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Abstract
Westudy the phase retrieval property for orbits of general irreducible representations of
nilpotent groups, for the classes of simply connected Lie groups, and for finite groups.
We prove by induction that in the Lie group case, all irreducible representations do
phase retrieval. For the finite group case, we mostly focus on p-groups. Here our main
result states that every irreducible representation of an arbitrary p-groupwith exponent
p and size≤ p2+p/2 does phase retrieval.Despite the fundamental differences between
the two settings, our inductive proof methods are very similar.

Keywords Phase retrieval · Nilpotent Lie group · Finite nilpotent group · p-Group ·
Group frame

Mathematics Subject Classification 42C15 · 42A38 · 65T50 · 94A12

1 Introduction

Phase retrieval originated in the Fourier-analytic treatment of questions arising in
crystallography. The phase retrieval problem for (finite) frames as a problem in math-
ematical signal processing was introduced in [3], with motivation stemming from
applications such as speech recognition. Since its introduction phase retrieval has
developed into a legitimate branch of applied mathematics, with links to diverse sub-
jects such as harmonic analysis, algebraic geometry, optimization, numerical analysis,
etc. We refer to the review papers [8, 10] and their extensive lists of references.
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Despite the general interest in the problem, sources containing explicit constructions
of frames with guaranteed phase retrieval properties are still relatively scarce. In this
paper, we study the construction of such systems using strongly continuous, unitary
representations of locally compact groups. Precisely, let π be a continuous unitary
representation of a locally compact group G acting in some Hilbert spaceHπ . Fixing
a vector η ∈ Hπ ,we define a continuous linear map Vη : Hπ → C(G) as Vη(ψ)(g) =
〈ψ,π(g)η〉. Next, let T denote the group of complex numbers of modulus one, and
let Hπ/T denote the orbit space of Hπ modulo the canonical scalar action of T. We
say that η does phase retrieval if the map

Aη : Hπ/T → C(G), Aη(T · f )(x) = |Vη f (x)|, x ∈ G

is injective. Similarly, we say that π does phase retrieval if there exists a vector
η ∈ Hπ that does phase retrieval. It is worth noting that if η ∈ Hπ does phase retrieval
for π then the linear map Vη is necessarily injective. When this is the case, Vη defines
a linear bijection onto a subspace Cη ⊂ C(G), and the phase retrieval problem is
equivalent to the statement that each F ∈ Cη can be recovered from |F | up to a scalar.
This observation serves as motivation for the name ‘phase retrieval’; the phase of
F ∈ Cη can be recovered from its modulus.

Even though the phase retrieval problem for finite frames has been studied for almost
two decades, the bulk of the literature addressing this problem for group frames has
only been devoted to some specific classes of groups, such as the finite Heisenberg
groups [2, 5, 10]. The literature also contains a treatment of the affine Lie group
(also known as the ax+b group) over the reals [1, 15] as well as the finite ax+b
group defined over prime fields [4]. Recently, the results of [5] were extended to the
case of projective unitary representations of finite abelian groups [12]. To the best
of our knowledge, this is the largest class of general group representations for which
the phase retrieval property has been studied. The present work aims to significantly
expand the class of available representations. Precisely, we show that the class of
groups admitting representations for which phase retrieval is possible includes all
simply connected, connected nilpotent Lie groups, as well as all sufficiently small
p-groups with exponent p, for an arbitrary prime p.

The following examples describe the group representations that are probably under-
stood best so far, namely the Schrödinger representations of (finite or Lie) Heisenberg
groups. These will turn out to be the cornerstones of our general inductive approach.
Throughout the paper, we let Zn = Z/nZ be the finite cyclic group of order n, and
denote elements of Zn (by slight abuse of notation) by k = 0, . . . , n − 1.

Example 1 (The finite Heisenberg group) Fix n ∈ N, n ≥ 2, and define the associated
finite Heisenberg group by

Hn = Z
3
n (1)

with group law

(k, l, m) · (k′, l ′, m′) = (k + k′, l + l ′, m + m′ − l ′k), (2)
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and arithmetic operations takenmodulo n. The center of this group is given by Z(H) =
{0}× {0}×Zn , and H/Z(H) ∼= Zn ×Zn . Next, define the Schrödinger representation
ofHn acting onC

n by first introducing the translation andmodulation operators Tk , Ml

respectively as

(Tk f )(y) = f (y − k), (Ml f )(y) = e2π ily/n f (y).

Let π(k, l, m) = e2π im/n Ml Tk . Explicitly,

(π(k, l, m) f )(y) = e2π im/ne2π ily/n f (y − k), k, l, m, y ∈ {0, . . . , n − 1}.

This representation is known to be irreducible and also does phase retrieval [5]. To
construct a vector η that does phase retrieval for the representation π, define the
ambiguity function of η, as follows:

Aη(k, l) = 〈η, Ml Tkη〉.

It is shown in [5, 12] that any vector η for which the zero set of the matrix coefficient
Aη is empty does phase retrieval.

Note that the existence of vectors with nonvanishing ambiguity function is
established in Proposition 2.1 of [5].

Example 2 (The Heisenberg Lie group) Define the three-dimensional Heisenberg Lie
group H as H = R

3, with group law

(p, q, r)(p′, q ′, r ′) = (p + p′, q + q ′, r + r ′ + pq ′). (3)

H is a simply connected, connected Lie group with center {0} × {0} × R ⊂ H. If we
define the continuous-domain translation and modulation operators as (Tp f )(y) =
f (y − p), (Mq f )(y) = e2π iqy f (y), acting on f ∈ L2(R), then π(p, q, r) =
e2π ir Mq Tp defines an irreducible, unitary representation π of H on L2(R). The rep-
resentation π is often referred to as the Schrödinger representation, and as its finite
counterpart, it does phase retrieval, with an analogous sufficient criterion for vectors
guaranteeing that property: Defining the ambiguity function of η ∈ L2(R) as

Aη(p, q) = 〈η, π(p, q, 0)η〉,

we have that η does phase retrieval if Aη vanishes only on a set of Lebesgue measure
zero. A prominent example of a window g with that property is provided by the
Gaussian.

1.1 Main Contributions of Our Paper

In this paper, we intend to address the problem of phase retrieval for general irreducible
representations of nilpotent groups. Ourmain results in this direction are the following.
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• Any irreducible representation of an arbitrary simply connected, connected
nilpotent Lie group does phase retrieval (Theorem 12).

• There exist explicitly checkable sufficient criteria for the phase retrieval property
of irreducible representations of p-groups (Corollary 33).

• As a corollary to the previous result: Any irreducible representation of an arbitrary
p-group with exponent p and size ≤ p2+p/2 does phase retrieval (Corollary 34).

The techniques we use to establish these results seem of potentially independent
interest. In particular, the treatment of the p-group case is surprisingly analogous
to the Lie group case, due to a p-group version of Kirillov’s lemma that appears to
be new (Lemma 22), and an associated explicit construction method for irreducible
representations (Lemma 26). Under suitable assumptions on the underlying groups,
this approach establishes a close relationship between irreducible representations of
p-groups and finite Schrödinger representations that we systematically exploit for the
study of phase retrieval.

As a second technical novelty of potential independent interest, we introduce the
quantity p0(π) (see Definition 16), which is an upper bound on the proportion of
zeros in a nonzero matrix coefficient associated to π . Our results estimating p0(π),
specifically Lemma 32, serve as further illustration of the usefulness of the p-group
analog of the Kirillov lemma and its representation-theoretic ramifications.

2 Nilpotent Lie Groups

This section establishes phase retrieval for irreducible representations of simply con-
nected, connected nilpotent Lie groups. Before we turn to groups and representations,
we first state a few basic observations and ideas regarding phase retrieval, which will
be repeatedly useful. We expect them to be well-known, but include short arguments
for lack of a handy reference.

Definition 3 Let H denote a Hilbert space. We say that (xi )i∈I ⊂ H does phase
retrieval if

∀ f , g ∈ H : (∀i ∈ I : |〈 f , xi 〉| = |〈g, xi 〉|) ⇔ f ∈ T · g.

With this definition, a unitary representation π of a locally compact group does
phase retrieval iff there exists a vector η ∈ Hπ such that (π(x)η)x∈G does phase
retrieval. Part (b) of the following lemma has been observed e.g. in [6].

Lemma 4 Let H denote a Hilbert space and (xi )i∈I ⊂ H.

(a) If (xi )i∈I does phase retrieval, then it has dense span in H.
(b) If (xi )i∈I does phase retrieval, and f , g ∈ H\{0} are arbitrary, there exists i ∈ I

such that

〈 f , xi 〉〈g, xi 〉 
= 0.
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(c) Let (y j ) j∈J be related to (xi )i∈I by the following property: There exists a map
κ : J → I such that for all j ∈ J

y j ∈ Txκ( j)

and in addition,

∀i ∈ I∃ j ∈ J : xi ∈ Txκ( j).

Then (xi )i∈I does phase retrieval iff (y j ) j∈J does.

