
Journal of Fourier Analysis and Applications (2023) 29:45
https://doi.org/10.1007/s00041-023-10020-8

Beurling-Type Density Criteria for System Identification

Céline Aubel1 · Helmut Bölcskei2 · Verner Vlačić3
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Abstract
This paper addresses the problem of identifying a linear time-varying (LTV) system
characterized by a (possibly infinite) discrete set of delay-Doppler shifts without a
lattice (or other “geometry-discretizing”) constraint on the support set. Concretely,
we show that a class of such LTV systems is identifiable whenever the upper uniform
Beurling density of the delay-Doppler support sets, measured “uniformly over the
class”, is strictly less than 1/2. The proof of this result reveals an interesting relation
between LTV system identification and interpolation in the Bargmann-Fock space.
Moreover, we show that the density condition we obtain is also necessary for classes
of systems invariant under time-frequency shifts and closed under a natural topology
on the support sets. We furthermore find that identifiability guarantees robust recovery
of the delay-Doppler support set, aswell as theweights of the individual delay-Doppler
shifts, both in the sense of asymptotically vanishing reconstruction error for vanishing
measurement error.
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1 Introduction

Identification of deterministic linear time-varying (LTV) systems has been a topic of
long-standing interest, dating back to the seminal work by Kailath [21] and Bello [4],
and has seen significant renewed interest during the past decade [3, 19, 20, 22]. This
general problem occurs in many fields of engineering and science. Concrete examples
include system identification in control theory and practice, the measurement of dis-
persive communication channels, and radar imaging. The formal problem statement
is as follows. We wish to identify the LTV systemH from its response

(Hx)(t) :=
∫
R2

SH(τ, ν) x(t − τ) e2π iνt dτdν, ∀t ∈ R, (1)

to a probing signal x(t), with SH(τ, ν) denoting the spreading function associated
with H. Specifically, we consider H to be identifiable if there exists an x such that
knowledge of Hx allows us to determine SH. The representation theorem [15, Thm.
14.3.5] states that a large class of continuous linear operators can be represented as in
(1).

Kailath [21] showed that an LTV system with spreading function supported on
a rectangle centered at the origin of the (τ, ν)-plane is identifiable if the area of the
rectangle is at most 1. This result was later extended by Bello to arbitrarily fragmented
spreading function support regions with the support area measured collectively over
all supporting pieces [4]. Necessity of the Kailath-Bello condition was established
in [22, 26] through elegant functional-analytic arguments. However, all these results
require the support region of SH(τ, ν) to be known prior to identification, a condition
that is very restrictive and often impossible to realize in practice. More recently, it
was demonstrated in [19] that identifiability in the more general case considered by
Bello [4] is possible without prior knowledge of the spreading function support region,
again as long as its area (measured collectively over all supporting pieces) is no larger
than 1. This is surprising as it says that there is no price to be paid for not knowing
the spreading function’s support region in advance. The underlying insight has strong
conceptual ties to the theory of spectrum-blind sampling of sparse multi-band signals
[11, 12, 24, 25].

The situation is fundamentally different when the spreading function is discrete
according to

(Hx)(t) :=
∑
m∈N

αm x(t − τm) e2π iνmt , ∀t ∈ R, (2)

where (τm, νm) ∈ R
2 are delay-Doppler shift parameters andαm are the corresponding

complex weights, form ∈ N. Here, the (discrete) spreading function can be supported
on unbounded subsets of the (τ, ν)-plane with the identifiability condition on the sup-
port area of the spreading function replaced by a density condition on the support set
supp(H) := {(τm, νm) : m ∈ N}. Specifically, forH supported on rectangular lattices
according to supp(H) = a−1

Z×b−1
Z, Kozek and Pfander established thatH is iden-

tifiable if and only if ab � 1 [22]. In [14] a necessary condition for identifiability of a
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set of Hilbert-Schmidt operators defined analogously to (2) is given; this condition is
expressed in terms of the Beurling density of the support set, but the time-frequency
pairs (τm, νm) are assumed to be confined to a lattice. In practice the discrete spreading
function will not be supported on a lattice as the parameters τm, νm correspond to time
delays and frequency shifts induced, e.g. in wireless communication, by the propaga-
tion environment. It is hence of interest to understand the limits on identifiability in
the absence of “geometry-discretizing” assumptions—such as a lattice constraint—on
supp(H). Resolving this problem is the aim of the present paper.

1.1 Fundamental Limits on Identifiability

Our first line of results establishes fundamental limits on the stable identifiability of
H in (2) in terms of supp(H) and {αm}m∈N. The approach we pursue is based on
the following insight. Defining the discrete complex measure μ := ∑

m∈N αm δτm ,νm

on R
2, where δτm ,νm denotes the Dirac point measure with mass at (τm, νm), the

input–output relation (2) can be formally rewritten as

(Hμx)(t) =
∫
R2

x(t − τ)e2π iνt dμ(τ, ν), t ∈ R, (3)

where we use throughout Hμ instead of H for concreteness. Identifying the system
Hμ thus amounts to reconstructing the discrete measure μ from Hμx . More specifi-
cally, we wish to find necessary and sufficient conditions on classes H of measures
guaranteeing stable identifiability bounds of the form

dr(μ,μ′) � dm(Hμx,Hμ′x), for all μ,μ′ ∈ H , (4)

for appropriate reconstruction andmeasurementmetrics dr and dm, respectively, where
μ is the ground truth measure to be recovered and μ′ is the estimated measure. The
class H can be thought of as modelling the prior information available about the
measure μ facilitating its identification by restricting the set of potential estimated
measures μ′. In particular, the smaller the classH , the “easier” it should be to satisfy
(4). In addition to the class H of measures itself, the existence of a bound of the
form (4) depends on the choice of the probing signal x , so we will later speak of
identifiability by x .

This formulation reveals an interesting connection to the super-resolution problem
as studied by Donoho [8], where the goal is to recover a discrete complex measure on
R, i.e., a weighted Dirac train, from low-pass measurements. The problem at hand,
albeit formally similar, differs in several important aspects. First, we want to identify
a measureμ on R

2, i.e., a measure on a two-dimensional set, from observations in one
parameter, namely (Hμx)(t), t ∈ R.Next, the low-pass observations in [8] are replaced
by short-time Fourier transform (STFT)-type observations, where the probing signal
x appears as the window function. While super-resolution from STFT-measurements
was considered in [2], the underlying measure to be identified in [2] is, as in [8],
on R. Finally, [8] assumes that the support set of the measure under consideration is
confined to an a priori fixed lattice. While such a strong structural assumption allows
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for the reconstruction metric dr to take a simple and intuitive form, it unfortunately
bars taking into account the geometric properties of the support sets considered. By
contrast, the general definition of stable identifiability (see Definition 1) analogous
to [8] will pave the way for a theory of support recovery in the absence of a lattice
assumption. Specifically, we will relax the lattice constraint to the considerably less
stringent uniform separation constraint infμ∈H sep(supp(μ)) > 0, where, for a set
� ⊂ C, we define

sep(�) := inf{|λ − λ′| : λ, λ′ ∈ �,λ �= λ′}. (5)

These differences make for very different technical challenges. Nevertheless, we
can follow the spirit of Donoho’s work [8], who established necessary and sufficient
conditions for stable identifiability in the classical super-resolution problem.Donoho’s
conditions are expressed in terms of the uniform Beurling density of the measure’s
(one-dimensional) support set and are derived using density theorems for interpolation
in the Bernstein and Paley-Wiener spaces [6] and for the balayage of Fourier-Stieltjes
transforms [5]. We will, likewise, establish a sufficient condition guaranteeing sta-
ble identifiability for classes of measures whose supports have density less than 1/2
“uniformly over the class H ” (formally introduced in Definition 2). In addition, we
show that this is also a necessary condition for classes of measures invariant under
time-frequency shifts and closed under a natural topology on the support sets. We
will see below, by way of example, that these requirements are not very restrictive.
The proofs of these results are based on the density theorem for interpolation in the
Bargmann-Fock space [7, 29–31], as well as several results on Riesz sequences from
[17].

1.2 Robust Recovery of the Delay-Doppler Support Set

The second goal of the paper is to address the implications of the identifiability con-
dition (4) on the recovery of the discrete measure μ. Concretely, suppose that we
want to recover a fixed measure μ := ∑

m∈N αm δτm ,νm taken from a known class of
measures H assumed to be uniformly separated and stably identifiable (in the sense
of (4)) with respect to a probing signal x , and let {μn}n∈N ⊂ H be a sequence of
“estimated candidate measures” μn := ∑

m∈N α
(n)
m δ

τ
(n)
m , ν

(n)
m

for the recovery of μ. We
will show that, under a mild regularity condition on x , the uniform separation and
stable identifiability conditions onH guarantee that

Hμn x → Hμx �⇒ supp(Hμn ) → supp(Hμ) and

{α(n)
m }m∈N → {αm}m∈N, (6)

as n → ∞, where the topologies in which these limits take place will be specified in
due course. In words, this result says that the better the measurementsHμn match the
true measurement Hμ, the closer the estimated measures μn are to the ground truth
μ. This, in particular, shows that “measurement matching” is sufficient for recovery
within stably identifiable classes H , i.e., any algorithm that generates a sequence
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of measures {μn}n∈N ⊂ H satisfying Hμn x → Hμx will succeed in recovering
μ ∈ H . Crucially, we do not assume that the support sets supp(Hμ) and supp(Hμn ),
for n ∈ N, are confined to a lattice (or any other a priori fixed discrete set). To the
best of our knowledge, this is the first LTV system identification result on the robust
recovery of the discrete support set of the measure, instead of its weights only.

Notation. We write BR(a) for the closed ball in C of radius R centered at a, and
denote its boundary by ∂BR(a). For a set S ⊂ C, we let 1S : C → R be the indicator
function of S, taking on the value 1 on S and 0 elsewhere. We will identify C with R

2

whenever appropriate and convenient.
We say that a set � ⊂ C is discrete if, for all λ ∈ �, one can find a δ > 0 such that

|λ − λ′| > δ, for all λ′ ∈ �\{λ}. Following the terminology employed in [17, §2.2],
we say that a set � ⊂ C is relatively separated if

rel(�) := sup {#(� ∩ B1(x)) : x ∈ C} < ∞.

Further, we say that � is separated (usually referred to as uniformly discrete in the
literature), if sep(�) > 0, with sep as defined in (5). Finally, for the separated sets
�1,�2 ⊂ R

2, we define their mutual separation according to

ms(�1,�2) := inf
λ1∈�1,λ2∈�2

λ1 �=λ2

|λ1 − λ2|. (7)

Note that points that are elements of both �1 and �2 are excluded from consideration
in the expression for mutual separation.

For a Banach space B, we write ‖·‖B, B∗, and 〈·, ·〉B×B∗ to denote the norm, the
topological dual of B, and the dual pairing on B, respectively. Throughout the paper
we use p and q to denote conjugate indices in [1,∞] such that 1/p + 1/q = 1.
We write M p for the vector space of all complex Radon measures on C of the form
μ = ∑

λ∈� αλδλ, where � is a relatively separated discrete subset of R
2, {αλ}λ∈� is

a sequence in C, and the norm

‖μ‖p :=
{(∑

λ∈� |αλ|p
)1/p

, if p ∈ [1,∞)

supλ∈� |αλ| , if p = ∞

is finite. For such measures we define supp (μ) := {λ ∈ � : αλ �= 0}. Furthermore,
for s > 0, we letM p

s = {μ ∈ M p : sep(supp(μ)) � s}.
For a complex number λ = τ + iν (or the corresponding point (τ, ν) ∈ R

2), we
write (Mνx)(t) := e2π iνt x(t) for the modulation operator, (Tτ x)(t) := x(t − τ) for
the translation operator, and π(λ) = MνTτ for the combined time-frequency shift
operator. Recall that, for a nonzero Schwartz test function ϕ ∈ S(R), the STFT with
respect to the window function ϕ is the map Vϕ taking Schwartz distributions on R to
complex-valued functions on C according to

(Vϕx)(λ) = 〈x, π(λ)ϕ〉S ′(R)×S(R), for x ∈ S ′(R), λ ∈ C,
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where S ′(R) denotes the set of tempered distributions on R. We take ϕ(t) = 2
1
4 e−π t2

to be the L2-normalized gaussian and, following [15], write

Mp
m(R) =

{
x ∈ S ′(R) : ‖x‖Mp

m (R) :=
(∫

C

|(Vϕx)(λ)|pm(λ)pdλ

)1/p

< ∞
}

,

for theweightedmodulation space onR of index p andweight functionm : C → R�0.
When m ≡ 1, we use Mp(R) to designate the unweighted modulation space. We
remark that ϕ has the convenient property of being its own Fourier transform, i.e.,
ϕ̂ = ϕ. According to [15, Thm. 11.3.5, Thm. 11.3.6], Mp(R) is a Banach space, and,
for p ∈ [1,∞), its dual space can be identified with Mq(R) via the dual pairing

〈 f , g〉Mp(R)×Mq (R) = 〈Vϕ f ,Vϕg〉L p(C)×Lq (C), for f ∈ Mp(R), g ∈ Mq(R). (8)

Finally, for real-valued functions f and g of several variables p1, . . . , pn (which
may be real or complex numbers, or even functions), and a non-negative integerm � n,
we write f � p1,...,pm g if there exists a non-negative quantity C = C(p1, . . . , pm)

such that f � C g, as well as f � p1,...,pm g if both f � p1,...,pm g and g � p1,...,pm f .
We use the notation f � g only if C is a universal constant, i.e., if it is independent
from all the p1, . . . , pn .

2 Contributions

2.1 Operators and Identifiability

In order to formalize our definition of identifiability (4), we first need to make sense of
the integral in (3). Concretely, we consider only probing signals x in the modulation
space M1(R) (also referred to in the literature as S0, the Feichtinger algebra) and, for
a measure μ ∈ M p, we interpret (3) as a linear operator Hμ : M1(R) → Mp(R)

given by

Hμx =
∫
R2

x(· − τ)e2π iν · dμ(τ, ν) :=
∑

λ∈supp(μ)

μ({λ}) π(λ)x .

The convergence of this sum in theBanach spaceMp(R) is guaranteedby the following
proposition whose proof can be found in the Appendix.

Proposition 1 Let � be a relatively separated subset of C, and let p ∈ [1,∞). Then,

(i) H� : �p(�) × M1(R) → Mp(R) given by

H�(α, x) :=
∑
λ∈�

αλπ(λ)x, for all α ∈ �p(�), x ∈ M1(R),

is a well-defined continuous linear operator, in the sense of the sum converg-
ing unconditionally in the norm of M p(R). Moreover, this operator is bounded
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according to
‖H�(α, x)‖Mp(R) � rel(�) ‖α‖�p‖x‖M1(R),

for all α ∈ �p(�), x ∈ M1(R).

