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Abstract
We study the integration problem on Hilbert spaces of (multivariate) periodic func-
tions.The standard technique to prove lower bounds for the error of quadrature rules
uses bump functions and the pigeon hole principle. Recently, several new lower bounds
have been obtained using a different technique which exploits the Hilbert space struc-
ture and a variant of the Schur product theorem. The purpose of this paper is to (a)
survey the newproof technique, (b) show that it is indeed superior to the bump-function
technique, and (c) sharpen and extend the results from the previous papers.

Keywords Numerical integration · Schur’s product theorem · Bump function
technique · Complexity · Small smoothness · Reproducing kernel Hilbert spaces

1 Introduction

1.1 Overview

We study the integration problem on reproducing kernel Hilbert spaces of multivari-
ate periodic functions. That is, we consider Hilbert spaces H of complex-valued and
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continuous functions on [0, 1]d which admit a complete orthogonal system of trigono-
metricmonomials. This scale of functions contains the classical SobolevHilbert spaces
of isotropic,mixed or anisotropic smoothness (see, e.g., [7, 32]) aswell as theweighted
Korobov spaces which are common in tractability studies (see, e.g., [8] and the refer-
ences therein).

We are interested in the error en(H), which is the smallest possible difference (in
the operator norm) between the integration functional and a quadrature rule using up
to n function values. This corresponds to the worst case setting of information-based
complexity, see, e.g., [29, 30, 34]. It is standard to prove lower bounds for en(H) using
the bump-function technique: If we construct 2n bump functions in H with disjoint
support, then n of the supports do not contain a quadrature point and therefore, for the
fooling function given by the sum of the corresponding bumps divided by its norm,
the quadrature rule outputs zero and the error of the quadrature rule is bounded below
by the integral of the fooling function. This simple technique goes back at least to [2]
and leads to optimal lower bounds for many classical spaces from the above family.
Interestingly, however, it is not sufficient to prove optimal lower bounds in the extreme
cases when the functions in the Hilbert space are either very smooth (analytic) or
barely continuous. In these cases, optimal lower bounds were recently obtained using
a different technique which exploits the Hilbert space structure and a variant of the
Schur product theorem, see [12, 13, 38]. In this paper, we want to (a) survey the new
proof technique, (b) show that it is indeed superior to the bump-function technique,
and (c) sharpen and extend the results from the previous papers. The structure of this
paper is as follows:

• The precise setting is introduced in Sect. 1.2. An overview of results is given in
Sect. 1.3.

• In Sect. 2, we first show that the bump function technique fails in certain ranges
of smoothness. We then describe the new technique, which we will refer to as
the Schur technique. We do this for a more general family of reproducing kernel
Hilbert spaces than the above, see Theorem 2.

• In Sect. 3, we present some general lower bounds on the error en(H) for the spaces
of periodic functions. As a corollary, we also obtain a new result on the largest
possible gap between the error of sampling algorithms and general algorithms
for L2-approximation on reproducing kernel Hilbert spaces with finite trace, see
Sect. 3.3. We improve a lower bound from [13], further narrowing the gap to the
best known upper bounds from [5, 19, 25].

• In Sect. 4, we derive new lower bounds for function spaces which combine the
fractional isotropic smoothness s = d/2 with an additional logarithmic term.
Since this ensures that function values are well-defined and that the functions in the
space are continuous, while isotropic smoothness s = d/2without any logarithmic
perturbation is not enough, we refer to this setting as spaces of small smoothness.
We consider also function spaces of mixed smoothness, where the borderline is
given by s = 1/2 independently on the dimension d. Spaces combining fractional
and logarithmic smoothness have been studied, e.g., in [6, 11, 17, 24].

• In Sect. 5, we obtain lower bounds for the case of large smoothness, namely, for
analytic periodic functions. We present a result on the curse of dimensionality,
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which is in sharp contrast to a recent result from [10], and an asymptotic lower
bound that complements recent error bounds for classes of analytic functions on
R
d from [16, 23].

1.2 Preliminaries

Let H be a reproducing kernel Hilbert space (RKHS) on a non-empty set D. That is,
H shall be a Hilbert space of functions f : D → C such that point evaluation

δx : H → C, f �→ f (x)

is continuous for each x ∈ D. This means that for every x ∈ D, there is a function
K (x, ·) ∈ H such that δx = 〈·, K (x, ·)〉H . The function

K : D × D → C

is called the reproducing kernel of H . We refer to [1] and [4] for basics on RKHSs.We
are interested in the computation of a continuous functional on H , that is, an operator
of the form

Sh : H → C, Sh( f ) = 〈 f , h〉H (1)

with some h ∈ H . The main interest lies within integration functionals of the form

INTμ : H → C, f �→
∫
D

f dμ

with a probability measureμ on D. Clearly, if the functional INTμ is continuous, then
it can be written in the form (1). In this case, the corresponding representer h satisfies

h(x) = 〈h, K (x, ·)〉H =
∫
D
K (y, x) dμ(y) for all x ∈ D.

We want to compute Sh( f ) using a quadrature rule

Qn : H → C, Qn( f ) =
n∑

k=1

ak f (xk) (2)

with nodes xk ∈ D and weights ak ∈ C. The worst-case error of the quadrature rule
is defined by

e(Qn, H , Sh) = sup
f ∈H : ‖ f ‖H≤1

|Qn( f ) − Sh( f )| = ‖Qn − Sh‖L(H ,C).
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We are interested in the error of the best possible quadrature rule, which we denote
by

en(H , Sh) = inf
Qn

e(Qn, H , Sh).

In this paper, we will mainly consider Hilbert spaces of multivariate periodic
functions, defined as follows. Here, ek = exp(2π i〈k, ·〉) denotes the trigonometric
monomial with frequency k ∈ Z

d . The Fourier coefficients of an integrable function
f : [0, 1]d → C are defined by

f̂ (k) := 〈 f , ek〉2 =
∫

[0,1]d
f (x) e−2π i〈k,x〉 dx, k ∈ Z

d .

