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Abstract
We study the phase retrieval problem for the short-time Fourier transform on the
groupsZ,Zd andR

d . As is well-known, phase retrieval is possible once the windows’s
ambiguity function vanishes nowhere.However, there are only few results forwindows
that fail to meet this condition. The goal of this paper is to establish new and complete
characterizations for phase retrieval with more general windows and compare them to
existing results. For a fixed window, our uniqueness conditions usually only depend on
the signal’s support and are therefore easily comprehensible. In the discrete settings,
we also provide examples which show that a non-vanishing ambiguity function is not
necessary for a window to do phase retrieval.

Keywords phase retrieval · Short-time Fourier transform · Ambiguity function ·
Paley–Wiener theorem · Hardy spaces
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1 Introduction

We are interested in the phase retrieval problem for the short-time Fourier transform
(STFT) on Z, Zd and R

d . More precisely, we try to investigate whether a signal
f ∈ L2(G) is uniquely determined (up to a global phase factor) by the measurement
|Vg f |, where g ∈ L2(G) is a known window and G ∈ {Z, Zd , R

d}. Here, the STFT
is defined by
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Vg f (k, z) =
∑

j∈Z
f j g j−k z

− j (k ∈ Z, z ∈ C, |z| = 1), (1)

Vg f (k, l) =
d−1∑

j=0

f j g j−ke
−2π i jl/d (k, l ∈ {0, . . . , d − 1}) or (2)

Vg f (x, ω) =
∫

Rd

f (t)g(t − x)e−2π i〈t,ω〉 dt (x, ω ∈ R
d) (3)

for elements f and g of �2(Z), C
d or L2(Rd) respectively.

Applications of this specific phase retrieval problem include speech processing
[12] and ptychography [10]. For a more general overview of phase retrieval and its
applications, we refer the interested reader to the review paper [15].

For a fixed window g, the goal of this paper is to determine which signals f can
be recovered from the measurement |Vg f | (up to global phase). The common ground
among all our results is that they are quite easy to understand since they usually only
involve elementary connectedness conditions on the signal’s support.

It is already well-known that disconnectedness causes non-trivial ambiguities or
at least instabilities for phase retrieval, both in the discrete [5, 11, 21, 23] and the
continuous setting [4, 16]. There are also converse statements, i.e., assumptions on
connectedness that lead to uniqueness results, most notably [5, Corollary 2.5] (see
Theorem 2.2.3 below). However, uniqueness for STFT phase retrieval is still far from
being completely understood.

The main tool in our approach is the observation that the given phase retrieval prob-
lem essentially reduces to the analysis of the so-called ambiguity functions V f f and
Vgg. More precisely, it is crucial to determine whether the signal f can be recovered
from the restriction of V f f to the support of Vgg.

This is one of the most prominent insights into STFT phase retrieval and has the
well-known consequence that all signals can be uniquely recovered (up to global
phase) once the window’s ambiguity function vanishes nowhere [8, 15, 16].

The so-called ambiguity function relation (see equation (4) below) has also been
used in a more direct way in [6] in order to analyze phase retrieval for windows
whose ambiguity functions potentially have much smaller supports. Here, the authors
have proven uniqueness for bandlimited signals for the case of windows that are non-
vanishing only on one or two line segments. In contrast, we usually consider larger
signal classes, which (sometimes) comes at the cost of having to be slightly more
restrictive on the window.

Finally, note that similar results can also be obtained using different proof methods,
e.g., for the discrete setting in [8,Theorem2.4] by applicationof the so-calledPhaseLift
operator.

1.1 Structure of the Paper

The paper is organized as follows: In Sect. 2, we recall some common tools for STFT
phase retrieval which can be applied uniformly among the various settings.



Journal of Fourier Analysis and Applications (2023) 29 :53 Page 3 of 35 53

After that,we specify to the three settings of interest (i.e.,Z,Zd andR
d ) in Sects. 3, 4

and 5 respectively. Phase retrieval onZ is by far the easiest of the three. Using standard
methods from complex analysis, we provide a full characterization of phase retrieval
for windows that are either one-sided or of exponential decay (Theorem 3.1.7).

For the finite-dimensional setting (i.e., in Zd ), we first examine whether a non-
vanishing ambiguity function of the window is a necessary condition for (global)
phase retrieval, which we prove to be false in every dimension d ≥ 4 (Corollary
4.1.7). Afterwards, we restrict ourselves to short windows and prove a uniqueness
result for a certain class of sparse signals (Theorem 4.2.8).

For the continuous setting (i.e., in R
d ), we face an additional challenge. While the

ambiguity function can be controlled when making certain assumptions on the win-
dow, the recovery of the signal cannot be performed as easily as within the discrete
settings since most of the information has to be understood in an “almost everywhere”
sense. Again, we find a complete characterization of phase retrieval for one-sided
windows (in dimension one) and for windows of exponential decay (Theorem 5.1.8).
In contrast to the discrete setting, the proof involves a fair amount of measure the-
ory. Finally, we apply our characterization to some examples (Sect. 5.4), including
compactly supported windows.

1.2 Notation

We conclude this section by fixing some basic notation.
For d ≥ 2, let Zd := Z/dZ be the cyclic group of order d. We usually consider

d ∈ N in order to treat the group R
d simultaneously. Note however that we always

assume implicitly that d ≥ 2 whenever considering Zd . We frequently identify Zd ∼=
{0, . . . , d − 1} and accordingly write x ∈ L2(Zd) ∼= C

d as x = (x0, . . . , xd−1)
t .

However, we still think of x ∈ L2(Zd) as a d-periodic signal, such that the evaluation
x j is well-defined for every j ∈ Z.

For p ≥ 1, with a slight abuse of notation, we always think of f ∈ L p
(
R
d
)
as

a measurable, p-integrable function f : R
d → C. On C

d , �2(Z) and L2
(
R
d
)
, we

choose the standard inner products

〈x, y〉 :=
d−1∑

j=0

x j y j , 〈a, b〉 :=
∑

j∈Z
a jb j and 〈 f , g〉 :=

∫

Rd
f (t)g(t) dλ(t)

for x, y ∈ C
d , a, b ∈ �2(Z) and f , g ∈ L2(Rd) respectively.

We let T := {z ∈ C | |z| = 1} be the torus and define the Fourier transform of
x ∈ C

d , a ∈ �1(Z) and f ∈ L1(Rd), evaluated at 0 ≤ l ≤ d − 1, z ∈ T and ω ∈ R
d

respectively by

(FZd x)l :=
d−1∑

j=0

x j e
−2π i jl/d, (FZa)(z) :=

∑

j∈Z
a j z

− j and

(FRd f )(ω) :=
∫

Rd
f (t)e−2π i〈t,ω〉dt
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and omit the subscript whenever it is clear from the context or when treating multiple
settings simultaneously. For k ∈ Z, we define the translation operator by (Tkx) j =
x j−k for both x ∈ C

d and x ∈ C
Z. Analogously, we let (Tt f )(x) = f (x − t)

for all t ∈ R
d and all measurable functions f : R

d → C. We use the notation
supp(x) to denote the support of x ∈ C

d or x ∈ C
Z as well as supp( f ) to denote

the essential support of f ∈ L2(Rd), i.e., the intersection of all closed sets A ⊆ R
d

satisfying f |Ac ≡ 0 almost everywhere. In particular, supp( f ) is closed and we have
supp( f ) = supp(h) whenever f and h agree almost everywhere. It is also easy to
show that in fact, f ≡ 0 holds almost everywhere on R

d \ supp( f ). For G ∈ {Zd , Z}
and z ∈ G, we define δz : G → C to equal the characteristic function χ{z}.

For r > 0, z0 ∈ C and x0 ∈ R
d , we define the disk Kr (z0) := {z ∈ C | |z−z0| < r}

as well as the ball Br (x0) := {x ∈ R
d | ‖x − x0‖∞ < r}. Additionally, we define the

annulus Ar (z0) := {z ∈ C | r−1 < |z − z0| < r} when r > 1.
Finally, we let λ denote the Lebesgue measure on R

d and for two measurable sets
A, B ⊆ R

d , we say that A has full measure in B iff λ(B \ A) = 0.

2 Fundamentals of STFT Phase Retrieval

The goal of this section is to collect some common tools for STFT phase retrieval.
In order to treat the three settings of interest uniformly, let G ∈ {Z, Zd , Rd}. We let
Ĝ denote the dual group of G which is given by Ẑ = T, Ẑd = Zd and R̂d = R

d

respectively. The short-time Fourier transform of a signal f ∈ L2(G) with respect to
a window g ∈ L2(G) is then defined by

Vg f (x, ω) = F ( f · Txg
)
(ω)

for all x ∈ G, ω ∈ Ĝ, which results in the explicit formulae (1)–(3).

2.1 The Phase Retrieval Problem

For fixed g, the phase retrieval problem associated with the STFT tries to recover a
signal f from the phaseless measurement |Vg f |. Since the STFT is linear in f , we
immediately obtain |Vg f | = |Vg(γ f )| for every γ ∈ T. Thus, there is only a chance
to recover f up to a global phase factor. With that in mind, we call f phase retrievable
w.r.t. g iff the statement

∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ ⇒ f̃ = γ f for some γ ∈ T

holds true for every f̃ ∈ L2(G).
We say that the window g does phase retrieval iff every f ∈ L2(G) is phase

retrievable w.r.t. g.

Remark 2.1.1 For y ∈ G, it follows immediately from the definition that f is phase
retrievable w.r.t. g if and only if it is phase retrievable w.r.t. Tyg. Letting (Ih)(x) :=
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h(−x) for all h ∈ L2(G) and x ∈ G, this is also equivalent to I f being phase
retrievable w.r.t. Ig.

A common approach for phase retrieval is based on the so-called ambiguity function
relation

F
(∣∣Vg f

∣∣2
)

(ω, x) = cG · V f f (−x, ω) · Vgg(−x, ω) (4)

which holds for all (x, ω) ∈ G × Ĝ [6, 15, 16]. Here, cG > 0 denotes a constant and
F denotes the Plancherel transform on the product G × Ĝ. Note that the term on the
left-hand side is well-defined since |Vg f | ∈ L2(G × Ĝ) [13]. Additionally, we have
cG = 1 when G ∈ {Z, R

d} and cG = d when G = Zd . Directly from the definition
of the STFT, we can also derive the symmetry relations

Vhh(−k, z−1) = z−k · Vhh(k, z),

Vhh(−k,−l) = e−2π ikl/d · Vhh(k, l) and

Vhh(−x,−ω) = e−2π i〈x,ω〉 · Vhh(x, ω)

(5)

for h ∈ �2(Z), h ∈ C
d or h ∈ L2(Rd) respectively.

Remark 2.1.2 When G = R
d , the function (x, ω) �→ eπ i xωVhh(x, ω) is usually

referred to as the ambiguity function of a signal h ∈ L2(Rd). However, in order
to introduce a coherent terminology between the various settings, we use the term
“ambiguity function” for the non-modulated version Vhh where h ∈ L2(G).

Using the notation

	g := {(x, ω) ∈ G × Ĝ
∣∣ Vgg(x, ω) �= 0

}

for g ∈ L2(G), equation (4) implies the following lemma.