(ii) For a fixed x ∈ M1(R), the adjoint operator
(
H�(·, x))∗ : Mq(R) → �q of the

map �p � α �→ H�(α, x) is given by
(
H�(·, x))∗(y) = {〈y, π(λ)x〉Mq (R)×Mp(R)}λ∈�, for y ∈ Mq(R). (9)

Next, for a measure μ = ∑
λ∈� αλδλ ∈ M p, define Hμ : M1(R) → Mp(R) by

Hμ(x) = Hsupp(μ)(α, x), for all x ∈ M1(R). Then,

(iii) for every μ ∈ M p,

‖μ‖�∞ � ‖Hμ‖M1(R)→Mp(R). (10)

As a consequence of item (iii) in Proposition 1, we have

‖μ1 − μ2‖�∞ � ‖Hμ1−μ2‖M1(R)→Mp(R) = ‖Hμ1 − Hμ2‖M1(R)→Mp(R),

and therefore μ1 = μ2 whenever Hμ1 = Hμ2 . In other words, the measures in M p

are completely characterized by their action on M1(R), and thus there is a one-to-one
correspondence between the measures in M p and the operators {Hμ : μ ∈ M p}.
Note that this property is necessary for there to be any hope of recovering a measure
μ from a measurement Hμx with respect to a single probing signal x .

In the remainder of the paper we will only be interested in stable identifiability,
which from now on we call simply identifiability, defined formally as follows.

Definition 1 (Identifiability) Let p ∈ [1,∞). We say that a class of measures H ⊂
M p is identifiable by a probing signal x ∈ M1(R) if there exist constants C1,C2 > 0
(that may depend on p and x) such that

C1 (ms(�1,�2) ∧ 1) ‖μ1 − μ2‖p

�
∥∥Hμ1x − Hμ2x

∥∥
Mp(R)

� C2 ‖μ1 − μ2‖p , (11)

for all μ1, μ2 ∈ H , where � j := supp(μ j ), j ∈ {1, 2}.
The significance of the term ms(�1,�2) in (11) becomes apparent when dealing
with classesH that contain measures with potentially arbitrarily close supports. For
a concrete example, consider the class H = {μ ∈ M p, #(supp(μ)) = 1} of single
time-frequency shifts. This class contains the measuresμ = δ(0,0) andμε = δ(0,ε), for
all ε > 0.Let x ∈ M1(R)be a probing signal satisfying the time-localization constraint
t x(t) ∈ L2(dt), but otherwise arbitrary. Then ms(supp(μ), supp(με)) = ε, and

ε−1(Hμx − Hμε x) = ε−1(1 − e2π iε ·) x → −(2π i ·)x
in L2(R) = M2(R) as ε → 0, and hence

‖Hμx − Hμε x‖M2(R)/ms(supp(μ), supp(με)) � ‖t x(t)‖L2(dt) > 0, (12)
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as ε → 0. On the other hand, ‖μ − με‖2 = √
2 is bounded away from 0 as ε → 0.

Thus, if the classH is to be identifiable, the lower bound in (4) needs to decay at least
linearly with ms(supp(μ1), supp(μ2)), forμ1, μ2 ∈ H . In contrast to (12), one could
have another class K containing measures μ′ and μ′

ε , for ε > 0, so that ‖Hμ′x −
Hμ′

ε
x‖M2(R)/ms(supp(μ′), supp(μ′

ε)) → 0, as ε → 0, i.e., ‖Hμ′x − Hμ′
ε
x‖M2(R)

decays superlinearlywithms(supp(μ′), supp(μ′
ε)). Classes such asK are not covered

by our theory, and we hence exclude them from our definition of identifiability. In
summary, Definition 1 says that we consider a class of measures to be identifiable if
the decay of ‖Hμ1x−Hμ2x‖M2(R) as ms(supp(μ1), supp(μ2)) → 0 is not faster than
linear. This property will turn out to be crucial later when we discuss robust recovery
(specifically, in the proofs of Theorems 3 and 4).

2.2 A Necessary and Sufficient Condition for Identifiability

As already mentioned in the introduction, our necessary and sufficient condition for
identifiability will be expressed in terms of the density of support sets measured
uniformly over the class of measures under consideration. Concretely, we have the
following definition:

Definition 2 (Upper Beurling class density) Let L be a collection of relatively sepa-
rated sets in R

2, and, for R > 0, define (0, R)2 = (0, R) × (0, R) ⊂ R
2. For � ∈ L,

let n+(�, (0, R)2) be the largest number of points of � contained in any translate of
(0, R)2 in the plane. We then define the upper Beurling class density of L according
to

D+(L) = lim sup
R→∞

sup
�∈L

n+(�, (0, R)2)

R2 .

We are now ready to state the first main result of the paper.

Theorem 1 (A sufficient condition for identifiability) Let p ∈ (1,∞) and s > 0,
let H ⊂ M

p
s be a class of measures, and set L = {supp(μ) : μ ∈ H }. Suppose

that D+(L) < 1
2 . Then the class H is identifiable by the standard gaussian ϕ(t) =

2
1
4 e−π t2 , ϕ ∈ M1(R).

Crucially, the support sets supp(μ) ∈ L in Theorem 1 are not assumed to be subsets
of a lattice or any other a priori fixed subset of R

2. In particular, one allows H to
contain measures μ1 and μ2 with arbitrarily small ms(supp(μ1), supp(μ2)).

Note that a subclass H ′ of an identifiable class H is trivially identifiable, and
accordingly the upper Beurling class density of the supports of measures inH ′ does
not exceed that of the support sets corresponding to H . The sufficiency result in
Theorem1 is therefore “compatible”with the inclusion relation on classes. By contrast,
the “non-identifiability” of a classH ⊂ M

p
s (i.e., the nonexistence of a probing signal

in M1(R) by which the class would be identifiable) can only be meaningfully assessed
in terms of the Beurling densityD+({supp(μ) : μ ∈ H }) for sufficiently rich classes
of measures. For example, one can construct arbitrarily large finite subsetsH ofM p

s
with arbitrarily large D+({supp(μ) : μ ∈ H }), and yet H will be identifiable (e.g.
by the standard gaussian, using the property that distinct time-frequency shifts of a
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gaussian are linearly independent). A converse statement to Theorem 1 can hence be
meaningfully formulated only for classes H that are “sufficiently rich” in a suitable
sense. In the present paper we will do this for classes of measures that are subspaces
of M p, invariant under time-frequency shifts, and closed under limits of supports.

Before providing the precise definition of these classes of measures, we need to
introduce the notion of weak convergence for subsets of C. Concretely, we say that
a sequence of separated subsets {�n}n∈N converges weakly to � ⊂ C, and write
�n

w−→ �, if

dist
(
(�n ∩ BR(z)) ∪ ∂BR(z), (� ∩ BR(z)) ∪ ∂BR(z)

) → 0 as n → ∞, (13)

for all R > 0 and z ∈ C, where dist denotes the Hausdorff metric on the subsets of C.
We are now ready to formalize the type of classes covered by our necessity result.

Definition 3 (Regular H (L)p classes) Let p ∈ (1,∞) and s > 0, and let L be a
collection of separated subsets of C.

(i) We say that L is closed and shift-invariant (CSI) if it is closed under limits with
respect to weak convergence, and � + z := {λ + z : λ ∈ �} ∈ L, for all � ∈ L
and z ∈ C.

(ii) We define a class of measures H (L)p ⊂ M p according to

H (L)p =
{ ∑

λ∈�

αλδλ : � ∈ L, α ∈ �p(�)

}
.

We call H (L)p s-regular if L is CSI and sep(�) � s, for all � ∈ L.

Even though the conditions in Definition 3 are rather technical, they are not overly
restrictive, as evidenced by several examples of s-regular classes provided in §2.4.
We are now ready to state our second main result, which is a necessary condition
for identifiability of s-regular classes and as such constitutes a partial converse to
Theorem 1.

Theorem 2 (A necessary condition for identifiability of s-regular classes) Let p ∈
(1,∞) and s > 0, and letH (L)p be an s-regular class. If there exists an x ∈ M1(R)

such that H (L)p is identifiable by x, then D+(L) < 1
2 .

2.3 Identifiability and Robust Recovery

In this subsection we formalize the claim (6) made in the introduction under the
assumption that x ∈ M1

m(R), with the weight function m(z) = 1 + |z|, for z ∈ C.
Informally, this assumption imposes faster-than-linear decay on x in both the time and
frequency domains. Note that the L2-normalized gaussian ϕ is in M1

m(R), as its STFT
decays exponentially (by virtue of ϕ ∈ S(R) and [15, Thm. 11.2.5]).

We begin by defining the weak-* topology on M
p
s , for p ∈ (1,∞). Concretely,

for μ ∈ M
p
s and a sequence {μn}n∈N ⊂ M

p
s , we say that {μn}n∈N converges to μ in



45 Page 10 of 44 Journal of Fourier Analysis and Applications (2023) 29 :45

the weak-* topology of M p
s , and write μn

w∗−→ μ, if

lim
n→∞

∫
C

f dμn =
∫
C

f dμ, (14)

for all continuous f : C → C such that lim|z|→∞ f (z) = 0 and

∥∥∥ sup
y∈C,|y|�1

| f (z + y)|
∥∥∥
Lq (dz)

< ∞.

This definition corresponds to convergence in the weak-* topology on the Wiener
amalgam space W (M, L p), which will be defined and treated systematically in § 3.
In order to formalize (6), it will be helpful to first state the following weak-* recovery
result for s-regular classes:

Theorem 3 (Weak-* Recovery Theorem) Let p ∈ (1,∞) and s > 0, and letH (L)p

be an s-regular class. Assume furthermore that H (L)p is identifiable by a probing
signal x ∈ M1

m(R), where m(z) = 1 + |z|. Then,
(i) if μ, μ̃ ∈ H (L)p are such that Hμ̃ x = Hμx, we have μ̃ = μ.
(ii) forμ ∈ H (L)p and {μn}n∈N a sequence inH (L)p,Hμn x → Hμx in the weak-*

topology of M p(R) if and only if μn
w∗−→ μ inM p

s .

The proof of Theorem 3 relies crucially on the fact that the decay of the lower bound
in (11) as a function of ms(supp(μ1), supp(μ2)) is not faster than linear.

Note that item (i) of Theorem 3 guarantees perfect recovery of measures inH (L)p

under perfect measurement matching. However, this does not go a long way towards
establishing (6) as item (ii) of the theoremdealswith convergence inweak-* topologies
“only”. To illustrate that a stronger form of convergence is needed, consider the (1/2)-
regular class H (L)2, where L = {� ⊂ C : sep(�) � 1/2, #(�) � 2}. In this class

δ0,0+δn,0
w∗−→ δ0,0 asn → ∞ (where δτ,ν is again theDirac pointmeasurewithmass at

(τ, ν)), and so, if one were to rely on the weak-* convergence guarantee only, it could
be argued that {δ0,0 + δn,0}n∈N recovers δ0,0. This sequence does, indeed, capture
the component δ0,0, but it also features the nonvanishing spurious component δn,0.
Similarly, on the measurement side of (6), taking x = ϕ as the probing signal would
yield ϕ+ϕ( ·−n) → ϕ in theweak-* topology of L2, but not in the norm topology.We
can thus hope that upgrading from weak-* convergence to norm convergence on the
measurement side of (6) might imply a stronger form of convergence of the sequence
of candidate measures to the target measure. The following theorem establishes that
this is, indeed, the case for s-regular classes H (L)p. Concretely, convergence of the
measurements in norm implies that the candidate measuresμn approximate arbitrarily
big finite sections of the target measure μ and do not have any spurious components.

Theorem 4 (Robust Recovery Theorem) Let p ∈ (1,∞) and s > 0, and let H (L)p

be an s-regular class. Assume furthermore that H (L)p is identifiable by a probing
signal x ∈ M1

m(R), where m(z) = 1 + |z|, and let C1 and C2 be the corresponding
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constants such that (11) is fulfilled. Fix a μ ∈ H (L)p, write � = supp(μ), and let
{μn}n∈N be a sequence inH (L)p such that ‖Hμn x − Hμx‖Mp(R) → 0 as n → ∞.

Then, for every ε > 0 and every finite subset �̃ of � such that ‖μ − μ1�̃‖p < ε,
there is an N ∈ N so that, for all n � N, the measures μn take the form

μn =
∑
λ∈�̃

α
(n)
λ δλ+εn(λ) + ρn,

where |εn(λ)| � ε and |α(n)
λ − αλ| � ε, for all λ ∈ �̃, and ‖ρn‖p � 4C2

C1(s∧1) ε .

One can view
∑

λ∈�̃ α
(n)
λ δλ+εn(λ) as the “successfully recovered finite section”

of μ, which approximates both the time-frequency shifts and their weights within ε

error, whereas ρn is the “spurious” component, whose norm is also proportional to ε.
The constant of proportionality (C2/C1) · (s ∧ 1)−1 in the bound on ‖ρn‖p can be
interpreted as a “condition number”, indicating that the spurious component is more
difficult to suppress when the ratio of identifiability constants C2/C1 is large, or when
the separation s of themeasures under consideration is excessively small, which agrees
with our intuition on the behavior of the “difficult cases”.

2.4 Examples of Identifiable and Non-identifiable s-Regular Classes

Finally, we present several explicit families of s-regular classes and discuss their
identifiability in view of Theorems 1 and 2. Let p ∈ (1,∞), s > 0, N ∈ N, θ > 0,
and R > 0, and define the sets

Lsep
s = {� ⊂ R

2 : sep(�) � s},
Lfin
s,N = {� ⊂ R

2 : sep(�) � s, #(�) � N }, and

LRay
s,θ,R = {� ⊂ R

2 : sep(�) � s, n+(
�, (0, R)2

)
� θR2}.

We call the corresponding sets H (Lsep
s )p, H (Lfin

s,N )p, and H (LRay
s,θ,R)p, the

Euclidean-separated, finite, and Rayleigh classes, respectively. The following propo-
sition shows that these classes are s-regular.

Proposition 2 Let s > 0, N ∈ N, θ > 0, and R > 0. Then the collections Lsep
s ,

Lfin
s,N , and LRay

s,θ,R are CSI and so the corresponding Euclidean-separated, finite, and
Rayleigh classes are s-regular.

Theorems 1 and 2 can be used to obtain the following identifiability results for these
classes.