Definition 1 Let λ ∈ �1(Z
d) be a non-negative sequence. Then Hλ denotes the set of

all continuous functions f ∈ C([0, 1]d) with f̂ (k) = 0 for all k ∈ Z
d with λk = 0

and

‖ f ‖2Hλ
:=

∑
k∈Zd : λk 	=0

| f̂ (k)|2
λk

< ∞. (3)

The condition (3) implies that the Fourier series of f ∈ Hλ converges point-wise
(and even uniformly) for all x ∈ R

d ,

f (x) =
∑
k∈Zd

f̂ (k) ek(x), x ∈ R
d ,

and that f is continuous as a 1-periodic function on R
d . Moreover,

| f (x)| ≤
∑
k∈Zd

| f̂ (k)| ≤ ‖λ‖1/21 · ‖ f ‖Hλ

and thus, the space Hλ is a reproducing kernel Hilbert space. The trigonometric mono-
mials (ek)k∈Zd are a complete orthogonal system in Hλ and the reproducing kernel of
Hλ is given by

Kλ(x, y) =
∑
k∈Zd

λkek(x − y). (4)

We note that the space Hλ can be defined analogously for bounded sequences λ /∈
�1(Z

d) as the space of all f ∈ L2([0, 1]d) satisfying (3). In this case, however, function
evaluation is not well defined and Hλ it is not a reproducing kernel Hilbert space. The
most common choices (see, e.g., [32] or [22]) of the sequence λ include
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1. λk = (1 + |k|2)−s for s ≥ 0 and k ∈ Z
d . In that case, Hλ is the Sobolev space

of periodic functions with isotropic smoothness. If s is a positive integer, then an
equivalent norm on Hλ is given by

‖ f ‖2Hλ
�

∑
‖α‖1≤s

‖Dα f ‖22.

2. λk = ∏d
j=1(1 + |k j |2)−s for k ∈ Z

d and s > 0. In this way, we obtain the spaces
of periodic functions with dominating mixed smoothness. If s ∈ N is a positive
integer, then also these spaces allow for an equivalent norm given in terms of
derivatives, namely

‖ f ‖2Hλ
�

∑
‖α‖∞≤s

‖Dα f ‖22.

On the space Hλ, we consider the integration problem with respect to the Lebesgue
measure λd on [0, 1]d , that is, we take μ = λd . In this case, the representer of the
functional INTμ is given by the constant function h ≡ λ0. For this standard integration
problemon the unit cube,we leave out the Sh in the notation of the error,writing en(Hλ)

instead of en(Hλ, Sh), e(Qn, H) instead of e(Qn, H , Sh) and we simply write INT
instead of INTμ. The initial error in this case is given by

e0(Hλ) = ‖λ0‖Hλ = INT(λ0)
1/2 = λ

1/2
0 .

In analogy to the numbers en(Hλ), we also define the sampling numbers

gn(Hλ) = inf
x1,...,xn∈[0,1]d
g1,...,gn∈L2

sup
‖ f ‖Hλ

≤1

∥∥∥∥ f −
n∑

i=1

f (xi )gi

∥∥∥∥
2

and the approximation numbers

an(Hλ) = inf
L1,...,Ln∈H ′

λ
g1,...,gn∈L2

sup
‖ f ‖Hλ

≤1

∥∥∥∥ f −
n∑

i=1

Li ( f )gi

∥∥∥∥
2
,

which reflect the error of the best possible (linear) algorithm for L2-approximation
using at most n function values or n arbitrary linear measurements, respectively.

Further notationFor sequences (an) and (bn), wewrite an � bn if there is a constant
c > 0 such that an ≤ c bn for all but finitely many n. We write an � bn if bn � an and
an � bn if both relations are satisfied. If H is a Hilbert space, H ′ denotes the space
of all continuous linear functionals on H .
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1.3 Results

Asmentioned earlier, the main purpose of the paper is to survey a new proof technique
for lower bounds on the error en(Hλ). Here, we gather some of the new results obtained
in this paper using the new technique.

The first category of results concerns the asymptotic behavior of the errors en(Hλ)

and gn(Hλ) in the case of small smoothness, i.e., in the case that λ decays barely fast
enough to ensure that Hλ is a reproducing kernel Hilbert space. For function spaces
Hλ with fractional isotropic smoothness d/2 and logarithmic smoothness β > 1/2,
i.e., if λ is given by (19), we obtain

en(Hλ) � gn(Hλ) � n−1/2 log−β+1/2 n � an(Hλ) · log1/2 n, (5)

see Corollary 4. Of special interest is the logarithmic gap between the sampling and
the approximation numbers, which has been shown in [13] for the univariate case, and
is now extended to the multivariate case. The lower bound on the integration error
follows from a result for more general sequences λ, see Theorem 4, and cannot be
proven by the standard technique of bump functions, see Sect. 2.1. We also prove the
same relation (5) for the (multivariate) spaces of fractional mixed smoothness 1/2 and
logarithmic smoothness β > 1/2, where λ is given by (22), see Sect. 4.2.

Second, we obtain new results on the numbers e∗
n(σ ) and g∗

n(σ ), which reflect the
worst possible behavior of the nth minimal integration error and sampling number,
respectively, on reproducing kernel Hilbert spaces for any given sequence (σn)n∈N of
singular values, see Sect. 3.3 for a precise definition. We obtain that, up to universal
constants, both these numbers are equivalent to

σ ∗
n := min

⎧⎨
⎩σ0,

√√√√1

n

∑
k≥n

σ 2
k

⎫⎬
⎭ ,

see Corollary 3. The new thing here is again the lower bound, the upper bound is
known from [5].

Thirdly, we also derive a result on the curse of dimensionality. We obtain that the
curse is present for numerical integration and L2-approximation on classes of the form

⎧⎨
⎩ f ∈ C([0, 1]d)

∣∣∣ ∑
k∈Zd

| f̂ (k)|p · g(‖k‖∞) ≤ 1

⎫⎬
⎭

for any weight function g : N0 → (0,∞) and p = 2, see Theorem 7. This is in sharp
contrast to recent tractability results for analogous classes with p = 1, see [10] for
numerical integration and [18] for L2 approximation.
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2 Proof Techniques for Lower Bounds

In this section, we discuss techniques to prove lower bounds for the integration error
en(Hλ). We show the limits of the bump-function technique, which is probably the
most common technique, and describe a new method used in this paper. We note that
there are other proof techniques which we do not discuss here like the technique of
decomposable kernels from [28] and a method from [31]. We only compare our new
approach with the most standard technique.

2.1 Limits of the Bump-Function Technique

The most well-known technique to prove lower bounds for the integration problem
is the use of bump functions. It is based on the observation (cf. [29, Chapter 4]) that
a lower bound for e(Qn, H) for a fixed quadrature rule Qn with nodes x1, . . . , xn is
equivalent to the construction of a function f , which vanishes at the sampling points,
i.e., with f (x1) = . . . = f (xn) = 0, and which has simultaneously large integral
INT( f ) and small norm ‖ f ‖H . This leads to Qn( f ) = 0 and the lower bound

e(Qn, H) ≥ |INT( f ) − Qn( f )|
‖ f ‖H = |INT( f )|

‖ f ‖H .

A function like this is called a fooling function. One way how to construct such a
fooling function to a given Qn is to start with a bump function, i.e., with a smooth
periodic function ϕ ∈ C([0, 1]) with suppϕ ⊂ [0, 1/(2n)] and consider its translates
ϕ(x − j/(2n)) for j = 0, . . . , 2n − 1 (and similarly for the multivariate case). By
the pigeonhole principle, there are at least n of these dilates, which vanish at all the
sampling points x1, . . . , xn . Adding them, we then obtain the fooling function f .