Proof Part (a) follows from the fact that any f orthogonal to all xi must be inT·0 = {0}.
For part (b), assuming the existence of f , g ∈ H\{0} with

∀i ∈ I : 〈 f , xi 〉〈g, xi 〉 = 0,

we first note that by part (a), the fact that f , g are both nonzero implies that the
associated coefficient families (〈 f , xi 〉)i∈I and (〈g, xi 〉)i∈I are nonzero as well. By
assumption, these coefficient families are disjointly supported. Hence they are linearly
independent, and accordingly, f and g are linearly independent. In particular, f +g /∈
T( f − g). On the other hand, the disjointness assumption entails for all i ∈ I

|〈 f + g, xi 〉| = |〈 f , xi 〉| + | 〈g, xi 〉| = |〈 f − g, xi 〉| ,

which contradicts the phase retrieval property.
For part (c) we note that the assumptions on the two families allow to recover the

coefficient family (〈 f , xi 〉)i∈I from the coefficient family (〈 f , y j 〉) j∈J , and the same
holds for the families of coefficient moduli. Also, these observations remain true if the
families (xi )i∈I and (y j ) j∈J are interchanged. These facts then imply the equivalence
in (c). ��

We next turn to Hilbert space tensor products and their realization via Hilbert–
Schmidt operators. First some notation. LetH1,H2 denote nontrivial Hilbert spaces,
and H S(H2,H1) the space of Hilbert–Schmidt operators A : H2 → H1, endowed
with the usual scalar product

〈A, B〉 = trace(AB∗).

Given x ∈ H1, y ∈ H2, let

x ⊗ y ∈ H S(H2,H1) : H2 � z �→ 〈z, y〉x .

With this terminology in place, we can formulate the following basic observation.

Lemma 5 Let (xi )i∈I ⊂ H1, (y j ) j∈J ⊂ H2 denote two systems of vectors with the
phase retrieval property. Then (xi ⊗ y j )(i, j)∈I×J has the phase retrieval property for
H S(H2,H1).
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Proof Let A, B ∈ H S(H2,H1) with

∀(i, j) ∈ I × j : |〈A, xi ⊗ y j 〉| = |〈B, xi ⊗ y j 〉|

Note that the operator scalar products are computed as

〈A, xi ⊗ y j 〉 = 〈Ay j , xi 〉.

Fixing j ∈ J , this gives for all i ∈ I :

|〈Ay j , xi 〉| = |〈By j , xi 〉|.

The phase retrieval property for (xi )i∈I then entails

Ay j = v( j)By j , ∀ j ∈ J , (4)

with suitable v( j) ∈ T. We next prove that v is constant on the set

S = { j ∈ J : Ay j 
= 0}.

To see this, we fix i ∈ I , and get for all j ∈ J that

|〈y j , A∗xi 〉| = |〈y j , B∗xi 〉|.

Hence the phase retrieval property of (y j ) j∈J furnishes a map u : I → T with

A∗xi = u(i)B∗xi , ∀i ∈ I . (5)

Now assume that j, j ′ ∈ S are given. Then there exists i ∈ I such that

〈Ay j , xi 〉〈Ay j ′ , xi 〉 
= 0, (6)

by Lemma 4 (b), and definition of S. This entails

〈Ay j , xi 〉 = v( j)〈By j , xi 〉 = v( j)u(i)〈Ay j , xi 〉,

and the choice of i allows to cancel 〈Ay j , xi 〉 from this equation to obtain v( j) = u(i).
The same reasoning can be applied to v( j ′), leading to v( j ′) = u(i) = v( j). Hence v

is a constant map. Plugging this observation into Eq. (4) provides v ∈ T satisfying

∀ j ∈ J : Ay j = vBy j

and Lemma 4 (a) now applies to yield A = vB. ��
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We now turn to groups and representations. Before we state the main result of this
section, we highlight several representation-theoretic facts relevant to the problem at
hand; see Remark 6 and Lemma 8. Given a locally compact group G, we let ̂G denote
its unitary dual, i.e. the set of equivalence classes of irreducible unitary representa-
tions, and π ∈ ̂G will be shorthand for “π is irreducible”. Throughout the paper, we
will repeatedly factor out suitably chosen normal subgroups. One such subgroup of
particular interest is the projective kernel of a unitary representation π , which is given
by

Kπ = {x ∈ G : π(x) ∈ T · idHπ
}.

This is a closed normal subgroup of G containing the kernel of π .

Remark 6 Let G denote a locally compact group, and let π be a unitary representation
of G. Assume that K �G is a normal subgroup contained in the projective kernel of π .
Then π induces a projective representation π of the quotient group G/K , by picking
a cross-section σ : G/K → G and letting π(x K ) = π(σ(x K )). Now Lemma 4(c)
shows that the system (π(x)η)x∈G does phase retrieval iff the system (π(σ (x))x K∈G/K

does.
This observation applies to two cases of particular interest: Firstly, and trivially,

we may always factor out normal subgroups H contained in the kernel, and pass the
action down to a representation of G/H . Moreover, if π is irreducible and Z < G is a
central subgroup, then π(Z) ⊂ T · idHπ

follows by Schur’s lemma. Therefore π does
phase retrieval iff the associated projective representation of G/Z does.

Remark 7 At this point, let us shortly explain why we focus on irreducible represen-
tations. This focus has a long tradition in representation theory, due to the fact that
typically, an understanding of the irreducible cases is fundamental to an understanding
of more complex representations. The general intuition is that a decomposition into
irreducible subrepresentations allows to reduce the general problem into a family of
subproblems, which can then be addressed independently.

In the context of phase retrieval, this intuition works to a limited degree. If (π,Hπ )

is a representation, and Hπ decomposes into two closed invariant subspaces, Hπ =
K1 ⊕K2, then any vector η ∈ Hπ doing phase retrieval for π gives rise to two vectors
η1 ∈ K1, η2 ∈ K2 such that the restriction of π to Ki does phase retrieval for Ki , by
taking ηi to be the orthogonal projection of η onto Ki .

The standard representation-theoretic intuition would suggest that this observation
also works for the converse direction, at least under suitable assumptions on the sub-
representations associated to theKi . Specifically, assuming that the subrepresentations
are irreducible and inequivalent, one might be tempted to expect that a vector ηi doing
phase retrieval for each Ki gives rise to a vector η = η1 + η2 that does phase retrieval
forHπ . This is generally false, as the following example illustrates.

Pick an irreducible representation σ such that the contragredient representation σ

is inequivalent to σ . Such representations exist, e.g. for the Heisenberg groups from
Examples 1 (when n > 2) and 2. Assume that η1 ∈ Hσ is a vector doing phase
retrieval for σ . If we then realize σ on Hσ in the canonical manner, the associated
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matrix coefficients are related by

V σ
η f = V σ

η f ;

this can be understood as the defining relation of the contragredient representation.
On the one hand, this shows that η also does phase retrieval for σ . However, if we now
define π = σ ⊕ σ , and use the vector η0 = η ⊕ η, we get

∣

∣

∣V π
η0

( f ⊕ 0)
∣

∣

∣ =
∣

∣

∣V σ
η f

∣

∣

∣ =
∣

∣

∣V π
η0

(0 ⊕ f )

∣

∣

∣ ,

hence η0 does not do phase retrieval.
To summarize: Understanding the phase retrieval problem for irreducible represen-

tations will not lead to automatic solutions for arbitrary representations, but it remains
a fundamental first step, that we address in the following for nilpotent groups.

We next need a representation-theoretic lemma that is quite probably folklore. It
can be proved by direct calculations using the realization of induced representations
via cross-sections, see e.g. page 79 of [11].

Lemma 8 Let Z < N < G be locally compact groups, with N normal and closed in
G, and Z central and closed in G. Let τ be a representation of N with the property that
the restriction τ |Z is a multiple of a character χ ∈ ̂Z. Then the restriction

(

indG
N τ

) |Z

is also a multiple of χ .

We aim to prove the existence of vectors doing phase retrieval, for an irreducible
representation π of a simply connected, connected nilpotent Lie group G. The basic
idea is to use induction over dim(G), and to employMackey’s theory of induced repre-
sentations in the process. For the induction step to work, we need a somewhat stronger
induction hypothesis on the vectors doing phase retrieval. The relevant additional
property is defined next:

Definition 9 Let π denote a unitary representation of the locally compact group G.
η ∈ Hπ has the full support property if for all 0 
= f ∈ Hπ the set

{x ∈ G : Vη f (x) = 0} ⊂ G

has Haar measure zero.

Remark 10 Just as for the case of phase retrieval in Remark 6, the full support property
can equivalently be verified for the associated projective representation π of G/K ,
where K is any normal subgroup contained in the projective kernel of π . This obser-
vation makes use of the fact that the Haar measures of G/K and G are related by
Weil’s integral formula.

Remark 11 While the full support property has a strictly auxiliary role in our consid-
erations, it seems of independent representation-theoretic interest. We are currently
not aware of any sources investigating this property in any systematic way.
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As the prime example of a vector with the full support property, we mention the
Gaussian window

η(x) = e−πx2 , (x ∈ R).

It is well-known that the image of the short-time Fourier transform ST FTη associated
to η, defined by

ST FTη f (x + iy) = 〈 f , My Txη〉,

consists of functions whose product with a suitable, fixed choice of two-dimensional
Gaussian is entire (see e.g. Proposition 3.4.1 of [9]). But clearly ST FTη f (x + iy) =
Vη f (x, y, 0), where the right-hand side denotes thematrix coefficient associated to the
Schrödinger representation. Hence the fact that nonzero entire functions are nonzero
a.e. (together with Remark 10) allows to conclude that η has the full support property
for the Schrödinger representation.

