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Abstract
Let (X , d, μ) be a space of homogeneous type. Let L be a nonnegative self-adjoint
operator on L2(X) satisfying certain conditions on the heat kernel estimates which
are motivated from the heat kernel of the Schrödinger operator on R

n . The main aim
of this paper is to prove a new atomic decomposition for the Besov space Ḃ0,L

1,1 (X)

associated with the operator L . As a consequence, we prove the boundedness of the
Riesz transform associated with L on the Besov space Ḃ0,L

1,1 (X).

Keywords Heat semigroup · Besov space B0
1,1 · Atomic decomposition · Riesz

transform

Mathematics Subject Classification 42B35 · 42B15

1 Introduction

Let (X , d, μ) be ametric spaces endowedwith a nonnegative Borelmeasureμ. Denote
B(x, r) := {y ∈ X : d(x, y) < r}. In this paper we assume that the measure satisfies
the doubling property condition, i.e., there exists a constant C1 > 0 such that

μ(B(x, 2r)) ≤ C1μ(B(x, r)) (1)
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for all x ∈ X and r > 0. This condition implies that there exist constants C2, D ≥ 0
such that

V (x, λr) ≤ C2λ
DV (x, r) (2)

for all x ∈ X , r > 0 and λ ≥ 1. See [11].
We also assume further that (X , d, μ) satisfies the noncollapsing condition, i.e.,

there exists c0 > 0 such that

V (x, 1) ≥ c0 (3)

for all x ∈ X .
From now on, for any measurable subset E ⊂ X , we denote V (E) := μ(E). For

all x ∈ X and r > 0, we also denote V (x, r) = μ(B(x, r)).
Note that the classical Hardy space H1(X) is a suitable substitution for the space

L1(X)whenweworkwithCalderón–Zygmundoperators but the classicalHardy space
might not be suitable for the study of certain operators that lie beyond the Calderon
Zygmund class. This observation highlights the need for the development of new
function spaces that adapt well to these operators. In recent times, there has been a
remarkable progress in the field of function spaces associated with operators, reflect-
ing the growing interest in understanding the behaviour of these operators and their
associated function spaces. See for example [1, 5, 15, 21, 23, 29] and the references
therein.

Motivated by this ongoing research, we aim to study new atomic decomposition
of Besov spaces associated to Schrödinger type operators. Throughout this paper, we
assume that H is a non-negative self-adjoint operator on L2(X) which generates the
analytic semigroup {e−t H }t>0. Denote by p̃t (x, y) and q̃t (x, y) the kernels of e−t H

and t He−t H , respectively, we assume that the kernels p̃t (x, y) satisfy the following
conditions:

(H1) There exist positive constants C and c such that

| p̃t (x, y)| + |̃qt (x, y)| ≤ C

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

for all x, y ∈ X and t > 0;
(H2) There exist positive constants δ1, c and C such that

| p̃t (x, y) − p̃t (x, y)| + |̃qt (x, y) − q̃t (x, y)|
≤ C

V (x,
√
t)

[d(x, x)

d(x, y)

]δ1
exp

(

− c
d(x, y)2

t

)

whenever d(x, x) ≤ √
t and t > 0;

(H3)
∫

X
p̃t (x, y)dμ(x) = 1 for y ∈ X .
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In fact, the assumptions (H1) and (H2) can be assumed only for the kernel p̃t (x, y)
since the estimates in (H1) and (H2) for p̃t (x, y) imply similar estimates for q̃t (x, y).
However, for the sake of simplicity, we make the assumptions for both p̃t (x, y) and
q̃t (x, y).

Standard examples of operators which satisfy conditions (H1), (H2) and (H3)
include the Laplacians � on the Euclidean spacesRn , the Laplace-Beltrami operators
on non-compact Riemannian manifolds with doubling property, the Bessel operators
on (0,∞)n , the sub-Laplacians on stratified Lie groups and certain degenerate elliptic
operators on doubling spaces and domains.

Our motivation is to study the Schrödinger operator L = H + V which is a non-
negative self-adjoint operator on L2(X). Under suitable conditions, the potential V
induces a critical function ρ which appears on the upper bounds and regularity esti-
mates of the heat kernels of L and its time derivative. We refer the reader to Sect. 2.1
for a general definition of critical functions and further details.

In this paper, without the assumption L = H + V , we assume that L is a non-
negative self-adjoint operator on L2(X). Denote by pt (x, y) and qt (x, y) the kernels
of e−t L and t Le−t L , respectively. Suppose that ρ is a critical function defined on X .
See Sect. 2.1 for the precise definition of critical functions. We assume that the kernels
pt (x, y) and qt (x, y) satisfy the following conditions:

(L1) For all N > 0, there exist positive constants c and C so that

|pt (x, y)| ≤ C

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)(

1 +
√
t

ρ(x)
+

√
t

ρ(y)

)−N

for all x, y ∈ X and t > 0;
(L2) There is a positive constant δ2 so that for all N > 0, there exist positive constants

c and C which satisfy

|qt (x, y) − qt (x, y)| ≤ C

V (x,
√
t)

[d(x, x)

d(x, y)

]δ2

exp
(

− c
d(x, y)2

t

)(

1 +
√
t

ρ(x)
+

√
t

ρ(y)

)−N

whenever d(x, x) ≤ √
t and t > 0;

(L3) There is a positive constant δ3 such that

|pt (x, y) − p̃t (x, y)| + |qt (x, y) − q̃t (x, y)|
≤ C

V (x,
√
t)

(

√
t√

t + ρ(x)

)δ3
exp

(

− c
d(x, y)2

t

)

for all x, y ∈ X and t > 0.

Remark 1.1 (a) If we set δ = min{δ1, δ2, δ3}, then (H2), (L2) and (L3) are satisfied
with the exponent δ. For this reason, we might assume that δ1 = δ2 = δ3 = δ.
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(b) Note that the condition (L1) implies that for all N > 0, there exist positive constants
c and C so that

|qt (x, y)| ≤ C

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)(

1 +
√
t

ρ(x)
+

√
t

ρ(y)

)−N
(4)

for all x, y ∈ X and t > 0.
Since the proof of (4) is standard, we leave it to the interested reader.

(c) As mentioned above, an example of the pairs of operators (H , L) which satisfy
our assumptions are the operators H mentioned above and L = H+V for suitable
potentials V . See Sect. 2.1, also [9, Section 6] and [34]. We remark that our work
on the operator L in this paper only relies on the assumptions (L1), (L2), (L3)
and does not use the representation L = H + V .

Our aim is to study the homogeneous Besov space Ḃ0,L
1,1 (X) associated with the

operator L .

Definition 1.2 The homogeneous Besov space Ḃ0,L
1,1 (X) is defined as the set of f ∈

L1(X) such that

‖ f ‖Ḃ0,L
1,1 (X)

:=
∫ ∞

0
‖t Le−t L f ‖1 dt

t
< ∞.

When L = −� the Laplacian on R
n , the Besov space Ḃ0,L

1,1 (Rn) coincides with

the classical Besov space Ḃ0
1,1(R

n). It is well known that the Besov space Ḃ0
1,1(R

n) is
contained in theHardy space H1(Rn) and is used in proving the dispersive estimates of
thewave equations (see for example [3, 8, 13]) and the regularity of theGreen functions
on domains (see for example [20]). See also [17, 18, 24–26] and the references therein
for further discussion on the Besov space type Ḃ0

1,1 and the Besov spaces on spaces
of homogeneous type. It is worth noticing that in the definition above we define the
Besov space a subset of L1(X). This is more advantageous than the approach using
new distributions as in [5, 26].

We are interested in atomic decompositions of the Besov space Ḃ0,L
1,1 (X). Note

that atomic decompositions of Besov spaces associated to non-negative self-adjoint
operators satisfying Gaussian upper bounds were obtained in [5] for homogeneous
Besov spaces and in [27] for inhomogeneous Besov spaces. Adapting ideas in [5, 27],
we can define atoms for the Besov spaces Ḃ0,L

1,1 (X) as follows.

Definition 1.3 Let M ∈ N+. A function a is said to be an (L, M) atom if there exists
a ball B so that

(i) a = LMb with b ∈ D(LM ), where D(LM ) is the domain of LM ;
(ii) supp Lkb ⊂ B, k = 0, . . . , 2M ;
(iii) |Lkb(x)| ≤ r2(M−k)

B V (B)−1, k = 0, . . . , 2M, where rB denotes the radius of
ball B..
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Note that the atoms defined in [5, 27] are supported in balls associated to dyadic
cubes. See Lemma 2.2 for the definition of dyadic cubes. In this paper, we do not need
the dyadic cubes in Definition 1.3 and we are able to prove the following result.

Theorem 1.4 Let M ∈ N+. Assume f ∈ Ḃ0,L
1,1 (X). Then there exist a sequence of

(L, M) atoms {a j } and a sequence of coefficients {λ j } ∈ �1 so that

f =
∑

j

λ j a j in L1(X),

and

∑

j

|λ j | � ‖ f ‖Ḃ0,L
1,1 (X)

.

Conversely, if

f =
∑

j

λ j a j in L1(X),

where {a j } is a sequence of (L, M)-atoms and {λ j } ∈ �1, then

‖ f ‖Ḃ0,L
1,1 (X)

�
∑

j

|λ j |.

The proof of Theorem 1.4 will be presented later. In comparison with the atomic
decomposition in Theorems 4.2 and 4.3 in [5], the main difference is that in Theo-
rem 1.4, the convergence used in the atomic decomposition is in L1(X) instead of in
the space of new distributions associated with the operator L; moreover, Theorem 1.4
uses the atoms associated with balls rather than the dyadic cubes as in Theorems 4.2
and 4.3 in [5].

We now consider new atoms associated with the critical function ρ which will be
defined in Sect. 2.1. Note that the idea of the atomic decomposition associated to the
critical functions was used in the setting of Hardy spaces. In [16], the atomic decompo-
sition associated to the critical functionswas studied for theHardy spaces associated to
Schrödinger operators with potential satisfying certain reverseHölder inequality. Then
the results were extended to encompass a broader scope, incorporating Schrödinger
operators in various contexts such as stratified Lie groups and doubling manifolds. See
for example [9, 34]. However, this is the first time the atomic decomposition associated
to the critical functions was established for the Besov spaces.

Definition 1.5 Let ε > 0 and ρ be a critical function. A function a is said to be an
(ε, ρ(·))-atom if there exists a ball B such that

(i) supp a ⊂ B;
(ii) |a(x)| ≤ V (B)−1;
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(iii) |a(x) − a(y)| ≤ V (B)−1
(

d(x, y)

rB

)ε

, x, y ∈ X ;

(iv)
∫

a(x)dμ(x) = 0 if rB < ρ(xB).