Lemma 2.1.3 A signal f ∈ L2(G) is phase retrievable w.r.t. a window g ∈ L2(G) if
and only if the statement

V f f |	g = V f̃ f̃ |	g ⇒ f̃ = γ f almost everywhere for some γ ∈ T

holds true for every f̃ ∈ L2(G).

Since it is well-known that the full ambiguity function V f f determines f up to a
global phase factor, we obtain the following theorem [8, 15, 16].

Theorem 2.1.4 Let g ∈ L2(G) and suppose that 	g is a set of full measure in G × Ĝ.
Then, g does phase retrieval.

Even for windows which do not satisfy the assumption of Theorem (2.1.4), we can
use Lemma (2.1.3) in order to deduce phase retrieval results along the following steps:

(1) Provide conditions on a window g that allow to characterize the corresponding
set 	g .
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(2) Based on the knowledge of 	g , provide conditions on a signal f that allow to
decide whether f is phase retrievable w.r.t. g.

This strategy has previously been used in [6], where the authors provide uniqueness
results for bandlimited signals requiring only mild conditions on the window.

In this paper, we intend to formulate the conditions in (1) and (2) mostly in terms
of the supports of f and g in order for the ensuing results to be easily understandable.

Remark 2.1.5 Note that the results stated in this subsection can also be formulated on
general σ -compact, metrizable LCA groups by using Fourier analysis on groups [26].

2.2 Phase Retrieval and Connectedness

It is a well-known fact [4, 5, 11, 16, 21, 23] that phase retrieval crucially depends
on certain types of connectedness of the signal. The goal of this paper is to provide
uniqueness results for phase retrieval that revolve around this observation. In this
subsection, we outline the principal idea, which has already featured prominently in
[5, 15, 23].

Fix a window g and assume that x ∈ G is such that (x, ω) ∈ 	g holds for almost
every ω ∈ Ĝ. By Lemma 2.1.3 and the injectivity of the Fourier transform, we may
then use the function f · Tx f for the recovery of the signal f . Specifically for x = 0,
this corresponds to | f |2. When G is discrete (i.e., G ∈ {Z, Zd}), phase retrieval may
then (intuitively) be performed using the following two steps.

(1) Fix a phase for f at some y ∈ G satisfying f (y) �= 0.
(2) Propagate the phase along G using the information about f · Tx f for various

x �= 0.

Obviously, we will lose the phase information when coming across zeros of f within
step (2).At this point, the role of connectedness becomes evident. Let usmake thismore
precise by considering the set Dg := {x ∈ G | g · Txg �≡ 0

}
. Clearly, forG ∈ {Z, Zd},

it follows Dg = {y − z | y, z ∈ supp(g)}. For G = R
d , note that 0 ∈ Dg holds true

whenever g �= 0. Additionally, continuity of Vgg implies that Dg is open. (At least
for compactly supported g, this has also been observed in [18].) Now, we make the
following definition.

Definition 2.2.1 Consider a subset M ⊆ G as well as a signal f ∈ L2(G) and a
window g ∈ L2(G).

(a) Two elements j, k ∈ M are called g-connected and we write j ∼g k iff there
exist l0, . . . , ln ∈ M satisfying l0 = j , ln = k and lm+1 − lm ∈ Dg for every
0 ≤ m < n.

(b) Clearly, ∼g defines an equivalence relation on M . The equivalence classes of M
are called g-connected components of M and M is called g-connected iff there
exists at most one g-connected component.

(c) f is called g-connected iff supp( f ) is g-connected. The g-connected components
of supp( f ) are called g-connected components of f .
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With this definition, we immediately obtain the following necessary condition for
phase retrieval.

Lemma 2.2.2 Let f , f̃ , g ∈ L2(G) and let (Cm)m∈I be the g-connected components
of f .

(a) If supp
(
f̃
)

= supp( f ) holds true and if for every m ∈ I , there exists γm ∈ T

satisfying f̃ |Cm = γm f |Cm almost everywhere, then
∣∣∣Vg f̃
∣∣∣ = |Vg f |.

(b) If f is phase retrievable w.r.t. g, then f is g-connected.

Proof (a) The given condition is a common way of creating counterexamples for
phase retrieval [4, 11, 16, 23]: Consider (x, ω) ∈ 	g , which implies x ∈ Dg . For
every y ∈ G, it follows that either at least one of the points y and y − x is not in
supp( f ) or that both points belong to the same connected component of supp( f ).

This readily implies f̃ · Tx f̃ = f · Tx f almost everywhere. Altogether, it follows

V f̃ f̃ |	g = V f f |	g and therefore
∣∣∣Vg f̃
∣∣∣ = |Vg f | by (4).

(b) For G ∈ {Z, Zd}, the statement follows immediately from a). For G = R
d , it

remains to show that every connected component is a set of positive measure.
Assume g �= 0, let m ∈ I and pick x ∈ Cm . Since Dg is open and satisfies
0 ∈ Dg , there exists an open neighborhoodU of 0 satisfyingU ⊆ Dg . SinceCm ⊆
supp( f ), it follows (by definition of the essential support) that (U+x)∩supp( f ) is
a set of positivemeasure.Now,U ⊆ Dg implies (U+x)∩supp( f ) = (U+x)∩Cm

and therefore, Cm must be of positive measure.
��

When G ∈ {Z, Zd}, there is also a converse statement under the assumption that
	g is a set of full measure in Dg × Ĝ. The following theorem has appeared for the
case G = Zd and Dg = {−L, . . . , L} for some L ≥ 0 in [5, Corollary 2.5]. The proof
for the general case is entirely analogous.

Theorem 2.2.3 Let G ∈ {Z, Zd} as well as f , g ∈ L2(G). Assume that 	g is a set of
full measure in Dg × Ĝ and let (Cm)m∈I be the g-connected components of f . Then,
the following statements hold true.

(a) A signal f̃ ∈ L2(G) satisfies
∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ if and only if supp

(
f̃
)

= supp( f )

and for every m ∈ I , there exists γm ∈ T satisfying f̃ |Cm = γm f |Cm .
(b) f is phase retrievable w.r.t. g if and only if f is g-connected.
(c) g does phase retrieval if and only if Dg = G.

The goal of Sects. 3 and 4 is to identify large window classes for which the assump-
tions of Theorem 2.2.3 are satisfied and provide sharp criteria for phase retrieval in
cases where the assumptions are not satisfied. As a special instance, we answer the
question whether 	g being of full measure in G × Ĝ is a necessary condition for
global phase retrieval. In Sect. 5, we prove an analogue of Theorem 2.2.3 for a large
window class in the case G = R

d .
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3 STFT Phase Retrieval on Z

In this section, we analyze phase retrieval on the group G = Z. Recall that in this
setting, the STFT is given by

Vg f (k, z) =
∑

j∈Z
f j g j−k z

− j (k ∈ Z, z ∈ T).

In Subsect. 3.1, we use Theorem 2.2.3 in order to prove a full characterization of phase
retrieval for one-sided as well as exponentially decaying windows. In Subsect. 3.2, we
provide an example of a window g ∈ �2(Z) doing phase retrieval despite the fact that
	g is not of full measure in Z × T.

3.1 Uniqueness Conditions for Phase Retrieval onZ

We begin by considering a finitely supported window g ∈ �2(Z). By Remark 2.1.1,
we may assume w.l.o.g. that supp(g) ⊆ {0, . . . , L} holds for some L ∈ N0. In this
case, it follows

Vgg(k, z) =
L∑

j=k

g j g j−k z
j = zk ·

L−k∑

j=0

g j+kg j z
j (6)

for all z ∈ T = T and all k ≥ 0. For every k ≥ 0 satisfying k ∈ Dg , at least one
coefficient of the polynomial

∑L−k
j=0 g j+kg j z j is nonzero and thus, the polynomial

can have at most L − k zeros (on T). By (5), it follows that g satisfies the assumption
of Theorem 2.2.3.

Corollary 3.1.1 Let g ∈ �2(Z) be finitely supported. Then, 	g is a set of full measure
in Dg × T.

In the case where supp(g) = {0, . . . , L}, there is also an easy interpretation of
connectedness: A signal f ∈ �2(Z) is g-connected iff its support is connected up to
“holes” of length at most L − 1.

As a generalization, we consider one-sided windows.

Definition 3.1.2 A window g ∈ �2(Z) is called one-sided if there exists K ∈ Z such
that g j = 0 either holds for all j ≤ K or for all j ≥ K .

By Remark 2.1.1, we may assume w.l.o.g. that supp(g) ⊆ N0. Clearly, finitely
supported windows are a special instance of one-sided windows. In the case of a
one-sided window, we obtain

Vgg(k, z) = zk
∞∑

j=0

g j+kg j z
j
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for all k ∈ N0 and all z ∈ T. Thus, we need to replace the polynomials from above by
the power series

Pk(z) :=
∞∑

j=0

g j+kg j z
j .

Clearly, Pk does not vanish identically on K1(0) whenever k ∈ Dg .
If we could assume that Pk converges on a slightly larger disk Kr (0) for some

r > 0, it would define a holomorphic function on the larger disk and therefore allow
only finitely many zeros on the compact set T. Unfortunately, this assumption does
not hold true in general. (Consider for instance g j := 1

j .) However, we are still able
to conclude that Pk(z) �= 0 holds for almost every z ∈ T. In order to do so, we need
some theory on Hardy spaces provided in [25].

Lemma 3.1.3 Let
(
c j
)
j∈N0

∈ �1 (N0) and define

h(z) :=
∞∑

j=0

c j z
j

for every z ∈ K1(0). Furthermore, assume that c j �= 0 holds for some j ∈ N0. Then,
h(z) �= 0 holds for almost every z ∈ T.

Proof We use the notation from [25]. First, h does not vanish identically on K1(0)
by assumption. Additionally, note that

(
c j
)
j∈N ∈ �1 (N0) ⊆ �2 (N0), which implies

h|K1(0) ∈ H2 by [25, Theorem17.12]. Now, the claim follows by [25, Theorem17.18].
��

Combining Lemma 3.1.3 with (5) and the fact that
(
g j+kg j

)
j∈N0

∈ �1(N0) holds
for every k ∈ N0, it follows that Corollary 3.1.1 generalizes to one-sided windows.

Corollary 3.1.4 Let g ∈ �2(Z) be one-sided. Then,	g is a set of full measure in Dg×T.

Finally, we consider the case of a general window g ∈ �2(Z). Here, we have to
replace the power series Pk by Laurent series

Lk(z) :=
∑

j∈Z
g j+kg j z

j .

In this case, the theory of Hardy spaces is no longer applicable. However, we may use
the initial idea to obtain a theorem that works under the assumption of slightly better
convergence. Therefore, we consider windows of exponential decay.

Definition 3.1.5 A window g ∈ �2(Z) is said to be of exponential decay if the series

∑

j∈Z
|g j |2eσ ·| j | (7)

converges for some σ > 0.
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Clearly, convergence of the series (7) implies convergence of the Laurent series
L0(z) on the annulus Aeσ (0). Additionally, by writing z = z1z2 where z1 := |z|1/2
and z2 := z

z1
and applying Hölder’s equality, convergence of L0(z) on Aeσ (0) already

implies convergence of Lk(z) on Aeσ (0) for every k ∈ Z.
Accordingly, in the case of an exponentially decaying window, each Lk defines a

holomorphic function on some annulus containingT and can thus have at most finitely
many zeros on T once k ∈ Dg .