Note also that any vector η with the full support property for the Schrödinger
representation automatically does phase retrieval; recall from Example 2 that a.e.
nonvanishing of Vηη was sufficient for the latter. Hence the Gaussian has both desired
properties.

We are now in position to establish the first main result of this paper.

Theorem 12 Let G denote a simply connected, connected nilpotent Lie group, and π

an irreducible representation of G. Then there exists a vector η ∈ Hπ that does phase
retrieval, and has the full support property. In particular, π does phase retrieval.

Proof We proceed by induction over dim(G). Noting first that the abelian case is
trivial, and secondly, that the case of the Heisenberg group is settled, we may assume
that G is a nonabelian group of dimension n > 3.

Furthermore, we may assume that K = Ker(π) is a zero-dimensional subgroup of
G. Otherwise, the Lie algebra k of K has positive dimension, and the connected com-
ponent of the identity K0 = exp(k) in K is a normal subgroup of positive dimension.
Now the inductive hypothesis yields a vector with phase retrieval and full support
property for the associated representation of the quotient group G/K , and thus for π

(see Remarks 6, 10.)
Hence from now on the kernel of π is assumed to be zero-dimensional. This implies

that the center Z(G) of G is necessarily one-dimensional. Pick Z ∈ g such that
exp(RZ) = Z(G). By Kirillov’s lemma [7, Lemma 1.1.12], there exist X , Y ∈ gwith
the following properties: g = g0 ⊕ RX , [X , Y ] = Z , g0 is an ideal in g, and it is
the centralizer of Y . In particular, the associated subgroup G0 = exp(g0) is a normal
subgroup, with G = G0 exp(RX). Furthermore, A = exp(RY ) exp(RZ) is central in
G0, and normal in G.

For better readability, the remainder of the proof is structured into several steps.
Step 1 There exists an irreducible representation τ of G0 such that π � indG

G0
(τ ).

To see this, consider the dual action of G on the dual group ̂A, defined for arbitrary
g ∈ G and a ∈ A, by [g	χ ] (a) = χ

(

g−1ag
)

. Let Gχ = {g ∈ G : g	χ = χ} be the
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stabilizer of χ and let

˜Gχ = {

τ ∈ ̂Gχ : τ |A is a multiple of χ
}

.

For τ ∈ ˜Gχ , πτ = indG
Gχ

(τ ) is an irreducible representation of G. In fact, according
to the theory of Mackey [11, Theorem 4.22], every irreducible representation of G
is of this form. Hence, since π is assumed to be irreducible, there exists τ, such that
π � indG

Gχ
(τ ) for suitableχ ∈ ̂A and τ ∈ ˜Gχ . τ is irreducible, sinceπ is. To complete

the proof of Step 1, it suffices to show that Gχ = G0. Since A is central in G0, the
conjugation action of G0 on A is trivial. The same then holds for the dual action of
G0 on ̂A, and this establishes G0 ⊂ Gχ . Moreover, since π is irreducible, π |exp(RZ)

is the multiple of a character, and by assumptions on the kernel of π , this character
is necessarily nontrivial. Furthermore, Lemma 8 implies that this character coincides
with χ on Z(G). Hence, by suitably normalizing Z and Y , when necessary, we may
assume without loss of generality that π(exp(zZ)) = e2π i z . The relation [X , Y ] = Z
then entails

exp(−x X) exp(yY ) exp(x X) = exp(yY ) exp(−xy Z),

and this leads to the following string of equalities:

(exp(x X)	χ)(exp(yY )) = χ(exp(yY ) exp(−xy Z)) = e−2π i xyχ(exp(yY )).

These observations imply that exp(x X)	χ = χ can only hold for x = 0. Since every
g ∈ G can be factored uniquely as g = exp(x X)g0, with g0 ∈ G0 ⊂ Gχ and x ∈ R,
we derive finally that G0 = Gχ .
Step 2 Choosing an explicit realization of π We will now introduce coordinates
on G, and express π more explicitly in terms of these coordinates, and a suitable
choice of realization. Thus far, we have shown that π � indG

G0
(τ ), where G0 � G,

and τ is an irreducible representation, restricting to a multiple of a character χ on
A = exp(RY ) exp(RZ). Furthermore,χ(exp(zZ)) = e2π i z . Let g0 ⊂ g denote the Lie
algebra of G0, and let W ⊂ g0 denote a vector space complement to RX ⊕ RY ⊂ g0.
Then every g ∈ G has the unique factorization

g = exp(zZ) exp(yY ) exp(w) exp(x X),

with x, y, z ∈ R and w ∈ W . Consequently, every element in the closed
and normal subgroup G0 also admits a unique factorization of the type g0 =
exp(zZ) exp(yY ) exp(w).

As a consequence of the factorizations, we obtain that G is the inner semidirect
product G = G0 � exp(RX), which allows to use a specific realization of induced
representations (see e.g. page 79 of [11], Realization III for Semidirect Products).
The representation space can be taken as Hπ = L2(R,Hτ ), the space of weakly
Borel-measurable Hτ -valued functions on R with square-integrable norms, and the
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cited source provides the following explicit formulae

[π (g) f ] (t) =

⎧

⎪

⎨

⎪

⎩

f (t − x) if g = exp (x X)

e−2π i t y f (t) if g = exp (yY )

τ
(

exp
(

ead(−t X)w
))

f (t) if g = exp (w) ,w ∈ W

. (7)

It is worth noting that π acts partially like a Schrödinger representation via exp(x X)

and exp(yY ).

Step 3 Fixing the vector η By Remark 11, there exists η1 ∈ L2(R) with full support
and phase retrieval properties for the Schrödinger representation. Furthermore, the
inductive hypothesis provides η2 ∈ Hτ with full support and phase retrieval properties
for τ . We then define η ∈ L2(R,Hτ ) by η(t) = η1(t)η2, and claim that it has the full
support and phase retrieval properties for π .
Step 4 Explicit formulae for matrix coefficients Fix any nonzero f ∈ L2(R,Hτ ). By
abuse of notation, we will systematically use

Vη f (y, w, x), (y, w, x) ∈ R × W × R

instead of

Vη(exp(yY ) exp(w) exp(x X))

We will also omit the central variable zZ from our discussion, in view of Remarks 6
and 10.

We then get from (7) that

Vη f (y, w, x) = 〈 f , π(exp(yY ) exp(w) exp(x X))η〉
=

∫

R

〈

f (t) , τ
(

exp
(

e−ad(t X)w
))

η (t − x)
〉

e2π iyt dt

=
∫

R

〈

f (t) , τ
(

exp
(

e−ad(t X)w
))

η2

〉

e2π iytη1(t − x)dt

=
∫

R

〈 f (t) , τ (exp(−t X) exp(w) exp(t X)) η2〉 e2π iytη1(t − x)dt .

Now, using 
 to denote the Schrödinger representation, as well as

F : W × R → C, F(w, t) = 〈 f (t) , τ (exp(−t X) exp(w) exp(t X)) η2〉 (8)

we may rewrite this formula as

(Vη f )(y, w, x) =
(

V 

η1

F(w, ·)
)

(y, x). (9)

In addition, we make the observation that

F(w, t) =
(

V τ
η2

f (t)
)

(exp(−t X) exp(w) exp(t X)) . (10)
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Step 5 η does phase retrieval Now assume that f , h ∈ L2(R,Hτ ) are such that
|Vη f | = |Vηh| holds. With F from (8) and H defined analogously as

H : W × R → C, H(w, t) = 〈h (t) , τ (exp(−t X) exp(w) exp(t X)) η2〉

Equation (9) gives for all w ∈ W

∣

∣

∣V 

η1

(F(w, ·))
∣

∣

∣ =
∣

∣

∣V 

η1

(H(w, ·))
∣

∣

∣ .

Since η1 does phase retrieval, this implies the existence of a map

u : W → T, H(w, ·) = u(w)F(w, ·) ∀w ∈ W . (11)

It follows for almost all t ∈ R that

|H(·, t)| = |F(·, t)|.

By construction, exp(W ) ⊂ G0 is a system of representatives modulo the central
subgroup exp(RZ) exp(RY ) of G0, which is contained in the projective kernel of
τ . Hence Eq. (10) (and its analog for H ) allows to rewrite the previous equation as
follows, for almost all t ∈ R:

∀g0 ∈ G0 :
∣

∣

∣V τ
η2

( f (t))(exp(−t X)g0 exp(t X))

∣

∣

∣ =
∣

∣

∣V τ
η2

(h(t))(exp(−t X)g0 exp(t X))

∣

∣

∣ .

For fixed t ∈ R, conjugation by exp(t X) is a bijection of G0 onto itself, hence we
may simplify this equation to

∣

∣

∣V τ
η2

( f (t))
∣

∣

∣ ≡
∣

∣

∣V τ
η2

(h(t))
∣

∣

∣ .

Now we can appeal to the phase retrieval property of η2 to conclude the existence of
a map

v : R → T, h(t) = v(t) f (t) (12)

with the equality holding for almost every t ∈ R. Note that this also entails, for almost
every t , that

H(·, t) = v(t)G(·, t).