Corollary 5 (Finite class) Let p ∈ (1,∞), s > 0, and N ∈ N. Then the class

H (Lfin
s,N )p is identifiable by the gaussian ϕ(t) = 2

1
4 e−π t2 .

Corollary 6 (Euclidean-separated class) Let p ∈ (1,∞) and s > 0. Then,
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(i) if s > 2 · 3− 1
4 ,H (Lsep

s )p is identifiable by ϕ, and

(ii) if s � 2 · 3− 1
4 , H (Lsep

s )p is not identifiable by any probing signal.

Corollary 7 (Rayleigh class) Let p ∈ (1,∞) and s ∈ (0, θ−1/2). Then,

(i) if θ < 1
2 , H (LRay

s,θ,R)p is identifiable by ϕ, for all R > 0, and

(ii) if θ > 1
2 , there exists an R0 > 0 such that H (LRay

s,θ,R)p is not identifiable by any
probing signal, for all R � R0.

One could also consider the classH ({�})p for a fixed lattice � = A(Z × Z) + b,
where A ∈ R

2×2 and b ∈ R
2, in which case the same techniques can be used to

establish thatH ({�})p is sep(�)-separated, identifiable by ϕ if det(A) > 1, and not
identifiable by any probing signal if det(A) � 1.

3 Lattices, Beurling Densities, andWiener Amalgam Spaces

In this section we introduce various technical tools used throughout the paper. We
begin with square lattices in C and write �γ = {ωm,n = γ (m + in)}m,n∈Z for the
square lattice in C of mesh size γ > 0. Whenever we identify C with R

2, �γ is
equivalently given by {(γm, γ n) : m, n ∈ Z}. Next, we define the (standard) upper
Beurling density, which is analogous to our Definition 2, but applies to individual
subsets of R

2, instead of classes of subsets.

Definition 4 (Upper Beurling density, [5, p. 346], [23, p. 47]) Let � be a relatively
separated set inR

2, and, for R > 0, denote the largest number of points of� contained
in any translate of (0, R)2 by n+(�, (0, R)2). We then define

D+(�) := lim sup
R→∞

n+(�, (0, R)2)

R2

and call this quantity the upper (standard) Beurling density of �.

The following three lemmas, whose proofs are elementary and thus omitted, relate
the lattices �γ , the upper Beurling class density, and the standard Beurling density.

Lemma 8 Let L be a collection of relatively separated sets in R
2, and suppose that

D+(L) < ∞. Then,

(i) for every θ > D+(L), there exists an R0 > 0 such that

n+(�, (0, R)2) � θR2,

for all � ∈ L and R � R0, and
(ii) D+(L) � sup�∈L D+(�).

Definition 5 Let � be a non-empty relatively separated subset of C, and let γ > 0
and R > 0. We say that � is R-uniformly close to �γ = {ωm,n = γ (m + in)}m,n∈Z
if there exists an enumeration {λm,n}(m,n)∈I of � (with index set I ⊂ Z × Z) such
that |λm,n − ωm,n| � R, for all (m, n) ∈ I.
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Lemma 9 Let � be a non-empty discrete set in C, and let θ > 0, γ > 0, and R > 0.
If γ −2 > θ and n+(�, (0, R)2) � θR2, then there exists an R′ = R′(θ, γ, R) > 0
such that � is R′-uniformly close to �γ .

Lemma 10 Let L be a set of relatively separated subsets of C, and let γ > 0 and
R > 0. If � is R-uniformly close to �γ , for all � ∈ L, then D+(L) � γ −2.

We conclude this section by formalizing Wiener amalgam spaces [9, 10] on C and
relating them to weak-* convergence on M

p
s defined in (14). We adopt most of our

terminology from [17]. Let D(C) be the test space of smooth compactly supported
functions on C, with its usual inductive limit topology and the corresponding topo-
logical dual D′(C), called the space of distributions. Let B be a Banach space that
admits a continuous embedding into D′(C). Furthermore, fix a non-negative com-
pactly supported continuous function ψ ∈ D(C) forming a partition of unity, i.e.,∑

z∈Z2 ψ( · − z) = 1, and let m : C → R�0 be a weight function of the form
m(z) = (1+ |z|)r , for some r � 0. Then, for p ∈ [1,∞], the Wiener amalgam space
W (B, L p

m) is defined as

W (B, L p
m) =

{
f ∈ D′(C) : ‖ f ‖W (B,L p

m ) :=
∥∥∥‖ f ψ( · − z)‖B m(z)

∥∥∥
L p(dz)

< ∞
}

.

The definition of W (B, L p
m) is independent of the choice of ψ , and different ψ define

equivalent norms on W (B, L p
m). Informally, W (B, L p

m) is the space of distributions
(i.e., generalized functions) on C that are “locally in B” and “globally in L p

m”.
Next, we claim that M p

s ⊂ W (M, L p), for p ∈ (1,∞], where M is the space of
regular complex-valued Borel measures onCwith the total variation norm. To see this,
let r > 0 be such that supp(ψ) ⊂ Br (0). Now, for a measure μ = ∑

λ∈� αλδλ ∈ M
p
s

denote |μ|p := ∑
λ∈� |αλ|p δλ. Then Hölder’s inequality yields

‖μψ( · − z)‖M �
∑

λ∈�∩Br (z)

|αλ| �
( ∑

λ∈�∩Br (z)

1q
)1/q( ∑

λ∈�∩Br (z)

|αλ|p
)1/p

�ψ

(
sep(�)−2

)1/q (∫
C

1{|y−z|�r} d|μ|p(y)
)1/p

, for z ∈ C,

where the last inequality follows since one can pack at most r2/(sep(�)/2)−2 spheres
of radius sep(�)/2 in Br (z). Therefore, as sep(�) � s Tonelli’s theorem yields
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∥∥∥‖μψ( · − z)‖M
∥∥∥p

L p(dz)
�ψ,s

∫
C

[ ∫
C

1{|z−y|�r} d|μ|p
]
dz

=
∫
C

∫
C

1{|z−y|�r}dz
︸ ︷︷ ︸

=πr2

d|μ|p = πr2‖μ‖p
p < ∞,

and so μ ∈ W (M, L p). As μ ∈ M
p
s was arbitrary, we have therefore shown that

‖μ‖W (M,L p) �ψ,p,s ‖μ‖p, for all μ ∈ M
p
s , (15)

which establishes M p
s ⊂ W (M, L p).

Now, by the Riesz-Markov-Kakutani representation theorem [27, Thm. 6.19], M
can be identified with the topological dual C∗

0 of

C0 =
{
f ∈ L∞(C) : f continuous, lim|z|→∞ | f (z)| = 0

}
,

via the pairing 〈μ, f 〉 = ∫
C
f dμ. Therefore, by [10, Thm. 2.8], we have that

| f (y)|1Br (z)(y) is integrable w.r.t. the product measure d|μ|(y) × dz on C × C,
for μ ∈ W (M, L p) and f ∈ W (C0, Lq), and W (M, L p) can be identified with the
topological dual of W (C0, Lq) via the dual pairing

〈μ, f 〉 :=
∫
C

[∫
C

f 1Br (z)dμ

]
dz.

An application of Fubini’s theorem hence yields

〈μ, f 〉 =
∫
C

[∫
C

f (y)1Br (z)(y)dμ(y)

]
dz

=
∫
C

f (y)
∫
C

1{|z−y|�r} dz dμ(y) = πr2
∫

f dμ.

Thus, as πr2 is a constant depending only on the choice of ψ through supp(ψ) ⊂
Br (0), one can instead use the following simpler dual pairing to effect the correspon-
dence between W (M, L p) and W (C0, Lq)∗:

〈μ, f 〉 =
∫

f dμ =
∑

λ∈supp(μ)

f (λ)μ({λ}),

for μ ∈ W (M, L p) and f ∈ W (C0, Lq). Therefore, definition (14) of weak-* con-
vergence in M

p
s corresponds precisely to convergence in the weak-* topology on

W (M, L p) (i.e., the weak topology generated by W (C0, Lq)).
Finally, in the special case of weak convergence of subsets of R

2 defined in (13),
following [17, p. 398], we have that, if infn∈N sep(�n) > 0, then weak convergence
of subsets �n

w−→ � is equivalent to
∑

λ∈�n
δλ → ∑

λ∈� δλ in the weak-* topology
W (C0, L1).
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4 Proof of Theorem 1

As already mentioned in the introduction, the proof of Theorem 1 relies on the theory
of interpolation of entire functions. The idea for the proof is based on [1, Thm. 1]
(which, in turn, uses the argument developed by Brekke and Seip in [7]) where the
lower bound (analogous to the left-hand side of (11)) unfortunately depends in a
non-explicit manner on the supports of the individual measures in the identifiability
condition. As our goal is to obtain an explicit lower bound, namely, a constant multiple
of the minimum separation of the supports, our theorem needs to be stated in terms of
the class density (according to Definition 2) instead of simply considering the standard
Beurling density (according to Definition 4) of the supports of the individual measures
in the class. This difference will also require delving deeper into the interpolation
theory underlying the proof of [1, Thm. 1].

We begin our exposition of the required technical tools by defining the Weierstrass
σγ -function associated with �γ = {ωm,n = γ (m + in)}m,n∈Z :

σγ (z) = z
∏

(m,n)∈Z2\{(0,0)}

(
1 − z

ωm,n

)
exp

(
z

ωm,n
+ 1

2

z2

ω2
m,n

)
, z ∈ C.

We will need several basic facts about this function, which can be found in [32] along
with a more detailed account of its properties. Concretely, we note that the infinite
product in the definition of σγ converges absolutely uniformly on compact subsets
of C, and therefore defines an entire function. Moreover, σγ satisfies the following
growth estimate:

Lemma 11 ( [32, Cor. 1.21]) We have |σγ (z)|e− π
2 γ −2|z|2 � γ d(z,�γ ), where

d(z,�γ ) = min{|z − ω| : ω ∈ �γ } denotes the Euclidean distance from z to the
lattice �γ .

In order to enable working with measures μ whose supports are not subsets of lat-
tices, we will need to perturb the zeros of the Weierstrass σγ -function. We will do
so following [32] and [31, p. 109]. Concretely, let I ⊂ Z × Z be an index set with
(0, 0) ∈ I, and let � = {λm,n}(m,n)∈I be a discrete subset of C with λm,n �= 0 for
(m, n) ∈ I \ {(0, 0)}. We now define the modified Weierstrass function associated
with � by

g�(z) = (z − λ0,0)
∏

(m,n)∈I\{(0,0)}

(
1 − z

λm,n

)
exp

(
z

λm,n
+ 1

2

z2

ω2
m,n

)
, z ∈ C.

(16)

According to [32, Lem. 4.21], provided there exist γ > 0 and R > 0 such that � is
R-uniformly close to �γ , expression (16) converges uniformly on compact subsets of
C to an entire function with zero set�. The proof of Theorem 1 relies on constructing
and controlling the growth of an entire function interpolating a sequence of values
{βλ}λ∈� at the points of � = supp(μ1) ∪ supp(μ2), where μ1, μ2 ∈ M

p
s are the
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measures for which (11) is to be established. This will be achieved by means of
“basis functions” that interpolate the one-hot sequences {1{λ=λ′}}λ∈�, for λ′ ∈ �. The
following lemma furnishes a prototype for these basis functions, obtained by “dividing
out” a zero of the modifiedWeierstrass function associated with�, as well as a growth
bound reminiscent of [32] and [31, §2.2], with the crucial difference that our bound
makes the dependence on the mutual separation of supp(μ1) and supp(μ2) explicit.
The proof of the lemma largely follows [32], the only difference being that we need
to take the specific form � = supp(μ1) ∪ supp(μ2) of � into account, carrying out
the calculations more explicitly to extract the dependence on the mutual separation of
supp(μ1) and supp(μ2).

Lemma 12 Let� = {λm,n}(m,n)∈I be a relatively separated subset ofCwith λ0,0 = 0.
Furthermore, let ρ, s, θ , γ , and R be positive real numbers, and set �γ = {ωm,n =
γ (m + in)}m,n∈Z . Define Is = {(m, n) ∈ I : |λm,n| � s

2 } and suppose that

(i) #(Is) � 2, and, if Is = {(0, 0), (m′, n′)}, then |λm′,n′ | � ρ ,
(ii) n+(�, (0, R′)2) � θR′ 2, for all R′ � R, and
(iii) |λm,n − ωm,n| � R, for all (m, n) ∈ I.

Now, let g� be given by (16) and define g̃� : C → C according to

g̃�(z) = g�(z)

z

∏
(m,n)∈Is

exp

(
z

ωm,n
− z

λm,n

)

∏
(m,n)∈Z2\I

(
1 − z

ωm,n

)
exp

(
z

ωm,n
+ 1

2

z2

ω2
m,n

)
. (17)

Then,

(a) g̃�(0) = 1 and g̃�(λm,n) = 0, for (m, n) ∈ I\{(0, 0)}, and
(b) there exist constants C > 0 and c > 0 depending only on s, θ , γ , and R such that

|̃g�(z)|e− π
2 γ −2|z|2 � C(ρ ∧ 1)−1ec|z| log |z|, for all z ∈ C. (18)

The proof of Lemma 12 can be found in the Appendix.
The next preparatory step towards the proof of Theorem 1 is to relate Gabor systems

generated by ϕ(t) = 2
1
4 e−π t2 with entire functions of suitably bounded growth by

means of the Bargmann transform. Concretely, we will work with a definition of the
Bargmann transform consistent with [16] in order to facilitate arguments involving the
isometry property between modulation spaces and Bargmann-Fock spaces introduced
next. For conjugate indices p, q ∈ [1,∞], the Bargmann-Fock spaceF p(C) is defined
as the set of all entire functions F for which ‖F‖F p(C) < ∞, where

‖F‖F p(C) :=
(∫

C

|F(z)|p e−pπ |z|2/2dz
)1/p

, for p ∈ [1,∞),
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and
‖F‖F∞(C) := sup

z∈C
|F(z)| e−π |z|2/2.

The Bargmann transform is now defined as the linear map B : Mp(R) → F p(C)

given by

(B f )(z) = 2
1
4 e−π z2/2

∫
R

e2π t z−π t2 f (t)dt, z ∈ C.

According to [16, §1.4], theBargmann transform is an isometric isomorphism between
the Banach spaces Mp(R) and F p(C), i.e., it is bijective and

‖B f ‖F p(C) = ‖ f ‖Mp(R), for all f ∈ Mp(R). (19)

Following [18], when p ∈ [1,∞), the topological dual of F p(C) can be identified
with Fq(C) via the pairing

〈F,G〉F p(C)×Fq (C) =
∫
C

F(z)G(z)e−π |z|2dz,

for F ∈ F p(C) and G ∈ Fq(C).
The following lemma is a generalization (from L2(R) to Mq(R)) of the standard

identity [15, Prop. 3.4.1] relating the Bargmann transform with time-frequency shifts

of the gaussian ϕ(t) = 2
1
4 e−π t2 .