The use of this (rather intuitive) technique can be traced back at least to [2]. It is
probably themostwidely usedmethod to prove lower bounds for numerical integration
and other approximation problems, where one is limited to the use of function values,
cf. [26, 27, 34]. The main reason for its wide use is surely that it often leads to optimal
results. Note however that for example in [37] it was necessary to combine the bump-
function technique with the Khintchine inequality to obtain optimal lower bounds in
certain limiting cases.

The aim of this section is to show that the technique of bump functions can only
provide sub-optimal results for the integration problem on Hλ in the cases that

• The sequence λ decays very slowly. This means that Hλ contains functions with
low smoothness, which are just about continuous.

• The sequence λ decays very fast. This means that the functions in Hλ are very
smooth or even analytic.

In the second case, it is rather obvious that the bump function technique does not work.
If λ decays fast enough (for example if |λk | ≤ c1 exp(−c2|k|) for some c1, c2 > 0
and all k ∈ Z, c.f. [3, §25]), all functions in Hλ are analytic and since there is no
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analytic functionwith compact support (except the zero function), any fooling function
obtained by the bump-function technique will not be contained in the space Hλ.

We now show the sub-optimality of the bump-function technique in the case of
small smoothness. To ease the presentation, we consider only the case d = 1, but
we note that similar results can be obtained in the multivariate case. We consider
sequences of the form

λk = (1 + |k|)−1 log−2β(e + |k|), k ∈ Z, β > 1/2, (6)

which are just about summable. It was shown in [13, Theorem 4] and it also follows
from Corollary 4 below that

en(Hλ) � n−1/2 log−β+1/2 n. (7)

This lower bound is sharp, see [13, Proposition 1] and [5]. Here, we are going to prove
the following.

Theorem 1 Let λ ∈ �1(Z) be given by (6). There exists an absolute constant C > 0
such that for every even n ≥ 2 and every ϕ ∈ C([0, 1]) with suppϕ ⊂ [0, 1/(2n)]
there exists {z1, . . . , zn} ⊂ { j/(2n) : j = 0, . . . , 2n − 1} such that the function

ϕ(n)(x) =
n∑
j=1

ϕ(x − z j ) (8)

satisfies

∫ 1
0 ϕ(n)(x)dx∥∥ϕ(n)

∥∥
Hλ

≤ C n−1/2(log n)−β. (9)

Theorem 1 shows that no matter how we choose the bump function ϕ ∈ C([0, 1])
with support in [0, 1/(2n)], it is possible to choose the set of sampling points X =
{x1, . . . , xn} ⊂ [0, 1] in such a way that leaving from the sum

2n−1∑
j=0

ϕ

(
x − j

2n

)

the terms which do not vanish on X does not provide a fooling function sufficient to
show (7). In other words, the classical bump function technique cannot yield the sharp
lower bound on en(Hλ) in (5).

Before we come to the proof of Theorem 1, we need a characterization of the norm
of f in the space Hλ in terms of first order differences, which are defined for every
0 < h < 1 simply by


h f (x) = f (x + h) − f (x), x ∈ [0, 1].
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Here, we interpret f as a periodic function defined on all R, which makes 
h f (x)
indeed well-defined for all x ∈ [0, 1]. Furthermore, ‖
h f ‖2 denotes the norm of
x �→ 
h f (x) in L2([0, 1]). The following proposition is in principle a special case
of [6, Theorem 10.9], where a characterization by first and higher order differences
is given for Besov spaces of generalized smoothness on R

d . We provide a short and
direct proof for reader’s convenience.

Proposition 1 Let λ ∈ �1(Z) be given by (6). Then f ∈ C([0, 1]) belongs to Hλ if,
and only if,

‖ f ‖22 +
∫ 1

0

[1 − log h]2β
h2

· ‖
h f ‖22 dh (10)

is finite. Furthermore, ‖ f ‖2Hλ
is equivalent to (10) with the constants independent of

f ∈ C([0, 1]).

Proof Let f ∈ C([0, 1]). Then


̂h f (k) = [e2π ikh − 1] · f̂ (k)

for all k ∈ Z and, by orthonormality of (ek)k∈Z in L2([0, 1]),

‖
h f ‖22 =
∑
k∈Z

| f̂ (k)|2 · |e2π ikh − 1|2.

To simplify the notation, we denote

ωβ(h) = [1 − log h]β
h

, 0 < h < 1

and obtain

‖ f ‖22 +
∫ 1

0
ωβ(h)2‖
h f ‖22 dh =

∑
k∈Z

| f̂ (k)|2
(
1 +

∫ 1

0
ωβ(h)2|e2π ikh − 1|2dh

)
.

For j ∈ Z we put

γ j = 1 +
∫ 1

0
ωβ(h)2|e2π i jh − 1|2dh

and we will show that γ j � 1/λ j for all j ∈ Zwith universal constants of equivalence
which do not depend on j . In view of (3), this will finish the proof.
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The estimate of γ j for j = 0 can be always achieved by changing the constants of
equivalence. Let j 	= 0. Then

γ j ≥ 1 +
∫ 1/(2π | j |)

1/(4π | j |)
ωβ(h)2|e2π i jh − 1|2dh

≥ 1 + 1

4π | j | · [1 − log(1/(2π | j |))]2β
1/(2π | j |)2 · |ei/2 − 1|2 � λ−1

j .

The estimate of γ j from above is then obtained by

γ j = 1 +
∫ 1/(2π | j |)

0
ωβ(h)2|e2π i jh − 1|2dh +

∫ 1

1/(2π | j |)
ωβ(h)2|e2π i jh − 1|2dh

� 1 +
∫ 1/(2π | j |)

0
ωβ(h)2( j · h)2dh +

∫ 1

1/(2π | j |)
ωβ(h)2dh

� 1 + | j | · (1 + log(2π | j |))2β � λ−1
j ,

which finishes the proof. ��

Proof of Theorem 1 Fix ϕ ∈ C([0, 1]) with suppϕ ⊂ [0, 1/(2n)] and an even integer
n ≥ 2. We set

z1 = 0, z2 = 1

2n
, z3 = 4

2n
, z4 = 5

2n
, etc.,

i.e.,

z2 j+1 = 4 j

2n
, z2 j+2 = 4 j + 1

2n
, j = 0, . . . ,

n

2
− 1.