Defining the Borel set

C f = {t ∈ R : f (t) 
= 0} ⊂ R, (13)
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(12) shows that the proof of phase retrieval boils down to showing that v is constant
on C f . Note that by removing a set of measure zero from C f we can assume that (12)
holds for all t ∈ C f .

At this point the full support property of η2 enters the picture. Picking any t ∈ C f ,
Eq. (8) and the full support property of η2 implies that the set

W f (t) = {w ∈ W : F(w, t) 
= 0}

has full measure. Note that this step also used the fact that the automorphism of G0
induced by conjugation with exp(t X) preserves the Haar measure of G0, and Remark
10.

Hence, picking t1, t2 ∈ C f and anyw in W f (t1)∩W f (t2) (which is of full measure,
hence nonempty), we obtain from (11)

v(ti )F(w, ti ) = H(w, ti ) = u(w)F(w, ti ).

By choice ofw, wemay cancel F(w, ti ) on both sides, to obtain v(t1) = u(w) = v(t2).
This concludes the proof of phase retrieval.
Step 6 η has the full support property Let 0 
= f ∈ L2(R,Hτ ) be given, and let C f

be as in (13). We will prove that the set

{

(y, w, x) ∈ R × W × R : Vη f (y, w, x) = 0
}

has measure zero. Then an appeal to Remark 10 finishes the proof.
Given any w ∈ W , Eq. (9) together with the full support property of η1 shows that

{

(y, x) ∈ R × R : Vη f (y, w, x) = 0
}

has measure zero iff

‖F(w, ·)‖L2(R) 
= 0,

with the function F from (8).
Thus by Fubini’s theorem, the full support property for η is shown oncewe establish

that
{

w ∈ W :
∫

R

|F(w, t)|2dt = 0

}

has measure zero. For this purpose, introduce the set

B f = {(w, t) ∈ W × C f : F(w, t) = 0},

with C f defined in Step 5. We also introduce the auxiliary function

F̃(w, t) =
(

V τ
η2

f (t)
)

(exp(w))
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and associated set

B̃ f = {(w, t) ∈ W × C f : F̃(w, t) = 0}.

Given t ∈ R, consider the map α(t) : W → W defined as

α(t)(w) = PW

(

e−ad(t X)w
)

where PW is the projection onto W inside g0, along the complement RZ ⊕ RY . Then
by definition of α(t), we have

exp(α(t)w)−1 exp(−t X) exp(w) exp(t X) ∈ Z(G0),

and since τ restricted to Z(G0) is a character, this gives rise to the equation

|F(w, t)| = |F̃(α(t)w, t)|.

We also note that α(t) is a diffeomorphism, with inverse map given by α(−t).
These observations allow to write

B f = {(w, t) ∈ W × C f : (α(t)w, t) ∈ B̃ f }. (14)

The whole point of introducing B̃ f was that the assumption that η2 has the full
support property, and the definition of C f , imply that B̃ f is a set of measure zero,
by Fubini’s theorem. It then follows by (14), a change of variable involving the α(t),
and yet another application of Fubini’s theorem, that B f has measure zero. A final
application of Fubini’s theorem then yields a set W ′ ⊂ W of full measure such that
F(w, ·) vanishes almost nowhere on C f , for all w ∈ W ′. Since C f is of positive
measure, this finally implies

∫

R

|F(w, t)|2dt > 0

for all w ∈ W ′, and the proof is finished. ��

3 Finite Nilpotent Groups

This section is devoted to establishing analogs of Theorem 12 for finite nilpotent
groups. While we will not be able to cover all finite nilpotent groups, we will exhibit
large classes of such groups, for which an analog can be formulated and proved, using
an inductive method that is quite similar to that employed for Lie groups.

The following theorem contains the largest previously known class of finite groups
for which phase retrieval is established:
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Theorem 13 Let G denote a finite nilpotent group of nilpotency class 2, which means
that G is nonabelian, and G/Z(G) is abelian. Then every irreducible representation
of G does phase retrieval.

This theorem is a consequence of Theorem 1.7 from [12], which states that every
projective irreducible representation of a finite abelian group does phase retrieval,
combined with the natural correspondence between projective representations of finite
abelian groups and unitary representations of class 2 nilpotent groups. Our results will
significantly extend this class of examples.

Recall that a p-group is a group G with cardinality pr , for some positive exponent
r > 0 and prime number p. If pk is the highest power of some prime number p dividing
the order of G, then a subgroup of G of order pk is called a p-Sylow subgroup of G.

The exponent of a group G is the smallest integer n satisfying xn = e for all x ∈ G.
Clearly, the exponent of a p-group is again a power of p.

The treatment of general finite nilpotent groups is easily reduced to that of p-groups,
by the following well-known observation (see e.g. Theorems 5.2.4 and 8.4.2 of [16]).

Theorem 14 Every finite nilpotent group G is the direct product of its p-Sylow sub-
groups. As a consequence, every irreducible representation of G is the outer tensor
product of irreducible representations of its p-Sylow subgroups.

The following Lemma is a direct consequence of Lemma 5, which immediately
gives a solution for the phase retrieval problem for tensor product representations in
terms of solutions for the factors. Since it directly generalizes to finitely many tensor
factors, this lemma reduces the phase retrieval problem for irreducible representation
of general finite nilpotent groups to the p-group case, on which we shall subsequently
concentrate.

Lemma 15 For k = 1, 2, let πk be a unitary representation of some finite group Gk

and suppose that each πk does phase retrieval and is realized is some Hilbert space
Hπk . Next, let π = π1 ⊗π2 be the outer tensor product of π1 and π2. If η1 does phase
retrieval for π1 and if η2 does phase retrieval for π2 then η1 ⊗ η2 ∈ H does phase
retrieval for π.

Before we turn to the study of phase retrieval properties for p-groups, we will
need to establish several auxiliary notions and results. To a large part, these notions
are motivated by the desire to adapt the inductive approach developed for the Lie
group case to the p-group setting. They mostly concern the inductive construction
of irreducible representations. But we will also need a finite group analog to the
full support property, which is necessarily of a more quantitative nature. We start by
formulating this analog:

Definition 16 Let (π,Hπ ) denote a unitary representation of a finite group G. Given
a vector η ∈ Hπ , we let

p0(π, η) = max
f ∈Hπ\{0}

(

1 − |supp(Vη f )|
|G|

)
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as well as

p0(π) = min{p0(π, η) : η ∈ Hπ \ {0}}.

The following remark formulates an analog to Remark 6 for the quantity p0:

Remark 17 Let π be a representation of a finite group G, and K � G is a normal
subgroup contained in the projective kernel of π . Picking any system W ⊂ G of
representatives modulo K , it is easy to see that

p0(π, η) = max
f ∈Hπ\{0}

(

1 −
∣

∣supp
(

(Vη f )|W
)∣

∣

|W |

)

Remark 18 p0(π, η) can be interpreted as the maximal proportion of zeros occurring
in the matrix coefficients Vη f for an arbitrary nonzero vector f . This quantity is
therefore related to sampling sets: For any set A ⊂ G satisfying |A| > p0(π, η)|G|,
the sampled coefficient map

Vη|A : f �→ (Vη f )|A

has trivial kernel by definition of p0(π, η), hence it is injective.
This property is also related to the full spark property, studied in the representation

theoretic context in [13, 14]. In fact, for any representation π having the full spark
property, one can derive

p0(π) = dπ − 1

|G| .

A related result was derived by Malikiosis in [13], who showed that, for suitable
choices of η ∈ C

n the system (π(k, l, 0)η)k,l∈Zn has the full spark property, where
π is the Schrödinger representation from Example 1, associated to the finite cyclic
group Zn of order n. Since W = {(k, l, 0) : k, l = 0, . . . , n − 1} ⊂ Hn is a system of
representatives modulo the center of H, which is contained in the projective kernel of
π , Remark 17 allows to determine

p0(π) = n − 1

n2 . (15)

Remark 19 In our subsequent arguments (see Lemma 29 below), an upper estimate for
the quantity p0(τ ) for a certain representation of a suitably chosen subgroup G0 of G
will play an important role, as a sufficient condition for phase retrieval. It is noteworthy
that the phase retrieval property of π entails a necessary upper estimate for p0(π), as
follows: Assuming that the vector η ∈ Hπ does phase retrieval for π , Lemma 4(b)
implies that for any nonzero f , g ∈ Hπ , the pointwise product (Vη f ) · (Vηg) is not
identically zero. Letting A = supp(Vη f ) ⊂ G and g = π(y) f for y ∈ G yields via

Vηg(x) = 〈π(y) f , π(x)η〉 = Vη f (y−1x)
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that y A ∩ A 
= ∅, or equivalently: y ∈ A · A−1. Hence we have shown

A · A−1 = G,

for the support A of any nonzero matrix coefficient Vη f . This observation, together
with Remark 18, allows to derive the estimate

p0(π, η) ≤ 1 − |G/K |−1/2,

where K � G denotes the projective kernel of π .
It should be noted however that this bound is generally much weaker than the upper

bound of 1/2 that will become relevant below.