Lemma 13 Let q ∈ [1,∞). Then, for every y ∈ Mq(R) and λ = τ + iν ∈ C, we have

〈y, π(λ)ϕ〉Mq (R)×Mp(R) = e−π iτνe−π |λ|2/2(B y)(λ̄).

Before finally embarking on the proof of Theorem 1, we state the following two
lemmas that will facilitate the application of themore specialized theory of Bargmann-
Fock spaces. The first lemma is about abstract Banach spaces and an easy consequence
of the inverse mapping theorem [28, Cor. 2.12] and the Hahn-Banach theorem [28,
Thm. 3.6].

Lemma 14 Let A : X → Y be a continuous linear operator between the Banach
spaces X and Y . We then have:

(i) If A is bounded below (i.e., there exists a c > 0 such that ‖Ax‖ � c‖x‖, for all
x ∈ X), then the adjoint A∗ : Y ∗ → X∗ is surjective.

(ii) Suppose that there exists a constant a > 0 such that, for every f ∈ X∗, there is a
g ∈ Y ∗ with A∗g = f and a‖g‖Y ∗ � ‖ f ‖X∗ . Then A is bounded from below by
a.

The second lemma concerns Wiener amalgam spaces and its proof can be found in
the Appendix.

Lemma 15 Let p ∈ [1,∞), let � ⊂ R
2 be a separated subset, and set s = sep(�).

Then ∥∥∥ ∑
λ∈�

αλ f ( · − λ)

∥∥∥
L p(R2)

� p,s ‖ f ‖W (L∞,L1)‖α‖�p(�),
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for all {αλ}λ∈� ⊂ �p(�) and f ∈ W (L∞, L1).

Proof of Theorem 1 Fix μ1, μ2 ∈ H and let � j = supp(μ j ), for j ∈ {1, 2}, and
� = �1 ∪ �2. We can then write μ1 − μ2 = ∑

λ∈� αλδλ, where α ∈ �p(�), so that
‖μ1 − μ2‖p = ‖α‖�p and Hμ1ϕ − Hμ2ϕ = H�(α, ϕ), for H�( · , ϕ) : �p(�) →
Mp(R) as defined in the statement of Proposition 1. With this, (11) is equivalent to

C1
(
ms(�1,�2) ∧ 1

)‖α‖�p � ‖H�(α, ϕ)‖Mp(R) � C2‖α‖�p , (20)

and hence it suffices to find constants C1 = C1(p,H , ϕ) > 0 and C2 =
C2(p,H , ϕ) > 0 such that (20) holds. To this end, first note that by item (i) of
Proposition 1 we have

‖H�(α, ϕ)‖Mp(R) �ϕ rel(�)‖α‖p.

Furthermore, as μ1, μ2 ∈ M
p
s , we have

rel(�1 ∪ �2) � rel(�1) + rel(�2) � s−2,

and so the upper bound in (20) holds for some C2 > 0 depending on ϕ and s, as
desired.

We proceed to establish the lower bound in (20). Note that this bound holds trivially
if ms(�1,�2) = 0 or �1 = �2 = ∅, so suppose w.l.o.g. that ms(�1,�2) > 0 and
�1 �= ∅. Then, in particular, � �= ∅. Now, as H�( · , ϕ) : �p(�) → Mp(R) is a
continuous linear operator between Banach spaces, Lemma 14 implies that it suffices
to find a C1 = C1(p,H , ϕ) > 0 such that the following statement holds:

(P1)For every β ∈ �q(�), there exists a y ∈ Mq(R) such that (H�(·, ϕ))∗ (y) = β

and
C1

(
ms(�1,�2) ∧ 1

)‖y‖Mq (R) � ‖β‖�q .

By item (ii) of Proposition 1 and Lemma 13, we have the following expression for
(H�(·, ϕ))∗ in terms of the Bargmann transform:

(H�(·, ϕ))∗ (y) = {e−π iτνe−π |λ|2/2(B y)(λ)}λ=τ+iν ∈�, y ∈ Mq(R). (21)

Thus, as the Bargmann transform is an isometric isomorphism between Mp(R) and
F p(C), and the map {βλ}λ=τ+iν ∈� �→ {βλe−π iτν}λ=τ+iν ∈� is an isometric isomor-
phism on �q(�), the statement (P1) is equivalent to the following statement about
interpolation:

(P2) For every β ∈ �q(�), there exists an F ∈ Fq(C) such that e−π |λ|2/2F(λ) =
βλ, for all λ ∈ �, and

C1
(
ms(�1,�2) ∧ 1

)‖F‖Fq (C) � ‖β‖�q . (22)

To prove (P2), we will apply the construction developed in [7] (and also used in [1,
Thm. 1]), making use of the interpolation basis functions provided by Lemma 12. To
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this end, fix θ > 0 and γ > 0 such that 2D+(L) < 2θ < γ −2 < 1, and let β ∈ �q(�)

be arbitrary. Then, by Lemma 8, there exists an R0 > 0 (depending only onH ) such
that n+(� j , (0, R)2) � θR2, for j ∈ {1, 2} and R � R0. Now, for each λ ∈ �, define
the set �̃λ = {λ′ − λ : λ′ ∈ �}. We will seek to apply Lemma 12 to each of the sets
�̃λ as λ ranges over �. To this end, first note that

n+(�̃λ, (0, R)2) = n+(�, (0, R)2) � n+(�1, (0, R)2) + n+(�2, (0, R)2) � 2θR2,

for all R � R0. Therefore, as γ < (2θ)−1/2, it follows by Lemma 9 that there exists an
R′ = R′(θ, γ, R0) such that �̃λ is R′-uniformly close to �γ = {ωm,n = γ (m + in) :
m, n ∈ Z}. In particular, there exists an enumeration �̃λ = {̃λm,n}(m,n)∈Ĩ such that

|̃λm,n −ωm,n| � R′, for all (m, n) ∈ Ĩ. Note that 0 ∈ �̃λ by definition of �̃λ. In order
to apply Lemma 12 we need to additionally ensure that we work with an enumeration
of �̃λ = {λm,n}(m,n)∈I (possibly different from the enumeration �̃λ = {̃λm,n}(m,n)∈Ĩ )
that satisfies λ0,0 = 0. To this end, let (m0, n0) ∈ Ĩ be the index such that λ̃m0,n0 = 0,
and define I and {λm,n}(m,n)∈I as follows:

– If (0, 0) /∈ Ĩ, set I = (
Ĩ \ {(m0, n0)}

) ∪ {(0, 0)}, and let

λm,n =
{
0, if (m, n) = (0, 0),

λ̃m,n, if (m, n) ∈ I \ {(0, 0)} .

– If (0, 0) ∈ Ĩ, set I = Ĩ, and let

λm,n =

⎧⎪⎨
⎪⎩
0, if (m, n) = (0, 0),

λ̃0,0, if (m, n) = (m0, n0),

λ̃m,n, if (m, n) ∈ I \ {(0, 0), (m0, n0)}
.

The new enumeration �̃λ = {λm,n}(m,n)∈I satisfies |λ0,0 − ω0,0| = 0 and |λm0,n0 −
ωm0,n0 | � |̃λ0,0| + |̃λm0,n0 − ωm0,n0 | � 2R′, and thus we have |λm,n − ωm,n| � 2R′,
for all (m, n) ∈ I. The set �̃λ therefore fulfills the assumptions of Lemma 12 with
ρ := ms(�1,�2) ∧ s

2 , s, θ , γ , and R := R0 ∨ (2R′), and so the function g−λ :=
g̃�̃λ

( · − λ), where g̃�̃λ
is defined according to (17), satisfies

g−λ(λ′) =
{
1, if λ′ = λ

0, if λ′ �= λ
, for all λ′ ∈ �, (23)

and

|g−λ(z)| � C(ρ ∧ 1)−1e
π
2 γ −2|z−λ|2+c|z−λ| log |z−λ|, for all z ∈ C, (24)

where c > 0 and C > 0 depend on s, θ , γ , and R. Moreover, as λ was arbitrary, (23)
and (24) hold for all λ ∈ �. Next, following [31, p. 112], we consider the interpolation
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function

F(z) =
∑
λ∈�

βλ eπλz− π
2 |λ|2 g−λ(z). (25)

To see that F is a well-defined element of Fq(C), observe that

|F(z)|e− π
2 |z|2 �

∑
λ∈�

|βλ|e− π
2 |z−λ|2 |g−λ(z)|

� C(ρ ∧ 1)−1
∑
λ∈�

|βλ|e− π
2 (1−γ −2)|z−λ|2+c|z−λ| log |z−λ|

= C(ρ ∧ 1)−1
∑

j∈{1,2}

∑
λ∈� j

|βλ| f (z − λ), for all z ∈ C,

where f (z) = exp
[ − π

2 (1 − γ −2)|z|2 + c|z| log |z|]. Now, as γ −2 < 1, we have that
f decays exponentially, and so f ∈ W (L∞, L1). Lemma 15 thus yields

∥∥∥ ∑
λ∈� j

|βλ| f (· − λ)

∥∥∥
Lq (C)

� p,s ‖ f ‖W (L∞,L1)‖{βλ}λ∈� j ‖�q , for j ∈ {1, 2},

and so

‖F‖Fq (C) = ∥∥F(·)e− π
2 |·|2∥∥

Lq (C)

� C(ρ ∧ 1)−1
∥∥∥ ∑

j∈{1,2}

∑
λ∈� j

|βλ| f (· − λ)

∥∥∥
Lq (C)

� p,s,γ C(ρ ∧ 1)−1‖β‖�q .

(26)

Now, recall that ρ := ms(�1,�2) ∧ s
2 , and hence ms(�1,�2) ∧ 1 � s ρ ∧ 1. This

together with (26) establishes (22) with someC1 > 0 depending on s, θ , γ , R0, and R′.
As these quantities ultimately depend only on s andH , so does C1. Finally, (25) and
the basis interpolation property (23) together yield F(λ) = eπ |λ|2/2βλ, for all λ ∈ �.
We have thus established (P2), thereby concluding the proof of the theorem. ��

5 Proof of Theorem 2

In the proof of Theorem 2 we will make use of the following results from [17], as well
as a combinatorial lemma about squares in the plane, whose proof can be found in the
Appendix.

Theorem 16 (Non-uniformBalian-LowTheorem, [17, Cor. 1.2]) Let� be a relatively
separated subset of R

2 and x ∈ M1(R). If {π(λ)x}λ∈� is a Riesz sequence, i.e.,
‖∑

λ∈� cλπ(λ)x‖L2(R) ��,x ‖c‖�2(�), for all c ∈ �2(�), then D+(�) < 1.
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Theorem 17 ([17, Thm. 3.2]) Let � be a relatively separated subset of R
2 and x ∈

M1(R). Then ‖∑
λ∈� cλπ(λ)x‖Mp(R) ��,x ‖c‖�p(�), c ∈ �p(�), holds for some

p ∈ [1,∞] if and only if it holds for all p ∈ [1,∞].
Lemma 18 ([17, Lem. 4.5]) Let {�n}n∈N be a sequence of relatively separated sub-
sets of R

2. If supn∈N rel(�n) < ∞, then there exists a subsequence {�nk }k∈N that
converges weakly to a relatively separated set.

Lemma 19 Let Y ⊂ R
2, n ∈ N, and suppose that Kn is a square in the plane of

side length
√
2(2n + 1) such that #(Kn ∩ Y ) � 22n + 1. Then there exist squares

K0, K1, . . . , Kn−1 so that, for every j ∈ {0, 1, . . . , n − 1},
(i) K j ⊂ K j+1, K j has sides of length

√
2(2 j + 1) parallel to the sides of K j+1, and

K j and K j+1 share a corner,
(ii) #(K j ∩ Y ) � 22 j + 1.

We call a sequence (K0, K1, . . . , Kn) satisfying (i) and (ii) a sequence of nested
squares.

Proof of Theorem 2 We argue by contradiction, so suppose thatH (L)p is identifiable,
but D+(L) � 1

2 . Define γn = √
2(1 + 2−n) and Rn = 2(2n + 1), for n ∈ N. It then

follows by Lemma 10 that, for every n ∈ N, there exists a μ̃n ∈ H (L)p such that
supp(μ̃n) is not Rn-uniformly close to �γn . Indeed, if this were not the case for
some n ∈ N, we would have D+(L) � γ −2

n < 1
2 , contradicting our assumption that

D+(L) � 1
2 . Fix such a μ̃n for each n.

Now, for a fixed n ∈ N, define the sets

Sk,� =
[√

2(2n + 1)k,
√
2(2n + 1)(k + 1)

)

×
[√

2(2n + 1)�,
√
2(2n + 1)(� + 1)

)
⊂ R

2,

for (k, �) ∈ Z
2, forming a partition of the plane into squares of side length

√
2(2n +

1). As every Sk,� consists of exactly 22n fundamental cells of the lattice �γn and
the diagonal of Sk,� has length Rn , there must exist a pair (kn, �n) ∈ Z

2 such that
#(Skn ,�n ∩ supp(μ̃n)) � 22n + 1, for otherwise supp(μ̃n) would be Rn-uniformly
close to �γn , contradicting our choice of μ̃n .

We set K̃ n
n = Skn ,�n and apply Lemma 19 with K̃ n

n and Y = supp(μ̃n) to obtain
a sequence (K̃ n

0 , K̃ n
1 , . . . , K̃ n

n ) of nested squares. Next, let λn be the center of K̃ n
0

and note that, as L is shift-invariant by assumption, there exists a measure μn ∈
H (L)p with support supp(μ̃n)−λn . Therefore, setting Kn

j = K̃ n
j −λn , we have that

(Kn
0 , Kn

1 , . . . , Kn
n ) is a sequence of nested squares, #(Kn

j ∩ supp(μn)) � 22 j +1, and

Kn
0 = [−√

2,
√
2
)× [−√

2,
√
2
)
, for all n ∈ N and j ∈ {0, 1, . . . , n}. We next need

to verify the following auxiliary claim.