It is interesting that the atoms in Definition 1.5 depend on the critical function ρ only.
This type of atoms can be viewed as an extended version of the atoms used for the
inhomogeneous Besov type. In fact, in the particular case ρ = constant, the atoms in
Definition 1.5 turn out to be the atoms which characterize the inhomogeneous Besov
spaces. See for example [26]. Our main result is the following theorem.

Theorem 1.6 If f ∈ Ḃ0,L
1,1 (X), then there exist a sequence of (ε, ρ(·))-atoms {a j } for

some ε > 0 and a sequence of coefficients {λ j } ∈ �1 so that

f =
∑

j

λ j a j in L1(X),

and

∑

j

|λ j | � ‖ f ‖Ḃ0,L
1,1 (X)

.

Conversely, if

f =
∑

j

λ j a j in L1(X),

where {a j } is a sequence of (ε, ρ(·))-atoms with ε > 0 and {λ j } ∈ �1, then

‖ f ‖Ḃ0,L
1,1 (X)

�
∑

j

|λ j |.

The organization of the paper is as follows. In Sect. 2, we recall the definitions of
critical functions and dyadic cubes, and prove some kernel estimates of the spectral
multipliers of H . In Sect. 3, we will set up the theory of the inhomogeneous Besov
space B0

1,1(X) including atomic decomposition results. The proofs of the main results
will be given in Sect. 4. Finally, Sect. 5 is devoted in the proof of the boundedness of
the Riesz transform associated with L in Besov spaces.

Throughout the paper, we always use C and c to denote positive constants that are
independent of the main parameters involved but whose values may differ from line
to line. We write A � B if there is a universal constant C so that A ≤ CB and A ≈ B
if A � B and B � A. Given a λ > 0 and a ball B := B(x, r), we write λB for the
λ-dilated ball, which is the ball with the same center as B and with radius λr . For each
ball B ⊂ X , we set

S0(B) = B and S j (B) = 2 j B\2 j−1B for j ∈ N.
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2 Preliminaries

2.1 Critical Functions

A function ρ : X → (0,∞) is called a critical function if there exist positive constants
Cρ and k0 so that

ρ(y) ≤ Cρρ(x)

(

1 + d(x, y)

ρ(x)

)
k0

k0+1

(5)

for all x, y ∈ X .
Note that the concept of critical functions was introduced in the setting of

Schrödinger operators on R
D in [19] (see also [30]) and then was extended to the

spaces of homogeneous type in [34].
A simple example of a critical function is ρ ≡ 1. Moreover, one of the most

important classes of the critical functions is the one involving the weights satisfying
the reverse Hölder inequality. Recall that a non-negative locally integrable function w

is said to be in the reverse Hölder class RHq(X) with q > 1 if there exists a constant
C > 0 so that

( 1

V (B)

∫

B
(w(x))qdμ(x)

)1/q ≤ C

V (B)

∫

B
w(x)dμ(x)

for all balls B ⊂ X . Note that if w ∈ RHq(X) then w is a Muckenhoupt weight. See
[32].

Now suppose V ∈ RHq(X) for some q > max{1, D/2} and, following [30, 34],
set

ρ(x) = sup
{

r > 0 : r2

μ(B(x, r))

∫

B(x,r)
V (y)dμ(y) ≤ 1

}

. (6)

Then it was proved in [30, 34] that ρ is a critical function provided q > max{1, D/2}.
The following result will be useful in the sequel which is taken from Lemma 2.3 and
Lemma 2.4 of [34].

Lemma 2.1 Let ρ be a critical function on X. Then there exist a sequence of points
{xα}α∈I ⊂ X and a family of functions {ψα}α∈I satisfying the following:

(i)
⋃

α∈I
B(xα, ρ(xα)) = X.

(ii) For every λ ≥ 1 there exist constants C and N1 such that
∑

α∈I
1B(xα,λρ(xα)) ≤

CλN1 .
(iii) suppψα ⊂ Bα := B(xα, ε0ρ(xα)) and 0 ≤ ψα(x) ≤ 1 for all x ∈ X, where ε0

is a fixed constant such that Cρε0(1 + ε0)
k0

k0+1 < 1.
(iv) |ψα(x) − ψα(y)| ≤ Cd(x, y)/ρ(xα);
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(v)
∑

α∈I
ψα(x) = 1 for all x ∈ X.

2.2 Dyadic Cubes

We now recall an important covering lemma in [10].

Lemma 2.2 There exists a collection of open sets {Qk
τ ⊂ X : k ∈ Z, τ ∈ Ik},

where Ik denotes certain (possibly finite) index set depending on k, and constants
η ∈ (0, 1), a0 ∈ (0, 1] and κ0 ∈ (0,∞) such that

(i) μ(X\ ∪τ Qk
τ ) = 0 for all k ∈ Z;

(ii) if i ≥ k, then either Qi
τ ⊂ Qk

β or Qi
τ ∩ Qk

β = ∅;
(iii) for every (k, τ ) and each i < k, there exists a unique τ ′ such Qk

τ ⊂ Qi
τ ′ ;

(iv) the diameter diam (Qk
τ ) ≤ κ0η

k;
(v) each Qk

τ contains certain ball B(xQk
τ
, a0ηk).

Remark 2.3 Since the constants η and a0 are not essential in the paper, without loss
of generality, we may assume that η = a0 = 1/2. We then fix a collection of open
sets in Lemma 2.2 and denote this collection by D. We call open sets in D the dyadic
cubes in X and xQk

τ
the center of the cube Qk

τ ∈ D. We also denote

Dν := {Qν+1
τ ∈ D : τ ∈ Iν+1}

for each ν ∈ Z. Then for Q ∈ Dν , we have B(xQ, c02−ν) ⊂ Q ⊂ B(xQ, κ02−ν) =:
BQ , where c0 is a constant independent of Q. For the sake of simplicity we might
assume that κ0 = 1.

2.3 Kernel Estimates

Denote by EH (λ) a spectral decomposition of H . Then by spectral theory, for any
bounded Borel funtion F : [0,∞) → C we can define

F(H) =
∫ ∞

0
F(λ)dEH (λ)

as a bounded operator on L2(X). It is well-known that the kernel cos(t
√
H)(·, ·) of

cos(t
√
H) satisfies the finite propagation speed

supp cos(t
√
H) ⊂ {(x, y) ∈ X × X : d(x, y) ≤ c̃0t} (7)

for some c̃0 > 0. See for example [31].
In what follows, without loss of generality we may assume that c̃0 = 1.
We have the following useful lemma.
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Lemma 2.4 ([23]) Let φ ∈ C∞
0 (R) be an even function with suppφ ⊂ (−1, 1) and

∫

φ = 2π . Denote by � the Fourier transform of φ, i.e.,

�(ξ) := Fφ(ξ) := 1

2π

∫

R

e−i xξ φ(x)dx . (8)

Then for every k ∈ N, the operator (t2H)k�(t
√
H) is an integral operator with

kernel denoted by (t2H)k�(t
√
H)(x, y) satisfying the following

supp (t2H)k�(t
√
H)(·, ·) ⊂ {(x, y) ∈ X × X : d(x, y) ≤ t}, (9)

and

|(t2H)k�(t
√
H)(x, y)| ≤ C

V (x, t)
(10)

for all t > 0 and x, y ∈ X.

Lemma 2.5 ([7]) Let λ > 0. Then we have:

(a) For any N > 0 and s = N + 2D + 1, there exists C = C(N ) so that

|F(λ
√
H)(x, y)| ≤ C

V (x, λ)

(

1 + d(x, y)

λ

)−N‖F‖W 2
s

(11)

for all x, y ∈ X, and all functions F supported in [1/2, 2].
(b) For any N > 0 and s = 2(N + 2D + 1) there exists C = C(N ) so that

|F(λ
√
H)(x, y)| ≤ C

V (x, λ)

(

1 + d(x, y)

λ

)−N‖F‖W∞
s

(12)

for all x, y ∈ X, and for all functions F supported in [0, 2] with F (2ν+1)(0) = 0
for all ν ∈ N.
Here, ‖F‖Wq

s
= ‖(I − d2/dx2)F‖q for s > 0 and q ∈ [1,∞].

Lemma 2.6 Let λ > 0. Then we have:

(a) For any N > 0 and s = N + 3D + 2, there exists C = C(N ) so that

|F(λ
√
H)(x, y) − F(λ

√
H)(x, y′)|

≤ C
(d(y, y′)

λ

)δ 1

V (x, λ)

(

1 + d(x, y)

λ

)−N‖F‖W 2
s

(13)

for all x, y, y′ ∈ X with d(y, y′) < λ, and all functions supported in [1/2, 2].
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(b) For any N > 0 and s = 2(N + 3D + 2) there exists C = C(N ) so that

|F(λ
√
H)(x, y) − F(λ

√
H)(x, y′)|

≤ C
(d(y, y′)

λ

)δ 1

V (x, λ)

(

1 + d(x, y)

λ

)−N‖F‖W∞
s

(14)

for all x, y, y′ ∈ X with d(y, y′) < λ, and for all functions F supported in [0, 2]
with F (2ν+1)(0) = 0 for all ν ∈ N.

Proof (a) We write F(λ) = G(λ)e−λ2 , where G(λ) = F(λ)eλ2 . Then we have

F(λ
√
H)(x, y) =

∫

X
G(λ

√
H)(x, z) p̃λ2(z, y)dμ(z).

This, along with Lemma 2.5, (H2) and the fact ‖G‖W 2
s

� ‖F‖W 2
s
for every s > 0,

yields that, for x, y, y′ ∈ X with d(y, y′) < λ, N > 0 and s = Ñ + D + 1 with
Ñ = N + D + 1,

|F(λ
√
H)(x, y) − F(λ

√
H)(x, y′)|

≤
∫

X
|G(λ

√
H)(x, z)|| p̃λ2(z, y) − p̃λ2(z, y

′)|dμ(z)

� ‖G‖W 2
s

[d(y, y′)
λ

]δ
∫

X

1

V (x, λ)

(

1

+ d(x, z)

λ

)−Ñ 1

V (z, λ)
exp

(

− c
d(y, z)2

λ2

)

dμ(z)

� ‖F‖W 2
s

[d(y, y′)
λ

]δ
∫

X

1

V (x, λ)

(

1

+ d(x, z)

λ

)−Ñ 1

V (z, λ)
exp

(

− c
d(y, z)2

λ2

)

dμ(z).