For the formulation of the next lemma, we introduce a new piece of terminology:
Given a finite dimensional complex Hilbert spaceH, we call a set M ⊂ H real Zariski
closed if there exist mappings

f1, . . . , fk : H → R

that depend polynomially on the real and imaginary parts of arbitrarily chosen complex
linear coordinates on H, and such that

M = {x ∈ H : f1(x) = . . . = fk(x) = 0}.

We call M real Zariski open if its complement is real Zariski closed.

Lemma 20 Let (π,Hπ ) denote a finite-dimensional representation of the finite group
G. Let

M1 = {η ∈ Hπ : η does phase retrieval }

and

M2 = {η ∈ Hπ : p0(π, η) = p0(π)}.

Then M1 and M2 are real Zariski open. If π does phase retrieval, then M1 ∩ M2 is
nonempty and real Zariski open. In particular M1 ∩ M2 ⊂ Hπ is of full Lebesgue
measure.

Proof For the statement concerning M1 we refer to Lemma 2.5 of [4]. For M2, we
identify Hπ with C

dπ (using any choice of basis in Hπ ), identify C
G with C

|G| by
a similar procedure, and use these identifications to associate to the linear operator
Vη : C

dπ → C
G the describingmatrixAη ∈ C

|G|×dπ . Given anymatrixA ∈ C
|G|×dπ ,

and an arbitrary set B ⊂ {1, . . . , |G|}, we let AB denote the submatrix obtained by
picking the lines of A corresponding to indices contained in B. Then

p0(π, η) ≤ k

|G|
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is equivalent to the statement that, for arbitrary sets B ⊂ {1, . . . , |G|} of cardinality
k + 1, the submatrix AB

η has rank dπ . But the set

Zk = {A ∈ C
|G|×dπ : ∀B ⊂ {1, . . . , |G|} with |B| = k + 1, rank

(AB) = dπ

}

can be described in terms of dπ × dπ -subdeterminants, hence is real Zariski-open.
Now we have that

p0(π, η) = p0(π) ⇔ p0(π, η) ≤ p0(π)

⇔ Aη ∈ Zπ0(π)|G|.

Since the map η �→ Aη is conjugate linear, we see that M2 is the conjugate linear
preimage of a real Zariski open set, hence real Zariski open itself. Now if π does phase
retrieval, then M1 is nonempty, whereas M2 is nonempty by definition. Nonempty real
Zariski open sets are open and dense in the standard topology; in fact they are of full
Lebesguemeasure. Then M1∩M2 is nonempty, and real Zariski-open, hence it inherits
the remaining properties as well. ��

We will now start to introduce the central device of our treatment of p-groups,
namely a version ofKirillov’s lemma for this class of groups. For this purpose,we intro-
duce further notation. Let G denote a nonabelian p-group. Let [w, y] = w−1y−1wy
be the commutator of w, y ∈ G. Furthermore, write wy = y−1wy for the conjugation
product of w and y. We then have the well-known relations

[xz, y] = [x, y]z[z, y], [x, zy] = [x, y][x, z]y, (16)

which can be verified by direct calculation.
We introduce

Z1(G) = {y ∈ G : y Z(G) ∈ Z(G/Z(G))}.

Since G is nilpotent, G/Z(G) is as well. In particular, G/Z(G) has nontrivial center,
which implies that Z(G) � Z1(G), unless G is abelian. The following elementary
lemma will be used repeatedly:

Lemma 21 The mapping

[·, ·] : G × Z1(G) → Z(G), (x, y) �→ [x, y]

is a well-defined bihomomorphism, i.e., for all x ∈ G, y ∈ Z1(G), the maps [x, ·] and
[·, y] are homomorphisms into Z(G).

Proof Let x ∈ G, y ∈ Z1(G). The fact that y Z(G) is central in G/Z(G) implies

[x, y]Z(G) = [x Z(G), y Z(G)] = eG Z(G),
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hence [x, y] ∈ Z(G), and [·, ·] : G × Z1(G) → Z(G) is well-defined. Furthermore,
(16) yields for x, z ∈ G

[xz, y] = [x, y]z[z, y] = [x, y][z, y],

since the conjugation action is trivial on [x, y] ∈ Z(G). If z ∈ Z1(G), we similarly
get

[x, zy] = [x, y][x, z]y = [x, y][x, z] = [x, z][x, y],

since Z(G) is abelian. ��
The following is the announced p-group analog of Kirillov’s lemma for nilpotent

Lie groups [7, Lemma 1.1.12].

Lemma 22 Let G be a non-abelian p-group with cyclic center Z (G). Then there exist
z ∈ Z(G), y ∈ Z1(G) and x ∈ G as well as an integer r ≥ 1 such that the following
hold:

(a) z = [x, y], 〈z〉 is a subgroup of Z(G) with 〈z〉 = [G, y] ∼= Zpr .
(b) A = 〈y, Z(G)〉 is an abelian normal subgroup of G with A/Z(G) = 〈y Z(G)〉 ∼=

Zpr .
(c) Define G0 = {w : [w, y] = eG}. Then G0 is a normal subgroup of G with

G/G0 = 〈xG0〉 ∼= Zpr . A < G0 is central.

Proof Proof of Part (a): Pick any y ∈ Z1(G) \ Z(G). By Lemma 21, [G, y] is a
subgroup contained in the center Z(G). Since the center of G is assumed to be cyclic,
[G, y] is cyclic as well, hence [G, y] ∼= Zpr for some natural number r , since G is a
p-group. The case r = 0 is equivalent to [G, y] = {e}, or y ∈ Z(G), contrary to the
choice of y. The existence of z and x is then obvious.

Proof of Part (b): It is clear that A is an abelian subgroup of G. Fixing w ∈ G, and
appealing to Lemma 21, we obtain

w−1yw = [

w, y−1]y = [w, y]−1
︸ ︷︷ ︸

∈Z(G)

y ∈ A.

This implies that 〈y, Z(G)〉 is normal. To complete the proof of Part (b), we show that
y Z(G) has order pr in G/Z(G). In order to see this, we use Lemma 21 to compute
[x, yl ] = [x, y]l = zl 
= eG for 1 ≤ l < pr , by choice of z. This shows in particular
yl /∈ Z(G).

On the other hand, assuming y pr
/∈ Z(G)would entail the existence ofw ∈ G with

eG 
= [w, y pr ] = [w, y]pr
. This would imply that [w, y] ∈ [G, y] has order > pr ,

which contradicts (a).
Proof of Part (c): Note that by definition, G0 is the kernel of the homomorphism

[·, y] : G → Z(G), which has image [G, y], generated by z = [x, y]. Hence G0 is
a normal subgroup, and 〈xG0〉 = G/G0 ∼= 〈z〉 ∼= Zpr follows by the first homomor-
phism theorem. y is central in G0 by definition of the latter, and Z(G) ⊂ G0 is central
even in G, hence A = 〈y, Z(G)〉 is central in G0. ��
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Remark 23 We note that the case [G, y] � Z(G) may well occur. For a concrete
example, fix a prime number p and consider G = Zp × Zp × Zp2 , with group law

(k, l, m) · (k′, l ′, m′) = (k + k′, l + l ′, m + m′ − pl ′k).

The center of this group is given by {0} × {0} × Zp2 , whereas [G, y] = 〈(0, 0, p)〉.
The notation of the lemma suggests that the group H = 〈x, y, z〉, for x, y, z from

Lemma 22 is isomorphic to a Heisenberg group. Note that the analogous statement in
the Lie group case, i.e. that the closed subgroup associated to the Lie subalgebra gener-
ated by X , Y , Z is isomorphic to the three-dimensional Heisenberg group, holds true.
The next example shows however that the p-group case is more diverse. Nevertheless
the Schrödinger representations from Example 1 constitute important basic building
blocks in our inductive strategy to establish phase retrieval for more general p-groups,
and the following example is intended to shed some light on this phenomenon.

Example 24 Let H = Hpr denote a finite Heisenberg group associated to the cyclic
group Zpr , as given by (1) and (2). Define x = (1, 0, 0), y = (0, 1, 0) and z =
(0, 0,−1). Then one has Z(H) = 〈z〉 = Z0,

Z1(H) = H = 〈x, y, z〉 = 〈x, y〉,

and [x, y] = z, as well as all the other properties from Lemma 22. It is tempting to
assume that the relations in this lemma already characterize H up to isomorphism.

But this is not the case. For the construction of a counterexample, fix a prime number
p and an integer r ≥ 1. Consider the group G = Zp2r × Zpr , with group law

(k, l)(k′, l ′) = (k + (1 − lpr )k′, l + l ′), 0 ≤ k, k′ < p2r , 0 ≤ l, l ′ < pr , (17)

where the operations on the right-hand side are taken modulo p2r , pr , respectively.
Using

(1 − lpr )(1 − l ′ pr ) ≡ 1 − (l + l ′)pr mod p2r ,

one easily verifies that (17) is a well-defined group law. We let x = (0, 1), y = (1, 0)
and z = (pr , 0), and obtain that Z(G) = 〈z〉 = Z0,

Z1(G) = G = 〈x, y, z〉 = 〈x, y〉 = 〈y〉 � 〈x〉,

as well as [x, y] = z.
Again, all remaining properties noted in Lemma 22 hold for x, y, z also. Nonethe-

less, G is clearly not isomorphic to the Heisenberg group H , since it contains elements
of order p2r .