Corollary 3.1.6 Let g ∈ �2(Z) be of exponential decay. Then,	g is a set of full measure
in Dg × T.

Combining Corollaries 3.1.4 and 3.1.6 with Theorem 2.2.3 yields the following
characterization for phase retrieval.

Theorem 3.1.7 Let g ∈ �2(Z) be either one-sided or of exponential decay. Further-
more, consider a signal f ∈ �2(Z) and let (Cm)m∈N be the g-connected components
of f . Then, the following statements hold true.

(a) A signal f̃ ∈ �2(Z) satisfies
∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ if and only if supp

(
f̃
)

= supp( f )

and for every m ∈ N, there exists γm ∈ T satisfying f̃ |Cm = γm f |Cm .
(b) f is phase retrievable w.r.t. g if and only if f is g-connected.
(c) g does phase retrieval if and only if Dg = Z.

Letting g(1)
j := 1

j for j ∈ N and g(1)
j := 0 for j ≤ 0 as well as g(2)

j := 2−| j | for all
j ∈ Z, we obtain two straightforward examples of windows doing phase retrieval.

3.2 Necessary Conditions for Global Phase Retrieval

To conclude this section, we want to discuss whether 	g being of full measure in
Z×T is not only a sufficient but also a necessary condition for g to do phase retrieval.
For both one-sided and exponentially decaying windows, we have already seen that
	g is of full measure in Dg × T. Since Dg = Z is necessary for phase retrieval, we
obtain the following statement.

Corollary 3.2.1 Let g ∈ �2(Z) be either one-sided or of exponential decay. Then, g
does phase retrieval if and only if 	g is a set of full measure in Z × T.

For general windows, this statement is no longer true. In order to see this, we first
state the following reconstruction result.

Theorem 3.2.2 Let f , f̃ ∈ �2(Z) and suppose that there exists an index k∗ > 0 such
that the following conditions hold true.

(i) It holds V f f (0, z) = V f̃ f̃ (0, z) for almost every z ∈ T.

(ii) For every k > k∗, it holds V f f (k, z) = V f̃ f̃ (k, z) for almost every z ∈ T.
(iii) It holds |Z(k)| ≥ 2k∗ − k + 1 for every 0 < k ≤ k∗ where
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Z(k) :=
{
z ∈ T

∣∣ V f f (k, z) = V f̃ f̃ (k, z)
}

.

Then, there exists γ ∈ T satisfying f̃ = γ f .

Proof W.l.o.g. assume f �≡ 0. From (i) and (ii), we obtain | f | =
∣∣∣ f̃
∣∣∣ as well as

f · Tk f = f̃ · Tk f̃ for every k > k∗ by Fourier inversion.

In the casewhere there exist j0, j1 ∈ supp( f ) = supp
(
f̃
)
satisfying j1− j0 ≥ 2k∗+1,

we fix γ := f̃ j0
f j0

. This implies f̃ j = γ f j for every j ≥ j0 + k∗ + 1 and in particular

f̃ j1 = γ f j1 . From the latter, we obtain f̃ j = γ f j for every j ≤ j1 − k∗ − 1 and since
j1 − k∗ − 1 ≥ j0 + k∗ holds by assumption, it follows f̃ = γ f .

Otherwise, assume w.l.o.g. that supp( f ) = supp
(
f̃
)

⊆ {0, . . . , 2k∗}. As in (6), there
exist polynomials Qk and Q̃k of degree 2k∗ − k satisfying

V f f (k, z) = zk · Qk(z) and V f̃ f̃ (k, z) = zk · Q̃k(z)

for all 0 < k ≤ k∗ and all z ∈ T. By (iii), Qk and Q̃k agree on a set of 2k∗ − k + 1
elements, which implies in turn that V f f (k, ·) and V f̃ f̃ (k, ·) agree on T. Together

with (i), (ii) and (5), we obtain that V f f and V f̃ f̃ agree (almost) everywhere, which

implies f̃ = γ f for some γ ∈ T. ��
Theorem 3.2.2 yields the following phase retrieval result.

Corollary 3.2.3 Let g ∈ �2(Z) be such that Dg = Z Furthermore, assume that there
exists k∗ ∈ N such that the set 	g,k := {z ∈ T | (k, z) ∈ 	g} is of full measure in T

whenever k = 0 or k > k∗. Then, g does phase retrieval.

Proof For 0 < k ≤ k∗, the fact that k ∈ Dg implies 	g,k �= ∅. By continuity of Vgg,
it follows that the set 	g,k is infinite. In particular, whenever f , f̃ ∈ �2(Z) satisfy
V f f |	g = V f̃ f̃ |	g , the assumptions of Theorem 3.2.2 are satisfied and it follows

f̃ = γ f for some γ ∈ T. By Lemma 2.1.3, g does phase retrieval. ��
Now we are ready to give an example of a window g doing phase retrieval despite

	g not being of full measure in Z × T.

Example 3.2.4 Let g ∈ �2(Z) be given by

g j :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−1)k√
π

· 1
j+1 if j = 2k for some k ∈ Z,

i
4 if j ∈ {1,−3},
1 if j = −1,

0 otherwise.

Then, the following statements hold true.
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(a) It holds Vgg(2, z) = 0 for every z ∈ T satisfying Im(z) < 0.
(b) g does phase retrieval.

Proof (a) Consider

F : T → C, eit �→
{
sin(t) if t ∈ (0, π),

0 otherwise.

Since F ∈ L2(T), there exists h ∈ �2(Z) satisfyingFh = F and since F ∈ L1(T),
we can compute h explicitly via h j = F̌( j)where the inverse Fourier coefficients
F̌( j) are given by

F̌( j) = 1

2π

∫ 2π

0
F(eit )ei j t dt = 1

2π

∫ π

0
sin(t)ei j t dt .

A straightforward calculation shows

F̌( j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i
4 if j = 1,

− i
4 if j = −1,

− 1
π

· 1
( j+1)·( j−1) if j is even,

0 otherwise

for every j ∈ Z, which coincideswith g j g j−2.We therefore obtain Vgg(2, ·) = F ,
which implies the statement in a).

(b) In order to apply Corollary 3.2.3, we show that 	k is a set of full measure in T

whenever k = 0 or k > 4. First, we compute

Vgg(0, z) =
∑

j∈Z
|g j |2z j = 1

16
z + 1

16
z3 + z + 1

π
·
∑

m∈Z

z2m

(2m + 1)2

and make the estimate

∣∣Vgg(0, z)
∣∣ = ∣∣Vgg(0, z) · z∣∣ =

∣∣∣∣∣
1

16
·
(
z2 + z2

)
+ 1 + 1

π
·
∑

m∈Z

z2m+1

(2m + 1)2

∣∣∣∣∣

≥ 1 − 1

8
·
∣∣∣Re
(
z2
)∣∣∣− 1

π
·
∣∣∣∣∣
∑

m∈Z

z2m+1

(2m + 1)2

∣∣∣∣∣

≥ 7

8
− 1

π
·
∑

m∈Z

1

(2m + 1)2
= 7

8
− π

4
> 0

for all z ∈ T. Thus, 	0 is of full measure in T. When k > 4 is odd, 	k is also of
full measure inT since Vgg(k, ·) is a polynomial. Finally, consider the case where
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k = 2l ≥ 6 is even. Here,

Vgg(k, z) =
∑

j∈Z
g j g j−2l · z j =

∑

m∈Z
g2mg2m−2l · z2m

= (−1)l

π
·
∑

m∈Z

z2m

(2m + 1) · (2m − 2l + 1)

holds for all z ∈ T. It is now easy to show that this can be rewritten for z /∈ {1,−1}
as

Vgg(k, z) = (−1)l

π
· z − z2l−1

2l
·

∞∑

m=0

z2m+1 − z2m+1

2m + 1
.

Using the series expansions of the principal branch Log of the logarithm, we can
additionally show that

∞∑

m=0

1

2m + 1
z2m+1 = 1

2
· (Log(1 + z) − Log(1 − z)) (8)

holds for every z ∈ K1(0) and we can then use the results on Hardy spaces from
[27] to show that (8) also holds for almost every z ∈ T. Altogether, we obtain

Vgg(k, z) = (−1)l

4lπ
· (z − z2l−1) · 2i Im(Log(1 + z) − Log(1 − z))

= (−1)l

2lπ
· (z − z2l−1) · (arg(1 + z) − arg(1 − z))

for almost every z ∈ T where arg denotes the principal branch of the argument.
Now, z − z2l−1 has only finitely many zeros in T and arg(1 + z) �= arg(1 − z)
holds for all z ∈ T \ {1,−1}. Therefore, 	k is of full measure in T. Finally, it is
clear that Dg = Z holds true and hence, g does phase retrieval by Corollary 3.2.3.

��

On the other hand, it remains an open question whether there exists a window g
not doing phase retrieval despite satisfying Dg = Z.

4 STFT Phase Retrieval on Zd

We proceed by considering the cyclic group G = Zd = Z/dZ for d ≥ 2. Throughout
this section, all indices as well as their sums and products are to be understood modulo
d, unless mentioned otherwise.
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Recall that the STFT takes the form

Vg f (k, l) =
d−1∑

j=0

f j g j−ke
−2π i jl/d (0 ≤ k, l ≤ d − 1)

in this setting.
In contrast to the previous section, we begin by analyzing necessity of the condition

	g = Zd × Zd for phase retrieval in Subsect. 4.1 in order to illustrate the wider range
of outcomes in the finite setting. Afterwards, we consider short windows and prove a
uniqueness result for a certain class of sparse signals.

4.1 Necessary Conditions for Global Phase Retrieval

Recall thatTheorem2.1.4 ensures that everywindow g ∈ C
d satisfying	g = G×Ĝ =

Zd ×Zd does phase retrieval. It is also well-known (see e.g., [8, Proposition 2.1]) that
this condition is fulfilled with probability 1 when the window g is picked randomly
with respect to complex normal distribution.

In this subsection, we want to discuss whether the condition 	g = Zd × Zd is also
necessary for g to do phase retrieval. We will see that this is indeed the case when
d ∈ {2, 3} but – more interestingly – not when d ≥ 4. Note that we already know
by [8, Proposition 2.3] that for each 0 ≤ k ≤ d − 1, there has to be at least one
0 ≤ l ≤ d − 1 (and 1 ≤ l ≤ d − 1 when k = 0) satisfying (k, l) ∈ 	g in order for g
to do phase retrieval.

Intuitively, one would also like to use general results like [7, Proposition 3.6] or
[9, Theorem 5.2] in order to establish a lower bound on |	g| for phase retrieval. Note
however that results of this type do not apply since we leave classical phase retrieval
territory when considering recovery from V f f |	g .

First, we adress the case d ∈ {2, 3}.
Theorem 4.1.1 Let d ∈ {2, 3}. If g does phase retrieval, then 	g = Zd × Zd .