We define ϕ(n) again by (8) and obtain by Hölder’s inequality

∫ 1

0
ϕ(n)(x)dx = n

∫ 1/(2n)

0
ϕ(t)dt ≤

√
n

2
‖ϕ‖2. (11)

To estimate ‖ϕ(n)‖Hλ from below, observe that if x ∈
[
4 j+1
2n ,

4 j+2
2n

]
and 1/(2n) ≤

h ≤ 2/(2n), then x + h ∈
[
4 j+2
2n ,

4 j+4
2n

]
and ϕ(n)(x + h) = 0. Therefore,

‖
hϕ
(n)‖22 ≥ n

2

∫ 1/(2n)

0
ϕ2(t)dt
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and, using Proposition 1,

‖ϕ(n)‖2Hλ
�
∫ 2/(2n)

1/(2n)

[1 − log h]2β
h2

‖
hϕ
(n)‖22 dh

� 1

n
· (log n)2β · n2 · n

2
·
∫ 1/(2n)

0
ϕ2(t)dt = n2

2
(log n)2β‖ϕ‖22.

Together with (11), this finishes the proof. ��

Remark 1 Wepoint out also another reason, why Theorem 1 is rather counter-intuitive.
Motivated by an explicit formula for the optimal fooling function for equi-distributed
sampling points we consider (for fixed n ∈ N) the bump function

ϕn(t) =
∞∑
k=1

λ2nk[1 − e2nk(t)], t ∈ [0, 1/(2n)]

and ϕn(t) = 0 if t /∈ [0, 1/(2n)]. Then indeed ϕn ∈ C([0, 1]) and


n(t) =
2n−1∑
j=0

ϕn(t − j/(2n)) =
∞∑
k=1

λ2nk[1 − e2nk(t)], t ∈ [0, 1]. (12)

Note, that 
n(t) indeed vanishes in the points t = j/(2n), j = 0, . . . , 2n.

Finally, an easy calculation reveals that

INT(
n)

‖
n‖Hλ

�
( ∞∑
k=1

λ2nk

)1/2

� n−1/2(log n)−β+1/2 (13)

with constants of equivalence independent of n. Theorem 1 therefore shows, that
removing some of the bumps from the sum in (12) can actually increase the norm of
such a function. Indeed, if ϕ(n) is the function constructed in Theorem 1 using the ϕn

from (12), then the integrals of 
n and ϕ(n) are comparable and (13) together with (9)
shows that ‖ϕ(n)‖Hλ/‖
n‖Hλ grows (at least) as

√
log(n) if n tends to infinity.

2.2 The Schur Technique

So how can we prove lower bounds for the integration problem in the cases where the
bump-function technique does not work? The recent results for small smoothness and
for analytic functions have been obtained using a certain modification of the classical
Schur product theorem on the entry-wise product of positive semi-definite matrices.
We will describe this technique now in the general setting of Sect. 1.2. That is, we are
given a RKHS H with kernel K on a domain D and a functional Sh represented by
h ∈ H .
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The first ingredient of this technique is a characterization of lower bounds on
numerical integration via the positive definiteness of certain matrices involving the
kernel K and the representer h of the integral from [13].

Proposition 2 Let H be a RKHS on a domain D with the kernel K : D× D → C and
let h ∈ H. Then, for every α > 0,

en(H , Sh)
2 ≥ ‖h‖2H − α−1 (14)

if, and only if, the matrix

(
K (x j , xk) − αh(x j )h(xk)

)n
j,k=1

is positive semi-definite for all {x1, . . . , xn} ⊂ D.

Proof Let Qn be given by (2). Then we denote a = (a1, . . . , an)∗, h =
(h(x1), . . . , h(xn))∗ and K = (K (x j , xk))nj,k=1 and obtain

e(Qn, H , Sh)
2 = sup

‖ f ‖H≤1

∣∣∣∣
〈
f ,

n∑
k=1

akδxk − h

〉∣∣∣∣
2

=
∥∥∥∥

n∑
k=1

akK (xk, ·) − h

∥∥∥∥
2

H

= ‖h‖2H − 2Re (a∗h) + a∗Ka. (15)

Let us assume now that K − αhh∗ is positive-semidefinite. If a∗Ka = 0, then
also a∗hh∗a = |a∗h|2 = 0 and (15) implies that e(Qn, H , Sh)2 ≥ ‖h‖2H . If a∗Ka is
positive, then we continue (15) by

e(Qn, H , Sh)
2=‖h‖2H +

∣∣∣∣ a∗h√
a∗Ka

− √
a∗Ka

∣∣∣∣
2

− |a∗h|2
a∗Ka

≥‖h‖2H − |a∗h|2
a∗Ka

.

(16)

We use that a∗Ka − αa∗hh∗a = a∗Ka − α|a∗h|2 ≥ 0 and take the infimum over
all quadrature formulas Qn and obtain that en(H , Sh)2 = infQn e(Qn, H , Sh)2 ≥
‖h‖2H − α−1.

On the other hand, assume that (14) holds. Then e(Qn, H , Sh)2 ≥ ‖h‖2H − α−1

for every quadrature formula Qn with arbitrary nodes {x1, . . . , xn} ⊂ D and arbitrary
weights a1, . . . , an ∈ C. If a∗Ka = 0, then it follows from (15) that 2Re (a∗h) ≤ α−1

holds for a and all its complexmultiples. Hence, a∗h = 0 and a∗Ka−αa∗hh∗a = 0. If
a∗Ka is positive, thenwe can assume (possibly after rescaling awith a non-zero t ∈ C)
that a∗h = a∗Ka, in which case (16) becomes an identity. Hence, a∗Ka ≥ α|a∗h|2
and the result follows. ��

The second ingredient is a lower bound on the entry-wise square of a positive
semi-definite matrix related to the Schur product theorem, which was proven in [38].
If M = (Mi, j )

n
i, j=1 ∈ C

n×n , then we denote by M = (Mi, j )
n
i, j=1 the matrix with

complex conjugated entries and byM◦M thematrixwith entries |Mi, j |2. Furthermore,
diagM is the column vector of the diagonal entries of M .
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Proposition 3 Let M ∈ C
n × C

n be a self-adjoint positive semi-definite matrix. Then

M ◦ M − 1

n
(diagM)(diagM)T

is also positive semi-definite.

Propositions 2 and 3 can be easily combined to obtain lower bounds for numerical
integration. We state it under the assumption that the kernel K : D × D → C can
be written as a sum of squares of reproducing kernels with constant diagonal. To be
more specific, we assume that K can be written as

K (x, y) =
m∑
i=1

|Mi (x, y)|2 for all x, y ∈ D, (17)

where Mi : D×D → C are positive semi-definite functions on D, which are constant
on the diagonal, i.e., Mi (x, x) = ci ≥ 0 for all x ∈ D. Then K (x, x) = κ:=∑m

i=1 c
2
i

for every x ∈ D and also K is constant on the diagonal.

Theorem 2 Let H be a RKHS on a domain D with the kernel K : D× D → C, which
can be written as a sum of squares of reproducing kernels with constant diagonal, and
let 1 ∈ H. Consider the integration problem S = Sh with the constant representer
h = 1. Then

en(H , S)2 ≥ ‖h‖2H − n

κ
,

where κ is the value of K on the diagonal.