Claim Let r ∈ N and suppose that {μnrk
}k∈N is a subsequence of {μn}n∈N such that

K
nrj
j = K

nrk
j , for all j ∈ {1, 2, . . . , r} and all k � j . Then there exists a further

subsequence {μnr+1
k

}k∈N such that K
nr+1
r+1

r+1 = K
nr+1
k

r+1 , for all k � r + 1.
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Proof of Claim: LetK be the set of squares K ′ ⊂ K
nrr
r of side length

√
2(2r+1+1) such

that K ′ and Knrr
r have parallel sides and share a corner. As (K

nrk
0 , K

nrk
1 , . . . , K

nrk
r , K

nrk
r+1)

is a sequence of nested squares, for all k � r + 1, we have that K
nrk
r+1 ∈ K , for all

k � r + 1. But #K = 4, and therefore at least one element of K appears infinitely

often in the sequence {Knrk
r+1}k�r+1.Wecan therefore extract a subsequence {μnr+1

k
}k∈N

of {μnrk
}k∈N such that K

nr+1
r+1

r+1 = K
nr+1
k

r+1 , for all k � r + 1, establishing the claim. ��

Now, as Kn
0 = K 0

0 , for all n ∈ N, we can apply a diagonalization argument
together with the Claim to construct a subsequence {μnk }k∈N of {μn}n∈N such that
K

n j
j = Knk

j for all j ∈ N and all k � j . Next, as H (L)p is s-regular, we have

inf�∈L sep(�) � s > 0, and so supk∈N rel(supp(μnk )) � s−1 < ∞. Therefore,
by passing to a further subsequence of {μnk }k∈N if necessary, Lemma 18 implies

the existence of a set �∗ ⊂ R
2 such that supp(μnk )

w−→ �∗ as k → ∞. Then, as
#(K

n j
j ∩ supp(μn j )) � 22 j + 1, we have

n+(
�∗, [0,√2(2 j + 1) + 2]2

)
� #

(
�∗ ∩ (K

n j
j + B1(0))

)
� 22 j + 1,

for all sufficiently large j ∈ N, and so

D+(�∗) � lim sup
j→∞

22 j + 1(√
2(2 j + 1) + 2

)2 = 1

2
. (27)

Now, as L is CSI, we have �∗ ∈ L and �∗ + ( s2 , 0) ∈ L. Moreover, as
sep(supp(μnk )) � s, for all k ∈ N, we have sep(�∗) � s, and so ms(�∗,�∗ +
( s2 , 0)) � s

2 . Therefore, as we assumed H (L)p to be identifiable, there exist
C1,C2 > 0 depending on p and L and a probing signal x ∈ M1(R) such that

C1

( s
2

∧ 1
)

‖ν‖p �
∥∥∥∥∥
∑
λ∈�

νλπ(λ)x

∥∥∥∥∥
Mp(R)

� C2 ‖ν‖p ,

for all ν ∈ M p supported on � := �∗ ∪ (
�∗ + ( s2 , 0)

)
, and so by Theorems 17 and

16 we must have D+(�) < 1. On the other hand, (27) implies

D+(�) = 2D+(�∗) � 1,

which stands in contradiction to D+(�) < 1. Our initial assumption must hence be
false, concluding the proof of the theorem. ��
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6 Proofs of Theorems 3 and 4

We start with the following proposition that quantifies the behavior of Riesz sums
of time-frequency shifts of the probing signal x under perturbation of the individual
time-frequency shifts. We do so under a mild condition on the time-frequency spread
of the probing signal. Concretely, x will be assumed to be an element of the weighted
modulation space M1

m(R) = { f ∈ S ′ : Vϕ f ∈ L1
m(R)}.

Proposition 3 Let p ∈ [1,∞), � ⊂ C be a separated set, and α ∈ �p(�). Suppose
that x ∈ M1

m(R) with the weight function m(z) = 1 + |z|. Then,
(i) there exists a � ∈ W (L∞, L1) depending only on x such that

|Vϕ(x − π(ε)x)|(u, v) � |ε|�(u, v),

for all (u, v) ∈ R
2 and ε ∈ C with |ε| � 1.

(ii)

∥∥∥ ∑
λ∈�

αλπ(λ)x −
∑
λ∈�

αλe
2π iRe(λ)Im(ελ) π(λ + ελ)x

∥∥∥
Mp(R)

� p,s,x ‖ε‖�∞(�)‖α‖�p(�),

for all ε = {ελ}λ∈� ∈ �∞(�) such that ‖ε‖�∞(�) � 1.

Proof (i) Fix an ε ∈ C with |ε| � 1. We note that

|Vϕ(x − π(ε)x)| � |Vϕ(x − MIm(ε)x)| + |VϕMIm(ε)(x − TRe(ε)x)| (28)

and bound each term on the right-hand side separately, beginning with the second
term. To this end, we first define the auxiliary quantity F(u, v) = (Vϕx)(u, v)e2π iuv .
Then, for all (u, v) ∈ R

2 and τ ∈ R, we have

|Vϕ(x − Tτ x)|(u, v) = |(Vϕx)(u, v) − e−2π iτv(Vϕx)(u − τ, v)|
= |F(u, v) − F(u − τ, v)|

=
∣∣∣∣
∫ 0

−τ

(∂u F)(u + r , v) dr

∣∣∣∣ � |τ | sup
r∈[−τ,0]

|(∂u F)(u + r , v)|.

Therefore, for all (u, v) ∈ R
2,

|VϕMIm(ε)(x − TRe(ε)x)|(u, v) = |Vϕ(x − TRe(ε)x)|(u, v − Im(ε))

� |Re(ε)| sup
r∈[−Re(ε),0]

|(∂u F)(u + r , v − Im(ε))|

� |ε| · sup
‖(r1,r2)‖∞�1

|(∂u F)(u + r1, v + r2)|, (29)
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where we used the assumption |ε| � 1. Next, recalling the definition of F , we have

|(∂u F)(u, v)| =
∣∣∣(∂u(Vϕx)(u, v)

)
e2π iuv + (Vϕx)(u, v) · ∂ue

2π iuv
∣∣∣

= |∂u〈x,MvTuϕ〉 + 2π iv〈x,MvTuϕ〉|
� |(Vϕ′x)(u, v)| + 2π |v||(Vϕx)(u, v)|, (30)

where interchanging ∂u with the inner product in the last step is justified due to Vϕ′x ∈
L1
m(R2) (which follows from [15, Prop. 12.1.2]). Therefore, (29) and (30) together

yield

|VϕMIm(ε)(x − TRe(ε)x)|(u, v) � |ε| · sup
‖(r1,r2)‖∞�1

�(u + r1, v + r2), (31)

for all (u, v) ∈ R
2, where we set

�(u, v) := |(Vϕ′x)(u, v)| + 2π (|u| + |v|) |(Vϕx)(u, v)|.

We bound the first term in (28) in a similar manner, this time using another auxiliary
quantity, namely G(u, v) = (Vϕ x̂)(u, v)e2π iuv . Then, employing the fundamental
identity of time-frequency analysis [15, Eq. (3.10)]

(V f g)(u, v) = e−2π iuv(V f̂ ĝ)(v,−u), f ∈ S, g ∈ S ′, (u, v) ∈ R
2,

and the fact that ϕ̂ = ϕ, we obtain

|Vϕ(x − MIm(ε)x)|(u, v) = |Vϕ̂ (̂x − TIm(ε) x̂)|(v,−u)

� |ε| · sup
‖(r1,r2)‖∞�1

|(∂uG)(v + r1,−(u + r2))|, (32)

and

|(∂uG)(v,−u)| � |(Vϕ′ x̂)(v,−u)| + 2π |u||(Vϕ x̂)(v,−u)| (33)

� |(Vi ϕ̂′ x̂)(v,−u)| + 2π |u||(Vϕ̂ x̂)(v,−u)| (34)

= |(Vϕ′x)(u, v)| + 2π |u||(Vϕx)(u, v)| (35)

for all (u, v) ∈ R
2, where (33) is obtained analogously to (30), in (34) we used

ϕ′ = i ϕ̂′, and in (35) we again used the fundamental identity of time-frequency
analysis.

Combining (32) and (35) thus yields

|Vϕ(x − MIm(ε)x)|(u, v) � |ε| · sup
‖(r1,r2)‖∞�1

�(u + r1, v + r2), (36)
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and so (31) and (36) together give

|Vϕ(x − π(ε)x)|(u, v) � 2|ε| · sup
‖(r1,r2)‖∞�1

�(u + r1, v + r2).

Therefore, in order to complete the proof of item (i), it suffices to take

�(u, v) = sup
‖(r1,r2)‖∞�1

2�(u + r1, v + r2),

and show that � ∈ W (L∞, L1). In fact, as

‖�‖W (L∞,L1) �
∫
R2

sup
‖(y1,y2)‖∞�1

�(u + y1, v + y2) dudv

� 2
∫
R2

sup
‖(r1,r2)‖∞�2

�(u + r1, v + r2) dudv

� ‖�‖W (L∞,L1),

it suffices to establish that � ∈ W (L∞, L1). To this end, note that ‖Vϕ′x‖L1(R2) �
‖x‖M1(R) (see [15, Prop. 11.4.2]), and so by [15, Prop. 12.1.11] we get Vϕ′x ∈
W (L∞, L1). Next, as ϕ ∈ M1

m(R) and x ∈ M1
m(R), we have by [15, Prop. 12.1.11]

that Vϕx ∈ W (L∞, L1
m). Therefore, using |u| + |v| � 1 + |u + iv| = m(u + iv), it

follows that

‖�‖W (L∞,L1) � ‖Vϕ′x‖W (L∞,L1) + ‖Vϕx‖W (L∞,L1
m ) < ∞,

as desired.
(ii) Recalling the definition of ‖ · ‖Mp(R), we have

∥∥∥∑
λ∈�

αλπ(λ)x −
∑
λ∈�

αλe
2π iRe(λ)Im(ελ) π(λ + ελ)x

∥∥∥
Mp(R)

=
∥∥∥∑

λ∈�

αλVϕ(π(λ)x) −
∑
λ∈�

αλe
2π iRe(λ)Im(ελ) Vϕ(π(λ + ελ)x)

∥∥∥
L p(R2)

=
∥∥∥∑

λ∈�

αλ Vϕ(π(λ)(x − π(ελ)x))
∥∥∥
L p(R2)

,

where we used the commutation relation π(λ + ελ) = e−2π iRe(λ)Im(ελ)π(λ)π(ελ).
Now, by item (i) we get

∣∣Vϕ(π(λ)(x − π(ελ)x))
∣∣ = ∣∣Vϕ(x − π(ελ)x)

∣∣ ( · − λ) � ‖ε‖�∞(�)�( · − λ)

pointwise, for all λ ∈ �, and so, by Lemma 15, we find that
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∥∥∥∑
λ∈�

αλ Vϕ(π(λ)(x − π(ελ)x))
∥∥∥
L p(R2)

�
∥∥∥∑

λ∈�

|αλ|‖ε‖�∞(�)�( · − λ)

∥∥∥
L p(R2)

� p,s,x ‖ε‖�∞(�)‖α‖�p(�).

This establishes (ii) and completes the proof. ��
We next show that weak-* convergence of measures μn ∈ M

p
s implies weak-*

convergence of the measurements Hμn x ∈ Mp(R).

Proposition 4 Let p ∈ (1,∞), x ∈ M1
m(R) with the weight function m(z) = 1 + |z|,

and let {μn}n∈N ⊂ M
p
s be a sequence converging to some μ ∈ M

p
s in the weak-*

topology of W (C0, Lq). Then Hμn x → Hμx in the weak-* topology of M p(R).

Proof As p ∈ (1,∞), Mp(R) is reflexive and so its weak and weak-* topologies
coincide [15, Thm. 11.3.6]. Due to the dual pairing (8), this topology is generated by
the linear functionals 〈 · , y〉Mp(R)×Mq (R), for y ∈ Mq(R), and so we have to show
that

lim
n→∞〈Hμn x, y〉Mp(R)×Mq (R) = 〈Hμx, y〉Mp(R)×Mq (R), for all y ∈ Mq(R). (37)

Now, for y ∈ Mq(R), set fy(λ) := 〈y, π(λ)x〉Mq (R)×Mp(R), for λ = τ + iν. If we
show that fy ∈ C0, we will then have

〈Hμn x, y〉Mp(R)×Mq (R) =
∑

λ∈supp(μn)

μn({λ})〈π(λ)x, y〉Mp(R)×Mq (R)

= 〈μn, fy〉W (M,L p)×W (C0,Lq ), (38)

since the dual pairing is continuous in its first argument, and so, as μn
w∗−→ μ by

assumption, (38) will imply (37). Therefore, in order to complete the proof it suffices
to show that fy ∈ C0, for all y ∈ Mq(R).

To this end, fix an arbitrary y ∈ Mq(R) and note that then Vx y ∈ W (L∞, Lq) by
[15, Thm. 12.2.1]. On the other hand, Hölder’s inequality yields

∣∣ fy(λ)
∣∣ = ∣∣〈y, π(λ)x〉Mq (R)×Mp(R)

∣∣
�

∫
R2

∣∣(Vϕ y)(u, v)
∣∣ ∣∣(Vϕπ(λ)x)(u, v)

∣∣ dudv
�

∫
R2

∣∣(Vϕ y)(u, v)
∣∣ ∣∣(Vϕx)(u − τ, v − ν)

∣∣ dudv
= (|Vϕ y| ∗ |Vϕx(− · )|)(τ, ν). (39)

Next, as x ∈ M1(R), we have Vϕx ∈ W (L∞, L1) by [15, Thm. 12.2.1], which,
together with Vϕ y ∈ Lq(R2) and (39), implies by [15, Thm. 11.1.5] that fy ∈
W (L∞, Lq). This, in particular, shows that fy(z) → 0 as |z| → ∞. Consider now
arbitrary λ ∈ C and ε ∈ C with |ε| � 1. Then, by applying item (i) of Proposition 3
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with x replaced by π(λ)x , we find a �λ ∈ W (L∞, L1) ⊂ W (L∞, L p) depending
only on x and λ such that

|Vϕ(π(λ)x − π(ε)π(λ)x)| � |ε| · �λ

pointwise. We thus have

‖π(λ)x − π(λ + ε)x‖Mp(R)

= ‖π(λ)x − e2π iRe(ε)Im(λ)π(ε)π(λ)x‖Mp(R)

= ‖π(λ)x‖Mp(R)

∣∣∣1 − e2π iRe(ε)Im(λ)
∣∣∣

+ ‖π(λ)x − π(ε)π(λ)x‖Mp(R)

� ‖π(λ)x‖Mp(R)

∣∣∣1 − e2π iRe(ε)Im(λ)
∣∣∣ + |ε| · ‖�λ‖Lq (R2),

and so limε→0 ‖π(λ + ε)x − π(λ)x‖Mp(R) = 0. Therefore, by the continuity of the
dual pairing in the second argument, we get

fy(λ+ε)=〈y, π(λ+ε)x〉Mq (R)×Mp(R)→〈y, π(λ)x〉Mq (R)×Mp(R) = fy(λ) as ε→0,

and so, as λwas arbitrary, we deduce that fy is continuous. We have hence established
that fy ∈ C0, completing the proof. ��

We are now ready to prove Theorems 3 and 4. In addition to Propositions 3 and 4,
we will need the Banach-Alaoglu theorem as well as the inequality (15).