Proof Assume that there exists (k, l) ∈ Zd ×Zd satisfying (k, l) /∈ 	g . When (k, l) =
(0, 0), it follows immediately that g = 0 and thus, g does not do phase retrieval. In
any other case, Table 1 provides an example of a pair ( f , f̃ ) such that f and f̃ are
not equal up to global phase but V f f and V f̃ f̃ agree on 	g . Note that (k, l) /∈ 	g

implies (−k,−l) /∈ 	g by (5). ��
Next, we give an example which shows that Theorem 4.1.1 is not correct for d = 4.

Example 4.1.2 Let g :=
(
1, 2, 1 + √

15i, 1
2 +

√
255
2 i
)t
. Then, Vgg(2, 2) = 0 but g

does phase retrieval.

Proof It is a straightforward calculation to show that 	g = Z4 × Z4 \ {(2, 2)}. In
particular, {0, 1, 3}×Z4 ⊆ 	g . When f ∈ C

4 satisfies supp( f ) /∈ {{0, 2}, {1, 3}}, the
arguments used for the proof of Theorem 2.2.3 imply that f is uniquely determined
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Table 1 Counterexamples for phase retrieval in dimensions 2 and 3

d Condition f f̃

2 (0, 1) /∈ 	g (1, 0)t (0, 1)t

2 (1, 0) /∈ 	g (2, 1)t (2, −1)t

2 (1, 1) /∈ 	g (2, i)t (2, −i)t

3 (0, 1), (0, 2) /∈ 	g (1, 0, 0)t (0, 1, 0)t

3 (1, 0), (2, 0) /∈ 	g (
√
3, e−5π i/6, e5π i/6)t (

√
3, e5π i/6, e−5π i/6)t

3 (1, 1), (2, 2) /∈ 	g (
√
3, e−π i/6, e5π i/6)t (

√
3,−i, e−5π i/6)t

3 (1, 2), (2, 1) /∈ 	g (
√
3, i, e5π i/6)t (

√
3, eπ i/6, e−5π i/6)t

by |Vg f | up to global phase. Otherwise, we assume w.l.o.g. that supp( f ) = {0, 2}. In
this case, we obtain

V f f (2, 0) + V f f (2, 1) = 2 f0 f2.

Thus, fixing the phase at f0 also fixes the phase at f2 and therefore globally. ��

Remark 4.1.3 Similar examples can be constructed in every even dimension d ≥ 4. In
fact, it can be shown that 	g = Zd × Zd \ {( d2 , d

2

)}
is sufficient for phase retrieval.

For dimensions d ≥ 5, we will also show that 	g = Zd × Zd is not necessary for
phase retrieval. As a first step, we prove the following reconstruction result.

Theorem 4.1.4 Let d ≥ 5 and 1 ≤ l∗ ≤ d − 1 be such that l∗ and d are coprime or
d = 6 and l∗ = 2. Furthermore, consider f , f̃ ∈ C

d such that V f f (k, l) = V f̃ f̃ (k, l)
holds for every (k, l) ∈ (Zd × Zd) \ {(0, l∗), (0,−l∗)}. Then, there exists γ ∈ T

satisfying f̃ = γ f .

Proof By (5) and since V f f determines f up to global phase, it suffices to show that
V f f (0, l∗) = V f̃ f̃ (0, l

∗) holds true. Let c := V f f (0, l∗) − V f̃ f̃ (0, l
∗) and assume

c �= 0. By assumption and (5), it follows V f f (0, ·) − V f̃ f̃ (0, ·) = c · δl∗ + c · δ−l∗ .
Fourier inversion implies

∣∣ f j
∣∣2 −
∣∣∣ f̃ j
∣∣∣
2 =
(
F−1(c · δl∗ + c · δ−l∗)

)
( j) = 1

d

(
c · e2π i jl∗/d + c · e−2π i jl∗/d

)

= 2

d
· Re
(
c · e2π i jl∗/d

)
.

When l∗ and d are coprime, the numbers e2π i jl
∗/d are all distinct for 0 ≤ j ≤ d − 1.

Thus, we obtain

∣∣∣
{
0 ≤ j ≤ d − 1

∣∣ ∣∣ f j
∣∣ =
∣∣∣ f̃ j
∣∣∣
}∣∣∣ ≤ 2. (9)
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When d = 6 and l∗ = 2, then Re
(
c · e2π i jl∗/d

)
= 0 can hold for at most one 0 ≤ j ≤ 2

and at most one 3 ≤ j ≤ 5. Thus, (9) follows as well.

Now, let 0 ≤ j ≤ d − 1 and assume f j = 0. This implies 0 = f j f j−k = f̃ j f̃ j−k

for every k �= 0. Hence, it holds either f̃ j = 0 or f̃m = 0 for every m �= j .
Suppose that f̃ j �= 0, i.e., f̃m = 0 for every m �= j . If there were two distinct

indices m1,m2 �= j such that both fm1 �= 0 and fm2 �= 0, it would follow

0 = f̃m1 f̃m2 = fm1 fm2 �= 0.

Consequently, both f and f̃ can each have at most one non-zero entry, which con-
tradicts (9). Thus, it holds f̃ j = 0. Using the symmetry of the problem, we obtain

supp( f ) = supp
(
f̃
)
. Together with (9) and d ≥ 5, it follows that there are at least

three distinct entries 0 ≤ j1, j2, j3 ≤ d − 1 satisfying 0 �= ∣∣ f jn
∣∣ �=
∣∣∣ f̃ jn
∣∣∣ �= 0 for

every n ∈ {1, 2, 3}. In particular, it holds

α := f̃ j1
f j1

/∈ T.

Form ∈ { j2, j3}, we obtain fm f j1 = f̃m f̃ j1 , which implies f̃m = 1
α

· fm . On the other
hand, f j3 f j2 = f̃ j3 f̃ j2 yields f̃ j3 = f j3 · f j2

f̃ j2
= α · f j3 . Together, this implies α = 1

α
,

which is a contradiction since α /∈ T.
Therefore, we must have c = 0, which concludes the proof. ��
It remains to show that there are indeed windows g ∈ C

d satisfying 	g = (Zd ×
Zd) \ {(0, l∗), (0,−l∗)} for some 1 ≤ l∗ ≤ d − 1 which is coprime to d (or d = 6 and
l∗ = 2). We begin with a lemma concerning the choice of l∗, which can be verified
easily.

Lemma 4.1.5 Let d ≥ 5 and define

l∗ :=

⎧
⎪⎨

⎪⎩

d−1
2 if d is odd,

d
2 − 1 if 4 | d or d = 6,
d
2 − 2 otherwise.

Then, the following hold true.

(a) It holds d
4 < l∗ < 3d

4 .
(b) When d �= 6, then l∗ and d are coprime.

Lemma 4.1.5 now allows us to prove the existence of windows with the desired
properties.

Theorem 4.1.6 Let d ≥ 5 and l∗ as in Lemma 4.1.5. Then, there exists a window
g ∈ C

d satisfying the following conditions.
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(i) g does phase retrieval.
(ii) It holds 	g = (Zd × Zd) \ {(0, l∗), (0,−l∗)}.
(iii) It holds supp(g) = {0, . . . , ⌊ d2

⌋}
.

Proof Let m := ⌊ d2
⌋
. First, we compute

(
z − e−2π il∗/d

)
·
(
z − e2π il

∗/d
)

= z2 −
(
e2π il

∗/d + e−2π il∗/d
)

· z + 1

= z2 − 2Re
(
e2π il

∗/d
)

· z + 1.

Since d
4 < l∗ < 3d

4 holds by Lemma 4.1.5, all coefficients of the polynomial

p(z) :=
m∑

j=0

a j z
j :=
(
z − e−2π il∗/d

)
·
(
z − e2π il

∗/d
)

· (z + 2)m−2

are thus real and positive. Furthermore, e−2π il∗/d and e2π il
∗/d are the only zeros of p in

T. By letting c j := √
a j for every 0 ≤ j ≤ m, any window g satisfying

|g j | =
{
c j if 0 ≤ j ≤ m,

0 otherwise,

already fulfills Vgg(0, l∗) = Vgg(0,−l∗) = 0 and Vgg(0, l) �= 0 for every l ∈
{0, . . . , d − 1} \ {l∗,−l∗}. Since (ii) implies (i) by Theorem 4.1.4 and Lemma 2.1.3,
it remains to show that we can choose phases for g in such a way that Vgg(k, l) �= 0
holds whenever k �= 0. By (5), it suffices to prove this for 1 ≤ k ≤ d

2 .
Define g j := c j for every 0 ≤ j ≤ m − 1 and let gm ∈ C be arbitrary. When d is

even, i.e., m = d
2 , we obtain

Vgg

(
d

2
, l

)
= g0gm + (−1)l · gmg0 ∈ {2Re(gmg0),−2i Im(gmg0)}.

Since g0 > 0, it may only hold Vgg
( d
2 , l
) = 0 when gm ∈ R ∪ iR.

Now, consider k < d
2 . In this case, we obtain

0 = Vgg(k, l) =
m∑

j=k

g j g j−ke
−2π i jl/d ⇔ gm = e2π ilm/d

gm−k
·
⎛

⎝
m−1∑

j=k

g j g j−ke
−2π i jl/d

⎞

⎠ =: sk,l .

Obviously, the set

M := {s ∈ C | |s| = cm} \
(

{cm ,−cm , icm ,−icm} ∪
{
sk,l | 1 ≤ k <

d

2
, 0 ≤ l ≤ d − 1

})

is non-empty. By the previous calculations, any choice of gm ∈ M results in a window
g satisfying the desired properties. ��
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The following corollary summarizes the results of the current subsection.

Corollary 4.1.7 The following are equivalent.

(i) There exists a window g ∈ C
d satisfying	g � Zd×Zd that does phase retrieval.

(ii) It holds d ≥ 4.

4.2 Phase Retrieval for ShortWindows

In this subsection, we discuss short windows, i.e., windows whose supports have the
form { j0, . . . , j0 + L} for some 0 ≤ j0 ≤ d − 1 and 1 ≤ L < d

2 . In light of Remark
2.1.1, we make the following definition.

Definition 4.2.1 Let 1 ≤ L < d
2 . The set of all windows of length L + 1 is defined as

C
d
L :=
{
g ∈ C

d
∣∣ g j �= 0 ⇔ 0 ≤ j ≤ L

}
.

We fix 1 ≤ L < d
2 for the rest of this section.

In [17, Theorem III.1], it was shown that almost all non-vanishing signals (i.e.,
signals f ∈ C

d satisfying f j �= 0 for every 0 ≤ j ≤ d −1) are phase retrievable w.r.t.
a fixed window g ∈ C

d
L . In [17, Corollary III.1], the authors also prove a result on

so-called sparse signals (i.e., signals that are not non-vanishing). Note however that
this result does not apply to our setting since the separation parameter from [17] is
always equal to 1 in our case.

Remark 4.2.2 Clearly, for every g ∈ C
d
L , it follows Dg = {−L, . . . , L}. Hence, g-

connectedness is invariant among all windows of this class. To emphasize this fact, we
will usually refer to this as L-connectedness. It is not hard to show that a set (or signal)
is L-connected iff it is connected (modulo d) up to “holes” of length at most L−1. The
“modulo d” part is obviously important. Note for instance that (0, 1, 0, 0, 1)t ∈ C

5 is
in fact 2-connected.