On the other hand,

(

1 + d(x, z)

λ

)−Ñ
exp

(

− c
d(y, z)2

λ2

)

�
(

1 + d(x, z)

λ

)−Ñ(

1

+ d(y, z)

λ

)−Ñ
exp

(

− c
d(y, z)2

2λ2

)

�
(

1 + d(x, y)

λ

)−Ñ
exp

(

− c
d(y, z)2

2λ2

)

.
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Therefore,

∫

X

1

V (x, λ)

(

1 + d(x, z)

λ

)−Ñ 1

V (z, λ)
exp

(

− c
d(y, z)2

λ2

)

dμ(z)

� 1

V (x, λ)

(

1 + d(x, y)

λ

)−Ñ
∫

X

1

V (z, λ)

exp
(

− c
d(y, z)2

2λ2

)

dμ(z)

� 1

V (x, λ)

(

1 + d(x, y)

λ

)−Ñ

� 1

V (x, λ)

(

1 + d(x, y)

λ

)−N
,

which implies (13).
The estimate (14) can be proved similarly.
This completes our proof. ��

Lemma 2.7 Let ϕ ∈ S(R) be an even function. Then for any N > 0 there exists CN

such that

|ϕ(t
√
H)(x, y)| ≤ CN

V (x, t)

(

1 + d(x, y)

t

)−N
, (15)

and

|ϕ(t
√
H)(x, y) − ϕ(t

√
H)(x, y′)| ≤ CN

[d(y, y′)
t

]δ 1

V (x, t)

(

1 + d(x, y)

t

)−N

(16)

for all t > 0 and x, y, y′ ∈ X with d(y, y′) < t .
Consequently, ϕ(t

√
H) is bounded on L1(X).

Proof The inequality (15) was proved in [7]. Taking N > D, it follows that ϕ(t
√
H)

is bounded on L1(X) since

∫

X

1

V (x, t)

(

1 + d(x, y)

t

)−N
dμ(x) � 1,

as long as N > D.
We need only to prove (16).
Let ψ0 ∈ C∞(R) supported in [0, 2] such that ψ0 = 1 on [0, 1] and 0 ≤ ψ0 ≤ 1.

Set ψ(λ) = ψ0(λ) − ψ0(2λ) and ψ j (λ) = ψ(2− jλ) for j ≥ 1. Then we have

∑

j≥0

ψ j (λ) = 1, λ > 0.
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Hence,

ϕ(t
√
H) =

∑

j≥0

ψ j (t
√
H)ϕ(t

√
H). (17)

By (14), for N > 0 we have

|ψ0(t
√
H)ϕ(t

√
H)(x, y) − ψ0(t

√
H)ϕ(t

√
H)(x, y′)|

�
[d(y, y′)

t

]δ 1

V (x, t)

(

1 + d(x, y)

t

)−N
(18)

for all t > 0 and x, y, y′ ∈ X with d(y, y′) < t .
Since suppψ ⊂ [1/2, 2], using (11) and (13), we have, for j ≥ 1, t > 0, x, y, y′ ∈

X with d(y, y′) < t ,

|ψ j (t
√
H)ϕ(t

√
H)(x, y) − ψ j (t

√
H)ϕ(t

√
H)(x, y′)|

�
[d(y, y′)

2− j t

]δ 1

V (x, 2− j t)

[(

1 + d(x, y)

2− j t

)−N

+
(

1 + d(x, y′)
2− j t

)−N]

‖h j‖W 2
s

�
[d(y, y′)

t

]δ 2 j(n+δ)

V (x, t)

[(

1 + d(x, y)

t

)−N

+
(

1 + d(x, y′)
t

)−N]

‖h j‖W 2
s

�
[d(y, y′)

t

]δ 2 j(n+δ)

V (x, t)

(

1 + d(x, y)

t

)−N‖h j‖W 2
s
,

where s = N + 3n + 2 and h j (λ) = ψ(λ)ϕ(2− jλ).
Since ϕ ∈ S(R), ‖h j‖W 2

s
≤ Cs2− j(n+δ+1) for every s > 0. As a consequence,

|ψ j (t
√
H)ϕ(t

√
H)(x, y) − ψ j (t

√
H)ϕ(t

√
H)(x, y′)|

� 2− j
[d(y, y′)

t

]δ 1

V (x, t)

(

1 + d(x, y)

t

)−N
,

whenever d(y, y′) < t .
This, along with (17) and (18), implies that for each N > 0 there existsC such that

|ϕ(t
√
H)(x, y) − ϕ(t

√
H)(x, y′)| �

[d(y, y′)
t

]δ 1

V (x, t)

(

1 + d(x, y)

t

)−N

for all t > 0 and x, y, y′ ∈ X with d(y, y′) < t .
This completes the proof. ��
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Remark 2.8 The results in Lemmas 2.5, 2.6 and 2.7 hold true if we replace H by L
since we do not use the assumption (H3) in the proofs.

Lemma 2.9 Assume that ϕ(λ) = λ2φ(λ), where φ ∈ S(R) is an even function. Then
we have

∫

X
ϕ(t

√
H)(x, y)dμ(y) =

∫

X
ϕ(t

√
H)(y, x)dμ(y) = 0

for all x ∈ X and t > 0.

Proof Let ψ j be the function as in the proof of Lemma 2.7 for j = 0, 1, 2, . . .. Then
we have

ϕ(t
√
H) f =

∑

j≥0

ψ j (t
√
H)ϕ(t

√
H) f in L2(X)

for f ∈ L2(X).
Let BR = B(x0, R) for a fixed x0 ∈ X and R > 0. Taking f = 1BR , then it follows

that
∫

BR

ϕ(t
√
H)(x, y)dμ(y) =

∑

j≥0

∫

BR

ψ j (t
√
H)ϕ(t

√
H)(x, y)dμ(y) in L2(X).

(19)

Arguing similarly to the proof of Lemma 2.7, we also yield that for any N > n and
j = 0, 1, 2, . . .,

|ψ j (t
√
H)ϕ(t

√
H)(x, y)| � 2− j 1

V (x, t)

(

1 + d(x, y)

t

)−N
.

Consequently,

∑

j≥0

∫

BR

|ψ j (t
√
H)ϕ(t

√
H)(x, y)|dμ(y) �

∑

j≥0

2− j
∫

X

1

V (x, t)

(

1 + d(x, y)

t

)−N
dμ(y)

� 1.

(20)

This, together with (19), implies that

∫

BR

ϕ(t
√
H)(x, y)dμ(y) =

∑

j≥0

∫

BR

ψ j (t
√
H)ϕ(t

√
H)(x, y)dμ(y)

for x ∈ X .
Using (20), and letting R → ∞, the above identity deduces that

∫

X
ϕ(t

√
H)(x, y)dμ(y) =

∑

j≥0

∫

X
ψ j (t

√
H)ϕ(t

√
H)(x, y)dμ(y)
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for x ∈ X .
It now suffices to prove

∫

X
ψ j (t

√
H)ϕ(t

√
H)(x, y)dμ(y) = 0

for x ∈ X and j = 0, 1, 2, . . ..
Indeed, since ϕ(λ) = λ2φ(λ), we have

ψ j (t
√
H)ϕ(t

√
H) = G j,t (H) ◦ [

t2He−t2H ]

,

where G j,t (λ) = et
2λ2ψ j (tλ)φ(tλ).

Therefore, due to Lemma 2.5, the upper bound of q̃t (x, y) and Fubini’s theorem,

∫

X
ψ j (t

√
H)ϕ(t

√
H)(x, y)dμ(y) =

∫

X

∫

X
G j,t (H)(x, z)q̃t2(z, y)dμ(z)dμ(y)

=
∫

X
G j,t (H)(x, z)

∫

X
q̃t2(z, y)dμ(y)dμ(z).

In addition, from the conservation property (H3), we immediately have

∫

X
q̃t2(z, y)dμ(y) = 0,

which implies

∫

X
ψ j (t

√
H)ϕ(t

√
H)(x, y)dμ(y) = 0.

This completes our proof. ��

3 Inhomogeneous Besov Spaces B01,1(X) and Atomic Decomposition

In this section, we will introduce the Besov space B0
1,1(X). Our approach relies on

the function spaces associated to the “Laplace-like” operator. This is motivated from
the classical case in which the classical Besov spaces can be viewed as Besov spaces
associated with the Laplacian. In our setting, under the three conditions (H1), (H2) and
(H3), the operator H satisfies important properties which are similar to the Laplacian
on the Euclidean space.
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3.1 Inhomogeneous Besov Spaces B01,1(X)

Definition 3.1 The (inhomogeneous) Besov space B0
1,1(X) is defined as the set of

f ∈ L1(X) such that

‖ f ‖B0
1,1(X) := ‖e−H f ‖1 +

∫ 1

0
‖t He−t H f ‖1 dt

t
< ∞.

In the sequel we will show that the Besov space B0
1,1(X) is independent of the

operator H . This is a reason why we do not include the operator H in the notation of
the Besov space.

Lemma 3.2 The inhomogeneous Besov space B0
1,1(X) is complete.

In order to prove Lemma 3.2 we need the following technical lemmas.

Lemma 3.3 For each 1 ≤ p < ∞, the space L p(X) is dense in inhomogeneous Besov
space B0

1,1(X). In fact, for each f ∈ B0
1,1(X) and each 1 ≤ p < ∞, there exists a

sequence { fk} ⊂ L1(X) ∩ L p(X) such that

‖ fk − f ‖1 + ‖ fk − f ‖B0
1,1(X) → 0 as k → ∞.

Proof We first recall the following fact in [4]

lim
s→0

‖e−sH f − f ‖1 = 0 for f ∈ L1(X). (21)

Assume that f ∈ B0
1,1(X). It follows that f ∈ L1(X). For each n ∈ N, define

fk = e−H/k f .

From the Gaussian upper bound condition (H1) and (3),

‖e−H/k f ‖p � c0k
n/p′ ‖ f ‖1, p ∈ [1,∞),

which implies fk ∈ L p(X) for each 1 ≤ p < ∞.
Hence,

‖ f − fk‖B0
1,1(X) = ‖e−H ( fk − f )‖1 +

∫ 1

0
‖t He−t H ( fk − f )‖1 dt

t
.

By (21),

‖e−H ( fk − f )‖1 � ‖ fk − f ‖1 = ‖e−H/k f − f ‖1 → 0 as k → ∞.
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Similarly,

‖t Le−t H ( fk − f )‖1 → 0 as k → ∞.

On the other hand, since e−sH is bounded on L1(X), we have

‖t He−t H ( fk − f )‖1 ≤ ‖t He−t H f ‖1 + ‖t He−t H fk‖1
= ‖t He−t H f ‖1 + ∥

∥e−H/k(t He−t H f
)∥

∥

1

� ‖t He−t H f ‖1.

In addition,

∫ 1

0
‖t He−t H f ‖1 dt

t
≤ ‖ f ‖B0

1,1(X).

By the Dominated Convergence Theorem,

∫ 1

0
‖t He−t H ( fk − f )‖1 dt

t
→ 0 as k → ∞.

It follows that

‖ f − fk‖B0
1,1(X) → 0 as k → ∞.