Proof of Theorem 3 (i) Let μ, μ̃ ∈ H (L)p be such that Hμ̃ x = Hμx , write μ =∑
λ∈� αλδλ, μ̃ = ∑

λ̃∈�̃ α̃λδ̃λ, and for R > 0 define

δR = min
{|λ − λ̃| : λ ∈ � ∩ BR(0), λ̃ ∈ �̃ \ �

} ∧ s

2
∧ 1, and

�̃R = {̃λ ∈ �̃ \ � : |̃λ| > R + δR, d (̃λ,�) � δR}.

Informally, δR is the distance between � and �̃ restricted to the disk BR(0) (not
counting the points in � ∩ �̃), and �̃R is the part of the support of μ̃ which is at least
R + δR away from the origin and everywhere within δR of �. Fix an R > 0, and, for
λ̃ ∈ �̃R , write λ(̃λ) for the point of � such that |̃λ − λ(̃λ)| � δR . Note that this point
is unique, as δR � s/2. Next, define the measures

μ̃1
R =

∑
λ̃∈�̃R

α λ̃ e2π i Im(λ(̃λ)−̃λ)Re(̃λ)δλ(̃λ) and

μ̃2
R =

∑
λ̃∈�̃\�̃R

α λ̃ δ λ̃,

and note that μ̃1
R is the measure obtained by “shifting the support” of the restricted

measure μ̃1�̃R
onto �, and μ̃2

R is the remaining part of μ̃.
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Next, we have ms(supp(μ − μ̃1
R), supp(μ̃2

R)) � δR . Now, as supp(μ − μ̃1
R) ⊂

supp(μ) and supp(μ̃2
R) ⊂ supp(μ̃), we have that μ − μ̃1

R and μ̃2
R are elements of

H (L)p, and so the identifiability condition (11) can be applied to themeasuresμ−μ̃1
R

and μ̃2
R , yielding

C1(δR ∧ 1)‖μ − μ̃1
R − μ̃2

R‖p

� ‖Hμx − Hμ̃1
R
x − Hμ̃2

R
x‖Mp(R)

= ‖Hμ̃x − Hμ̃1
R
x − Hμ̃2

R
x‖Mp(R)

=
∥∥∥ ∑

λ̃∈�̃R

α λ̃ π(̃λ)x −
∑

λ̃∈�̃R

α λ̃ e
2π i Im(λ(̃λ)−̃λ)Re(̃λ)π(λ(̃λ))x

∥∥∥
Mp(R)

� p,s,x δR · ‖{αλ}λ∈�̃R
‖�p ,

where in the last step we used item (ii) of Proposition 3 with ε = {λ(̃λ) − λ̃}̃λ∈�̃R
,

noting that |λ(̃λ) − λ̃| � δR � 1, for all λ̃ ∈ �̃R . Therefore, dividing by δR and C1
and absorbingC1 by replacing the dependency of� on s by a dependency onH (L)p,
we obtain

‖μ − μ̃1
R − μ̃2

R‖p � p,H (L)p,x ‖{αλ}λ∈�̃R
‖�p .

Now, as R > 0 was arbitrary and ‖{αλ}λ∈�̃R
‖�p → 0 as R → ∞, we deduce that

‖μ−μ̃1
R−μ̃2

R‖p → 0 as R → ∞.Moreover, as‖(μ−μ̃)1BR(0)‖p � ‖μ−μ̃1
R−μ̃2

R‖p,
we obtain ‖(μ − μ̃)1BR(0)‖p → 0 as R → ∞, which implies μ̃ = μ and hence
completes the proof of (i).
(ii) The “if” direction follows immediately by Proposition 4. To show the “only if”
direction, suppose that Hμn x → Hμx in the weak-* topology of Mp(R). It then
suffices to establish that every subsequence of {μn}n∈N has a further subsequence
that converges to μ in the weak-* topology of M p

s . To this end, fix an arbitrary
subsequence {μnk }k∈N of {μn}n∈N and let � = supp(μ) and �k = supp(μnk ). We
then have lim supn rel(�k) � s−2 < ∞, and so by [17, Lem. 4.5], {�k}k∈N has a
subsequence {�k�

}�∈N that converges weakly to a relatively separated set �̃. Note
that, as sep(�k) � s, for all k ∈ N, we also have sep(�̃) � s. Now, using (15) and
the identifiability condition (11), we have

sup
k∈N

‖μnk�
‖W (M,L p) � p,s sup

k∈N
‖μnk�

‖p � p,H (L)p,x sup
k∈N

‖Hμnk�
x‖Mp(R) < ∞,

and therefore, by the Banach-Alaoglu theorem [28, Thm. 3.15], {μnk�
}�∈N has a subse-

quence, which we will w.l.o.g. also denote by {μnk�
}�∈N to lighten notation, such that

μnk�

w∗−→ μ̃, for some μ̃ ∈ W (M, L p). Note that then supp(μ̃) ⊂ �̃ as�k�

w−→ �̃, and
so μ̃ ∈ H (L)p. It remains to show that μ̃ = μ. To this end, note that by Proposition 4
we have Hμn x → Hμ̃x in the weak-* topology of Mp(R), and so by uniqueness of
weak-* limits we deduce that Hμ̃x = Hμx . From this it follows by item (i) of the
theorem that μ̃ = μ, which finishes the proof. ��
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Proof of Theorem 4 Fix ε > 0 and an arbitrary finite subset �̃ ⊂ � such that ‖μ −
μ̃‖p < ε, where we set μ̃ = μ1�̃, and write μ̃ = ∑

λ∈�̃ αλδλ. Then ‖Hμ̃x −
Hμx‖Mp(R) < C2ε by the identifiability condition. Next, as Hμn x → Hμx in norm,
this convergence also holds in the weak-* topology, and so by Theorem 3 we have

μn
w∗−→ μ. We can therefore decompose each μn according to μn = νn + ρn , where

νn =
∑
λ∈�̃

α
(n)
λ δλ+εn(λ),

and limn→∞ α
(n)
λ = αλ, limn→∞ |εn(λ)| = 0, for every λ ∈ �̃. Now, for every n ∈ N,

define the “shifted” measure

ν̃n =
∑
λ∈�̃

α
(n)
λ e−2π i Re(λ)Im(ελ) δλ.

Then, as �̃ is finite, we have limn→∞ ‖εn‖�∞(�̃) = 0 and supn∈N ‖α(n)‖�p(�̃) < ∞,
which together with item (ii) of Proposition 3 yields

‖Hν̃n x − Hνn x‖Mp(R)

=
∥∥∥∑

λ∈�̃

α
(n)
λ e−2π i Re(λ)Im(ελ)π(λ)x −

∑
λ∈�̃

α
(n)
λ π(λ + εn(λ))x

∥∥∥
Mp(R)

� p,s,x ‖εn‖�∞(�̃)‖α(n)‖�p(�̃) → 0 as n → ∞. (40)

To bound ‖ρn‖p, we employ the identifiability condition (11) with the measures
ρn and μ̃ − ν̃n . Concretely, we note that supp(ρn) ⊂ supp(μn) and supp(μ̃ − ν̃n) ⊂
supp(μ̃) ⊂ supp(μ), and so ρn and μ̃ − ν̃n are indeed elements of H (L)p. Now,
ms(supp(μ̃ − ν̃n), supp(ρn)) � s − ‖εn(λ)‖�∞(�̃) > s/2, for sufficiently large
n, and so, by combining (40), ‖Hμ̃x − Hμx‖Mp(R) < C2ε, and the assumption
limn→∞ ‖Hμn x − Hμx‖Mp(R) = 0, we get

C1

( s
2

∧ 1
)

‖μ̃ − ν̃n − ρn‖p � ‖Hμ̃x − Hν̃n x − Hρn x‖Mp(R)

= ‖Hμ̃x − Hν̃n x − Hμn x + Hνn x‖Mp(R)

� ‖Hμ̃x − Hμx‖Mp(R) + ‖Hμx − Hμn x‖Mp(R)

+ ‖Hνn x − Hν̃n x‖Mp(R)

< 2C2ε (41)

for large enough n. On the other hand, ‖μ̃ − ν̃n − ρn‖p � ‖ρn‖p, and so

‖ρn‖p � 2C2

C1(s/2 ∧ 1)
ε � 4C2

C1(s ∧ 1)
ε,

for all sufficiently large n. This concludes the proof. ��
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7 Proofs of Proposition 2 and Corollaries 5, 6, and 7

Proof of Proposition 2 LetL be any of the classesLsep
s ,Lfin

s,N , andL
Ray
s,θ,R . It then follows

directly from the definitions of these sets that � + z := {λ + z : λ ∈ �} ∈ L, for
all � ∈ L and z ∈ R

2, so it remains to verify closure under weak convergence. To
this end, let {�n}n∈N be a sequence in L such that �n

w−→ � as n → ∞, for some
� ⊂ R

2. In all three cases we have that infn∈N sep(�n) � s implies sep(�) � s,
which establishes that Lsep

s is CSI.
Suppose now that L = Lfin

s,N . It then suffices to show that #� � N . To this end,
let �̃ be an arbitrary finite subset of �, and consider a point λ ∈ �̃. Then, for all
sufficiently large n, there exists a λn ∈ �n such that |λ − λn| < (sep(�̃) ∧ s)/2. We
deduce that, for all sufficiently large n, there is a �̃n ⊂ �n so that #�̃n = #�̃. But
#�n � N , for all n ∈ N, by definition of the classLfin

s,N , hence wemust have #�̃ � N .

Now, as �̃ was arbitrary, it follows that #� � N , and so � ∈ Lfin
s,N . This establishes

that Lfin
s,N is CSI.

For L = LRay
s,θ,R , fix an arbitrary translate K ◦

x,y = (x, x + R) × (y, y + R) of

(0, R)2, and consider a point λ ∈ � ∩ K ◦
x,y . Then, as K ◦

x,y is open, we have that
for all sufficiently large n there exists a λn ∈ �n such that |λ − λn| < s/2 and
λn ∈ K ◦

x,y . Therefore, as λwas arbitrary, and�∩K ◦
x,y is finite, we have #(�∩K ◦

x,y) �
#(�n ∩ K ◦

x,y) � θR2, for sufficiently large n. Thus, as K ◦
x,y was arbitrary, we obtain

n+ (
�, (0, R)2

)
� θR2, and so � ∈ LRay

s,γ,R . This establishes that L
Ray
s,γ,R is CSI and

thereby completes the proof. ��

Proof of Corollary 5 The proof is effected by verifying the conditions of Theorem 1. As
s := inf�∈Lfin

s,N
sep(�) > 0, by definition ofLfin

s,N , it suffices to show thatD+(Lfin
s,N ) <

1
2 . To this end, note that, for R � 2

√
N , we have

sup
�∈Lfin

s,N

n+(�, (0, R)2)

R2 � N

(2
√
N )2

� 1

4
,

and therefore D+(Lfin
s,N ) � 1/4 < 1/2, as desired. ��

Proof of Corollary 6 First assume that s > 2 · 3− 1
4 . In view of Theorem 1, it again

suffices to verify that D+(Lsep
s ) < 1

2 . To do this, we will need a special case of the
plane packing inequality by Folkman and Graham [13]:

Let K be a compact convex set. Then any subset of K whose any two points are at
least 1 apart (in the Euclideanmetric) has cardinality at most 2√

3
Area(K )+ 1

2Per(K )+
1.

For our purposes K will be a square of side length R, to be specified later. By
scaling, we see that then any subset of [0, R]2 whose any two points are at least s apart
has cardinality at most 2√

3
R2

s2
+ 2R

s + 1. Let θ ∈ ( 2√
3
s−2, 1

2

)
and R0 > 0 such that
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2(sR0)
−1 + R−2

0 � θ − 2√
3
s−2. Then, for all � ∈ Lsep

s and R � R0, we have

n+(�, [0, R]2) � 2√
3

R2

s2
+ 2R

s
+ 1 �

(
2√
3
s−2 + 2(sR0)

−1 + R−2
0

)
R2 � θR2.

Thus, noting that n+(�, (0, R)2) � n+(�, [0, R]2), we obtain

D+(Lsep
s ) = lim sup

R→∞
sup

�∈Lsep
s

n+(�, (0, R)2)

R2 � θ <
1

2
,

and soH (Lsep
s )p is identifiable by the probing signal ϕ.

Nowconsider the case s � 2·3− 1
4 and let r = 2·3− 1

4 ,�′ = {
rm(1, 0)+rn

( 1
2 ,

√
3
2

) :
m, n ∈ Z

} ∈ Lsep
s . Then D+(�′) =

(√
3
2 r2

)−1 = 1
2 , and so, by Lemma 8, we have

D+(Lsep
s ) � D+(�′) = 1

2 . It thus follows by Theorem 2 that H (Lsep
s )p is not

identifiable. ��
Proof of Corollary 7 In the case θ < 1

2 it follows directly from the definition of upper
Beurling class density that D+(Lsep

s ) � θ < 1/2 and so Theorem 1 implies that
H (LRay

s,θ,R)p is identifiable by the probing signal ϕ.