Proof Let K be written as in (17) and let Mi (x, x) = ci . Further, let x1, . . . , xn ∈ D.
Then (Mi (x j , xk))nj,k=1 is positive semi-definite and by Proposition 3, so is the matrix

(
|Mi (x j , xk)|2 − c2i

n

)n

j,k=1

.

Therefore, also the sum of these matrices over all i ≤ m, i.e., the matrix

(
K (x j , xk) − κ

n

)n
j,k=1

is positive semi-definite. By Proposition 2, together with h = 1, this implies the error
bound. ��

In particular, one needs at least 12‖1‖2H ·K (x, x) quadrature points in order to reduce
the initial error by a factor of two. This insight is often already enough to prove the
curse of dimensionality, see [12] and Sect. 5. Surprisingly, Theorem 2 can also be used
to prove new results on the order of convergence of the integration error. This path is
described in the next section.
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Open Problem 1 TheConjecture 2 of [15] suggests that, if f : R
d → R is non-negative

and has a non-negative Fourier transform, then the matrix

{
f (x j − xk) − f (0)

n

}n
j,k=1

is positive semi-definite for every n ∈ N and every choice of {x1, . . . , xn} ⊂ R
d .Let us

note that Proposition 3 together with the classical Bochner theorem (cf. [38, Theorem
5]) gives an affirmative answer to this conjecture if f = g2, where g : R

d → R has
a non-negative Fourier transform. But in its full generality, the Conjecture 2 of [15]
seems to be still open.

3 Some General Lower Bounds for Periodic Functions

We now transfer Theorem 2 to the setting of periodic function spaces Hλ on D =
[0, 1]d . We start with a result for sequences λ ∈ �1(Z

d) which are given as a sum
of convolution squares in Sect. 3.1. We extend this result to the more general class of
sequences which can be written as a non-increasing function of a norm in Sect. 3.2. As
this covers all non-increasing sequences in the univariate case, we obtain as a corollary
a new and sharp result on the largest possible error en(H) for any fixed sequence of
approximation numbers in Sect. 3.3.

3.1 Sums of Squares

Recall, that the reproducing kernel Kλ of Hλ for a non-negative and summable
sequence λ = (λk)k∈Zd is given by (4). The square of its absolute value is then
given by

|Kλ(x, y)|2 =
∑
j,�∈Zd

λ jλ�e j−�(x − y) =
∑
�∈Zd

λ�

∑
k∈Zd

λk+�ek(x − y). (18)

Therefore, we define the convolution of two non-negative sequences λ, θ ∈ �1(Z
d)

by

(λ ∗ θ)k =
∑
�∈Zd

λ� θ�+k, k ∈ Z
d .

Astraightforward calculation shows thatλ∗θ ∈ �1(Z
d) and that‖λ∗θ‖1 = ‖λ‖1·‖θ‖1.

This notation allows us to reformulate (18) as |Kλ|2 = Kλ∗λ. We say that λ is a sum of
convolution squares if there are λ(i) ∈ �1(Z

d), i ≤ m, such that λ = ∑
i≤m λ(i) ∗ λ(i).

Theorem 2 then takes the following form.
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Corollary 1 If λ ∈ �1(Z
d) is a sum of convolution squares, then

en(Hλ)
2 ≥ λ0

(
1 − nλ0

‖λ‖1
)

.

Proof Since both sides of the inequality are homogeneous in λ, we may assume that
λ0 = 1. In this case, the representer of the integral on Hλ is given by h = 1, where
‖h‖2Hλ

= 1. By (18), we obtain

Kλ =
m∑
i=1

Kλ(i)∗λ(i) =
m∑
i=1

∣∣Kλ(i)

∣∣2.

Therefore, we may apply Theorem 2 and simply have to note that Kλ(x, x) = ‖λ‖1.
��

This is a generalization of [13, Theorem 1] which covers the case d = 1 andm = 1.

3.2 Norm-Decreasing Sequences

Our next step is to save Corollary 1 for more general sequences λ, which are not
given as a sum of convolution squares. Namely, we consider sequences of the form
λk = g(‖k‖), where ‖ · ‖ is a norm on R

d and g : [0,∞) → [0,∞) is monotonically
decreasing. We call such sequences ‖ · ‖-decreasing. Clearly, λ is ‖ · ‖-decreasing if
and only if it satisfies λk ≤ λ� for all k, � ∈ Z

d with ‖k‖ ≥ ‖�‖.

Theorem 3 Let λ ∈ �1(Z
d) be ‖ · ‖-decreasing. Then

en(Hλ)
2 ≥ λ0

(
1 − 2nλ0

λ0 +∑
k∈Zd λ2k

)
.

Proof Again, since both sides of the stated inequality are homogeneous with respect
to λ, we may assume that

∑
k∈Zd λ2k = 1. We set μ� = 2−1/2λ2�. By the triangle

inequality, one of the two relations 2‖k‖ ≥ ‖�‖ or 2‖k + �‖ ≥ ‖�‖ must hold for
each pair k, � ∈ Z

d , and therefore λ2k ≤ λ� or else λ2k+2� ≤ λ�. Thus we have for all
� ∈ Z

d that

(μ ∗ μ)� = 1

2

∑
k∈Zd

λ2kλ2k+2� ≤ λ�.

Moreover, (μ ∗ μ)0 ≤ λ0/2. We put ν = μ ∗ μ + tδ0 and choose t ≥ λ0/2 such
that ν0 = λ0. Then ν is a sum of convolution squares. It follows from Corollary 1 and
ν ≤ λ that

en(Hλ)
2 ≥ en(Hν)

2 ≥ λ0

(
1 − nλ0

‖ν‖1
)
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with

‖ν‖1 ≥ λ0

2
+ ‖μ ∗ μ‖1 = λ0

2
+ ‖μ‖21 = λ0 + 1

2
.

��
Theorem 3 is well-suited to prove the curse of dimensionality, see Sect. 5. However,

we can also tune it to be used for results on the asymptotic behavior of the nth minimal
error.

Theorem 4 Let λ ∈ �1(Z
d) be ‖ · ‖-decreasing. For n ∈ N, we let rn be the norm of

the (4n − 1)th element in a ‖ · ‖-increasing rearrangement of (2Z)d , i.e.,

rn :=min
{
r ≥ 0 | #{k ∈ Z

d : ‖2k‖ ≤ r} ≥ 4n − 1
}

.

Then

en(Hλ)
2 ≥ min

{
λ0

2
,

1

8n

∑
‖2k‖> rn

λ2k

}
.

Note that rn � n1/d for all norms ‖ · ‖ = ‖ · ‖p with 1 ≤ p ≤ ∞.