This, along with the fact that fk ∈ L p(X) for each n ∈ N and p ∈ [1,∞), implies
that L p(X) is dense in B0

1,1(X) for each p ∈ [1,∞).
This completes our proof. ��

Lemma 3.4 Let ψ0, ψ be even functions such that suppψ0 ⊂ {λ : |λ| ≤ 2} and
suppψ ⊂ {λ : 1/2 ≤ |λ| ≤ 2}, and

∞
∑

j=0

ψ j (λ) = 1, λ ∈ R,

where ψ j (λ) = ψ(2− jλ), j = 1, 2, . . ..
Then we have

∞
∑

j=0

ψ j (
√
H) f = f in L1(X)

for f ∈ B0
1,1(X).
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Proof Let f ∈ B0
1,1(X). By Lemma 2.7, we have

‖ψ0(
√
H) f ‖1 = ‖ψ0(

√
H)eH (e−H f )‖1 � ‖e−H f ‖1,

and for j ≥ 1,

‖ψ j (
√
H) f ‖1 =

∥

∥

∥

˜ψ j (
√
H)

(

2−2 j He−2−2 j H f
)

∥

∥

∥

1

� ‖2−2 j He−2−2 j H f ‖1,

where ˜ψ j (λ) = (2−2 jλ2)−1e2
−2 jλ2ψ j (λ).

Note that for t ∈ [2−2 j−2, 2−2 j ],

‖2−2 j He−2−2 j H f ‖1 = 2−2 j

t

∥

∥

∥e−(2−2 j−t)H (

t He−t H f
)

∥

∥

∥

1

� ‖t He−t H f ‖1,

which implies

‖ψ j (
√
H) f ‖1 �

∫ 2−2 j

2−2 j−2
‖t He−t H f ‖1 dt

t
.

Therefore,

∞
∑

j=0

‖ψ j (
√
H) f ‖1 � ‖e−H f ‖1 +

∑

j≥1

∫ 2−2 j

2−2 j−2
‖t He−t H f ‖1 dt

t

� ‖e−H f ‖1 +
∑

j≥1

∫ 1

0
‖t He−t H f ‖1 dt

t

� ‖ f ‖B0
1,1(X).

(22)

It follows that there exists g ∈ L1(X) such that

g =
∞
∑

j=0

ψ j (
√
H) f in L1(X).

If f ∈ L2(X), then by the spectral theory,

∞
∑

j=0

ψ j (
√
H) f = f in L2(X).
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Consequently, f = g for a.e.. Hence,

f =
∞
∑

j=0

ψ j (
√
H) f in L1(X).

In general, for f ∈ B0
1,1(X), by Lemma 3.3 there exists a sequence { fk} ⊂ L2(X)

such that

‖ f − fk‖1 + ‖ f − fk‖B0
1,1

→ 0 as k → ∞.

Similarly to (22),

∥

∥

∥

∞
∑

j=0

ψ j (
√
H)( fk − f )

∥

∥

∥

1
� ‖ fk − f ‖B0

1,1(X).

Hence,

lim
k→∞

∥

∥

∥

∞
∑

j=0

ψ j (
√
H)( fk − f )

∥

∥

∥

1
= 0. (23)

We now write

∞
∑

j=0

ψ j (
√
H) f =

∞
∑

j=0

ψ j (
√
H)( f − fk) +

[
∞
∑

j=0

ψ j (
√
H) fk − fk

]

+ [

fk − f
] + f .

From (23),

∞
∑

j=0

ψ j (
√
H)( f − fk) → 0 in L1(X) as k → ∞.

Since fk ∈ L2(X) ∩ B0
1,1(X), we have proved that

∞
∑

j=0

ψ j (
√
H) fk − fk = 0 in L1(X) for k ∈ N.

In addition,

‖ fk − f ‖1 → 0 as k → ∞.
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Consequently,

∞
∑

j=0

ψ j (
√
L) f = f in L1(X)

for all f ∈ B0
1,1(X).

This completes our proof. ��
Corollary 3.5 We have the following continuous embedding

B0
1,1 ↪→ L1(X).

Proof Let ψ0, ψ be even functions such that suppψ0 ⊂ {λ : |λ| ≤ 2} and suppψ ⊂
{λ : 1/2 ≤ |λ| ≤ 2}, and

∞
∑

j=0

ψ j (λ) = 1, λ ∈ R,

where ψ j (λ) = ψ(2− jλ), j = 1, 2, . . ..
By Lemma 3.4,

∞
∑

j=0

ψ j (
√
H) f = f in L1(X)

for f ∈ B0
1,1(X).

It follows that

‖ f ‖1 ≤
∞
∑

j=0

‖ψ j (
√
H) f ‖1.

This, along with (22), implies that

‖ f ‖1 � ‖ f ‖B0
1,1

.

This completes our proof. ��
We are now ready to prove Lemma 3.2.

Proof of Lemma 3.2 Assume that { fk} is a Cauchy sequence in B0
1,1(X). Hence, this

is also a Cauchy sequence in L1(X) since B0
1,1(X) ↪→ L1(X). As a consequence,

fk → f ∈ L1(X) for some f ∈ L1(X). On the other hand, we have

‖e−H‖1→1 + ‖t He−t H‖1→1 � 1
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uniformly in t > 0.
Therefore,

‖e−H fk‖1 → ‖e−H f ‖1 as k → ∞,

and

‖t He−t H fk‖1 → ‖t He−t H f ‖1 as k → ∞.

Since { fk} is a Cauchy sequence in B0
1,1(X), for any ε > 0 there exists N such that

for m, k ≥ N ,

‖e−H ( fk − fm)‖1 +
∫ 1

0
‖t Le−t H ( fk − fm)‖1 dt

t
< ε.

Fixing k, then using Fatou’s Lemma we have

‖e−H ( fk − f )‖1 +
∫ 1

0
‖t Le−t H ( fk − f )‖1 dt

t

≤ lim
m→∞ ‖e−H ( fk − fm)‖1 + lim inf

m→∞

∫ 1

0
‖t Le−t H ( fk − fm)‖1 dt

t

< ε.

It follows that

fk → f in B0
1,1(X).

This completes our proof. ��

3.2 Atomic Decomposition

In order to establish atomic decomposition for the Besov space, we need another
Calderón reproducing formula.

Proposition 3.6 Let ϕ be as in Lemma 2.4. Let ψ ∈ C∞
0 (R) be an even function with

suppψ ⊂ (−1, 1) and
∫

ψ = 2π . Let � and � be the Fourier transforms of ϕ and
ψ , respectively. Then we have, for f ∈ B0

1,1(X),

f = �(2−2
√
H)�(2−2

√
H) f −

∫ 1/4

0
(t

√
H)�′(t

√
H)�(t

√
H) f

dt

t

−
∫ 1/4

0
(t

√
H)� ′(t

√
H)�(t

√
H) f

dt

t

(24)

in L1(X).
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Proof Similarly to the proof of Lemma 3.4, it suffices to prove the proposition for
f ∈ L2(X) ∩ B0

1,1(X). Observe that

∫ 1/4

0
(t z)(��)

′
(t z)

dt

t
=

∫ z/4

0
(��)

′
(u)du

= �(z/4)�(z/4) − �(0)�(0)

= �(z/4)�(z/4) − 1,

which implies that

1 = �(z/4)�(z/4) −
∫ 1/4

0
(t z)(��)

′
(t z)

dt

t

= �(z/4)�(z/4) −
∫ 1/4

0
(t z)�′(t z)�(t z)

dt

t
−

∫ 1/4

0
(t z)� ′(t z)�(t z)

dt

t
.

This, along with spectral theory, yields

f = �(2−2
√
H)�(2−2

√
H) f −

∫ 1/4

0
(t

√
H)�′(t

√
H)�(t

√
H) f

dt

t

−
∫ 1

0
(t

√
H)� ′(t

√
H)�(t

√
H) f

dt

t

(25)

in L2(X).
Set

F(
√
H) = �(

√
H)�(

√
H) − ∫ 1/4

0 (t
√
H)�′(t

√
H)�(t

√
H) dtt

− ∫ 1/4
0 (t

√
H)� ′(t

√
H)�(t

√
H) dtt .

Then, by Lemma 3.9 and Corollary 3.5,

‖F(
√
H) f ‖1 � ‖ f ‖1 + ‖ f ‖B0

1,1(X)

� ‖ f ‖B0
1,1(X).

This implies that

F(
√
H) f = g in L1(X)

for some g ∈ L1(X).
This, in combination with (25), implies that f = g for a.e.. Therefore,

f = �(
√
H)�(

√
H) f −

∫ 1

0
(t

√
H)�′(t

√
H)�(t

√
H) f

dt

t
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−
∫ 1

0
(t

√
H)� ′(t

√
H)�(t

√
H) f

dt

t
in L1(X)

for f ∈ L2(X) ∩ B0
1,1(X).

This completes our proof. ��
For any bounded Borel function ϕ defined on [0,∞). We now define, for λ > 0,

ϕ∗
λ(t

√
H) f (x) = sup

y∈X
|ϕ(t

√
H) f (y)|

(1 + d(x, y)/t)λ

for all f ∈ L1(X), x ∈ X and t > 0.

Definition 3.7 ([27]) Let (ϕ, ϕ0) be a pair of even functions in S(R). We say that the
pair (ϕ, ϕ0) belongs to the class A(R) if

|ϕ0(λ)| > 0 for |λ| < 4ε, |ϕ(λ)| > 0 for ε/4 < |λ| < 4ε (26)

for some ε > 0, and

λ−2ϕ(λ) ∈ S([0,∞)).

Arguing similarly to the proof of Therem 1.2 in [28], we have:

Lemma 3.8 Let (ϕ, ϕ0) be a pair of even functions in A(R). Then, for λ > 2n, we
have

‖ f ‖B0
1,1(X) ∼ ‖(ϕ0)

∗
λ(

√
H) f ‖1 +

∞
∑

j=1

‖ϕ∗
λ(2− j

√
H) f ‖1

for all f ∈ B0
1,1(X).

Lemma 3.9 Let ϕ(λ) = λ2φ(λ) be an even function in S(R). Then, for λ > 2n, we
have

∫ 1

0
‖ϕ∗

λ(t
√
H) f ‖dt

t
� ‖ f ‖B0

1,1(X)

for all f ∈ B0
1,1(X).

Proof Let ψ0, ψ be even functions such that suppψ0 ⊂ {λ : |λ| ≤ 2}, suppψ ⊂ {λ :
1/2 ≤ |λ| ≤ 2}, and

∞
∑

j=0

ψ j (λ) = 1, λ ∈ R,
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where ψ j (λ) = ψ(2− jλ), j = 1, 2, . . ..
Then we have

ϕ(t
√
H) f =

∞
∑

j=0

ψ j (
√
H)ϕ(t

√
H) f (27)

for all t ∈ (0, 1).
Let λ > 0 and let t ∈ [2− j0−1, 2− j0 ] for some j0 ≥ 0 and M > λ/2. We then have

ϕ(t
√
H) f =

∞
∑

j= j0+1

ϕ(t
√
H)ψ j (

√
H) f +

∑

0≤ j≤ j0

ϕ(t
√
H)ψ j (

√
H) f .