Similar to [8, Proposition 2.1], it can be shown that almost every window g ∈ C
d
L

∼=
C

L+1 satisfies 	g = Dg × Zd = {−L, . . . , L}× Zd . This has already been remarked
in [24]. Therefore, Theorem 2.2.3 is applicable to almost every window in C

d
L and

in this case becomes exactly the statement in [5, Corollary 2.5]: Phase retrieval can
be performed exactly on the L-connected components of a signal and consequently, a
signal is phase retrievable iff it is L-connected.

For L = 2, the assumption in Theorem 2.2.3 becomes 	g = {−1, 0, 1} × Zd ,
which (by (5)) is already fulfilled once {0, 1} × Zd ⊆ 	g . This condition has also
appeared in [8, Theorem 2.4]. Note however that 1-connectivity is strictly weaker than
assuming the signal to vanish nowhere (as in [8]). On the other hand, the result in [8]
is not restricted to short windows.

Whenever d and L are coprime, it is shown in [11, Theorem 1] that it suffices to
assume
{0} × Zd ⊆ 	g in order to guarantee phase retrieval for all non-vanishing signals.
In [21, Corollary 3.2], a similar result has been proved for windows g satisfying the
weaker assumption supp(g) ⊆ {0, . . . , L}.
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On the other hand, Theorem 4.1.6 shows that (at least when d ≥ 5) {0}×Zd ⊆ 	g

is not even a necessary condition for (global) phase retrieval. Therefore, it appears
reasonable to aim for a generalization of Theorem 2.2.3 to windows g ∈ C

d
L satisfying

	g � {−L, . . . , L} × Zd . However, the following example shows that we will need
further assumptions.

Example 4.2.3 Let r ≥ 2 be a common divisor of d and L + 1. Consider

g j :=
{
1 if 0 ≤ j ≤ L,

0 otherwise
as well as f j :=

{
1 if j ≡ 0 (mod r),

0 otherwise.

For 0 ≤ m < r , let f (m) := Tm f . Then, g ∈ C
d
L and a straightforward calculation

shows

V f (m) f (m)|	g = V f (n) f (n)|	g

for all 0 ≤ m < n < r but there is clearly no γ ∈ T satisfying f (n) = γ f (m). Thus,
f = f (0) is not phase retrievable w.r.t. g. However, if r < L + 1, f is L-connected.
Choosing e.g., d = 8, L = 3 and r = 2 shows that phase retrievability is not equivalent
to L-connectedness in general.

Now, our goal is to identify a (large) class of signals for which phase retrievability
is equivalent to L-connectedness for all windows in C

d
L .

We fix a window g ∈ C
d
L and introduce the notation

c(k)
j := g j g j−k, a(k)

j ( f ) := f j f j−k and b(k)
j ( f ) := F−1(|Vg f |2(− j, ·))(k)

for f ∈ C
d as well as all indices 0 ≤ k ≤ L and 0 ≤ j ≤ d − 1.

For phase retrieval, note that the coefficients c(k)
j only depend on the window and

that the coefficients b(k)
j ( f ) are determined by the measurement |Vg f |. Based on that,

our goal is to compute all coefficients a(k)
j ( f ). Knowing a(k)

j ( f ) for all 0 ≤ k ≤ L
and 0 ≤ j ≤ d − 1 is then equivalent to knowing V f f on Dg × Zd and we already
know that this determines f uniquely up to global phase once f is L-connected.

From [11], we know that

b(k)
j ( f ) =

L∑

m=k

c(k)
m a(k)

m+ j ( f ) (10)

holds for all f ∈ C
d , 0 ≤ k ≤ L and 0 ≤ j ≤ d − 1, which establishes a useful

relation between the coefficients. In fact, (10) provides us with L+1 systems of linear
equations. Fixing k, we observe that the right-hand side of every equation is given
by a linear combination of L − k + 1 consecutive entries of a(k)( f ) with non-zero
coefficients c(k)

m . Knowing L − k of those L − k+1 entries for just a single index j(k)
therefore enables us to iteratively compute a(k)( f ).

This leads to the following corollary.
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Corollary 4.2.4 Let g ∈ C
d
L as well as f , f̃ ∈ C

d and let C1, . . . ,Cn be the L-

connected components of f . If
∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ and for every 0 ≤ k ≤ L, there exists an

index
j∗(k) ∈ {0, . . . , d − 1} such that

∣∣∣
{
j ∈ { j∗(k), . . . , j∗(k) + L − k} ∣∣ a(k)

j ( f ) �= a(k)
j

(
f̃
)}∣∣∣ ≤ 1,

then supp
(
f̃
)

= supp( f ) and for every 1 ≤ m ≤ n, there exists γm ∈ T satisfying

f̃ |Cm = γm f |Cm .

Now, it would be useful to identify certain structures of f which are represented
uniquely by the coefficients b(k)

j ( f ). For example, assume that f has L+1 consecutive
zeros, i.e., there exists 0 ≤ j ≤ d − 1 satisfying f j = · · · = f j+L = 0. Clearly, this

is equivalent to a(0)
j ( f ) = . . . a(0)

j+L( f ) = 0 and since c(0)
m = |gm |2 > 0 holds for all

0 ≤ m ≤ L , it is also equivalent to b(0)
j ( f ) = 0. It becomes clear that consecutive zeros

can be a useful property for phase retrieval, which is why we consider the following
signal classes.

Definition 4.2.5 Let 1 ≤ m ≤ d. A signal f ∈ C
d is calledm-separated if there exists

0 ≤ j ≤ d − 1 satisfying f j = · · · = f j+m−1 = 0.

It is important to note that according to Remark 4.2.2 a signal can be both L-
separated and L-connected at the same time.

With the following theorem, we characterize phase retrieval for (L + 1)-separated
signals.

Theorem 4.2.6 Let g ∈ C
d
L and let f ∈ C

d be (L + 1)-separated. Furthermore, let
C1, . . . ,Cn be the L-connected components of f . Then, the following statements hold
true.

(a) A signal f̃ ∈ C
d satisfies

∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ if and only if supp

(
f̃
)

= supp( f ) and

for every 1 ≤ m ≤ n, there exists γm ∈ T satisfying f̃ |Cm = γm f |Cm .
(b) f is phase retrievable w.r.t. g if and only if f is L-connected.

Proof Let f̃ ∈ C
d and let j∗ be such that f j∗ = · · · = f j∗+L = 0.

It follows a(0)
j∗ ( f ) = · · · = a(0)

j∗+L( f ) = 0 and therefore b(0)
j∗
(
f̃
)

= b(0)
j∗ ( f ) = 0.

In turn, this implies a(0)
j∗
(
f̃
)

= · · · = a(0)
j∗+L

(
f̃
)

= 0, i.e., f̃ j∗ = . . . , f̃ j∗+L = 0.

Altogether,we obtaina(k)
j ( f ) = a(k)

j

(
f̃
)

= 0 for all 0 ≤ k ≤ L and j∗ ≤ j ≤ j∗+L .

Combining this with Lemma 2.2.2 and Corollary 4.2.4 yields the statement of the
theorem. ��

Note that part a) of Theorem 4.2.6 is in general not correct for L-separated signals:
Choosing r := (L + 1) | d in Example 4.2.3 shows that L-separateness does in
general not even allow us to uniquely recover supp( f ). However, by adding a small
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assumption, we will be able to exclude periodic signals of this type and thereby obtain
a similar theorem for L-separated signals. Moreover, note that the aforementioned
counterexample is neither L-connected nor phase retrievable and thus, does not affect
part b) of the theorem. In fact, this statement will remain true even with the weakened
assumption. As above, we begin by characterizing a certain signal structure via the
coefficients b(k)

j ( f ).

Lemma 4.2.7 Let 0 ≤ j∗ ≤ d − 1. The following statements are equivalent.

(i) It holds f j∗ �= 0, f j = 0 for all j∗+1 ≤ j ≤ j∗+L and there exists at least one
j∗ − L ≤ j ≤ j∗ − 1 satisfying f j �= 0.

(ii) The following conditions hold true.

(a) It holds b(k)
j ( f ) = 0 for all 1 ≤ k ≤ L and all j∗ + 1 − k ≤ j ≤ j∗ + k.

(b) There exists 1 ≤ k ≤ L satisfying b(k)
j∗−k( f ) �= 0.

Proof Suppose that (i) holds true.

(a) Fix 1 ≤ k ≤ L and j ∈ { j∗ + 1− k, . . . , j∗ + k}. For every k ≤ m ≤ L , it is then
easy to see that either f j+m = 0 or f j+m−k = 0. Together with (10), this implies

b(k)
j ( f ) = 0.

(b) Since f j∗+m−k = 0 holds for every k + 1 ≤ m ≤ L , we obtain b(k)
j∗−k( f ) =

c(k)
k a(k)

j∗ ( f ) from (10). By assumption, this is non-zero for at least one 1 ≤ k ≤ L .

Now, suppose that (ii) holds true. Fix 1 ≤ k ≤ L satisfying b(k)
j∗−k( f ) �= 0. This

implies by (10) that there exists k ≤ m∗ ≤ L satisfying a(k)
j∗+m∗−k( f ) �= 0, i.e.,

f j∗+m∗−k �= 0 �= f j∗+m∗−2k . (11)

First, we show |M | ≤ 1, where M := {1 ≤ l ≤ L
∣∣ f j∗+l �= 0

}
. We may as well show

the stronger claim |M̃| ≤ 1, where M̃ := {1 ≤ l ≤ L + 1
∣∣ f j∗+l �= 0

}
. In the case

that M̃ �= ∅, let l1 := min M̃ and l2 := max M̃ and assume 1 ≤ n := l2 − l1. Using
(10), we obtain

0 = b(n)
j∗+1( f ) =

L∑

m=n

c(n)
m a(n)

m+ j∗+1( f ) = c(n)
l2−1a

(n)
j∗+l2

( f ) �= 0,

which is a contradiction. Hence, it follows l1 = l2, i.e., |M | ≤ ∣∣M̃∣∣ ≤ 1.
Now, assume that m∗ > k holds in (11). Since |M | ≤ 1, it follows

f j∗+l = 0 for every l ∈ {1, . . . , L} \ {m∗ − k}.

This implies

0 = b(k)
j∗−k+1( f ) =

L∑

m=k

c(k)
m a(k)

j∗+m−k+1( f ) = c(k)
m∗−1a

(k)
j∗+m∗−k( f ) �= 0,
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which is again a contradiction. Thus, it follows m∗ = k, i.e., f j∗ �= 0 �= f j∗−k .
Finally, assume that there exists 1 ≤ l ≤ L such that f j∗+l �= 0. The fact that

|M | ≤ 1 then implies f j∗+m = 0 for every m ∈ {1, . . . , L}\{l} and therefore 0 =
b(l)
j∗ ( f ) = c(l)

l a(l)
j∗+l( f ) �= 0, which is yet another contradiction. Thus, we have shown

(i). ��
With Lemma 4.2.7 at hand, we can now analyze phase retrieval for L-separated

signals.

Theorem 4.2.8 Let g ∈ C
d
L and let f ∈ C

d be L-separated. Furthermore, let
C1, . . . ,Cn be the L-connected components of f .