For θ > 1
2 , suppose by way of contradiction that there exists a sequence {Rn}n∈N

of positive numbers such that limn→∞ Rn = ∞ and H (LRay
s,θ,Rn

)p is identifiable, for

all n ∈ N. Let {γn}n∈N be a sequence of positive numbers such that γn > θ−1/2 > s
and

γ −2
n + 4

(
R−1
n γ −1

n + R−2
n

)
� θ,

for all n ∈ N, and limn→∞ γn = θ−1/2. We then have

n+(�γn , (0, Rn)
2) �

(
Rnγ

−1
n

)2 + 4
(
Rnγ

−1
n + 1

)
� θRn,

where the second term takes into account the points of �γn along the four sides

of the square (0, Rn)
2. Therefore, �γn ∈ H (LRay

s,θ,Rn
)p, for all n ∈ N, and so, as

limn→∞ γ −2
n = θ and θ > 1

2 , it follows by Lemma 8 thatD+(LRay
s,θ,Rn

) � D+(�γn ) =
γ −2
n > 1

2 , for all sufficiently large n. This stands in contradiction to Theorem 2,
completing the proof. ��
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Appendix: Proofs of Auxiliary Results

Proof of Proposition 1 Note that H� is, in fact, the synthesis operator treated in [17],
and so items (i) and (ii) follow immediately from [17, §2.5]. We proceed to establish

(iii). To this end, recall that ϕ(t) = 2
1
4 e−π t2 , fix an arbitrary (x, ω) ∈ �, and let �̃ be

a finite subset of � such that (x, ω) ∈ �̃. Then, for a, b ∈ R and (τ, ν) ∈ �̃, we have

〈MνTτ M−ω−bTaϕ, Tx+aM−bϕ〉Mq (R)×Mp(R)

= 〈ϕ, T−a Mω+bT−τM−νTx+aM−bϕ〉L2(R)

= e−2π i(x+a)b〈ϕ, T−a Mω+bT−τM−ν−bTx+aϕ〉L2(R)

= e−2π i(x+a)be2π iτ(ν+b)〈ϕ, T−a M(ω+b)+(−ν−b)T(x+a)−τ ϕ〉L2(R)

= e−2π i(x+a)be2π iτ(ν+b)e−2π ia(ω−ν)〈ϕ,Mω−νT(x+a)−τ−aϕ〉L2(R)

= e−2π iabe2π iτνe−2π ia(ω−ν)−2π ib(x−τ)(Vϕϕ)(x − τ, ω − ν),

and therefore

e2π iab
〈
H�̃ (α,M−ω−bTaϕ), Tx+aM−bϕ

〉
Mq (R)×Mp(R)

=
∑

(τ,ν)∈�̃

ατ,ν e
2π iτνe−2π ia(ω−ν)−2π ib(x−τ)(Vϕϕ)(x − τ, ω − ν). (42)

Now, let ε > 0 be arbitrary. We multiply both sides of (42) by ε e−πε(a2+b2) and
integrate over (a, b) ∈ R

2. Then, as the Fourier transform of
√

εϕ(·√ε) is ϕ(·/√ε),
the integral of the right-hand side equals

∑
(τ,ν)∈�̃

ατ,νe
2π iτνe−π

[
(ω−ν)2+(x−τ)2

]
ε−1

(Vϕϕ)(x − τ, ω − ν),

and the integral of the left-hand side satisfies

∣∣∣∣
∫
R2

εe−πε(a2+b2)e2π iab
〈
H�̃ (α,M−ω−bTaϕ), Tx+aM−bϕ

〉
Mq (R)×Mp(R)

da db

∣∣∣∣
�

∫
R2

εe−πε(a2+b2)
∣∣∣〈H�̃ (α,M−ω−bTaϕ), Tx+aM−bϕ

〉
Mq (R)×Mp(R)

∣∣∣ da db
�

∫
R2

εe−πε(a2+b2)‖H�̃(α, ·)‖‖M−ω−bTaϕ‖M1(R)‖Tx+aM−bϕ‖Mq (R) da db

� ‖H�̃(α, ·)‖‖ϕ‖M1(R)‖ϕ‖Mq (R).

http://creativecommons.org/licenses/by/4.0/
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We hence deduce that
∣∣∣∣∣∣

∑
(τ,ν)∈�̃

ατ,νe
2π iτνe−π

(
(ω−ν)2+(x−τ)2

)
ε−1

(Vϕϕ)(x − τ, ω − ν)

∣∣∣∣∣∣
� ‖H�̃(α, ·)‖‖ϕ‖M1(R)‖ϕ‖Mq (R),

and so, upon letting ε → 0, we obtain

∣∣∣αx,ωe
2π i xω(Vϕϕ)(0, 0)

∣∣∣ � ‖H�̃(α, ·)‖‖ϕ‖M1(R)‖ϕ‖Mq (R).

Next, note that we can writeH�̃ = H� −H�\�̃, and so, by item (i) of the proposition,
there exists a universal constant C > 0 such that

‖H�̃(α, ·)‖ � ‖H�(α, ·)‖ + C ‖{αλ}λ∈�\�̃‖�p .

Therefore, since (Vϕϕ)(0, 0) = ‖ϕ‖2
L2(R)

= 1, we have

|αx,ω| �
(
‖H�(α, ·)‖ + C ‖{αλ}λ∈�\�̃‖�p

)
‖ϕ‖M1(R)‖ϕ‖Mq (R).

The term ‖{αλ}λ∈�\�̃‖�p can now be made arbitrarily small by choosing a sufficiently

large �̃, and hence we deduce that

|αx,ω| � ‖H�(α, ·)‖‖ϕ‖M1(R)‖ϕ‖Mq (R).

As (x, ω) ∈ � was arbitrary, we obtain

‖α‖�∞ = sup
(x,ω)∈�

|αx,ω| � ‖H�(α, ·)‖‖ϕ‖M1(R)‖ϕ‖Mq (R),

establishing (10). ��
Proof of Lemma 12 Note that the terms z−λ0,0 and z in the defining expressions of g�

and g̃� cancel owing toλ0,0 = 0, so the interpolation property (a) follows immediately.
Wemayhence proceed to establishing statement (b). To this end,webegin byobserving
that the assumptions (i), (ii), and (iii) remain valid and the conclusion of the lemma
unchanged if we replace ρ by ρ ∧1 and R by R∨1∨ (3γ ), so we may assume w.l.o.g.
that ρ � 1 and R � 1 ∨ (3γ ). Now, set I ′ := I\{(0, 0)} and write

g̃�(z)e− π
2 γ −2|z|2 = σγ (z)e− π

2 γ −2|z|2

d(z,�γ )

d(z,�)

z
h(z), (43)

where d is the Euclidean distance from a point to a subset of C and

h(z) = d(z,�γ )

d(z,�)

∏
(m,n)∈Is

exp

(
z

ωm,n
− z

λm,n

) ∏
(m,n)∈I ′

(1 − z/λm,n) exp(z/λm,n)

(1 − z/ωm,n) exp(z/ωm,n)
.
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Note that |d(z,�)/z| � 1 owing to 0 ∈ �, and by Lemma 11 we have
|σγ (z)|e− π

2 γ −2|z|2/d(z,�γ ) � γ 1, so in order to complete the proof it suffices to
establish

|h(z)| � s,θ,γ,R ρ−1ec|z| log |z|, ∀z ∈ C, (44)

for some c = c(s, θ, γ, R) > 0. This will be effected by bounding various auxiliary
quantities associated with h. To this end, we begin by bounding

haux(z) :=
∏

(m,n)∈A(z)

(1 − z/λm,n) exp(z/λm,n)

(1 − z/ωm,n) exp(z/ωm,n)
,

from above, where A(z) ⊂ I is given by

A(z) = {
(m, n) ∈ I ′ : |λm,n| > 2|z| ∨ 6R

}
.

To this end, we first establish the following basic bounds valid for all z ∈ C and
(m, n) ∈ A(z):

(A1) |ωm,n| > 5R, |ωm,n|/|λm,n| ∈ (5/6, 5/4),
(A2) |z/ωm,n| < 4

51{|z|�4R} + 4
71{|z|>4R}, and

(A3) |z/λm,n| < 1/2.

The inequality in (A1) follows from |ωm,n| � |λm,n| − R > 6R − R = 5R, and the
upper and lower bounds on |ωm,n|/|λm,n| are due to |ωm,n| � |λm,n| − R > 5

6 |λm,n|
and |λm,n| � |ωm,n| − R > 4

5 |ωm,n|. To show (A2), consider the cases |z| � 4R
and |z| > 4R separately. If |z| � 4R, then |z/ωm,n| < 4R/(5R) = 4/5, whereas if
|z| > 4R, then |ωm,n| � |λm,n| − R > 2|z| − R > 7

4 |z| and so |z/ωm,n| < 4/7.
Finally, (A3) follows directly by the definition of A(z).

Now, using (A2), we have

|haux(z)| �
∏

(m,n)∈A(z)

|1 − z/λm,n|| exp(z/λm,n)|
|1 − z/ωm,n|| exp(z/ωm,n)|

�
(
1{|z|>4R} + 1{|z|�4R}

∏
(m,n)∈A(z)

|ωm,n |� 7
4 |z|�7R

(
1 + 1

2

)
e
1
2(

1 − 4
5

)
e− 4

5

)

∏
(m,n)∈A(z)
|ωm,n |> 7

4 |z|

|1 − z/λm,n|| exp(z/λm,n)|
|1 − z/ωm,n|| exp(z/ωm,n)|

� γ,R

∣∣∣∣
∏

(m,n)∈ Ã(z)

(1 − z/λm,n) exp(z/λm,n)

(1 − z/ωm,n) exp(z/ωm,n)

∣∣∣∣, ∀z ∈ C, (45)

where we set
Ã(z) = {(m, n) ∈ A(z) : |ωm,n| > 7

4 |z|}.
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Next, for z ∈ C and (m, n) ∈ A(z), it follows by (A2) that 1− z/ωm,n and 1− z/zm,n

lie in the domain C \ R�0 of the complex logarithm, which we denote by Log. We
can thus write

∏
(m,n)∈ Ã(z)

(1 − z/λm,n) exp(z/λm,n)

(1 − z/ωm,n) exp(z/ωm,n)

=
∏

(m,n)∈ Ã(z)

exp

[
Log

(
1 − z

λm,n

)
+ z

λm,n
− Log

(
1 − z

ωm,n

)
− z

ωm,n

]

=
∏

(m,n)∈ Ã(z)

exp

[
−

∞∑
k=2

1

k

(
z

λm,n

)k

+
∞∑
k=2

1

k

(
z

ωm,n

)k
]

= exp

[ ∑
(m,n)∈ Ã(z)

∞∑
k=2

zk

k

(
1

ωk
m,n

− 1

λkm,n

)]
,

which together with (45) yields

|haux(z)| � γ,R exp

[ ∑
(m,n)∈ Ã(z)

∞∑
k=2

|z|k
k

∣∣∣∣∣
1

ωk
m,n

− 1

λkm,n

∣∣∣∣∣
]
, ∀z ∈ C. (46)

Using (A1), we further have

∣∣∣∣∣
1

ωk
m,n

− 1

λkm,n

∣∣∣∣∣ =
∣∣λm,n − ωm,n

∣∣∑k−1
�=0 |λm,n|k−1−�|ωm,n|�∣∣ωm,n
∣∣k ∣∣λm,n

∣∣k

�
R · |ωm,n|k−1 ∑k−1

�=0

( 6
5

)�
∣∣ωm,n

∣∣2k ( 4
5

)k
� 5R · 1.5k ∣∣ωm,n

∣∣−(k+1)
, (47)

for all z ∈ C, (m, n) ∈ A(z), and all k ∈ N. Next, defining caux(z, R) := 7|z|
4 ∨ 5R,

(A1) and (A2) imply that Ã(z) ⊂ {(m, n) ∈ Z
2 : |ωm,n| > caux(z, R)}, for all z ∈ C,

and so (46) and (47) together yield

|haux(z)| � exp

[ ∑
(m,n)∈ Ã(z)

∞∑
k=2

5R|z|k
k

· 1.5k |ωm,n|−(k+1)
]

� exp

[ ∑
(m,n)∈Z2

|ωm,n |>caux(z,R)

∞∑
k=2

5R|z|k
k

· 1.5k |ωm,n|−(k+1)
]
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= exp

[ ∞∑
k=2

5R|z|k
k

· 1.5k ·
∑

(m,n)∈Z2

|ωm,n |>caux(z,R)

|ωm,n|−(k+1)
]
. (48)

Recall that R � 3γ , and so caux(z, R) = 7|z|
4 ∨ 5R � 7|z|

4 ∨ 20γ√
2
implies

caux(z, R) − γ /
√
2 � 0.95 caux(z, R) � 1.6 |z|. (49)

Now, write Kγ for the square of side length γ centered at (0, 0) and use R � 3γ and
(49) to obtain the following bound

∑
|ωm,n |>caux(z,R)

|ωm,n|−(k+1)

�
∑

|ωm,n |>caux(z,R)

( |ωm,n| + γ√
2

|ωm,n|

)k+1 ∫
(mγ,nγ )+Kγ

|w|−(k+1) |dw| (50)

�
(
1 + γ

5R
√
2

)k+1 ∫
|w|�caux(z,R)− γ√

2

|w|−(k+1) |dw|

�
(
1 + 1

15
√
2

)k+1 2π

k − 1

(
caux(z, R) − γ /

√
2
)1−k

� 1.04k+1 · 2π (1.6|z|)1−k

< 11 · 0.65k |z|1−k, (51)

for all z ∈ C\{0} and k � 2. We next use (51) in (48) to obtain

|haux(z)| � γ,R exp

[ ∞∑
k=2

5R|z|k
k

· 1.5k · 11 · 0.65k |z|1−k
]

� exp

[
R |z| · 55

2

∞∑
k=2

0.975k
]

� e1100R |z|, ∀z ∈ C. (52)

We are now ready to bound h, and do so by treating the cases |z| > 3R and |z| � 3R
separately.
Case |z| > 3R : We analyze h(z) as a product h(z) = ∏5

k=1 hk(z), where

h1(z) = exp

[
z

∑
(m,n)∈I ′\Is|λm,n |�2|z|

(
1

λm,n
− 1

ωm,n

)]
,
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h2(z) = d(z,�γ )

d(z,�)

∏
(m,n)∈I ′

|λm,n−z|�2R

1 − z/λm,n

1 − z/ωm,n
,

h3(z) =
∏

(m,n)∈I ′
|λm,n−z|>2R
|ωm,n |�2R

1 − z/λm,n

1 − z/ωm,n
, h4(z) =

∏
(m,n)∈I ′

|λm,n−z|>2R
|ωm,n |>2R
|λm,n |�2|z|

1 − z/λm,n

1 − z/ωm,n
, and

h5(z) =
∏

(m,n)∈I ′
|λm,n |>2|z|

(1 − z/λm,n) exp(z/λm,n)

(1 − z/ωm,n) exp(z/ωm,n)
,

and bound the functions h j in order.
Bounding h1: Note that |λm,n| > 3R implies |ωm,n| > 2R, and hence |λm,n| �
|ωm,n| − R > 1

2 |ωm,n|. We thus have the following bound for (m, n) ∈ I ′ \ Is :
∣∣∣∣ 1

λm,n
− 1

ωm,n

∣∣∣∣ � 1{|λm,n |�3R}(2s−1 + γ −1) + 1{|λm,n |>3R}
|λm,n − ωm,n|
|ωm,n||λm,n|

� 1{|λm,n |�3R}(2s−1 + γ −1) + 2R|ωm,n|−2,

and therefore, as #{(m, n) ∈ I ′ : |λm,n| � 3R} � 9θR2,

|h1(z)| � exp

[
|z|

∑
(m,n)∈I ′

|zm,n |�2|z|

∣∣∣∣ 1

zm,n
− 1

ωm,n

∣∣∣∣
]
,

� exp

[
9θR2(2s−1 + γ −1)|z| + 2R|z| ·

∑
(m,n)∈I ′

|ωm,n |�2|z|+R

∣∣ωm,n
∣∣−2

]
. (53)

Recalling that log |z| > log(3R) > log(3) > 0, we can bound in a manner similar to
(51) to obtain

∑
(m,n)∈I ′

|ωm,n |�2|z|+R

∣∣ωm,n
∣∣−2 �

(
γ + γ√

2

γ

)2 ∫
γ√
2
�|w|�2|z|+R+ γ√

2

|w|−2 |dw|

� γ,R log |z|. (54)

Using this in (53) thus yields

|h1(z)| � ec1|z| log |z|, (55)

for some c1 = c1(s, θ, γ, R) > 0 and all z ∈ C such that |z| > 3R.
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Bounding h2: We write |h2| = hnum2 /hden2 , where

hnum2 (z) = 1

d(z,�)

∏
(m,n)∈I ′

|λm,n−z|�2R

|λm,n − z|
|λm,n| , and

hden2 (z) = 1

d(z,�γ )

∏
(m,n)∈I ′

|λm,n−z|�2R

|ωm,n − z|
|ωm,n| .