In order to exhibit similarities of the newly constructed group to the Heisenberg
group case, we now determine certain irreducible unitary representations of G. Letting
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A = 〈y, z〉 = Zp2r × {0} ∼= Zp2r , we let ξ ∈ T be a root of unity of order p2r , and
define the associated character χξ ∈ ̂A as

χξ (k, 0) = ξ k, k = 0, . . . , p2r − 1.

The dual action of x on the characters is given by

xl ∗ χξ (k, 0) = χξ ((0,−l)(k, 0)(0, l)) = ξ k(1+lpr ) = χξ1+lpr (k, 0).

Now let ξ0 denote an arbitrary primitive root of order p2r . Thenwe have for 0 ≤ l < pr

that

ξ
(1+lpr )
0 = ξ0 ⇐⇒ ξ

lpr

0 = 1 ⇐⇒ l = 0,

i.e., the stabilizer of ξ0 under the dual action is trivial.
We now considerπ = indG

Aχξ0 . ByMackey’s theorem,π is an irreducible represen-
tation, and since 〈y, z〉 is a normal subgroup, we can realize π on l2(G/A) = l2(〈x〉)
by the formula from page 79 of [11], which yields

[

π
(

yk xl)ϕ
]

(

x j ) = χξ0

(

x− j yk x j )ϕ
(

x j−l).

Since [x, y] = z, x− j
(

yk
)

x j = yk z−k j , and we obtain

[

π
(

yk xl)ϕ
]

(

x j ) = χξ0

(

yk z−k j )ϕ
(

x j−l)

= ξ k
0 ξ

−k j
1 ϕ

(

x j−l)

where ξ1 = ξ
pr

0 is a primitive root of order pr . This observation may be rephrased as

π
(

yk xl) = α(k, l)Mk Tl ,

with α(k, l) ∈ T. This shows that, even though G and H are clearly non-isomorphic,
the operators in the realization of π differ from a Schrödinger representation only by
scalar factors, and Lemma 4 (c) entails that the vectors doing phase retrieval for π are
precisely the ones that do phase retrieval for the Schrödinger representation.

The next definition introduces a bookkeeping device, intended to describe the
construction of an arbitrary irreducible representations by repeated induction steps.

Definition 25 Let G denote a p-group, and π an irreducible, faithful representation
of G. (G0, r , τ ) is called a K-triple for π if r ∈ N, G0 � G, τ is a representation of
G0 such that π � indG

G0
τ , and there exist x ∈ G, y ∈ Z1(G)\Z(G) and z ∈ Z(G)

with the following properties:

(i) [x, y] = z, and 〈z〉 = [G, y] ∼= Zpr .
(ii) G0 is the centralizer of y.
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(iii) G/G0 = 〈xG0〉 ∼= Zpr .

The K-triple is called split, if x can be chosen such that x pr = e.

It is easy to see that a K-triple (G0, r , τ ) is split if and only if the short exact
sequence

1 → G0 → G → G/G0 → 1

splits, i.e. when G is the inner semidirect product G0 � 〈x ′〉 for a suitable choice of
x ′. Here the “only if”-part is clear. For the converse, assume that a K-triple (G0, r , τ )

is given, and that in addition G = G0 � 〈x ′〉 for a suitable choice of x ′. This entails in
particular that x ′ has order pr . Since G0 is by definition the kernel of the homomor-
phism [·, y] : G → 〈z〉, we get that s �→ [(x ′)s, y] ∈ 〈z〉 is onto, hence z′ = [x ′, y]
fulfills 〈z′〉 = 〈z〉. This shows that x ′, y, z′ ∈ G have the properties required of x, y, z
in Definition 25 to show that (G0, r , τ ) is a split K-triple.

The following lemma provides a central result for our inductive approach. It is the
p-group analog to Step 1 in the proof of Theorem 12, and its proof is remarkably
similar to the proof for the Lie group setting.

Lemma 26 Let G denote a nonabelian p-group, and π a faithful irreducible
representation of G. Then there exists a K-triple for π .

Proof Since π is irreducible, π(Z(G)) is a (finite) subgroup of the torus. It follows
that π(Z(G)) is cyclic, and by faithfulness of π , this entails that Z(G) is cyclic.
Hence Lemma 22 is applicable, and we obtain the group elements x, y, z, as well as
the normal subgroup G0 and r ∈ N such that the properties (i)–(iii) from Definition
25 are fulfilled. It therefore remains to prove the existence of τ . Note that G0 is the
centralizer of y by its definition in part (c) of the lemma.

Let A = 〈y, Z(G)〉. Then A is an abelian normal subgroup of G. Note that this fact
can be concluded from the choice according to Lemma 22, but it also follows from
z = [x, y] ∈ Z(G) and the choice of G0 as centralizer of y. In a similar way, A is
seen to be central in G0.

For any given unitary character χ of A, G acts on χ via the dual action which is
defined as follows. For arbitrary g ∈ G and a ∈ A, [g	χ ] (a) = χ

(

g−1ag
)

. Let
Gχ = {g ∈ G : g	χ = χ} be the stabilizer of χ and let

˜Gχ = {

τ ∈ ̂Gχ : τ |A is a multiple of χ
}

,

where ̂Gχ denotes the set of (equivalence classes of) irreducible representations ofGχ .
For τ ∈ ˜Gχ , πτ = indG

Gχ
(τ ) is an irreducible representation of G. In fact, according

to the theory of Mackey [11, Theorem 4.22], every irreducible representation of G is
of this form.

Hence π � indG
Gχ

(τ ) for suitable χ ∈ ̂A and τ ∈ ˜Gχ . The proof is finished when
we have shown that Gχ = G0. By condition (ii), A is central in G0, which means that
the conjugation action of G0 on A is trivial. The same then follows for the dual action
on ̂A, which establishes G0 ⊂ Gχ .
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In order to show the reverse inclusion, we take a closer look at the dual action of
x and its powers. By Lemma 8 applied with Z = Z(G) and N = G0, the characters
obtained by restricting either π or τ to Z(G) must coincide. By assumption, π is
faithful, hence τ |Z0 is faithful. Since Z0 = 〈z〉, we get that τ(zk) = ξ k , for a suitable
pr th root of unity ξ ∈ T. In fact, faithfulness requires that ξ is a primitive root of unity
of order pr , i.e. ξ k = 1 holds iff pr divides k, for all k ∈ Z.

Since y ∈ Z1(G), we can appeal to Lemma 21 to compute x−m yxm =
[xm, y−1]y = z−m y which leads to

(xm	χ)(y) = χ(z−m)χ(y) = ξ−mχ(y).

Hence xm	χ = χ entails ξ−m = 1, and since ξ is a primitive root of order pr , this
only happens for m ∈ pr

Z.
By (iii), every g ∈ G can be factored uniquely as g = xm g0, with g0 ∈ G0 ⊂ Gχ

and 0 ≤ m < pr . This implies that

χ = g	χ = xm	χ

holds iff m = 0, or equivalently, iff g ∈ G0. This proves G0 = Gχ and thus π �
indG

G0
τ . ��

We next provide an explicit description of the representation π in terms of the data
provided by a K-triple. It is again quite analogous to the Lie group case, but this time
the analogy requires an additional assumption (which is automatic in the Lie group
setting), namely that the group extension 1 → G0 → G → G/G0 → 1 splits.

Lemma 27 Let G denote a p-group, and π an irreducible, faithful representation of G,
with a split K-triple (G0, r , τ ). Let x, y, z ∈ G denote the group elements associated
to the triple according to Definition 25, with the property x pr = e.

(a) Let W ⊂ G0 denote a system of representatives modulo 〈{y} ∪ Z(G)〉. Then every
element g ∈ G has a unique factorization

g = z′ykwxl , z′ ∈ Z(G), k, l ∈ {0, . . . pr − 1}, w ∈ W .

(b) The representation indG
G0

τ acts in the Hilbert space l2
(

Zpr ,Hτ

)

by the formula

[

π
(

ykwxl)ϕ
]

( j) = ξ k
1 ξ

−k j
2 τ

(

x− jwx j )ϕ( j − l),

where ξ1 ∈ T is a suitable root of unity, and ξ2 is a primitive root of unity of order
pr .

Proof Part (a) follows from properties (i)–(iii), and the choice of W .
For part (b), we use the semidirect product structure G = G0 � 〈x〉, and again

appeal to the realization of induced representations for semidirect products, elaborated
on [11, p. 79]. We identify the quotient G/G0 with the cyclic group Zpr , using the
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identification x j G0 �→ j . Letting w ∈ W and ϕ ∈ l2
(

Zpr ,Hτ

)

, we get by the cited
result that

[

π
(

ykwxl
)

ϕ
]

( j) = τ
(

x− j
(

ykw
)

x j
)

ϕ ( j − l)

for (k, w, l) ∈ Zpr × W ×Zpr , j ∈ Zpr . Since [x, y] = z,we get x− j yk x j = yk z−k j

and

π
(

ykwxl
)

ϕ
(

x j
)

= τ
(

x− j yk x j
)

◦ τ
(

x− jwx j
)

ϕ ( j − l)

= χ
(

yk z−k j
)

· τ
(

x− j (w) x j
)

ϕ ( j − l)

= χ
(

yk
)

· χ
(

z−k j
)

· τ
(

x− jwx j
)

ϕ ( j − l) . (18)

Here χ : A → T denotes the character obtained by restricting the irreducible repre-
sentation τ to the central subgroup A. Since π is faithful, Lemma 8 implies that τ is
faithful on Z(G). Hence, as z has order pr , there exists a primitive root of unity ξ2 of
order pr such that

τ(zl) = ξ l
2.