(a) Let 0 ≤ j∗ ≤ d −1 be such that f j∗+1 = · · · = f j∗+L = 0 and assume that there
exists j∗ − L ≤ j ≤ j∗ − 1 satisfying f j �= 0. Then, a signal f̃ ∈ C

d satisfies
∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ if and only if supp

(
f̃
)

= supp( f ) and for every 1 ≤ m ≤ n,

there exists γm ∈ T satisfying f̃ |Cm = γm f |Cm .
(b) f is phase retrievable w.r.t. g if and only if f is L-connected.

Proof Let f̃ ∈ C
d .

(a) By assumption and Lemma 4.2.7, the coefficients b(k)( f ) (and thus also the

coefficients b(k)
(
f̃
)
) satisfy conditions a) and b) from Lemma 4.2.7. Apply-

ing Lemma 4.2.7 to f̃ then implies f̃ j∗+1 = . . . f̃ j∗+L = 0 and therefore

a(k)
m ( f ) = a(k)

m

(
f̃
)

= 0 for all 0 ≤ k ≤ L and j∗ + 1 ≤ j ≤ j∗ + L .

Combining this with Lemma 2.2.2 and Corollary 4.2.4 yields the statement in a).
(b) The “only if” statement follows by Lemma 2.2.2. Now, assume that f is L-

connected. If f is also (L+1)-separated,wemay apply Theorem4.2.6. Otherwise,
f must satisfy the assumption in a) and in this case, phase retrievability follows
directly from a).

��
As part of Example 4.2.3, we have already seen an L-separated signal which shows

that the additional assumption of Theorem 4.2.8a) cannot be dropped in general.
However, it is easy to see that an L-separated signal which is not also (L + 1)-
separated either satisfies the assumption of Theorem 4.2.8a) or has (L + 1)-periodic
support. Since the latter can only occur for certain combinations of dimension and
window length, we can combine Theorems 4.2.6 and 4.2.8 to obtain the following
simplification.

Corollary 4.2.9 Let g ∈ C
d
L and let f ∈ C

d be L-separated. Furthermore, let
C1, . . . ,Cn be the L-connected components of f . If (L + 1) � d, a signal f̃ ∈ C

d

satisfies
∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ if and only if supp

(
f̃
)

= supp( f ) and for every 1 ≤ m ≤ n,

there exists γm ∈ T satisfying f̃ |Cm = γm f |Cm .

When compared to the literature, the main results of this section (Theorems 4.2.6
and 4.2.8) appear to be unique in the sense that they deliberately accept Vgg(0, l) to
vanish for some 0 ≤ l ≤ d − 1.
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Next, one may wonder if it is possible to reduce the required number of consecutive
zeros even further.When choosing r < L+1 inExample 4.2.3,weobtain L-connected,
non-phase-retrievable signals which are (r−1)-separated. However, since r | (L+1),
it follows r ≤ L+1

2 and thus r − 1 < L
2 . This justifies the conjecture that phase

retrievability is equivalent to L-connectedness for all L
2 -separated signals. It remains

an open question whether this conjecture holds true.

5 STFT Phase Retrieval on R
d

Finally, we consider phase retrieval on G = R
d . Recall that the STFT takes the form

Vg f (x, ω) =
∫

Rd
f (t)g(t − x)e−2π i〈t,ω〉 dt (x, ω ∈ R

d)

for f , g ∈ L2(Rd).
The goal of this section is to prove a continuous version of parts a) and b) of

Theorem 2.2.3. In Subsect. 5.1, we identify suitable windows and state the main
result. Subsections 5.2 and 5.3 cover the proof of the main result. Finally, we consider
some examples in Subsect. 5.4.

5.1 Windows for Phase Retrieval inR
d

In light of Theorem 3.1.7, we consider the following window classes.

Definition 5.1.1 Let p ≥ 1.

(a) The class of all L p-functions of exponential decay is given by

L p,exp(Rd) :=
{
h ∈ L p(Rd)

∣∣ ∃σ > 0 :
∫

Rd
|h(x)|p · eσ ·‖x‖2 dx < ∞

}
.

(b) The class of all (one-dimensional) one-sided L p-functions is given by

L p,+(R) := {h ∈ L p(R)
∣∣ h · χ(−∞,0) ≡ 0 a.e.

}
.

In order to analyze STFT phase retrieval w.r.t. a window g from either of the two
classes, we are interested in the function g · Txg. Applying Hölders inequality to the
definitions directly yields the following lemma.

Lemma 5.1.2 (a) For every g ∈ L2,exp(Rd), it follows g · Txg ∈ L1,exp(Rd).
(b) For every g ∈ L2,+(R), it follows g · Txg ∈ L1,+(R).

The main goal of this section is to prove that 	g is a set of full measure in Dg ×R
d

whenever g is a window from either of the two classes, which (by what we know from
the discrete settings) should be highly useful for phase retrieval. The proofs in this
subsection lean heavily on complex analysis. This is a common theme in the discussion
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of phase retrieval: A list of examples includes [6], where the authors follow a similar
approach to ours, as well as [22] for wavelet phase retrieval and [1, 2] for classical
Fourier phase retrieval.

We begin with two lemmas on windows of exponential decay. Functions of this
kind have previously been used in the context of phase retrieval (cf. e.g., [3, 19]) but
mostly as a restriction for signals instead of windows. The first lemma gives a result
on analytic continuation of the Fourier transform for functions of exponential decay,
which has already been used in [3]. It is the L1-analogon to the classical Paley–Wiener
theorem (cf. [20] for d = 1) and it can be found for d = 1 in [28, Chapter 4, Theorem
3.1]. The proof for the multivariate version requires no additional insights.

Lemma 5.1.3 Let h ∈ L1,exp(Rd) and σ > 0 be such that

∫

Rd
|h(x)| · eσ ·‖x‖2 dx < ∞.

Then, the function

F : Sσ → C, ξ �→
∫

Rd
h(z)e−2π i〈z,ξ〉 dz

is well-defined and holomorphic where Sσ := {ξ ∈ C
d
∣∣ ‖Im(ξ)‖2 < σ

2π

}
.

The usage of this Paley–Wiener type theorem shows once again the connection of
our approach to the one taken in [6].

The second lemma analyzes the zero sets of (multivariate) holomorphic functions.

Lemma 5.1.4 LetU ⊆ C
d be an open neighborhood ofRd . Furthermore, let f : U →

C be holomorphic. If f does not vanish identically on R
d , the set {z ∈ R

d | f (z) =
0} ⊆ R

d has measure zero.

Proof For d = 1, this follows immediately from the identity theorem. Now, an induc-
tion can be used along with Fubini’s theorem in order to generalize the statement to
the multivariate case. ��

Before drawing consequences for	g , let us consider the case of a one-sidedwindow
in dimension one.

Just as before, our first step is a Paley–Wiener type theorem. Once again, the L2-
version can be found in [20] and the proof of the L1-version carries no additional
insight.

Lemma 5.1.5 Let h ∈ L1,+(R) and define

H := {z ∈ C
∣∣ Im(z) > 0

}
.

Then, the function

F : H → C, ξ �→
∫

R

h(z)e−2π i〈z,ξ〉 dz
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is well-defined and continuous, as well as holomorphic on H. Moreover, F is bounded
with ‖F‖∞ ≤ ‖F‖1.

In order to understand the zero sets of the functions obtained in Lemma 5.1.5, we
apply the theory of Hardy spaces (similar to Sect. 3). This is also the reason why we
only consider the case d = 1.

Lemma 5.1.6 Let F : H → C be continuous and bounded as well as holomorphic on
H. If F does not vanish identically on H, it holds F(y) �= 0 for almost every y ∈ R.

Proof Let

ϕ : K1(0) → H, ϕ(z) = i · 1 + z

1 − z
.

Then, it is easy to see that G �→ G ◦ϕ establishes a topological isomorphism between
the set of all holomorphic functions on H that can be extended in a continuous and
bounded way to H and the Hardy space H∞ as defined in [25]. By applying [25,
Theorem 17.18], we obtain the claim. ��

Combining Lemmas 5.1.3 and 5.1.4 (for windows of exponential decay) or Lem-
mas 5.1.5 and 5.1.6 (for one-sided windows in dimension 1) yields the following
fundamental result on 	g .

Theorem 5.1.7 Let g ∈ L2,exp(Rd) or d = 1 and g ∈ L2,+(R). Then, Vgg(x, ω) �= 0
holds for almost every ω ∈ R

d whenever x ∈ Dg. In particular, 	g is a set of full
measure in Dg × R

d .

It is now reasonable to formulate the following theorem.

Theorem 5.1.8 Let g ∈ L2,exp(Rd) or d = 1 and g ∈ L2,+(R). Furthermore, consider
a signal f ∈ L2

(
R
d
)
and let (Cm)m∈I be the g-connected components of f . Then,

the following statements hold true.

(a) A signal f̃ ∈ L2(Rd) satisfies
∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣ if and only if supp

(
f̃
)

= supp( f )

and for every m ∈ I , there exists γm ∈ T satisfying f̃ |Cm ≡ γm f |Cm almost
everywhere.

(b) f is phase retrievable w.r.t. g if and only if f is g-connected.

The necessary conditions for phase retrieval in Theorem 5.1.8 follow immediately
from Lemma 2.2.2. The following two subsections provide the proof for the sufficient
conditions.

5.2 Phase Initialization

Fix a window g ∈ L2,exp
(
R
d
)
or assume d = 1 and fix a window g ∈ L2,+(R).

Additionally, fix two signals f , f̃ ∈ L2
(
R
d
)
satisfying

∣∣Vg f
∣∣ =
∣∣∣Vg f̃
∣∣∣. By (4), it

follows V f f |	g = V f̃ f̃ |	g as usual. By Theorem 5.1.7, this implies that

Ax :=
{
t ∈ R

d
∣∣ f (t) f (t − x) = f̃ (t) f̃ (t − x)

}



53 Page 26 of 35 Journal of Fourier Analysis and Applications (2023) 29 :53

is a set of full measure in R
d for every x ∈ Dg by injectivity of the Fourier transform.

In particular, | f | and
∣∣∣ f̃
∣∣∣ agree almost everywhere and we can assume w.l.o.g. that

the sets C( f ) := {x ∈ R
d | f (x) �= 0} and C∗( f ) := {x ∈ R

d | f̃ (x) �= 0} equal
each other. In particular, we obtain supp( f ) = supp

(
f̃
)
. Since f ≡ 0 holds almost

everywhere outside of supp( f ), we can additionally assume that C( f ) ⊆ supp( f ).

Now, we fix a g-connected component Cm of supp( f ) = supp
(
f̃
)
and let C ′

m :=
Cm ∩ C( f ).

The goal of this subsection is to show the existence of a phase factor γm ∈ T such
that f̃ = γm f holds on a subset of A0 ∩ C ′

m of positive measure. Recall that Br (x0)
denotes the open ball with radius r > 0, centered at x0 ∈ R

d . We fix L > 0 such that
BL(0) ⊆ Dg , which exists by openness of Dg . This allows us to prove the following
lemma.

Lemma 5.2.1 The set C ′
m is g-connected.