Proof Choose m ∈ Z
d with ‖m‖ = rn . We define τ ∈ �1(Z

d) by setting τk = λk for
‖k‖ > rn and τk = λm for 0 < ‖k‖ ≤ rn as well as

τ0 = min

{
λ0, max

{
λm,

1

4n

∑
‖2k‖>rn

λ2k

}}
.

Then τ is ‖ · ‖-decreasing and bounded above by λ. Moreover,

τ0 +
∑
k∈Zd

τ2k ≥ 4nλm +
∑

‖2k‖>rn

λ2k ≥ 4nτ0

and thus Theorem 3 gives en(Hλ)
2 ≥ en(Hτ )

2 ≥ τ0/2, which leads to the stated lower
bound. ��

In the univariate case, the previous result looks as follows.

Corollary 2 Let λ ∈ �1(Z) be non-negative, symmetric and monotonically decreasing
on N0. Then

en(Hλ)
2 ≥ min

⎧⎨
⎩

λ0

2
,

1

8n

∑
k ≥ 4n

λk

⎫⎬
⎭ for all n ∈ N.
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Proof We apply Theorem 4 for d = 1 and ‖ · ‖ = | · |. Therefore, rn = 4n − 2 and
because of monotonicity and symmetry, we get

∑
‖2k‖>rn

λ2k =
∑

|k|≥2n

λ2k =
∑
k≥2n

(λ2k + λ−2k) ≥
∑
k≥2n

(λ2k + λ2k+1) =
∑
k≥4n

λk .

��
This improves upon our previous result [13, Theorem 4], where we obtained a

similar lower boundbut only under an additional regularity assumption on the sequence
λ.

3.3 Detour: The Power of FunctionValues for L2 Approximation

Recently, there has been an increased interest in the comparison of standard informa-
tion given by function values and general linear information for the problem of L2
approximation. We refer to [5, 19, 20, 25, 33] for recent upper bounds and to [12,
13] for lower bounds. Let us denote by � the set of all pairs (H , μ) consisting of
a separable RKHS H on an arbitrary set D and a measure μ on D such that H is
embedded into L2(D, μ). For (H , μ) ∈ �, we define the sampling numbers

gn(H , μ) = inf
x1,...,xn∈D
g1,...,gn∈L2

sup
‖ f ‖H≤1

∥∥∥∥ f −
n∑

i=1

f (xi )gi

∥∥∥∥
L2(D,μ)

and the approximation numbers

an(H , μ) = inf
L1,...,Ln∈H ′
g1,...,gn∈L2

sup
‖ f ‖H≤1

∥∥∥∥ f −
n∑

i=1

Li ( f )gi

∥∥∥∥
L2(D,μ)

.

One is interested in the largest possible gap between the two concepts, that is, given
a sequence σ0 ≥ σ1 ≥ . . . and an integer n ≥ 0, one considers

g∗
n(σ ) := sup

{
gn(H , μ)

∣∣∣ (H , μ) ∈ � : ∀m ∈ N0 : am(H , μ) = σm

}
.

It is known from [14] that g∗
n(σ ) = σ0, whenever σ /∈ �2. On the other hand, it was

proven in [5] that there is a universal constant c ∈ N such that, whenever σ ∈ �2,

g∗
cn(σ ) ≤ σ ∗

n := min

⎧⎨
⎩σ0,

√√√√1

n

∑
k≥n

σ 2
k

⎫⎬
⎭ .

We obtain a matching lower bound as a consequence of Corollary 2. For the spaces
Hλ, the sequence of the squared approximation numbers equals the non-increasing
rearrangement of the sequence λ. Here, we use that approximation on Hλ is harder
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than integration, namely, en(Hλ) ≤ gn(Hλ). Indeed, if Sn = ∑n
i=1 giδxi is a sampling

operator, then we consider the quadrature formula Qn( f ) = ∫ 1
0 Sn( f )(x) dx and

obtain

e(Qn) = sup
‖ f ‖Hλ

≤1

∣∣∣∣
∫ 1

0
( f − Sn( f ))(x) dx

∣∣∣∣ ≤ sup
‖ f ‖Hλ

≤1
‖ f − Sn( f )‖2 = e(Sn).

We apply Corollary 2 for the Hilbert spaces Hλ with λk = σ 2|2k| and obtain

g∗
n(σ ) ≥ 1

4
σ ∗
8n .

This improves upon the currently best known lower bound from [13, Theorem 2] in
the sense that our lower bound holds for all and not just infinitely many n ∈ N0.
Moreover, due to en(H) ≤ gn(H) and the fact that our lower bounds are proven for
the integration problem, an analogous result holds with g∗

n(σ ) replaced by

e∗
n(σ ) := sup

{
en(H , INTμ)

∣∣∣ (H , μ) ∈ �0 : ∀m ∈ N0 : am(H , μ) = σm

}
,

where �0 is the set of pairs (H , μ) ∈ � such that μ is a probability measure. Thus,
we have the following corollary.

Corollary 3 There are universal constants 0 < c < 1 < C such that, for any sequence
σ0 ≥ σ1 ≥ . . . and any integer n ≥ 0, we have

c σ ∗
Cn ≤ e∗

n(σ ) ≤ g∗
n(σ ) ≤ Cσ ∗�cn�.

In this sense, the worst possible behavior of the sampling numbers (or the minimal
integration error) for a given sequence of approximation numbersσ is always described
by the sequence σ ∗. If σ is regularly decreasing in the sense that σn � σ2n , we obtain
that

g∗
n(σ ) � e∗

n(σ ) � σ ∗
n .

Let us consider the case of polynomial decay, that is, σn � n−α log−β n. This
sequence is square-summable if and only if α > 1/2 or α = 1/2 and β > 1/2.
In the case α > 1/2 it follows that g∗

n(σ ) � σ ∗
n � σn . For the reproducing kernel

Hilbert spaces Hλ of multivariate periodic functions the sequence of approximation
numbers is always square-summable. Thus there can only be a gap between the con-
cepts of sampling and approximation numbers in the case α = 1/2. This corresponds
to function spaces of small smoothness which are discussed in the next section.
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4 Lower Bounds for Small Smoothness

In this section,we consider various function spaces of small smoothness. Spaces of that
type appeared already in [24] to characterize path regularity of theWiener process.We
refer also to [17] to recent results on this subject and to [6] for an extensive treatment
of function spaces with logarithmic smoothness. These spaces are of particular interest
to us, since

• This is the only case where an asymptotic gap between the approximation numbers
and the sampling numbers is possible, see Sect. 3.3.

• The standard technique of bump functions does not yield optimal lower bounds,
see Sect. 2.1.

In [13], we obtained lower bounds for the univariate Sobolev spaces which merge
fractional smoothness 1/2 and logarithmic smoothness.Wewant to extend these results
to the multivariate case. In the multivariate regime, there are different smoothness
scales that generalize the univariate smoothness scale. We consider spaces of isotropic
smoothness and spaces of mixed smoothness.