Set ψ j,M (λ) = (2− jλ)−2Mψ j (λ). This, along with the fact that ϕ(λ) = λ2φ(λ),
yields

ϕ(t
√
H) f =

∞
∑

j= j0+1

2−2M( j− j0)(t
√
H)2Mϕ(t

√
H)ψ j,M (

√
H) f

+
∑

0≤ j≤ j0

2−2( j0− j)φ(t
√
H)(2− j

√
H)ψ j (

√
H) f .

By Lemma 2.7, for each y ∈ X and N > n,

|ϕ(t
√
H) f (y)| =

∞
∑

j= j0+1

2−2M( j− j0)
∫

X

1

V (y, t)

(

1 + d(y, z)

t

)−N−λ|ψ j,M (
√
H) f (z)|dμ(z)

+
∑

0≤ j≤ j0

2−2( j0− j)
∫

X

1

V (y, t)

(

1 + d(y, z)

t

)−N−λ|ψ j (
√
H) f (z)|dμ(z).

Using the inequality

(

1 + d(x, y)

t

)−λ(

1 + d(y, z)

t

)−λ ≤
(

1 + d(x, z)

t

)−λ

,

we obtain, for x, y ∈ X ,

|ϕ(t
√
H) f (y)|

(1 + d(x, y)/t)λ
�

∞
∑

j= j0+1

2−2M( j− j0)
∫

X

1

V (y, t)

(

1 + d(y, z)

t

)−N |ψ j,M (
√
H) f (z)|

(1 + d(x, z)/t)λ
dμ(z)

+
∑

0≤ j≤ j0

2−2( j0− j)
∫

X

1

V (y, t)

(

1 + d(y, z)

t

)−N |ψ j (
√
H) f (z)|

(1 + d(x, z)/t)λ
dμ(z)

�
∞
∑

j= j0+1

2−2M( j− j0) sup
z∈X

|ψ j,M (
√
H) f (z)|

(1 + d(x, z)/t)λ
dμ(z)

+
∑

0≤ j≤ j0

2−2( j0− j) sup
z∈X

|ψ j (
√
H) f (z)|

(1 + d(x, z)/t)λ
dμ(z).
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Since t ∼ 2− j0 , for x, y ∈ X we further simplify to that

|ϕ(t
√
H) f (y)|

(1 + d(x, y)/t)λ
�

∞
∑

j= j0+1

2−(2M−λ)( j− j0) sup
z∈X

|ψ j,M (
√
H) f (z)|

(1 + 2 j d(x, z))λ
dμ(z)

+
∑

0≤ j≤ j0

2−2( j0− j) sup
z∈X

|ψ j (
√
H) f (z)|

(1 + 2 j d(x, z))λ
dμ(z)

∼
∞
∑

j= j0+1

2−(2M−λ)( j− j0)(ψ j,M )∗λ f (x)

+
∑

0≤ j≤ j0

2−2( j0− j)(ψ j )
∗
λ f (x),

which implies that for each x ∈ X and t ∼ 2− j0 ∈ (0, 1),

ϕ(t
√
H)∗λ f (x) �

∞
∑

j= j0+1

2−(2M−λ)( j− j0)(ψ j,M )∗λ f (x) +
∑

0≤ j≤ j0

2−2( j0− j)(ψ j )
∗
λ f (x).

This, along with Lemma 3.8, implies that

∫ 1

0
‖ϕ∗

λ(t
√
H) f ‖dt

t
=

∑

j0≥0

∫ 2− j0

2− j0−1
‖ϕ∗

λ(t
√
H) f ‖dt

t

�
∑

j0≥0

∞
∑

j= j0+1

2−(2M−λ)( j− j0)‖(ψ j,M )∗λ f ‖1

+
∑

j0≥0

∑

0≤ j≤ j0

2−2( j0− j)‖(ψ j )
∗
λ f ‖1

�
∑

j≥1

‖(ψ j,M )∗λ f ‖1 +
∑

j≥0

‖(ψ j )
∗
λ f ‖1

� ‖ f ‖B0
1,1(X),

provided that λ > 2n.
This completes our proof. ��
We now introduce the notion of atoms for the Besov space B0

1,1(X).

Definition 3.10 Let ε > 0. A function a is said to be an ε-atom if there exists a ball B
with rB ≤ 1 such that

(i) supp a ⊂ B;
(ii) |a(x)| ≤ V (B)−1;

(iii) |a(x) − a(y)| ≤ V (B)−1
(

d(x, y)

rB

)ε

;
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(iv)
∫

a(x)dμ(x) = 0 if rB < 1.

Theorem 3.11 (a) Let f ∈ L1(X). Then f ∈ B0
1,1(X) if and only if there exist a

sequence of ε-atoms {a j } for some ε > 0 and a sequence of numbers {λ j } ∈ l1 such
that

f =
∑

j

λ j a j in L1(X), (28)

and

‖ f ‖B0
1,1(X) ∼

∑

j

|λ j |. (29)

(b) In particular, if f ∈ B0
1,1(X) supported in a ball B with rB = 1, then there exist a

sequence of ε-atoms {a j } supported in 3B for some ε > 0 and a sequence of numbers
{λ j } such that (28) and (29) hold true.

Proof (a) Let �,� be as in Lemma 3.6 such that

f = �(2−2
√
H)�(2−2

√
H) f −

∫ 1/4

0

˜�(t
√
H)�(t

√
H) f

dt

t

−
∫ 1/4

0

˜�(t
√
H)�(t

√
H) f

dt

t

= �(2−2
√
H)�(2−2

√
H) f +

∞
∑

j=3

[

−
∫ 2− j+1

2− j

˜�(t
√
H)�(t

√
H) f

dt

t

−
∫ 2− j+1

2− j

˜�(t
√
H)�(t

√
H) f

dt

t

]

=: f1 + f2

in L1(X), where ˜�(λ) = λ�′(λ) and ˜�(λ) = λ� ′(λ).
Moreover, according to Lemma 2.4, we have, for t > 0 and x, y ∈ X ,

supp F(t
√
H)(·, ·) ⊂ {(x, y) ∈ X × X : d(x, y) < t}, (30)

and

|F(t
√
H)(x, y)| ≤ C

V (x, t)
, (31)

where F ∈ {�,�, ˜�, ˜�}.
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We first decompose f1 as follows:

f1 =
∑

Q∈D2

�(2−2
√
H)

[

�(2−2
√
H) f · 1Q

]

.

For each Q ∈ D2 as in Remark 2.3, we set

sQ = V (Q)
(

sup
y∈Q

|�(2−2
√
H) f (y)|

)

and

aQ = 1

sQ
�(2−2

√
H)

[

(�(2−2
√
H) f ) · 1Q

]

. (32)

It is clear that

f1 =
∑

Q∈D2

sQaQ .

For the part f2, we write

f2 =
∞
∑

j=3

∑

Q∈D j

[

−
∫ 2− j+1

2− j

˜�(t
√
H)

(

�(t
√
H) f · 1Q

)dt

t

−
∫ 2− j+1

2− j

˜�(t
√
H)

(

�(t
√
H) f · 1Q

)dt

t

]

.

For each Q ∈ D j with j ≥ 3, we set

sQ = −V (Q) sup
y∈Q

[

∫ 2− j+1

2− j
|�(t

√
H) f (y)|dt

t
+

∫ 2− j+1

2− j
|�(t

√
H) f (y)|dt

t

]

,

and

aQ = 1

sQ

[

∫ 2− j+1

2− j

˜�(t
√
H)

(

�(t
√
H) f · 1Q

)dt

t

+
∫ 2− j+1

2− j

˜�(t
√
H)

(

�(t
√
H) f · 1Q

)dt

t

]

. (33)

Then we have

f2 =
∑

j≥3

∑

Q∈D j

sQaQ .



Journal of Fourier Analysis and Applications (2023) 29 :48 Page 27 of 47 48

Therefore,

f = f1 + f2 =
∑

j≥2

∑

Q∈D j

sQaQ .

We next claim that aQ is an atom for each Q ∈ D j , j ≥ 2. Indeed, for j = 2 we have

aQ(x) = 1

sQ

∫

Q
�(2−2

√
H)(x, y)�(2−2

√
H) f (y)dμ(y).

It follows, by (30) and Remark 2.3, that supp aQ ⊂ 3B(xQ, 2−2) ⊂ BQ := B(xQ, 1).
Moreover, owing to (31),

|aQ(x)| ≤ 1

sQ

∫

Q
|�(2−2

√
H)(x, y)| |�(2−2

√
H) f (y)|dμ(y)

≤ 1

V (Q)

∫

Q
|�(2−2

√
H)(x, y)|dμ(y)

� 1

V (Q)
∼ 1

V (BQ)
.

On the other hand, by Lemma 2.7,

|aQ(x) − aQ(x ′)| ≤ 1

sQ

∫

Q
|�(2−2

√
H)(x, y)

− �(2−2
√
H)(x ′, y)| |�(2−2

√
H) f (y)|dμ(y)

≤ 1

V (Q)

∫

Q
|�(2−2

√
H)(x, y) − �(2−2

√
H)(x ′, y)|dμ(y)

� 1

V (BQ)

(d(x, x ′)
rBQ

)δ

,

whenever d(x, x ′) < rBQ = 1.
Hence, aQ is a multiple of an ε-atom associated to the ball BQ for each Q ∈ D j

with j = 2.
Arguing similarly to above, we can verify that for Q ∈ D j , j ≥ 3, aQ satisfies

(i)-(iii) in Definition 3.10 with the corresponding ball defined by ˜BQ = B(xQ, 2− j ).

The condition
∫

aQ(x)dμ(x) = 0 follows directly from Lemma 2.9 and the fact that

˜� and ˜� are even and ˜�(0) = ˜�(0) = 0. Hence, aQ is a multiple of an ε-atom
associated to BQ with ε = δ for each Q ∈ D j , j ≥ 3.

It remains to show that

∞
∑

j≥2

∑

Q∈Dj

|sQ | � ‖ f ‖Ḃ0
1,1(X).
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Indeed, from the definition of {sQ}, we have, for λ > 2D

∑

Q∈D2

|sQ | �
∑

Q∈D0

V (Q) inf
x∈Q �∗

λ f (x)

�
∑

Q∈D0

∫

Q
�∗

λ f (x)dμ(x)

∼ ‖�∗
λ f ‖1.

It follows, by using Lemma 3.8, that

∑

Q∈D0

|sQ | � ‖ f ‖Ḃ0
1,1(X).

We now show that

∑

j≥3

∑

Q∈D j

|sQ | � ‖ f ‖Ḃ0
1,1(X).