Proof Let a, b ∈ C ′
m ⊆ Cm . Since Cm is g-connected, there exist y0, . . . , yn ∈ Cm ⊆

supp( f ) satisfying y0 = a, yn = b and x j := y j − y j−1 ∈ Dg for every 1 ≤ j ≤ n.
Since Dg is open, we may choose 0 < ε < 2L such that Bε(x j ) ⊆ Dg holds for
every 1 ≤ j ≤ n. By definition of supp( f ), the set Bε/2(y j ) ∩ C( f ) is non-empty for
every 1 ≤ j ≤ n − 1 and because of BL(0) ⊆ Dg , the same holds for Bε/2(y j ) ∩ C ′

m .
Choosing ỹ j ∈ Bε/2(y j )∩C ′

m for every 1 ≤ j ≤ n−1 as well as ỹ0 := a and ỹn := b,
we obtain x̃ j := ỹ j − ỹ j−1 ∈ Dg for every 1 ≤ j ≤ n, which concludes the proof. ��

The next lemma introduces two disjoint sets which are close to each other and
whose intersection with A0 ∩ C ′

m is of positive measure.

Lemma 5.2.2 There exist open, disjoint sets I1, I2 ⊆ R
d satisfying

λ
(
I j ∩ A0 ∩ C ′

m

)
> 0 ( j ∈ {1, 2})

as well as diam (I1 ∪ I2) < L.

Proof Similar to the proof of Lemma 2.2.2, we can show that λ
(
C ′
m

)
> 0. Since A0

is a set of full measure, we also obtain λ
(A0 ∩ C ′

m

)
> 0. Now, consider the cubes

Wn :=
d∏

j=1

(
n j L, (n j + 1)L

) (
n ∈ Z

d
)

.

Since they form a countable covering of almost all ofRd , we can pick n ∈ Z
d satisfying

λ
(Wn ∩ A0 ∩ C ′

m

)
> 0. Now, we obtain the existence of x0 ∈ (n1L, (n1 +1)L) such

that both

I1 :=
(

(n1L, x0) ×
∏d

j=2

(
n j L, (n j + 1)L

)) ∩ A0 ∩ C ′
m
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and

I2 :=
(

(x0, (n1 + 1)L) ×
∏d

j=2

(
n j L, (n j + 1)L

)) ∩ A0 ∩ C ′
m

have positive measure.
The additional property diam (I1 ∪ I2) < L follows from I1 ∪ I2 ⊆ Wn . ��
In the next step, we will “narrow down” I1 and I2 to areas in whichA0 ∩C ′

m shows
upwith “high density”. In order to do so, we briefly recall Lebesgue’s density theorem.
For a measurable set M ⊆ R

d , recall that x ∈ R
d is called a density point of M if

lim
ε→0

λ(M ∩ Bε(x))

(2ε)d
= 1.

We denote the set of all density points of M by M∗. Lebesgue’s density theorem then
tells us that M∗ is (measurable and) of full measure in M and vice versa, i.e., both
M\M∗ and M∗\M are of measure zero. In particular, we can assume w.l.o.g. that
C( f ) = C( f )∗. Additionally, we can prove the following lemma.

Lemma 5.2.3 (a) There exist t∗ ∈ I1, z∗ ∈ I2 and ε > 0 satisfying Bε (t∗) ⊆ I1 and
Bε (z∗) ⊆ I2 as well as

λ
(A0 ∩ C ′

m ∩ Bε/2

(
t∗
)) ≥ εd

2
(12)

and

λ
(A0 ∩ C ′

m ∩ B3ε/4

(
z∗
)) ≥
(
1 − 1

2 · 3d
)

·
(
3

2
ε

)d
(13)

(b) The set I0 := Bε/4 (z∗ − t∗) satisfies I0 ⊆ BL(0) and it holds Bε/2 (t∗) ⊆
B3ε/4 (z∗) − x for every x ∈ I0.

Proof (a) ByLemma5.2.2, it holdsλ(I j∩A0∩C ′
m) > 0 for j ∈ {1, 2}. ByLebesgue’s

density theorem, there exist t∗ ∈ I1 and z∗ ∈ I2 which are both density points of
A0 ∩ C ′

m . Consequently, we can choose ε̃ > 0 such that both (12) and (13) hold
for all 0 < ε < ε̃. By openness of I1 and I2, we may then choose 0 < ε < ε̃

satisfying Bε (t∗) ⊆ I1 and Bε (z∗) ⊆ I2.
(b) The first statement is a combination of the reverse triangle inequality with a) and

the fact that diam(I1 ∪ I2) < L holds by Lemma 5.2.2. The second statement
follows immediately from the triangle inequality.

��
With these properties at hand, we are finally able to identify a point t0 ∈ A0 such

that the set of all x ∈ Dg satisfying t0 + x ∈ A0 ∩ Ax is of positive measure. This
will then allow us to initialize the phase on a set of positive measure. Note that this
property is not automatically guaranteed for any arbitrary t0 ∈ A0, since it might very
well hold t0 + x /∈ Ax for every x ∈ Dg .
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Lemma 5.2.4 For every t ∈ Bε/2 (t∗), let Mt := {x ∈ I0
∣∣ t ∈ Ax − x

}
. Then, the

following statements hold true.

(a) For almost every t ∈ Bε/2 (t∗), the set Mt is of full measure in I0.
(b) There exists t0 ∈ A0 ∩ C ′

m ∩ Bε/2 (t∗) satisfying λ
(
C ′
m ∩ (Mt0 + t0

))
> 0.

Proof (a) Since I0 ⊆ BL(0) ⊆ Dg holds by Lemma 5.2.3b) and by choice of L , we
know thatAx is a set of full measure for every x ∈ I0 and clearly, the same holds
true forAx − x . This implies λ

(
Bε/2 (t∗) ∩ (Ax − x)

) = εd and we can compute
the double integral

∫

I0

∫

Bε/2(t∗)
χAx−x (t) dt dx =

∫

I0
εd dx = ε2d

2d
.

Fubini’s theorem implies that λ (Mt ) = ∫I0 χAx−x (t) dx exists for almost every
t ∈ Bε/2 (t∗) and we may change the order of integration to obtain

∫

Bε/2(t∗)
λ (Mt ) dt =

∫

Bε/2(t∗)

∫

I0
χAx−x (t) dt dx =

∫

I0

∫

Bε/2(t∗)
χAx−x (t) dt dx

= ε2d

2d
.

This implies λ (Mt ) = ( ε2
)d (i.e., that Mt is of full measure in I0) for almost every

t ∈ Bε/2 (t∗).
(b) Since λ

(A0 ∩ C ′
m ∩ Bε/2 (t∗)

)
> 0 holds by Lemma 5.2.3a), part a) of the current

lemma implies the existence of t0 ∈ A0 ∩ C ′
m ∩ Bε/2 (t∗) such that Mt0 is of full

measure in I0. From Lemma 5.2.3b), we additionally obtain Mt0 + t0 ⊆ B3ε/4 (z∗),
which implies

λ
(
B3ε/4

(
z∗
) \ (Mt0 + t0

)) =
(
3

2
ε

)d
−
(ε
2

)d =
(
1 − 1

3d

)
·
(
3

2
ε

)d
.

Lemma 5.2.3a) allows us to compute

λ
(
C ′
m ∩ (Mt0 + t0

)) ≥ λ
(A0 ∩ C ′

m ∩ B3ε/4

(
z∗
))− λ

(
B3ε/4

(
z∗
) \ (Mt0 + t0

))

≥
(
1 − 1

2 · 3d
)

·
(
3

2
ε

)d
−
(
1 − 1

3d

)
·
(
3

2
ε

)d

= 1

2 · 3d ·
(
3

2
ε

)d
> 0.

��
Now, we propagate the phase from t0 onto Mt0 + t0 to obtain the following theorem.
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Theorem 5.2.5 There exist γm ∈ T and a measurable subset B0 ⊆ R
d satisfying

λ
(B0 ∩ C ′

m

)
> 0 as well as f̃ (z) = γm · f (z) for every z ∈ B0.

Proof As indicated before, we choose B0 := Mt0 + t0 with t0 from Lemma 5.2.4b).

Consequently, it holds λ
(B0 ∩ C ′

m

)
> 0. Since t0 ∈ A0∩C ′

m , i.e., | f (t0)| =
∣∣∣ f̃ (t0)
∣∣∣ �=

0, we may define

γm := f̃ (t0)

f (t0)
∈ T.

Now, for every z ∈ B0, it holds x := z− t0 ∈ Mt0 , i.e., x ∈ I0 ⊆ Dg and z = t0 + x ∈
Ax . This implies

f̃ (z) = f (z) · f (t0)

f̃ (t0)
= γm f (z).

��

5.3 Phase Propagation

Starting from Theorem 5.2.5, we will now propagate the phase γ onto almost all of
C ′
m . Recall that we assumed w.l.o.g. that C( f ) = C( f )∗. This allows us to prove the

following lemma.

Lemma 5.3.1 The following statements hold true.

(a) It holds C∗
m ⊆ Cm.

(b) It holds (C ′
m)∗ = C ′

m.

Proof (a) Let z ∈ C∗
m . In particular, z is an accumulation point of supp( f ), which

implies z ∈ supp( f ) since supp( f ) is closed. Additionally, BL(z) contains an
element of Cm and because of BL(0) ⊆ Dg , this implies z ∈ Cm .

(b) The inclusion (C ′
m)∗ ⊆ C ′

m follows immediately from a) and C( f ) = C( f )∗.
Conversely, when z ∈ C ′

m , we combine BL(0) ⊆ Dg and C( f ) ⊆ supp( f ) to
obtain λ(Bε(z) ∩ C ′

m) = λ(Bε(z) ∩ C( f )) for all 0 < ε < L . Using C( f ) =
C( f )∗, we obtain z ∈ (C ′

m)∗.
��

We will propagate the phase iteratively along the sets (Pk)k∈N0
, defined by

P0 := (B0 ∩ C ′
m

)∗

as well as

Pk+1 := (Pk + Dg
) ∩ C ′

m (k ∈ N0).

The most important properties of these sets are summarized in the following lemma.
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Lemma 5.3.2 The following statements hold true.

(a) It holds ∅ �= P0 ⊆ C ′
m.

(b) For every k ∈ N0, it holds Pk ⊆ P∗
k .

(c) It holds C ′
m =⋃k∈N0

Pk .

Proof (a) P0 �= ∅ follows from Theorem 5.2.5 and Lebesgue’s density theorem.
P0 ⊆ C ′

m follows from Lemma 5.3.1b).
(b) We prove this statement by induction. Just as above, P∗

0 = P0 follows from
Lebesgue’s density theorem. Now, assume that Pk ⊆ P∗

k holds true for some
k ∈ N0 and pick z ∈ Pk+1. By Lemma 5.3.1b), z is a density point of C ′

m .
Furthermore, there exists x ∈ Dg satisfying z − x ∈ Pk ⊆ P∗

k by the induction
hypothesis. Since the Lebesgue measure is translation-invariant, it follows that z
is a density point of Pk + x and thus of Pk + Dg . Now, it is easy to show that z
is also a density point of (Pk + Dg) ∩ C ′

m = Pk+1.
(c) The inclusion “⊇” is clear since Pk ⊆ C ′

m holds by definition when k ∈ N and by
part a) when k = 0. For the proof of the converse inclusion, fix z ∈ P0 which exists
by part a) and also implies z ∈ C ′

m . Now, let z
′ ∈ C ′

m be arbitrary. ByLemma 5.2.1,
there exist y0, . . . , yn ∈ C ′

m satisfying y0 = z, yn = z′ and x j := y j − y j−1 ∈ Dg

for every 1 ≤ j ≤ n. Inductively, this implies z′ ∈ Pn ⊆⋃k∈N0
Pk .

