ε ≤ 1, follows the pattern presented in (4.43)
but it uses (4.42) instead of (4.41).

Finally, (CZ3) is a consequence of the fact that K (x, y) = K (−y,−x). ��

4.3.2 Multipliers-Integral Type Estimates

Let m be a bounded function on R
N which for a certain s > N satisfies

M := sup
t>0

‖ψ(·)m(t ·)‖Ws
2

< ∞, (4.44)

whereψ ∈ C∞(RN ) is a fixed radial function suppψ ⊆ {ξ ∈ R
N : 1/4 ≤ ‖ξ‖ ≤ 4},

ψ(ξ) = 1 for all ξ ∈ R
N such that 1/2 ≤ ‖ξ‖ ≤ 2, and

‖ f ‖2Ws
2

:=
∫
RN

(1 + ‖x‖)2s || f̂ (x)|2 dx

denotes the classical Sobolev norm of the classical Sobolev spaceWs
2 (RN , dx). It was

proved in [8, Theorem 1.2] that the Dunkl multiplier operator

Tm f = F−1{(F f )m},

originally defined on L2(dw)∩L p(dw), has a unique extension to a bounded operator
on L p(dw) for 1 < p < ∞. Moreover, Tm is of weak-type (1,1) and bounded on the
relevant Hardy space. In order to prove the results the authors considered the integral
kernels (see [8, (5.3)]):
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K�(x, y) = τ−yF−1
(
m(·)φ(2−�·)

)
(x) =

∫
RN

φ(2−�ξ)m(ξ)E(iξ, x)E(−iξ, y) dw(ξ),

(4.45)
where φ is a radial C∞(RN ) function, suppφ ⊆ B(0, 4) \ B(0, 1/4), which forms a
resolution of the identity as in (4.40) and showed the following estimates with respect
to d(x, y) (see [8, formulas (5.8), (5.10), and (5.11)]): there are δ > 0 and C > 0 such
that for all y, y′ ∈ R

N we have

∫
RN

|K�(x, y)| dw(x) ≤ CM, (4.46)
∫
RN

|K�(x, y)|d(x, y)δ dw(x) ≤ C2−δ�M, (4.47)
∫
RN

|K�(x, y) − K�(x, y′)| dw(x) ≤ CM2�‖y − y′‖. (4.48)

The estimates imply that for every ball B = B(x0, r) one has

∫
RN \O(B∗)

|K�(x, y) − K�(x, y′)| dw(x) ≤ CM min
(
(2�r)−δ, 2�r

)
(4.49)

for all y, y′ ∈ B. Here B∗ = B(x0, 2r) and O(B∗) = {σ(x) : σ ∈ G, x ∈ B∗}.
The bounds (4.46)–(4.48) play crucial roles in proving the Hörmander’s multiplier
theorem ([8, Theorem 1.2]).

In this subsection we will prove the following proposition.

Proposition 4.10 Suppose that m is as in [8, Theorem 1.2], that is, (4.44) holds for
a certain s > N. Let K� be defined by (4.45). Then the integral kernel K (x, y) :=∑

�∈Z K�(x, y) associated with the multiplier Tm satisfies the Calderón–Zygmund
integral conditions (4.19) and (4.20).

In other words, Tm is a Calderón-Zygmund operator on the space of homogeneous
type (RN , ‖x − y‖, dw).

Proof Fix s2 > N+1 (sufficiently large) and assume that η ∈ Ws2
2 (RN , dx), supp η ⊆

B(0, 4). Then

η j (·) = ∂ jη(·), η{α}(·) = η(·) − η(σα(·))
〈·, α〉 ∈ Ws2−1

2 (RN , dx) (4.50)

(cf. Lemma 3.2). Applying the technique from the proof of Proposition 3.3, for all
j ∈ {1, 2, . . . , N } we have

i(x j − y j )(F−1η)(x, y) = −(F−1η j )(x, y) −
∑
α∈R

k(α)

2
〈α, e j 〉(F−1η{α})(x, y).

(4.51)
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Since s2 − 1 > N, it follows from (5.10) of [8] (see (4.46)) that for all y ∈ R
N we

have

∫
RN

(|F−1η j (x, y)| + |F−1η{α}(x, y)|) dw(x) ≤ C

(
‖η j‖Ws2−1

2
+ ‖η{α}‖

W
s2−1
2

)
≤ C ′‖η‖

W
s2
2

.

(4.52)
Consequently, from (4.51) and (4.52) we conclude

∫
RN

‖x − y‖|(F−1η)(x, y)| dw(x) ≤ C‖η‖Ws2
2

. (4.53)

Further, if s1 > N and η ∈ Ws1
2 (RN , dx), supp η ⊆ B(0, 4), then (5.10) of [8] (see

also (4.46)) implies

∫
RN

|(F−1η)(x, y)| dw(x) ≤ C‖η‖Ws1
2

. (4.54)

Now, (4.53) and (4.54) together with the interpolation argument of Mauceri andMeda
[18] (see also [3, Proposition 5.3]) give that if s > N, then there are constants C > 0
and 0 < θ < 1 such that for all η ∈ Ws

2 (RN , dx) supported in B(0, 4), and for all
y ∈ R

N we have

∫
RN

‖x − y‖θ |(F−1η)(x, y)| dw(x) ≤ C‖η‖Ws
2
. (4.55)