Indeed, for Q ∈ D j with j ≥ 3,

sQ ≤ V (Q)
[

∫ 2− j+1

2− j
inf
x∈Q �(t

√
H)∗λ f (x)|

dt

t
+

∫ 2− j+1

2− j
inf
x∈Q �(t

√
H)∗λ f (x)|

dt

t

]

≤
[

∫ 2− j+1

2− j
‖�(t

√
H)∗λ f ‖L1(Q)

dt

t
+

∫ 2− j+1

2− j
‖�(t

√
H)∗λ f ‖L1(Q)

dt

t

]

.

This, together with Lemma 3.9, implies that

∑

j≥1

∑

Q∈D j

|sQ | �
∫ 1

0
‖�(t

√
H)∗λ f ‖1 f dtt +

∫ 1

0
‖�(t

√
H)∗λ f ‖1 f dtt

� ‖ f ‖Ḃ0
1,1(X).

For the reverse direction, it suffices to prove that there exists C > 0 such that

‖e−Ha‖1 +
∫ 1

0
‖t He−t Ha‖1 dt

t
≤ C

for every ε-atom a.
Assume that a is an ε-atom associated to a ball B. Since ‖a‖1 ≤ 1, we have

‖e−Ha‖1 � ‖a‖1 � 1.
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It remains to prove that

∫ 1

0
‖t He−t Ha‖1 dt

t
� 1.

To do this, we write

‖a‖B0
1,1(X) =

∫ 4r2B

0
‖t He−t Ha‖L1(4B)

dt

t
+

∫ 4r2B

0
‖t He−t Ha‖L1(X\4B)

dt

t

+
∫ 1

min{(4r2B ),1}
‖t He−t Ha‖1 dt

t

:= E1 + E2 + E3.

For the second term E2, using the Gaussian upper bound of q̃t (x, y),

‖t He−t Ha‖L1(X\4B) � exp
(

− c
d(B, X\4B)2

t

)

‖a‖1

�
√
t

rB
,

which implies E2 ≤ C .
To estimate the term E1, using the fact that

∫

X
q̃t (x, y)dμ(y) = 0,

we obtain

‖t He−t Ha‖L1(4B) ≤
∫

4B

∣

∣

∣

∫

B
q̃t (x, y)(a(y) − a(x))dμ(y)

∣

∣

∣dμ(x).

By the smoothness condition of the atom a and the Gaussian upper bound of q̃t (x, y),
we have

∣

∣

∣

∫

B
q̃t (x, y)(a(y) − a(x))dμ(y)

∣

∣

∣ � 1

V (B)

∫

B

1

V (x, t)
exp

(

− c
d(x, y)2

t

)(d(x, y)

rB

)ε

dμ(y)

� 1

V (B)

(

√
t

rB

)ε

,

which implies

∫

4B

∣

∣

∣

∫

B
q̃t (x, y)(a(y) − a(x))dμ(y)

∣

∣

∣dμ(x) �
(

√
t

rB

)ε

.

It follows that E1 � 1.
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It remains to estimate E3. Note that if rB = 1, then E3 = 0. Hence, we need only
to consider the case rB < 1. Due to the cancellation property of the atom a, we have

‖t He−t H a‖1 =
∫

X\4B

∣

∣

∣

∫

B

(

q̃t (x, y) − q̃t (x, xB)
)

a(y)dμ(y)
∣

∣

∣dμ(x)

�
∫

X\4B

∣

∣

∣

∫

B

(d(y, xB)√
t

)δ 1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

|a(y)|dμ(y)dμ(x)

�
( rB√

t

)δ‖a‖1
∫

X

1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

dμ(x)

�
( rB√

t

)δ

.

It follows that E3 � 1.
This completes our proof of (a).

(b) Assume that supp f ⊂ B with rB = 1. Recall that in (a) we have proved that

f =
∞
∑

j=2

∑

Q∈D j

sQaQ,

where {sQ} is a sequence of numbers satisfying (29) and {aQ} is a sequence of ε-atoms
defined by (32) and (33). From (30), (32) and (33), we have

f =
∞
∑

j=0

∑

Q∈D j :Q∩ 3
2 B �=∅

sQaQ

and

supp aQ ⊂ 3B whenever Q ∩ 3
2 B �= ∅.

This completes the proof of (b). ��
We now introduce a new variant of the inhomogeneous Besov spaces. For � > 0,

the Besov space B0,�
1,1(X) is defined as the set of functions f ∈ L1(X) such that

‖ f ‖B0,�
1,1 (X)

:= ‖e−�2H f ‖1 +
∫ �2

0
‖t He−t H f ‖1 dt

t
.

When � = 1, we simply write B0
1,1(X).

Definition 3.12 Let ε > 0 and � > 0. A function a is said to be an (ε, �)-atom if there
exists a ball B such that

(i) supp a ⊂ B;
(ii) |a(x)| ≤ V (B)−1;
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(iii) |a(x) − a(y)| ≤ V (B)−1
(

d(x, y)

rB

)ε

;

(iv)
∫

a(x)dμ(x) = 0 if rB < �.

Using the approach in the proof of Theorem 3.11 and the scaling argument, we are
also able to prove the following theorem.

Theorem 3.13 Let � > 0 and f ∈ L1(X). Then f ∈ B0,�
1,1(X) if and only if there exist

a sequence of (ε, �)-atoms {a j } for some ε > 0 and a sequence of numbers {λ j } such
that

f =
∑

j

λ j a j , (34)

and

‖ f ‖B0,�
1,1 (X)

∼
∑

j

|λ j |. (35)

In particular, if f ∈ B0,�
1,1(X) supported in a ball B with rB = �, then there exist

a sequence of (ε, �)-atoms {a j } j supported in 3B for some ε > 0 and a sequence of
numbers {λ j } such that (34) and (35) hold true.

4 Proofs of Main Results

4.1 Proof of Theorem 1.4

We state the following results in which the proofs of Lemma 4.1 and Proposition 4.2
below are similar to those of Lemmas 3.4, 3.2, 3.3 and Corollary 3.5.

Lemma 4.1 Let ψ be an even function in S(R) such that suppψ ⊂ {λ : 1/2 ≤ |λ| ≤
2}, and

∑

j∈Z
ψ j (λ) = 1, λ > 0,

where ψ j (λ) = ψ(2− jλ), j ∈ Z.
Then we have

∑

j∈Z
ψ j (

√
L) f = f in L1(X)

for f ∈ Ḃ0,L
1,1 (X).
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Proposition 4.2 The following properties hold true for the homogeneous Besov space
Ḃ0,L
1,1 (X).

(i) The homogeneous Besov space Ḃ0,L
1,1 (X) is complete.

(ii) The inclusion Ḃ0,L
1,1 (X) ↪→ L1(X) is continuous.

(iii) For each p ∈ [1,∞), the space L p(X) is dense in Ḃ0,L
1,1 (X).

Proposition 4.3 Let ϕ be as in Lemma 2.4 and let � be the Fourier transforms of ϕ.
For each m ∈ N,

f = c
∫ ∞

0
(t2L)me−t2L�(t

√
L) f

dt

t
in L1(X) (36)

for f ∈ B0,L
1,1 (X), where c =

[

∫ ∞

0
z2me−z2�(z)

dz

z

]−1
.

Proof Similarly to the proof of Lemma 3.4, it suffices to prove the proposition for
f ∈ L2(X) ∩ Ḃ0,L

1,1 (X). By spectral theory,

f = c
∫ ∞

0
(t2L)me−t2L�(t

√
L) f

dt

t
(37)

in L2(X).
On the other hand, from Lemma 2.7,

∥

∥

∥

∫ ∞

0
(t2L)me−t2L�(t

√
L) f

dt

t

∥

∥

∥

1
�

∫ ∞

0
‖(t2L)me−t2L�(t

√
L) f ‖1 dt

t

�
∫ ∞

0
‖t2Le−t2L f ‖1 dt

t

� ‖ f ‖Ḃ0,L
1,1 (X)

.

This implies that

∫ ∞

0
(t2L)me−t2L�(t

√
L) f

dt

t
= g in L1(X)

for some g ∈ L1(X).
This, in combination with (37), implies that f = g for a.e.. Therefore,

f = c
∫ ∞

0
(t2L)me−t2L�(t

√
L) f

dt

t
in L1(X)

for f ∈ L2(X) ∩ Ḃ0,L
1,1 (X).

This completes our proof. ��
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Proof of Theorem 1.4: The proof of the atomic decomposition for functions f ∈
Ḃ0,L
1,1 (X) is similar to that of Theorem 4.2 in [5] and the proof of Theorem 3.11.

Hence, we leave it to the interested reader.
For the reverse direction, it suffices to show that there exists C > 0 such that

∫ ∞

0
‖t Le−t La‖1 dt

t
≤ C

for every (L, M)-atom a.
Suppose that a is an (L, M)-atom associated with a ball B. Then we have

∫ ∞

0
‖t Le−t La‖1 dt

t
=

∫ r2B

0
‖t Le−t La‖1 dt

t
+

∫ ∞

r2B

‖t Le−t La‖1 dt
t

.

For the first term, we have

∫ r2B

0
‖t Le−t La‖1 dt

t
=

∫ r2B

0
t‖e−t L La‖1 dt

t

�
∫ r2B

0
t‖a‖1 dt

t

�
∫ r2B

0
tr−2

B
dt

t

� 1.

For the second term, using a = LMb,

∫ ∞

r2B

‖t Le−t La‖1 dt
t

=
∫ ∞

r2B

‖(t L)M+1e−t Lb‖1 dt

tM+1

�
∫ ∞

r2B

‖b‖1 dt

tM+1

�
∫ ∞

r2B

r2MB
dt

tM+1

� 1.

This completes our proof. ��

4.2 Proof of Theorem 1.6

We refer the reader to Sect. 2.1 for the index set I, the family functions {ψα}α and the
family of balls {Bα}α which will be used in this section.
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Lemma 4.4 For each α ∈ I and f ∈ L1(X) we have

∫

X

∫ ρ(xα)2

0

∣

∣

∣

[

t He−t H − t Le−t L]

( f ψα)(x)
∣

∣

∣

dt

t
dμ(x) � ‖ f ψα‖1. (38)

Proof By (L2), we have

∫

X

∫ ρ(xα)2

0

∣

∣

∣

[

t He−t H − t Le−t L]

( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

�
∫

X

∫ ρ(xα)2

0

∫

Bα

1

V (x,
√
t)

(

√
t√

t + ρ(y)

)δ

exp
(

− c
d(x, y)2

t

)

|( f ψα)(y)|dμ(y)
dt

t
dμ(x).

Since ρ(y) ∼ ρ(xα) for all y ∈ Bα , we have

∫

X

∫ ρ(xα)2

0

∣

∣

∣

[

t He−t H − t Le−t L]

( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

�
∫

Bα

∫ ρ(xα)2

0

∫

X

1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)(

√
t

ρ(xα)

)δ|( f ψα)(y)|dμ(x)
dt

t
dμ(y).