In order to bound hnum2 , we observe that one of the following two circumstances occurs:

– The distance from z to � is minimized at λ0,0, and so d(z,�) = |z| > 3R > 1.
– The distance from z to � is minimized at a point λm,n , where (m, n) ∈ I ′, and
so the term d(z,�) cancels with one of the factors |λm,n − z| in the product over
{(m, n) ∈ I ′ : |λm,n − z| � 2R}.

These facts lead to the following bound

hnum2 (z) �
∏

(m,n)∈I ′
|λm,n−z|�2R

|λm,n − z| ∨ 1

|z| − |λm,n − z| � 216θR
2
. (56)

For hden2 , we similarly observe that either (Re z, Im z) ∈ [− γ
2 ,

γ
2 ]2, or d(z,�γ )

cancels with a factor |ωm,n −z| in the product over {(m, n) ∈ I ′ : |λm,n −z| � 2R}. In
either case the numerators of the terms remaining in the product satisfy |ωm,n−z| � γ

2 ,
and we thus have

hden2 (z) �
(

γ√
2

∧ 1

) ∏
(m,n)∈I ′

|λm,n−z|�2R

(γ /2) ∧ 1

|ωm,n − λm,n| + |λm,n − z| + |z|

�
(

γ√
2

∧ 1

)(
(γ /2) ∧ 1

3R + |z|
)16θR2

. (57)

The inequalities (56) and (57) together yield

|h2(z)| � θ,γ,R |z|16θR2 � θ,R e|z|. (58)

Bounding h3: Recall that |λm,n| > s
2 for all (m, n) ∈ I ′\Is , and there is at most one

(m′, n′) ∈ Is \ {(0, 0)}, and for this (m′, n′) we have |λm′,n′ | � ρ, by assumption (i).
We thus get

|h3(z)| =
∏

(m,n)∈I ′
|λm,n−z|>2R
|ωm,n |�2R

|1 − z/λm,n|
|1 − z/ωm,n| �

∏
(m,n)∈I ′

|λm,n−z|>2R
|ωm,n |�2R

|ωm,n|
|λm,n|

|λm,n − z|
|λm,n − z| − R
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� ρ−1
∏

|ωm,n |�2R

2R

(s/2) ∧ 1

2R

2R − R
� ρ−1

(
4R

(s/2) ∧ 1

)16γ −2R2

� s,γ,R ρ−1. (59)

Bounding h4: We write |h4| = hnum4 /hden4 , where

hnum4 (z) =
∏

(m,n)∈I ′
|λm,n−z|>2R
|ωm,n |>2R
|λm,n |�2|z|

∣∣∣∣1 − ωm,n − λm,n

ωm,n − z

∣∣∣∣ , and hden4 (z) =
∏

(m,n)∈I ′
|λm,n−z|>2R
|ωm,n |>2R
|λm,n |�2|z|

∣∣∣∣1 − ωm,n − λm,n

ωm,n

∣∣∣∣ .

Now, fix a z ∈ C with |z| > 3R and write z = z′ + ωk,�, where (k, �) ∈ Z
2 and

(Re z′, Im z′) ∈ [− γ
2 ,

γ
2 ]2. Then, as

{(m, n) ∈ I ′ : |λm,n − z|>2R, |λm,n| � 2|z|}
⊂ {(m, n) ∈ Z

2 : |ωm,n − z|> R, |ωm,n − z| � 3|z| + R},

and �γ − ωk,� = �γ , we have the following bound

|hnum4 (z)| �
∏

(m,n)∈I′
|λm,n−z|>2R
|ωm,n |>2R
|λm,n |�2|z|

(
1 + |ωm,n − λm,n |

|ωm,n − z|
)

�
∏

(m,n)∈Z2

R<|ωm,n−z|�3|z|+R

(
1 + R

|ωm,n − z|
)

=
∏

(m,n)∈Z2

R<|ωm,n−ωk,�−z′|�3|z|+R

(
1 + R

|ωm,n − ωk,� − z′|
)

� exp

⎡
⎢⎢⎢⎣

∑
(m,n)∈Z2

R<|ωm,n−z′|�3|z|+R

R

|ωm,n − z′|

⎤
⎥⎥⎥⎦ , (60)

where in the last inequalityweused log(1+x) � x for x � 0.Now, |ωm,n−z′| > R and
R � 3γ imply |ωm,n| > R− γ√

2
>

√
2γ and so |ωm,n−z′| � |ωm,n|− γ√

2
> 1

2 |ωm,n|.
We therefore have

∑
R<|ωm,n−z′ |�3|z|+R

1

|ωm,n − z′| �
∑

R− γ√
2
<|ωm,n |�3|z|+R+ γ√

2

2

|ωm,n |

�
∑

R− γ√
2
<|ωm,n |�3|z|+R+ γ√

2

2
|ωm,n | + γ√

2

|ωm,n |
∫

(mγ,nγ )+Kγ

|w|−1|dw|

� γ,R
R

R −
√
2
2

∫
R−√

2γ<|ω|�3|z|+R+√
2γ

|w|−1|dw|

� γ,R |z|. (61)
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As z was arbitrary, (61) holds for all z ∈ C with |z| > 3R. Using (61) in (60) thus
yields

|hnum4 (z)| � ec
num
4 |z| (62)

for some cnum4 = cnum4 (γ, R) > 0 and all z ∈ C with |z| > 3R.
The quantity hden4 is bounded from below in a similar fashion:

|hden4 (z)| =
∏

(m,n)∈I ′
|λm,n−z|>2R
|ωm,n |>2R
|λm,n |�2|z|

∣∣∣∣1 − ωm,n − λm,n

ωm,n

∣∣∣∣ �
∏

(m,n)∈Z2

2R<|ωm,n |�2|z|+R

(
1 − R

|ωm,n|
)

,

� exp

⎡
⎣ ∑
2R<|ωm,n |�2|z|+R

− 2R

|ωm,n|

⎤
⎦ , (63)

where in the last inequality we used log(1+x) � 2x for x ∈ [− 1
2 , 0

]
. Another integral

bound yields ∑
2R<|ωm,n |�2|z|+R

1

|ωm,n| � γ,R |z|,

which together with (63) gives

|hden4 (z)| � e−cden4 |z|, (64)

for some cden4 = cden4 (γ, R) > 0 and all z ∈ C with |z| > 3R. Combining (62) and
(64) thus yields

|h4(z)| � e(cnum4 +cden4 )|z|, (65)

for all z ∈ C with |z| > 3R.
Bounding h5: Note that |λm,n| > 2|z| implies |λm,n| > 2|z| > 6R, and so {(m, n) ∈
I ′ : |λm,n| > 2|z|} = A(z). We thus have h5 = haux, which satisfies (52).
Bounding h: We combine (55), (58), (59), (65), and (52) to obtain

|h(z)| � s,θ,γ,R ρ−1e(1+cnum4 +cden4 +1100R)|z|+c1|z| log |z| � ρ−1ed|z| log |z|, (66)

for some d = d(s, θ, γ, R) > 0 and all z ∈ C with |z| > 3R. This completes the
derivation of the desired upper bound on h in the case |z| > 3R.
Case |z| � 3R: We write h(z) = h6(z)h7(z), where

h6(z) = d(z, �γ )

d(z,�)

∏
(m,n)∈I′
|λm,n |�6R

1 − z/λm,n

1 − z/ωm,n
, and h7(z) =

∏
(m,n)∈I′
|λm,n |>6R

(1 − z/λm,n) exp(z/λm,n)

(1 − z/ωm,n) exp(z/ωm,n)
.
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Note that |λm,n| > 6R and |z| � 3R together imply |λm,n| > 2|z|, and so h7 = haux.
Hence it only remains to bound h6. To this end, write |h6| = hnum6 /hden6 , where

hnum6 (z) = z

d(z,�)

∏
(m,n)∈I ′
|λm,n |�6R

λm,n − z

λm,n
and hden6 (z) = z

d(z, �γ )

∏
(m,n)∈I ′
|λm,n |�6R

ωm,n − z

ωm,n
.

Now, the term d(z,�) cancels with either z or one of the factors λm,n − z, and
similarly, d(z,�γ ) cancels with either z or one of the factors ωm,n − z. In either
case the numerators of the terms remaining in the product satisfy |ωm,n − z| � γ

2 .
We again recall that |λm,n| > s

2 for all (m, n) ∈ I ′ \ Is , and there is at most one
(m′, n′) ∈ Is \ {(0, 0)}, and for this (m′, n′) we have |λm′,n′ | � ρ. These observations
together yield the following bounds:

|hnum6 (z)| � 3Rρ−1
∏

(m,n)∈I′
|λm,n |�6R

(|λm,n | + |z|) ∧ 1

(s/2) ∨ 1
� 3Rρ−1

(
(9R) ∧ 1

(s/2) ∨ 1

)144θR2

,

|hden6 (z)| �
∏

(m,n)∈I′
|λm,n |�6R

(γ /2) ∧ 1

|ωm,n − λm,n | + |λm,n | �
(

(γ /2) ∧ 1

7R

)144θR2

, for z ∈ C s.t. |z| � 3R.

Therefore |h6(z)| � s,θ,γ,R ρ−1, for z with |z| � 3R, which together with (52) yields

|h(z)| � s,θ,γ,R ρ−1e1100R |z|, for z ∈ C s.t. |z| � 3R. (67)

The inequalities (66) and (67) can nowbe combined to yield the bound (44), concluding
the proof.

��
Proof of Lemma 13 Consider first the case when y ∈ S(R) is a Schwartz function. We
then have y ∈ L2(R), and thus

〈y, π(λ)ϕ〉Mq (R)×Mp(R) = 〈
Vϕ y,Vϕπ(λ)ϕ

〉
Lq (R2)×L p(R2)

=
∫∫

R2
(Vϕ y)(s, ξ) (Vϕπ(λ)ϕ)(s, ξ) dsdξ

=
∫
R

y(t)(π(λ)ϕ) (t) dt (68)

= (Vϕ y)(λ)

= e−π iτνe−π |λ|2/2(B y)(λ̄), (69)

where (68) follows from [15, Thm. 3.2.1], and (69) is by [15, Prop. 3.4.1].
Now take an arbitrary y ∈ Mq(R). As S(R) is dense in Mq(R) for q ∈ [1,∞)

(see [15, Prop. 11.3.4]), we can take a sequence {yn}∞n=1 ⊂ S(R) such that yn → y
in Mq(R). The calculation above thus shows that

〈yn, π(λ)ϕ〉Mq (R)×Mp(R) = e−π iτνe−π |λ|2/2(B yn)(λ̄), ∀n ∈ N. (70)
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Furthermore, as the dual pairing is continuous, we have

〈yn, π(λ)ϕ〉Mq (R)×Mp(R) → 〈y, π(λ)ϕ〉Mq (R)×Mp(R) as n → ∞.

On the other hand, by the isometry property (19) we also have ‖B yn −B y‖Fq (C) =
‖yn − y‖Mq (R) → 0 as n → ∞. Thus, as the evaluation functional F �→ F(λ) is
continuous onFq(C) (see [32, Lem. 2.32]), we obtain (B fn)(λ) → (B f )(λ), which
together with (70) and (69) establishes the claim of the proposition. ��
Proof of Lemma 15 For m, n ∈ Z write

Km,n =
[

s√
2

(
mλ − 1

2

)
, s√

2

(
mλ + 1

2

)) ×
[

s√
2

(
nλ − 1

2

)
, s√

2

(
nλ + 1

2

))
,

and, for λ ∈ �, let (mλ, nλ) be the (unique) element of Z
2 such that λ ∈ Km,n . Note

that, as sep(�) = s, every Km,n contains at most one element of �. Next, define the
functions

A(z) = 2

s

∑
λ∈�

αλ1Kmλ,nλ
(z) and f̃ (z) = max|w|�s

| f (z + w)|.

We then have

∑
λ∈�

|αλ|| f (z − λ)| �
∑
λ∈�

|αλ| f̃
(
z − s(mλ + inλ)/

√
2
)

�
∫
C

A(w) f̃ (z − w)|dw| = (A ∗ f̃ )(z),

for all z ∈ C. Therefore, using [15, Prop. 11.1.3, (a)] (with constant submultiplicative
and v-moderate weight functions v ≡ m ≡ 1), we obtain

‖A ∗ f̃ ‖L p(C) � ‖ f̃ ‖L1(C)‖A‖L p(C) � s−2/p‖ f ‖W (L∞,L1)‖α‖�p(�),

where the last inequality follows by computing the norm of A explicitly. ��
Proof of Lemma 19 Note that it suffices to prove the claim for j = n−1, as the general
statement then follows by induction. To this end, divide Kn into four disjoint squares
of side length

√
2
(
2n−1 + 1

2

)
. By the pigeonhole principle, one of these squares must

contain at least 22(n−1)+1 points of Kn∩Y . Denote this square by K ′, and let Kn−1 be
the square which contains K ′ and satisfies property (i) in the statement of the Lemma.
Then #(Kn−1 ∩ Y ) � #(K ′ ∩ Y ) � 22(n−1) + 1, and so Kn−1 satisfies (ii), as desired.

��
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