Furthermore χ(yk) = ξ k
1 for a suitable root of unity, whose order is at most the order

of y. ��
Lemma 28 Let G denote a p-group, and π an irreducible, faithful representation of
G, with K-triple (G0, r , τ ). Let W ⊂ G0 denote a system of representatives modulo
〈{y} ∪ Z(G)〉, where y ∈ Z1(G) denotes the group element associated to the triple
according to Definition 25. Then there exist mappings α j : W → W and β j : W →
〈{y} ∪ Z(G)〉, j = 0, . . . , pr − 1 such that

∀ j = 0, . . . , pr − 1, ∀w ∈ W : x− jwx j = β j (w)α j (w).

In addition, α j is bijective.

Proof Since 〈y, z〉 is normal in G, it is invariant under conjugation with x j . Hence
this conjugation induces an automorphism of the quotient group G0/〈{y} ∪ Z(G)〉.
This in turn yields the factorization stated in the lemma, with a bijection α j . ��

We can now formulate a sufficient criterion for π to do phase retrieval, based on
suitable assumptions on the associated K-triple. The reasoning is rather similar to Step
5 in the proof of Theorem 12.

Lemma 29 Let G denote a p-group, and π an irreducible, faithful representation of
G, with a split K-triple (G0, r , τ ). Assume that τ does phase retrieval, and that π is
given by the realization from Lemma 27.
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(a) Assume that p0(τ ) < 1/2. If η1 ∈ l2(Zpr ) has the phase retrieval property for the
Schrödinger representation, and η2 ∈ Hτ has the phase retrieval property for τ ,
and additionally p0(τ, η2) < 1/2, the vector

η ∈ l2
(

Zpr ,Hτ

)

, η( j) = η1( j) · η2

does phase retrieval property for π . Such vectors exist.
(b) Pick any system W ⊂ G0 of representatives modulo 〈{y}∪ Z(G)〉, where x, y ∈ G

are associated to the K-triple according to Definition 25. Assume that

∀w ∈ W : α1(w) = w

holds, where α1 : W → W is the bijection from Lemma 28. If η1 ∈ l2(Zpr ) has
the phase retrieval property for the Schrödinger representation, and η2 ∈ Hτ has
the phase retrieval property for τ , the vector

η ∈ l2
(

Zpr ,Hτ

)

, η( j) = η1( j) · η2

has the phase retrieval property for π .

Proof We first derive formulae for matrix coefficients, which are valid for both cases
under consideration. Given η = η1 · η2 with η1 ∈ l2(Zpr ) and η2 ∈ Hτ , the matrix
coefficient of f ∈ l2(Zpr ,Hτ ) is computed in the following two-step procedure:
Using Lemma 27 for all k, l = 0, . . . , pr −1, with suitable choices of x, y, z ∈ G and
W ⊂ G0 as in the cited lemma, we have for all w ∈ W and all k, l = 0, . . . , pr − 1,

Vη f (ykwxl) =
pr −1
∑

j=0

〈

f ( j), τ (x− jwx j )η2

〉

ξ−k
1 ξ

k j
2 η1( j − l). (19)

This can be rephrased as the result of consecutive computations of matrix coef-
ficients with respect to τ and a (slightly modified version of) the Schrödinger
representation. For this purpose, we let

F : W × Zpr → C, F(w, j) = 〈 f ( j), τ (x− jwx j )η2〉 (20)

and note that

F(w, j) = V τ
η2

(

f ( j)
)(

x− jwx j ). (21)

Then Eq. (19) can be rewritten as

Vη f
(

ykwxl) = V 

η1

(F(w, ·))(k, l) (22)



47 Page 26 of 32 Journal of Fourier Analysis and Applications (2023) 29 :47

where

V 

η1

g(k, l) =
pr −1
∑

j=0

g( j)ξ−k
1 ξ

k j
2 η1( j − l).

This is just a matrix coefficient with respect to the Schrödinger representation from
Example 1, modified by multiplication with ξ−k

1 , and by replacing the powers of the
standard primitive pr th root of unity, given by e2π i/pr

, by powers of ξ2, which is a
primitive root of order pr as well, by Lemma 27(b). Hence, V 


η1g coincides with the
windowed Fourier transform of g with respect to η1 up to phase factors (independent
of g) and a permutation of coefficients. By Lemma 4(c), these operations do not affect
the phase retrieval property, hence our choice of η1 guarantees the phase retrieval
property for V 


η1 as well.
Now assume that f , h ∈ l2(Zr

p,Hτ ) are such that |Vη f | ≡ |Vηg| holds. We use F
from (20) and define H analogously as

H : W × Zpr → C, H(w, j) = 〈h( j), τ (x− jwx j )η2〉 (23)

Equation (22) gives for all w ∈ W

∣

∣

∣V 

η1

(F(w, ·))
∣

∣

∣ =
∣

∣

∣V 

η1

(H(w, ·))
∣

∣

∣ .

Since η1 does phase retrieval, we obtain the existence of a map

u : W → T, H(w, ·) = u(w)F(w, ·), ∀w ∈ W .

This implies for all j ∈ Zpr that

|H(·, j)| ≡ |F(·, j)|.

W ⊂ G0 is a system of representatives modulo the central subgroup 〈{y} ∪ Z(G)〉 of
G0, and the latter is contained in the projective kernel of τ . Hence Eq. (21) (and its
analog for H ) allows to rewrite the previous equation as follows, for all j ∈ Zpr :

∀g0 ∈ G0 :
∣

∣

∣V τ
η2

( f ( j))(x− j g0x j )

∣

∣

∣ =
∣

∣

∣V τ
η2

(h( j))(x− j g0x j )

∣

∣

∣ .

For fixed j ∈ Zpr , conjugation by x j is an automorphism of G0, hence we may
simplify this equation to

∣

∣

∣V τ
η2

( f ( j))
∣

∣

∣ =
∣

∣

∣V τ
η2

(h( j))
∣

∣

∣ .

Now the phase retrieval property of η2 implies the existence of a map

v : Zpr → T, ∀ j ∈ Zpr : h( j) = v( j) f ( j). (24)
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Note that this also entails, for all j , that

H(·, j) ≡ v( j)F(·, j).

Defining the set

C f = { j ∈ Zpr : f ( j) 
= 0}, (25)

(24) shows that the proof of phase retrieval boils down to showing that v is constant
on C f . This is achieved if we can show that for all j, j ′ ∈ C f there exists w ∈ W
such that

F(w, j) · F(w, j ′) 
= 0,

since then the reasoning finishing Step 5 in the proof of Theorem 12 can be easily
adapted to the finite setting: We obtain that

v( j)F(w, j) = H(w, j) = u(w)F(w, j), v( j ′)F(w, j ′) = u(w)F(w, j ′)

and F(w, j), F(w, j ′) can be cancelled to give v( j) = u(w) = v( j ′).
It is only at this stage that we need to distinguish the parts (a) and (b) of the lemma.

In the case of part (a), we recall that F(·, j) is the restriction toW of amatrix coefficient
with respect to the action of the representation τ on η1. By choice of W and η1, and in
view of Remark 17, the proportions of zero entries in F(·, j) and F(·, j ′) is therefore
< 1/2, for j, j ′ ∈ C f . Hence the pigeonhole principle yields the desired w ∈ W with
F(w, j)F(w, j ′) 
= 0.

In case (b) we have α j (w) = w for all j ∈ Zpr . Here all F(·, j) are restrictions of
matrix coefficients to W , with respect to the action of τ on η2. Now the phase retrieval
property of V τ

η2
entails via Lemma 4(b) that F(·, j) · F(·, j ′) 
≡ 0 holds for j, j ′ ∈ C f .

We close the proof by observing that in case (a), the existence of a vector η2 fulfilling
the assumptions of (a) is guaranteed by Lemma 20. ��

The next definition extends the bookkeeping device provided by K-triples, in order
to account for repeated applications of Lemma 29.

Definition 30 LetG be a p-group, andπ an irreducible representation. A full sequence
of K-triples associated to π is a sequence of triples (Hi , ri , τi ) with the following
properties: Let τ0 = π , K0 = ker(π0), H0 = G/K0, as well as Ki = ker(τi )

for i = 1, . . . , k. Then, for all 0 ≤ i < k, (Hi+1, ri+1, τi+1) is a K-triple for the
representation τ i of Hi/Ki induced by τi , and Hk/Kk is abelian.

Remark 31 Repeated application of Lemma 26 shows that every irreducible represen-
tation π has an associated full sequence of K-triples.

The sizes of the quotient groups are related by the estimate

|Hi+1/Ki+1| ≤ |Hi+1| = p−ri+1 |Hi/Ki |,
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which results from the fact that Hi+1 < Hi/Ki has index pri+1 . We further note
that Hk must be nontrivial: Recall that τ k−1 � indHk−1/Kk−1

Hk
τk is required to be

irreducible. In the case of a trivial subgroup Hk , this representation is just the left
regular representation of the (nontrivial) group Hk−1/Kk−1,which is never irreducible.