4.1 Isotropic Smoothness

In the case of isotropic smoothness, we consider sequences of the form

λk = (1 + |k|)−d log−2β(e + |k|), k ∈ Z
d , β > 1/2, (19)

where | · | denotes the Euclidean norm on Z
d . This sequence is | · |-decreasing and

we may therefore apply Theorem 4 to obtain the following result. Recall that the
approximation numbers and sampling numbers are defined in Sect. 3.3.

Corollary 4 Let λ be given by (19). Then

an(Hλ) � n−1/2 log−β n

and

en(Hλ) � gn(Hλ) � n−1/2 log−β+1/2 n.

Proof Recall that an(Hλ)
2 is the (n + 1)st largest entry of λ. We have

#{k ∈ Z
d : λk ≥ ε} � ε−1( log ε−1)−2β

for ε → 0+ and this easily implies the asymptotic behavior of an(Hλ). Recalling
that en(Hλ) ≤ gn(Hλ), the upper bounds on en(Hλ) and gn(Hλ) follow from [5,
Theorem 1] and

∑
k≥n

k−1 log−2β k � log−2β+1 n. (20)
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The lower bounds follow fromTheorem 4 and (20) as the condition |2k| > rn excludes
onlyO(n) approximation numbers from the sum in the lower bound of Theorem 4. ��

We remark that, without much additional work, the norm characterization from
Proposition 1 can be generalized to Hλ with λ given by (19). In this case we need
differences of higher order, which are defined for h, x ∈ R

d inductively by


1
h f (x) = f (x + h) − f (x), 


j+1
h f (x) = 
1

h(

j
h f )(x), j ≥ 1.

Using this notation, themultivariate counterpart of Proposition 1 then reads as follows.

Proposition 4 Let λ ∈ �1(Z
d) be given by (19) and let M > d/2 be an integer. Then

f ∈ C([0, 1]d) belongs to Hλ if, and only if,

‖ f ‖22 +
∫
h : |h|≤1

[1 − log |h|]2β
|h|2d · ‖
M

h f ‖22 dh (21)

is finite. Furthermore, ‖ f ‖2Hλ
is equivalent to (21) with the constants independent of

f ∈ C([0, 1]d).
The proof resembles very much the proof of Proposition 1 and we leave out the
rather technical details, cf. also [6, Theorem 10.9], where one can find a more general
characterization for function spaces defined on whole R

d . Note that in contrast to the
univariate case (10), where h was from the unit interval (0, 1), we now consider in
(21) all directions h from the unit ball of R

d . Similar to the univariate case, using
Proposition 4 instead of Proposition 1, one can show that the bump function technique
would not suffice to prove the lower bound on en(Hλ) in Corollary 4.

Open Problem 2 A logarithmic gap between upper and lower bounds of the worst-case
error for numerical integration was recently observed also in [11] for Sobolev spaces
of functions on the unit sphere S

d ⊂ R
d+1. As conjectured already in [11], we also

believe that the existing lower bound can be improved. Unfortunately, our results can
not be directly applied in this setting, because the norm of a function in these function
spaces is defined in terms of its decomposition into the orthonormal basis of spherical
harmonics instead of the trigonometric system. Still, it might be possible to transfer
our results to the sphere by

• showing that our lower bounds from Corollary 4 already hold for the subspace H◦
λ

of functions with compact support in (0, 1)d and
• establishing an equivalent characterization of the spaces of generalized smoothness
on the sphere using a decomposition of unity and lifting of the spaces H◦

λ in analogy
to [35, Section 27],

or alternatively, by working with Theorem 2 directly and a closer examination of
(sums of) squares of kernels of Sobolev spaces on the sphere. For the first approach,
Proposition 4 might help. For the second approach, the paper [9] might be useful.
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4.2 Mixed Smoothness

We consider spaces of small mixed smoothness. The space is defined as the d-fold
tensor product of the univariate space of mixed smoothness from Sect. 2.1. This results
in the space Hλ with

λk =
d∏
j=1

(1 + |k j |)−1 log−2β(e + |k j |), k ∈ Z
d , β > 1/2. (22)

Here, λ is not norm-decreasing and therefore we cannot use Theorem 4. However,
it will turn out that already the lower bound from the univariate space is sharp in this
case. The approximation numbers for d > 1 have the same asymptotic behavior as in
the case d = 1.

Theorem 5 Let λ be given by (22). Then

an(Hλ) � n−1/2 log−β n.

This is in sharp contrast to the spaces of mixed smoothness s > 1/2, where the
approximation numbers for d > 1 have a lower speed of convergence than for d = 1,
see for example [7, Theorem 4.45]. The proof of Theorem 5 is based on the following
combinatorial lemma, which is in contrast to [22, Lemma 3.2]. For r ≥ 1 and d ∈ N,
we denote

M(r , d) :=
{
(n1, . . . , nd) ∈ Z

d
∣∣∣∣

d∏
j=1

(1 + |n j |) log2β(e + |n j |) ≤ r

}

and N (r , d) = #M(r , d).

Lemma 1 For fixed d ∈ N,

N (r , d) � r log−2β(e + r).

Proof We prove the statement by induction. Clearly, the statement is true for d = 1.
Let d > 1 and let the statement be true for N (r , d − 1). Then

N (r , d) =
∑

n∈M(r ,1)

N

(
r

(1 + |n|) log2β(e + |n|) , d − 1

)

�
∑

n∈M(r ,1)

r

(1 + |n|) log2β(e + |n|) log
−2β

(
e + r

(1 + |n|) log2β(e + |n|)
)

.

In the case |n| ≤ √
r , we have

log−2β
(
e + r

(1 + |n|) log2β(e + |n|)
)

� log−2β(e + r)
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and thus

∑
|n|≤√

r

r

(1 + |n|) log2β(e + |n|) log
−2β

(
e + r

(1 + |n|) log2β(e + |n|)
)

� r log−2β(e + r)
∑
n∈Z

1

(1 + |n|) log2β(e + |n|) � r log−2β(e + r).

In the case |n| ≥ √
r , n ∈ M(r , 1), we have log2β(e + |n|) � log2β(e + r) and thus,

∑
|n|≥√

r

r

(1 + |n|) log2β(e + |n|) log
−2β

(
e + r

(1 + |n|) log2β(e + |n|)
)

�
∫ Cr log−2β(e+r)

√
r

r

n log2β(e + r)︸ ︷︷ ︸
=:u

log−2β
(
e + r

n log2β(e + r)

)
dn

≤
∫ ∞

1/C
u log−2β(e + u)

r log−2β(e + r)

u2
du � r log−2β(e + r).