��
Recall that Theorem5.2.5 states the existence of γm ∈ T satisfying f̃ (z) = γm · f (z)

for all z ∈ B0, which is clearly a set of full measure in P0. As mentioned before, our
goal is now to propagate the phase in each step from (most of) Pk to (most of) Pk+1.
First, we prove a local version of this iteration.

Lemma 5.3.3 Let k ∈ N0 and assume that there exists a subset Ek ⊆ Pk of full measure
satisfying f̃ (t) = γm · f (t) for every t ∈ Ek . Then, for every z ∈ Pk+1, there exists
an open neighborhood Uz of z such that f̃

(
z′
) = γm · f

(
z′
)
holds for almost every

z′ ∈ Uz.

Proof Let z ∈ Pk+1. By definition, there exists y ∈ Pk satisfying x := z− y ∈ Dg and
since Dg is open, we can choose ε > 0 satisfying Bε(x) ⊆ Dg . Now, pick 0 < α < 1.
We will show

λ
({

z′ ∈ Bε(z)
∣∣ f̃
(
z′
) �= γm · f

(
z′
)}) ≤ (1 − α) · (2ε)d .

By Lemma 5.3.2, it holds y ∈ P∗
k . Hence, we may choose δ > 0 satisfying

λ
(Pk ∩ Bδ/2(y)

) ≥ α · δd

and assume w.l.o.g. that n := ε
δ
− 1

2 ∈ N. For all j ∈ Z
d satisfying ‖ j‖ = ‖ j‖∞ ≤ n,

this implies ‖δ j‖ ≤ ε − δ
2 < ε and therefore x + δ j ∈ Bε(x) ⊆ Dg . Additionally, we

obtain

⋃

‖ j‖≤n

Bδ/2(y) + (x + δ j) ⊆ Bε(z) =: Uz,



Journal of Fourier Analysis and Applications (2023) 29 :53 Page 31 of 35 53

where the union on the left-hand side is disjoint. As a consequence,

M :=
⋃

‖ j‖≤n

((Ek ∩ Bδ/2(y)
)+ (x + δ j)

) ∩ Ax+δ j

is also a subset of Uz and since this union is still disjoint, we may compute

λ(M) =
∑

‖ j‖≤n

λ
(((Ek ∩ Bδ/2(y)

)+ (x + δ j)
) ∩ Ax+δ j

)

=
∑

‖ j‖≤n

λ
(Pk ∩ Bδ/2(y)

) ≥
∑

‖ j‖≤n

α · δd = α · (2n + 1)dδd = α · (2ε)d .

Finally, we pick z′ ∈ M . By definition, there exists j ∈ Z
d satisfying ‖ j‖ ≤ n and

t ∈ Ek such that z′ ∈ Ax+δ j as well as z′ = t + (x + δ j), which implies f
(
z′
)
f (t) =

f̃
(
z′
)
f̃ (t). Since t ∈ Ek ⊆ Pk ⊆ C ′

m ⊆ C( f ), this implies f̃
(
z′
) = γm · f

(
z′
)
and

we are able to conclude that

λ
({

z′ ∈ Uz
∣∣ f̃
(
z′
) �= γm · f

(
z′
)}) ≤ λ(Uz \ M) ≤ (1 − α) · (2ε)d .

As 0 < α < 1 was picked arbitrarily, it follows f̃
(
z′
) = γm · f

(
z′
)
for almost every

z′ ∈ Uz . ��
We can now use the inner regularity of the Lebesguemeasure to obtain global phase

propagation.

Lemma 5.3.4 Let k ∈ N0 and assume that there exists a subset Ek ⊆ Pk of full measure
satisfying f̃ (t) = γm · f (t) for every t ∈ Ek . Then, there exists a subset Ek+1 ⊆ Pk+1
of full measure satisfying f̃ (t) = γm · f (t) for every t ∈ Ek+1.

Proof By Lemma 5.3.3, for every z ∈ Pk+1, there exists an open neighborhood Uz of
z as well as a subset Ez ⊆ Uz of full measure satisfying f̃

(
z′
) = γm · f (z′) for every

z′ ∈ Ez . Since Pk+1 is measurable (by induction), there exists a sequence (Kn)n∈N
of compact subsets of Pk+1 such that

⋃
n∈N Kn is of full measure in Pk+1. For fixed

n ∈ N, the fact that Kn ⊆⋃z∈Kn
Uz together with the compactness of Kn implies the

existence of a finite set Jn ⊆ Kn satisfying Kn ⊆⋃z∈Jn Uz . Now, the set

E (n) :=
⋃

z∈Jn

Ez,

is clearly of full measure in Kn and we obtain f̃
(
z′
) = γm · f (z′) for every z′ ∈ E (n)

Finally, we define

Ek+1 :=
(
⋃

n∈N
E (n)

)
∩ Pk+1.
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Then clearly, Ek+1 is of full measure in Pk+1 and satisfies f̃
(
z′
) = γm · f

(
z′
)
for

every z′ ∈ Ek+1, which proves the claim. ��
We are now able to complete the proof of Theorem 5.1.8: Recall that the hypothesis

of Lemma 5.3.4 is satisfied for k = 0 by Theorem 5.2.5. For every k ∈ N, Lemma
5.3.4 inductively implies the existence of a subset Ek ⊆ Pk of full measure satisfying
f̃ (t) = γm · f (t) for every t ∈ Ek . Now,

E :=
⋃

k∈N0

Ek .

is a set of full measure in
⋃

k∈N0
Pk = C ′

m (by Lemma 5.3.2) and satisfies f̃ (z) =
γm · f (z) for every z ∈ E . Finally, for z ∈ Cm\C ′

m , we have f̃ (z) = 0 = γm · f (z).

5.4 Examples

We conclude this section by applying Theorem 5.1.8 to a few interesting windows.
First however, we make a general remark towards understanding the result.

Remark 5.4.1 Even though Theorem 5.1.8 is easy to understand from an abstract point
of view, it can sometimes be hard to decide whether a given signal is g-connected.
Consider e.g., a closed, symmetric set A ⊆ R

d of positive measure satisfying 0 /∈ A.
For X := R

d \ A, we may ask the following question: Does there exist f ∈ L2(Rd)

which is not connected with respect to translations in X? If the answer is always “yes”,
this would imply that for the considered window classes, phase retrieval is equivalent
to	g being of full measure in R

2d . Otherwise, any set X for which the answer is “no”
could give us a clue towards constructing a window that does phase retrieval despite
	g not being of full measure in R

2d . However, we are currently unable to answer this
question.

Theorem5.1.8 immediately yields phase retrieval for everywindow g ∈ L2,exp(Rd)

or g ∈ L2,+(R) that vanishes nowhere on (0,∞). This allows us to revisit some
important windows for phase retrieval.

Examples 5.4.2 For a > 0, let γa, ϕa, ψa ∈ L2(R) be defined by γa(t) := e−aπ t2 ,
ϕa(t) := e−a|t | and ψa(t) := 1

a+2π i t for (almost) all t ∈ R. Additionally, let ϕ̃a :=
ϕa ·χ(0,∞) as well as ψ̃a := ψ ·χ(0,∞). Then, γa, ϕa, ψa, ϕ̃a and ψ̃a do phase retrieval.

The fact that the Gaussian window γa does phase retrieval is well-known [16].
Phase retrieval for ϕa and ϕ̃a can be obtained through explicit calculation of their
ambiguity functions [14]. Theorem 5.1.8 also yields phase retrieval for each of the
three windows but requires no explicit calculation of the ambiguity function.

Phase retrieval for the window ψa also follows from the observations in [14] and
can not be obtained by applying Theorem 5.1.8. However, Theorem 5.1.8 implies
phase retrieval for ψ̃a , which appears to be a new result.

Finally, we consider some compactly supported windows. These are obviously
inadequate for global phase retrieval but can still be used for phase retrieval on special
signal classes.
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Example 5.4.3 Let ga,b := χ[a,b] for some a, b ∈ R satisfying a < b. Then, a signal
f ∈ L2(Rd) is phase retrievable with respect to ga,b if and only if f has no hole of
length b − a, i.e., if the implication

f |(t,t+b−a) ≡ 0 a.e. ⇒ f |(−∞,t) ≡ 0 a.e. or f |(t+b−a,∞) ≡ 0 a.e.

holds true for every t ∈ R.

This follows fromTheorem 5.1.8 as it is easy to show that Dga,b = (−(b−a), b−a)

and that a signal f is g-connected if and only if it has no holes of length b − a. As in
the discrete setting, we obtain the intuition that g has to be “long enough” to bridge
over possible holes of f . It is possible to “thin out” the support of g even further.

Example 5.4.4 Let ga1,a2,b1,b2 := χ[a1,a2]+χ[b1,b2] for some a1, a2, b1, b2 ∈ R satisfy-
ing
a1 < a2 < b1 < b2 as well as b1 − a2 < max{a2 − a1, b2 − b1}. Then, a signal
f ∈ L2(Rd) is phase retrievable with respect to ga1,a2,b1,b2 if and only if f has no
hole of length b2 − a1 in the sense of Example 5.4.3.

In this case, we have Dga1,a2,b1,b2
= (−(b2 − a1), b2 − a1), which follows from

the upper bound on b1 − a2. A variation of this example also shows that things can
get out of control very easily: When considering ga1,a2,b1,b2 for the case b1 − a2 >

max{a2 − a1, b2 − b1}, we obtain

Dga1,a2,b1,b2
= (−(b2 − a1),−(b1 − a2)) ∪ (−m,m) ∪ (b1 − a2, b2 − a1)

where m := max{a2 − a1, b2 − b1}. Classifying all g-connected signals appears to be
a difficult task in this case. (Note that we can say at least that “no hole of length m”
is a sufficient condition and “no hole of length b2 − a1” is a necessary condition for
g-connectedness.)

6 Concluding Remarks

The goal of this paper was to provide useful criteria for STFT phase retrieval on Z,
Zd and R

d . In summary, we proved a full characterization of phase retrieval for the
following combinations of windows and signals:

(1) g ∈ �2(Z) of exponential decay or one-sided, f ∈ �2(Z) arbitrary
(2) g ∈ C

d
L , f ∈ C

d L-separated
(3) g ∈ L2(Rd) of exponential decay or one-dimensional and one-sided, f ∈ L2(Rd)

arbitrary

This corresponds to identifying both the possibilities and the limitations of phase
retrieval for a single given window (i.e., a given measurement method), which appears
to be highly useful in applications.

Large similarities between the different settings are evident (especially when com-
paring G = Z and G = R

d ) with the common theme within all the different scenarios
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being the fact that the characterizations only depend on the supports of window and
signal. This leads to conditions that are usually easy to understand and to check (at
least in the discrete settings) and showcase the fact that disconnectedness (in one
way or another) is (up to only a few pathological counterexamples in the cyclic case)
essentially the only obstacle for STFT phase retrieval.
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