Hence Hk has cardinality at least p. As a consequence we get that the length k of
a full sequence of K-triples fulfills

1 + k ≤ logp |G|. (26)

Repeated applications of Lemma 29 requires control over properties of the asso-
ciated matrix coefficients, as quantified in p0(π). Since the quantity p0(π) is of
independent interest (see Remark 18), the following lemma is as well.

Lemma 32 Let G denote a nonabelian p-group, and π a faithful, irreducible repre-
sentation of G. Let (G0, r , τ ) denote a split K-triple associated to π . Then we have
the estimate

p0(π) ≤ p0(τ ) + pr − 1

p2r
.

Proof We use the realization of π from Lemma 27. Fix a system W ⊂ G0 of rep-
resentatives modulo 〈{y} ∪ Z(G)〉. Given a nonzero f ∈ l2(Zpr ,Hτ ), we intend to
estimate the proportions of zeros in the family (Vη f (ykwxl))k,l=0,...,pr −1,w∈W . Since
this is the restriction of Vη f to a system of representatives modulo the center of G,
the proportion of zeros of Vη f coincides with this quantity.

We pick η1 ∈ l2(Zpr ) and η2 ∈ Hτ , and let η = η1 · η2 ∈ l2(Zpr ,Hτ ). We recall
some notations and observations from the proof of Lemma 29, specifically

F : W × Zpr → C, F(w, j) = 〈 f ( j), τ (x− jwx j )η2〉 (27)

and the related formulas

F(w, j) = V τ
η2

( f ( j))(x− jwx j ), (28)

and

Vη f (ykwxl) = V 

η1

(F(w, ·))(k, l). (29)

We assume that η1, η2 are chosen such that

p0(σ, η1) = p0(σ ) = pr − 1

p2r
, p0(τ, η2) = p0(τ ),

where σ denotes the Schrödinger representation from Example 1, and the second
equality for p0(σ ) follows by Eq. (15). Note that this quantity is also an upper bound
for the proportion of zeros in V 


η1(g) for any nonzero vector g ∈ l2(Zpr ), by the same
reasoning as in the proof of Lemma 29: The matrix coefficients V 


η1g and V σ
η1

g differ
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up to a multiplication with phase factors and a permutation, none of which affects the
proportion of zeros.

Let

c0 = |{w ∈ W : F(w, ·) ≡ 0}|
|W | .

In view of (28) and (29) we have that

V π
η f (ykwxl) = 0

may occur for fixed w ∈ W and suitable k, l either if F(w, ·) ≡ 0, in which case it
holds for all k, l ∈ Zpr , or if F(w, ·) 
≡ 0 holds. In the latter case, the proportion of
zeros in V π

η f (ykwxl) for fixedw can be bounded using p0(η2, σ ). These observations
lead to the overall estimate

|{(k, w, l) : V π
η f (ykwxl) = 0}|

≤ |{w ∈ W : F(w, ·) ≡ 0}| · p2r + |{w ∈ W : F(w, ·) 
≡ 0}| · p2r p0(η2, σ ).

Dividing both sides of this inequality by |G/Z(G)| = |W |p2r yields

|{(k, w, l) : V π
η f (ykwxl) = 0}|

|G/Z(G)| ≤ c0 + (1 − c0)
pr − 1

p2r
≤ c0 + pr − 1

p2r
.

It therefore remains to prove

c0 ≤ p0(τ, η2) = p0(τ ). (30)

To see this, pick any j0 ∈ Zpr such that f ( j0) 
= 0; j0 exists since we assume f to be
nonzero. We can then estimate

|{w ∈ W : F(w, ·) ≡ 0}| ≤ |{w ∈ W : F(w, j0) = 0}|
= |{w ∈ W : V τ

η2
( f ( j0))(x− j0wx j0) = 0}|

≤ |W | · p0(τ, η2),

which proves (30), and finishes the proof of the lemma. ��
A straightforward inductive application of Lemma 29 now gives the following

result, which formulates a sufficient criterion for phase retrieval that can be checked
using a full sequence of K-triples.

Corollary 33 Let G denote a p-group. Assume that π is an irreducible representation
of G possessing a full sequence of K-triples (Hi , ri , τi ), for i = 1, . . . , k, that are all
split. If

k
∑

i=2

pri − 1

p2ri
<

1

2
,
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then π does phase retrieval.

Proof A downwards induction establishes

p0(τ j ) ≤
k

∑

i= j+1

pri − 1

p2ri
<

1

2
,

for all j = 1, . . . , k. Hence Lemma 29 (a) can be applied k times, and yields the
desired statement. ��

As an application of the corollary, we show that a simple size estimate on |G|
suffices to guarantee phase retrieval for all irreducible representations of G, if G has
exponent p.

Corollary 34 Assume that the p-group G has exponent p and fulfills |G| ≤ p2+p/2.
Then every irreducible representation of G does phase retrieval.

Proof First note that, p being a prime, the exponent p property is equivalent to stating
that every nontrivial group element has order p. Clearly this property is inherited
by quotients and subgroups. As a consequence, every K-triple is split and of type
(G0, 1, τ ), and this observation extends to all K-triples occurring in a full sequence
associated to an irreducible representation π .

Let k denote the length of such a full sequence of K-triples. By Eq. (26) and the
assumption on |G| we have

k ≤ logp |G| − 1 ≤ 1 + p/2.

Using that all exponents in the sequence of K -triples equal one, the computation

k
∑

i=2

p − 1

p2
= (k − 1)

p − 1

p2

≤ (logp |G| − 2) · p − 1

p2
≤ p

2
· p − 1

p2
<

1

2
.

shows that Corollary 33 applies, and yields the result. ��
Remark 35 It is quite possible that the requirement concerning split K-triples reflects a
shortcoming of our proof method, rather than being an objective obstacle for the phase
retrieval property. Understanding the precise relationship between these properties
remains to be investigated in future work.

Given that it is currently unclear which irreducible representations π of a general
p-group have an associated sequences of K-triples that are also split, the true scope of
Corollary 33 is not yet fully understood. However, Corollary 34 exhibits one general
class to which Corollary 33 applies, and it is already quite sizeable: According to [17],
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the number of p-groups of order p8 and exponent p, for primes p > 7, is given by
the formula

p4 + 2p3 + 20p2 + 147p + (3p + 29) gcd(p − 1, 3) + 5 gcd(p − 1, 4) + 1246,

and Corollary 34 guarantees the phase retrieval properties for arbitrary irreducible
representations of these groups, as soon as p ≥ 13. The enumeration and systematic
construction of p-groups with specific properties is still an ongoing endeavour, and
therefore the emergence of further general classes which can be treated with Corollary
33 seems quite plausible.

In any case, we expect that Corollary 33 can be employed for the systematic
construction of p-groups and associated representations with particular interesting
properties. One such property is the nilpotency class of G: Observe that the size
restriction |G| ≤ p2+p/2 entails a restriction on the length of the central series, and
therefore on the nilpotency class of G. However, we conjecture that for any prime
number p there exist p-groups G of arbitrarily large nilpotency class and/or size,
and irreducible representations of G doing phase retrieval. A proof of this conjecture
via Corollary 33 would be achieved by constructing sequences of split K-triples of
arbitrary length k, with sufficiently large exponents r1, . . . , rk .

Concluding Remarks

While the statements of our main results were existence results for vectors doing phase
retrieval, the inductive methods employed to prove these results provide access to the
explicit construction of such vectors.

In the Lie group case, this can be formulated in a rather satisfactory way. If
one follows the inductive construction of an arbitrary irreducible representation by
repeated applications of Kirillov’s lemma and induction of representations, the canon-
ical identification of Hilbert spaces L2(R, L2(Rk)) ∼= L2(Rk+1) ultimately provides a
realization ofπ onR

m for a suitablem ≥ 1.By tracing the inductive construction of the
vector η doing phase retrieval in Step 3, one can employ a Gaussian for η1 at each step.
In the identification L2(R, L2(Rk)) ∼= L2(Rk+1) one obtains η(t, u) = η1(t)η2(u),
and a simple induction yields that η is a Gaussian, as well.

This leads to the fundamental observation that every irreducible representation of an
arbitrary simply connected, connectednilpotentLie grouphas an explicitly computable
realization on L2(Rm), for suitable m, in which Gaussian vectors do phase retrieval.

In the finite group case, the setting is somewhat more involved, even assuming
that all elements in a full sequences of K-triples are already known to be split: Note
that the corresponding induction step in Lemma 29 requires choosing a vector η2 that
guarantees phase retrieval and p0(τ, η2) < 1/2, and combining it with a vector η1
doing phase retrieval for the Schrödinger representation. Here the proof of Lemma 32
estimating p0(τ, η2) relies on the same procedure to construct η from η1 and η2. That
means that the vectors η simultaneously guaranteeing the estimates in Lemma 32 and
phase retrieval can be constructed inductively as well, as soon as one can solve the
following, currently open problem: Are there explicit constructions of vectors η for
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the Schrödinger representation which simultaneously have the phase retrieval and full
spark property?
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