��
Proof of Theorem 5 The sequence of approximation numbers an,d :=an(Hλ, L2) is
the decreasing rearrangement of the sequence (

√
λk)k∈Zd . With λ0 = 1, we get

an,d ≥ √
λ(n,0,...,0) and the lower bound is obvious. The upper bound is obtained

from Lemma 1. Given n ≥ 3, we choose r = r(n) � n log2β n such that N (r , d) ≤ n.
Since

N (r , d) = #{k ∈ Z
d | λk ≥ r−1} = #{m ∈ N0 | am,d ≥ r−1/2}

we have an,d < r(n)−1/2 and the statement is proven. ��
Open Problem 3 It would be interesting to determine the so-called asymptotic con-
stants

lim sup
n→∞

an(Hλ)

n1/2 logβ n
and lim inf

n→∞
an(Hλ)

n1/2 logβ n

in the case of mixed smoothness 1/2 with logarithmic perturbation. Opposed to The-
orem 5, the asymptotic constants might reveal a dependence of the asymptotic decay
upon the dimension d. The asymptotic constants for mixed smoothness s > 1/2 have
been determined in [22]. In contrast to larger smoothness, the asymptotic constants
for mixed smoothness 1/2 with logarithmic perturbation cannot decay as a function
of d.

Now, we immediately obtain the behavior of the sampling numbers and the inte-
gration error on the spaces of mixed smoothness 1/2 with logarithmic perturbation.
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Theorem 6 Let λ be given by (22). Then

gn(Hλ) � en(Hλ) � n−1/2 log−β+1/2 n.

Proof The upper bound follows from Theorem 5 and [5, Corollary 2]. The proof of the
lower bound is essentially transferred from the one-dimensional case. For that sake,
we denote by λ = (λk)k∈Z the sequence introduced in (6). Note that λk = λke1 , where
e1 = (1, 0, . . . , 0) is the first canonical unit vector. To prove now the lower bound
for INT, let Qn be a quadrature formula on Hλ with nodes x1, . . . , xn ∈ [0, 1]d . For
x ∈ [0, 1]d and k ≤ d, let x (k) ∈ [0, 1] denote the kth coordinate of x . With Q(1)

n we
denote the quadrature rule with nodes x (1)

1 , . . . , x (1)
n ∈ [0, 1] and the same weights as

in Qn . By Corollary 4 or [13, Theorem 4] there is a function f (1) : [0, 1] → C in the
unit ball of Hλ such that

∣∣∣∣Q(1)
n ( f (1)) −

∫ 1

0
f (1)(x) dx

∣∣∣∣ � n−1/2 log−β+1/2 n.

The function

f : [0, 1]d → C, f (x) = f (1)(x (1))

is contained in the unit ball of Hλ and satisfies Qn( f ) = Q(1)
n ( f (1)) and∫

[0,1]d f (x) dx = ∫ 1
0 f (1)(x) dx . Thus,

∣∣∣∣Qn( f ) −
∫

[0,1]d
f (x) dx

∣∣∣∣ � n−1/2 log−β+1/2 n.

��
Open Problem 4 As [5, Corollary 2] is only an existence result, the upper bound on the
integration error in Theorem 6 is not constructive and does not tell us how to choose
the quadrature points optimally. The results from [19, 36] show that O(n log n) i.i.d.
uniformly distributed quadrature points are suitable with high probability to achieve
an error of order en(Hλ). In the case of isotropic smoothness s > d/2, it is known
thatO(n) such points suffice, see [21], and the question arises whether the same holds
true for other spaces from the family Hλ, λ ∈ �1(Z

d).

5 Lower Bounds for Large Smoothness

We discussed in Sect. 4 that the bump-function technique does not provide optimal
lower bounds for numerical integration of functions from Hλ as introduced in Defi-
nition 1 if the sequence λ = (λk)k∈Zd is large, i.e., if it is barely square-summable.
Quite naturally, the technique fails also in the other extremal regime - namely when the
sequence λ decays very rapidly. Then the space Hλ consists only of analytic functions
and, therefore, contains no bump functions with compact support at all.
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Function spaces of analytic functions have a longhistory.Nevertheless, it is an active
research question whether or not their use can help to avoid the curse of dimension for
numerical integration and approximation. Based on the technique of [31], the more
recent papers [23] and [16] present lower bounds for numerical integration of such
classes of functions which avoid any use of bump functions. Here, we prove the curse
of dimension for a class of analytic functions that is in connection with a recent result
of [10]. In the paper [10], it was shown that the integration problem on

F1
d =

⎧⎨
⎩ f ∈ L2([0, 1]d)

∣∣∣ ∑
k∈Zd

| f̂ (k)| · g(‖k‖∞) ≤ 1

⎫⎬
⎭

is polynomially tractable already for very slowly increasing functions g : N0 →
(0,∞), namely, for g(k) = max(1, log(k)). We contrast this very nice result by
showing that the integration problem suffers from the curse of dimension for essen-
tially any non-trivial function g if we replace | f̂ (k)| by | f̂ (k)|2 in the definition of
F1
d .

Theorem 7 Let d ≥ 2 and let g : N0 → [0,∞] be any non-decreasing function with
g(2) ≤ τ < ∞. If 4n−1 ≤ 3d , then the worst-case error for the numerical integration
on the class

F2
d =

⎧⎨
⎩ f ∈ L2([0, 1]d)

∣∣∣ ∑
k∈Zd

| f̂ (k)|2 · g(‖k‖∞) ≤ 1

⎫⎬
⎭

satisfies en(F2
d )2 ≥ 1/(2τ). Hence, numerical integration suffers from the curse of

dimension on the classes F2
d .

Proof We identify the class F2
d with Hλ, where λk = 1/g(‖k‖∞). Then we simply

apply Theorem 3 and obtain

en(F
2
d )2 ≥ λ0

(
1 − 2nλ0

λ0 +∑
k∈{−1,0,1}d λ2k

)
≥ 1

τ

(
1 − 2n

1 + 3d

)
≥ 1

2τ
.

��
We also add an asymptotic lower bound for analytic functions. We only write down

the univariate case for simplicity. Recall that all the functions in Hλ are analytic if
the sequence λ decays geometrically and that a lower bound on en(Hλ) in this case
cannot possibly be proven with the bump function technique.We therefore write down
the lower bound obtained with the Schur technique. We note, however, that a similar
lower bound might be proven in this case with the technique from [31].

Corollary 5 Let λk ≥ cω−|k| for some c > 0, ω > 1 and all k ∈ Z. Then

en(Hλ)
2 ≥ c

2
· min

{
1,

ω−4n

4n
· 1

1 − ω−1

}
.
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Proof This follows immediately from Corollary 2. ��
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29. Novak, E., Woźniakowski, H.: Tractability of Multivariate Problems, Volume I: Linear Information,
European Mathematical Society, Zürich, (2008)

30. Novak, E., Woźniakowski, H.: Tractability of multivariate problems, volume II: Standard Information
for Functionals. Eur. Math. Soc. Zürich. 3, 2 (2010)
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