Using the fact that

∫

X

1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

dμ(x) � 1, (39)

we obtain that

∫

X

∫ ρ(xα)2

0

∣

∣

∣

[

t He−t H − t Le−t L]

( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

�
∫

Bα

∫ ρ(xα)2

0

(

√
t

ρ(xα)

)δ|( f ψα)(y)|dt
t
dμ(y)

�
∫

Bα

|( f ψα)(y)|dμ(y)

� ‖ f ψα‖1.

This completes our proof. ��
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Lemma 4.5 For each f ∈ L1(X) we have

∑

α∈I

∫

X

∫ ρ(xα)2

0

∣

∣

∣t Le−t L f (x)ψα(x) − t Le−t L( f ψα)(x)
∣

∣

∣

dt

t
dμ(x) � ‖ f ‖1.

(40)

Proof Denote

I1,α = {β ∈ I : B∗
α ∩ Bβ �= ∅} and I2,α = {β ∈ I : B∗

α ∩ Bβ = ∅},

where B∗
α = 4Bα, α ∈ I.

Observe that

t Le−t L f (x)ψα(x) − t Le−t L( f ψα)(x)

=
∑

β∈I

∫

Bβ

qt (x, y)
(

ψα(x) − ψα(y)
)

( f ψβ)(y)dμ(y).

Then we write

∑

α∈I

∫

X

∫ ρ(xα)2

0

∣

∣

∣t Le−t L f (x)ψα(x) − t Le−t L( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

=
∑

α∈I

∫

X

∫ ρ(xα)2

0

∣

∣

∣

∑

β∈I

∫

Bβ

qt (x, y)
(

ψα(x)

− ψα(y)
)

( f ψβ)(y)dμ(y)
∣

∣

∣

dt

t
dμ(x)

≤
∑

α∈I

∫

X

∫ ρ(xα)2

0

∣

∣

∣

∑

β∈I1,α

∫

Bβ

qt (x, y)
(

ψα(x)

− ψα(y)
)

( f ψβ)(y)dμ(y)
∣

∣

∣

dt

t
dμ(x)

+
∑

α∈I

∫

X

∫ ρ(xα)2

0

∣

∣

∣

∑

β∈I2,α

∫

Bβ

qt (x, y)
(

ψα(x)

− ψα(y)
)

( f ψβ)(y)dμ(y)
∣

∣

∣

dt

t
dμ(x)

=: E1 + E2.
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We estimate E1 first. Owing to Lemma 2.1 and the upper bound of qt (x, y), we have

∑

β∈I1,α

∫

Bβ

1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)d(x, y)

ρ(xα)
|( f ψβ)(y)|dμ(y)

�
∑

β∈I1,α

∫

Bβ

1

V (x,
√
t)

exp
(

− c′ d(x, y)2

t

)

√
t

ρ(xα)
|( f ψβ)(y)|dμ(y).

This implies that

E1 �
∑

α∈I

∑

β∈I1,α

∫

X

∫ ρ(xα)2

0

∫

Bβ

1

V (x,
√
t)

exp

(

− c′ d(x, y)2

t

)

√
t

ρ(xα)
|( f ψβ)(y)|dμ(y)

dt

t
dμ(x)

�
∑

β∈I

∫

Bβ

∑

α∈J1,β

∫ ρ(xα)2

0

∫

X

1

V (x,
√
t)

exp

(

− c′ d(x, y)2

t

)

dμ(x)

√
t

ρ(xα)
|( f ψβ)(y)|dt

t
dμ(y),

where

J1,β = {α ∈ I : B∗
α ∩ Bβ �= ∅}.

Since �J1,β is uniformly bounded in β ∈ I, using (39) we obtain

∑

α∈I

∫

X

∫ ρ(xα)2

0

∣

∣

∣t Le−t L f (x)ψα(x) − t Le−t L( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

�
∑

β∈I

∫

Bβ

∑

α∈J1,β

∫ ρ(xα)2

0

√
t

ρ(xα)
|( f ψβ)(y)|dt

t
dμ(y)

�
∑

β∈I
‖ f ψβ‖1 ∼ ‖ f ‖1.

If β ∈ I2,α , then ψα(y) = 0 for all y ∈ Bβ . Therefore,

E2 =
∑

α∈I

∫

Bα

∫ ρ(xα)2

0

∣

∣

∣

∑

β∈I2,α

∫

Bβ

qt (x, y)ψα(x)( f ψβ)(y)dμ(y)
∣

∣

∣

dt

t
dμ(x).
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By the upper bound of qt (x, y) and the fact that d(x, y) > ρ(xα) whenever x ∈
Bα, y ∈ Bβ with β ∈ I2,α , we further simplify to that

E2 �
∑

α∈I

∫

Bα

∫ ρ(xα)2

0

∑

β∈I2,α

∫

Bβ

1

V (x,
√
t)

exp

(

− c
d(x, y)2

t

)

ψα(x)|( f ψβ)(y)|dμ(y)
dt

t
dμ(x)

�
∑

α∈I

∫

Bα

∫ ρ(xα)2

0

∑

β∈I2,α

∫

Bβ

1

V (x, d(x, y))
exp

(

− c′ d(x, y)2

t

)

√
t

d(x, y)
|( f ψβ)(y)|dμ(y)

dt

t
dμ(x)

�
∑

α∈I

∫

Bα

∫ ρ(xα)2

0

∑

β∈I2,α

∫

Bβ

1

V (x, d(x, y))
exp

(

− c′ d(x, y)2

t

)

√
t

ρ(xα)
|( f ψβ)(y)|dμ(y)

dt

t
dμ(x)

�
∑

β∈I

∫

Bβ

∫ ρ(xα)2

0

∑

α∈J2,β

∫

Bα

1

V (x, d(x, y))
exp

(

− c′ d(x, y)2

t

)

√
t

ρ(xα)
|( f ψβ)(y)|dμ(x)

dt

t
dμ(y),

where

J2,β = {α ∈ I : B∗
α ∩ Bβ = ∅}.

Note that d(x, y) ∼ d(x, xβ) ∼ d(xα, xβ) whenever x ∈ Bα, y ∈ Bβ with α ∈
J2,β . Hence,

E2 �
∑

β∈I

∫

Bβ

∫ ρ(xα)2

0

∑

α∈J2,β

∫

Bα

1

V (xβ, d(x, xβ))
exp

(

− c′ d(xα, xβ)2

t

)

√
t

ρ(xα)
|( f ψβ)(y)|dμ(x)

dt

t
dμ(y)

�
∑

β∈I

∫

Bβ

∫ ρ(xα)2

0

∑

α∈J2,β

∫

Bα

1

V (xβ, d(x, xβ))
exp

(

− c′ d(xα, xβ)2

ρ(xα)2

)

√
t

ρ(xα)
|( f ψβ)(y)|dμ(x)

dt

t
dμ(y).
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On the other hand, invoking (5) we have

exp
(

− c′ d(xα, xβ)2

ρ(xα)2

)

� ρ(xα)

d(xα, xβ)

� ρ(xβ)

d(xα, xβ)

(

1 + d(xα, xβ)

ρ(xβ)

)
k0

k0+1

�
( ρ(xβ)

d(xα, xβ)

) 1
k0+1

.

Therefore,

E2 �
∑

β∈I

∫

Bβ

∫ ρ(xα)2

0

∑

α∈J2,β

∫

Bα

1

V (xβ, d(x, xβ))

( ρ(xβ)

d(xα, xβ)

) 1
k0+1

√
t

ρ(xα)
|( f ψβ)(y)|dμ(x)

dt

t
dμ(y)

∼
∑

β∈I

∫

Bβ

∫ ρ(xα)2

0

∑

α∈J2,β

∫

Bα

1

V (xβ, d(x, xβ))

( ρ(xβ)

d(x, xβ)

) 1
k0+1

√
t

ρ(xα)
|( f ψβ)(y)|dμ(x)

dt

t
dμ(y)

�
∑

β∈I

∫

Bβ

∑

α∈J2,β

∫

Bα

1

V (xβ, d(x, xβ))

( ρ(xβ)

d(x, xβ)

) 1
k0+1 |( f ψβ)(y)|dμ(x)

dt

t
dμ(y).

Since {Bβ}β∈I is a finite overlapping family and ∪α∈J2,β Bα ⊂ X\B∗
β , we also obtain

that

E2 �
∑

β∈I

∫

Bβ

|( f ψβ)(y)|
∫

X\B∗
β

1

V (xβ, d(x, xβ))

( ρ(xβ)

d(x, xβ)

) 1
k0+1

dμ(x)dμ(y)

�
∑

β∈I

∫

Bβ

|( f ψβ)(y)|dμ(y)

� ‖ f ‖1.

This completes our proof. ��

We are ready to give the proof of Theorem 1.6.

Proof of Theorem 1.6: Wefirst prove that each function f ∈ Ḃ0,L
1,1 (X) admits an atomic

decomposition as in the statement of the theorem.
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Indeed, we first observe that from Theorem 3.13,

∫ ρ(xα)2

0
‖t He−t H ( f ψα)‖1 dt

t
�

∫

X

∫ ρ(xα)2

0

∣

∣

∣

[

t He−t H − t Le−t L]

( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

+
∫

X

∫ ρ(xα)2

0

∣

∣

∣t Le−t L f (x)ψα(x)

− t Le−t L ( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

+
∫

X

∫ ∞

0

∣

∣

∣t Le−t L f (x)ψα(x)
∣

∣

∣

dt

t
dμ(x).

By Lemmas 4.4 and 4.5, we have f ψα ∈ B0,�α

1,1 (X) with �α = ε0ρ(xα)/3, where ε0
is the constant in Lemma 2.1. Therefore, we can write

f ψα =
∑

j

λ j,αa j,α,

where a j,α is an (ε, �α)-atom associated to a ball Bj,α ⊂ 3Bα for each j , and {λ j,α} j
is a sequence of numbers satisfying

∑

j

|λ j,α| ≤
∫ ρ(xα)2

0
‖t He−t H ( f ψα)‖1 dt

t
.

Note that 3Bα = B(xα, ε0ρ(xα)), by (5),

ρ(xBj,α ) ≥ C−1
ρ ρ(xα)(1 + ε0)

− k0
k0+1 ,

which implies that

3�α = ε0ρ(xα) < Cρε0(1 + ε0)
k0

k0+1 ρ(xBj,α ).

From (iii) in Lemma 2.1, Cρε0(1 + ε0)
k0

k0+1 < 1. Hence,

�α ≤ ρ(xBj,α ).