Hence, by scaling, for all � ∈ Z and y ∈ R
N we have

∫
RN

‖x − y‖θ |K�(x, y)| dw(x) ≤ CM2−θ�. (4.56)

Consequently,

∑
�∈Z : 2�≥r−1

∫
r≤‖x−y‖<2r

|K�(x, y)| dw(x) ≤ C
∑

�∈Z : 2�≥r−1

2−θ�r−θ ≤ A. (4.57)

Further, it follows from Lemma 3.1 (see Proposition 3.7 of [8]) that

|K�(x, y)| ≤ Cw(B(x, 2−�))−1/2w(B(y, 2−�))−1/2. (4.58)

By (2.5),w(B(x, 2−�)) ∼ w(B(y, 2−�)), if ‖x−y‖ < 2r ≤ 2�+1. So applying (4.58)
and (2.6), we get

∑
�∈Z : 2�<r−1

∫
r≤‖x−y‖<2r

|K�(x, y)| dw(x) ≤ C
∑

�∈Z : 2�<r−1

w(B(y, 2r))
w(B(y, 2−�))

≤ C
∑

�∈Z : 2�<r−1

( 2r

2−�

)N ≤ A.
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Thus (4.19) is proved.
In order to prove (4.20) we observe that (4.48) together with (4.56) give

∫
‖x−y0‖>2r

|K�(x, y) − K�(x, y′)| ≤ C min
(
(2�r)−θ , 2�r

)
(4.59)

whenever y, y′ ∈ B(y0, r). Finally (4.20) follows from (4.59). ��

4.4 Non-positivity of Dunkl Translation Operators

In this subsection, we will use Proposition 3.3 to prove that for any root system R and
a multiplicity function k > 0 there is x ∈ R

N such that τx is not a positive operator
(see Theorem 4.11 for details). If G = Z2, the result follows from the explicit formula
for τx (see [19]). For G being symmetric group, the result was proved by Thangavelu
and Xu (see [26, Proposition 3.10]).

Theorem 4.11 For any N ∈ N there is a sequence of N non-negative functions
{ϕ j }Nj=1, ϕ j ∈ C∞(RN ), such that for any system of roots R ⊂ R

N and any pos-
itive multiplicity function k, at least one ϕ j satisfies the following property: there are
x, y ∈ R

N such that ϕ j (x, y) < 0.

Proof Let ϕ ∈ C∞(RN ) be a radial function (ϕ(x) = ϕ̃(‖x‖)) supported by B(0, 1/2)
such that 0 ≤ ϕ(x) ≤ 1 for all x ∈ R

N and ϕ ≡ 1 on B(0, 1/4). For 1 ≤ j ≤ N we
set

ϕ j (x) := (1 + x j )ϕ(x). (4.60)

Sinceϕ is supported by B(0, 1/2), the functionsϕ j are non-negative. Then, using (3.5),
for all x, y ∈ R

N we have

ϕ j (x, y) = (1 + (x j − y j ))ϕ(x, y).

Take any α ∈ R and let 1 ≤ j ≤ N be such that 〈α, e j 〉 	= 0. Then, by (2.1), for any
x ∈ R

N we get

ϕ j (x, σα(x)) = (1 + x j − (σα(x)) j )ϕ(x, σα(x)) = (1 + 〈α, e j 〉〈x, α〉)ϕ(x, σα(x)).
(4.61)

One the one hand, let us note that for all x ∈ R
N we have

ϕ(x, σα(x)) > 0. (4.62)

Indeed, thanks to (2.22), the fact that ϕ ≡ 1 on B(0, 1/4), and Theorem 2.4 we get
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ϕ(x, σα(x)) =
∫
RN

ϕ̃(A(x, σα(x), η)) dμx(η) ≥
∫
A(x,σα(x),η)≤ 1

4

dμx(η)

=
∫

‖σα(x)‖2−〈σα(x),η〉≤ 1
32

dμx(η) = μx (U (σα(x), 1/32))

≥ C−1 (1/32)N/2�(x, σα(x), 1/32)
w(B(x,

√
1/32))

> 0.

On the other hand, for any α ∈ R
N such that 〈α, e j 〉 	= 0 there is x ∈ R

N such that

(1 + 〈α, e j 〉〈x, α〉) < 0. (4.63)

Consequently, for such a x, from (4.61), (4.62), and (4.63), we obtain our claim. ��
Remark 4.12 The result that the generalized translations do not preserve positivity of
some functions can be also obtained using the generalized heat kernel andTheorem2.2.
To this end let us observe that here is a constant C1 > 0 such that for all x ∈ R

N we
have C1h2(x) ≥ (1 + ‖x‖)h1(x), (4.64)

where ht (x) is defined in (2.27). We now set

ϕ j (x) := C1h2(x) + x j h1(x). (4.65)

Then, thanks to (4.64), the function ϕ j is non-negative. Further, by (3.5) together with
Theorem 2.2 (recall that d(x, σα(x)) = 0), we get

ϕ j (x, σα(x)) = C1h2(x, σα(x)) + 〈α, e j 〉〈x, α〉h1(x, σα(x))

≤ C2h1(x, σα(x)) + 〈α, e j 〉〈x, α〉h1(x, σα(x)).

Finally, by (2.26), we have h1(x, σα(x)) > 0 and (if 〈α, e j 〉 	= 0) one can take x ∈ R
N

such that C2 + 〈α, e j 〉〈x, α〉 < 0. Consequently, ϕ j (x, σα(x)) < 0.
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