Consequently, each a j,α is also an (ε, ρ(·)) atom associated to the ball Bj,α .
Therefore, by Lemmas 4.4, 4.5 and (ii) in Proposition 4.2,

f =
∑

α

∑

j

λ j,αa j,α
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such that

∑

α

∑

j

|λ j,α| �
∑

α

∫

X

∫ ρ(xα)2

0

∣

∣

∣

[

t He−t H − t Le−t L]

( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

+
∑

α

∫

X

∫ ρ(xα)2

0

∣

∣

∣t Le−t L f (x)ψα(x) − t Le−t L( f ψα)(x)
∣

∣

∣

dt

t
dμ(x)

+
∑

α

∫

X

∫ ∞

0

∣

∣

∣t Le−t L f (x)ψα(x)
∣

∣

∣

dt

t
dμ(x)

�
∑

α

‖ f ψα‖1 + ‖ f ‖1 +
∫

X

∫ ∞

0

∣

∣

∣t Le−t L f (x)
∣

∣

∣

dt

t
dμ(x)

� ‖ f ‖1 + ‖ f ‖Ḃ0,L
1,1 (X)

� ‖ f ‖Ḃ0,L
1,1 (X)

.

This completes the proof of the first direction.
For the reverse direction, it suffices to prove that there exists C > 0 such that

‖a‖Ḃ0,L
1,1 (X)

≤ C

for every (ε, ρ(·)) atom with some ε > 0.
To do this, suppose that a is an (ε, ρ(·)) atom associated with a ball B. Then we

write

‖a‖Ḃ0,L
1,1 (X)

=
∫ 4r2B

0
‖t Le−t La‖L1(3B)

dt

t
+

∫ 4r2B

0
‖t Le−t La‖L1(X\3B)

dt

t

+
∫ ∞

4r2B

‖t Le−t La‖1 dt
t

:= A1 + A2 + A3.

For the second term A2, using the Gaussian upper bound of qt (x, y),

‖t Le−t La‖L1(X\3B) � exp
(

− c
d(B, X\3B)2

t

)

‖a‖1

�
(

√
t

rB

)δ

,

which implies A2 ≤ C .
To estimate the term A1, observe that

‖t Le−t La‖L1(3B) ≤
∫

3B

∣

∣

∣

∫

X
qt (x, y)(a(y) − a(x))dμ(y)

∣

∣

∣dμ(x)

+
∫

3B

∣

∣

∣

∫

X
qt (x, y)a(x)dμ(y)

∣

∣

∣dμ(x).
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By the smoothness condition of the atom a, we have

∣

∣

∣

∫

B
qt (x, y)(a(y) − a(x))dμ(y)

∣

∣

∣ � 1

V (B)

∫

X

1

V (x, t)
exp

(

− c
d(x, y)2

t

)(d(x, y)

rB

)ε

dμ(y)

� 1

V (B)

(

√
t

rB

)ε

,

which implies

∫

3B

∣

∣

∣

∫

X
qt (x, y)(a(y) − a(x))dμ(y)

∣

∣

∣dμ(x) �
(

√
t

rB

)ε

. (41)

Invoking the condition (II) to give

∣

∣

∣

∫

X
qt (x, y)a(x)dμ(y)

∣

∣

∣ � |a(x)|
(

√
t

ρ(x)

)δ(

1 +
√
t

ρ(x)

)−K
.

This, along with (41), implies that

A1 �
∫ 4r2B

0

(

√
t

rB

)ε dt

t
+

∫ 4r2B

0

∫

X
|a(x)|

(

√
t

ρ(x)

)δ(

1 +
√
t

ρ(x)

)−K
dμ(x)

dt

t

� 1 +
∫

X
|a(x)|

∫ ∞

0

(

√
t

ρ(x)

)δ(

1 +
√
t

ρ(x)

)−K dt

t
dμ(x)

� 1 +
∫

X
|a(x)|dμ(x)

� 1.

It remains to estimate A3. To do this, we consider two cases.
Case 1: 0 < rB ≤ ρ(xB)

Due to the cancellation property of the atom a, we have

‖t Le−t La‖1 =
∫

X

∣

∣

∣

∫

3B

(

qt (x, y) − qt (x, xB)
)

a(y)dμ(y)
∣

∣

∣dμ(x)

�
∫

X

∣

∣

∣

∫

3Q

(d(y, xB)√
t

)δ 1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

|a(y)|dμ(y)dμ(x)

�
( rB√

t

)δ

sup
y∈3Q

∫

X

1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

dμ(x)

�
( rB√

t

)δ

.

It follows that A3 � 1.
Case 2: rB > ρ(xB)



48 Page 42 of 47 Journal of Fourier Analysis and Applications (2023) 29 :48

Observe that by (5), for z ∈ 3B,

ρ(z) � ρ(xB)
(

1 + d(z, xB)

ρ(xB)
)

k0
k0+1

� ρ(xB)
rB

ρ(xB)
= rB .

This, together with (L1), yields that

‖t Le−t La‖1 =
∫

X

∣

∣

∣

∫

3B
qt (x, y)a(y)dμ(y)

∣

∣

∣dx

�
∫

X

∫

3B

(ρ(y)√
t

)δ 1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

|a(y)|dμ(y)dμ(x)

∫

X

∫

3B

( rB√
t

)δ 1

V (x,
√
t)

exp
(

− c
d(x, y)2

t

)

|a(y)|dμ(y)dμ(x)

�
(rB
t

)δ‖a‖1

�
(rB
t

)δ

.

It follows that A3 � 1.
This completes our proof. ��

5 Application to Boundedness of Riesz Transforms Associated to
Schrödinger Operators onR

n

In this section, we show the boundedness of the Riesz transforms associated to
Schrödinger operators L = −� + V on R

n on the new Besov space Ḃ0,L
1,1 (Rn). It

is worth noticing that although we restrict ourselves to consider the Schrödinger oper-
ators on Rn , our approach works well in more general setting including settings listed
in Remark 1.1.

Let L = −� + V be a Schrödinger operator on R
n, n ≥ 3 with V ∈ RHn/2. Our

main result in this section is the following theorem.

Theorem 5.1 The Riesz transform ∇L−1/2 is bounded from Ḃ0,L
1,1 (Rn) to Ḃ0

1,1(R
n).

We would like to remark that in the classical case, the Riesz transform ∇(−�)−1/2

is bounded on the classical Besov spaces Ḃ0
1,1(R

n). See for example [6, Proposition
2.4]. In the setting of Theorem 5.1, we have a better estimates for the Riesz transform
∇L−1/2 since by Theorem 3.13, Ḃ0

1,1(R
n) ↪→ Ḃ0,L

1,1 (Rn). Therefore, as a consequence
of Theorems 3.13 and 5.1, we have:

Corollary 5.2 The Riesz transform ∇L−1/2 is bounded on Ḃ0
1,1(R

n).

In order to prove Theorem 5.1 we need the following technical lemma.
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Lemma 5.3 Let a be an (L, M) atom associated with a ball B with M ≥ 1. Then for
α ∈ (0, 1), we have

‖Lαa‖p � r−2α
B |B|1/p−1

for every p ∈ [1,∞].

Proof We have

Lαa = c
∫ ∞

0
s1−αLe−sLa

ds

s

=
∫ r2B

0
s1−αe−sL La

ds

s
+

∫ ∞

r2B

s1−αLe−sLa
ds

s
,

which implies

‖Lαa‖p �
∫ r2B

0
s1−α‖e−sL‖p→p‖La‖p

ds

s
+

∫ ∞

r2B

s−α‖sLe−sL‖p→p‖a‖p
ds

s

�
∫ r2B

0
s1−α‖La‖p

ds

s
+

∫ ∞

r2B

s−α‖sLe−sL‖p→p‖a‖p
ds

s

�
∫ r2B

0
s1−αr−2

B |B|1/p−1 ds

s
+

∫ ∞

r2B

s−α|B|1/p−1 ds

s

� r−2α
B |B|1/p−1.

��

Proof of Theorem 5.1: Let a be an (L, M) atom associated to a ball B. It suffices to
prove that

‖∇L−1/2a‖Ḃ0
1,1(R

n) :=
∫ ∞

0
‖t(−�)et�∇L−1/2a‖1 dt

t
� 1.

To do this, we write

=
∫ 4r2B

0
‖t(−�)et�∇L−1/2a‖L1(4B)

dt

t
+

∫ 4r2B

0
‖t(−�)et�∇L−1/2a‖L1(Rn\4B)

dt

t

+
∫ ∞

4r2B

‖t(−�)et�∇L−1/2a‖1 dt
t

:= E1 + E2 + E3.
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Using the Lr -boundedness of ∇2L−1 (see [2]), we have

‖t(−�)et�∇L−1/2a‖L1(4B) ≤ ‖t(−�)et�∇L−1/2a‖Lr (4B)|B|1/r ′

� ‖t∇et�∇2L−1/2a‖Lr (4B)|B|1/r ′

�
√
t‖t∇et�‖r→r‖∇2L−1‖r→r‖L1/2a‖r |B|1/r ′

�
√
t

rB
.

It follows that E1 � 1.
For the term E3 we have, for a = Lb,

‖t(−�)et�∇L−1/2a‖1 = ‖t∇(−�)et�L1/2b‖1
≤ ‖t∇(−�)et�‖1→1‖L1/2b‖1
� rB√

t
,

which implies that E3 � 1.
It remains to estimate E2. To do this, we use the following formula

L−1/2 = c
∫ ∞

0
s3/2Le−sL ds

s

so that

t(−�)et�∇L−1/2a = c
∫ ∞

0
ts3/2(−�)et�∇Le−sLa

ds

s

= c
∫ t

0
ts3/2(−�)et�∇e−sL(La)

ds

s

+ c
∫ ∞

t
ts3/2∇et�∇2Le−sLa

ds

s
.

It follows that

‖t(−�)et�∇L−1/2a‖1 �
∫ t

0
ts3/2‖(−�)et�∇e−sL(La)‖1 ds

s

+
∫ ∞

t
ts3/2‖∇et�∇2Le−sLa‖1 ds

s
.

On the other hand, we have

‖(−�)et�∇e−sL(La)‖1 ≤ ‖(−�)et�‖1→1‖∇e−sL‖1→1‖La‖1
� 1√

str2B
,
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and

‖∇et�∇2Le−sLa‖1 ≤ ‖∇et�‖1→1‖∇2L1−αe−sL‖1→1‖Lαa‖1
� 1√

ts2−αr2αB
, α ∈ (0, 1/2).

Therefore,

‖t(−�)et�∇L−1/2a‖1 �
∫ t

0

s

r2B

ds

s
+

∫ ∞

t

√
t

s1/2−α

ds

s
∼ t

r2B
+ tα

r2αB
,

which implies that

E2 �
∫ 4r2B

0

( t

r2B
+ tα

r2αB

)dt

t
� 1.

It was proved in [12, 22] that there exists β > 0 such that

∫

Rn
|√t∇ pt (x, y)|eβ

|x−y|2
t dx +

∫

Rn
|t∇2 pt (x, y)|eβ

|x−y|2
t dx ≤ 1.

This completes our proof. ��
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