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Abstract

This paper addresses the problem of identifying a linear time-varying (LTV) system
characterized by a (possibly infinite) discrete set of delay-Doppler shifts without a
lattice (or other “geometry-discretizing”) constraint on the support set. Concretely,
we show that a class of such LTV systems is identifiable whenever the upper uniform
Beurling density of the delay-Doppler support sets, measured “uniformly over the
class”, is strictly less than 1/2. The proof of this result reveals an interesting relation
between LTV system identification and interpolation in the Bargmann-Fock space.
Moreover, we show that the density condition we obtain is also necessary for classes
of systems invariant under time-frequency shifts and closed under a natural topology
on the support sets. We furthermore find that identifiability guarantees robust recovery
of the delay-Doppler support set, as well as the weights of the individual delay-Doppler
shifts, both in the sense of asymptotically vanishing reconstruction error for vanishing
measurement error.
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1 Introduction

Identification of deterministic linear time-varying (LTV) systems has been a topic of
long-standing interest, dating back to the seminal work by Kailath [21] and Bello [4],
and has seen significant renewed interest during the past decade [3, 19, 20, 22]. This
general problem occurs in many fields of engineering and science. Concrete examples
include system identification in control theory and practice, the measurement of dis-
persive communication channels, and radar imaging. The formal problem statement
is as follows. We wish to identify the LTV system H from its response

(Hx)(t) := / Sn(t,v)x(t — 1) 2™V drdy, Vi€ R, )
R2

to a probing signal x(¢), with S/(z, v) denoting the spreading function associated
with H. Specifically, we consider H to be identifiable if there exists an x such that
knowledge of Hx allows us to determine S7;. The representation theorem [15, Thm.
14.3.5] states that a large class of continuous linear operators can be represented as in
(1).

Kailath [21] showed that an LTV system with spreading function supported on
a rectangle centered at the origin of the (r, v)-plane is identifiable if the area of the
rectangle is at most 1. This result was later extended by Bello to arbitrarily fragmented
spreading function support regions with the support area measured collectively over
all supporting pieces [4]. Necessity of the Kailath-Bello condition was established
in [22, 26] through elegant functional-analytic arguments. However, all these results
require the support region of S3/(z, v) to be known prior to identification, a condition
that is very restrictive and often impossible to realize in practice. More recently, it
was demonstrated in [19] that identifiability in the more general case considered by
Bello [4] is possible without prior knowledge of the spreading function support region,
again as long as its area (measured collectively over all supporting pieces) is no larger
than 1. This is surprising as it says that there is no price to be paid for not knowing
the spreading function’s support region in advance. The underlying insight has strong
conceptual ties to the theory of spectrum-blind sampling of sparse multi-band signals
[11,12,24,25].

The situation is fundamentally different when the spreading function is discrete
according to

(Hx)(t) := Z o X(t — T) €70 Vi € R, )

meN

where (t,;, Vi) € R? are delay-Doppler shift parameters and «,,, are the corresponding
complex weights, for m € N. Here, the (discrete) spreading function can be supported
on unbounded subsets of the (t, v)-plane with the identifiability condition on the sup-
port area of the spreading function replaced by a density condition on the support set
supp(H) := {(zm, v) : m € N}. Specifically, for H supported on rectangular lattices
according to supp(H) = a~'7Z x b~'7Z, Kozek and Pfander established that  is iden-
tifiable if and only if ab < 1 [22]. In [14] a necessary condition for identifiability of a
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set of Hilbert-Schmidt operators defined analogously to (2) is given; this condition is
expressed in terms of the Beurling density of the support set, but the time-frequency
pairs (T, vy, ) are assumed to be confined to a lattice. In practice the discrete spreading
function will not be supported on a lattice as the parameters t,,, vy, correspond to time
delays and frequency shifts induced, e.g. in wireless communication, by the propaga-
tion environment. It is hence of interest to understand the limits on identifiability in
the absence of “geometry-discretizing” assumptions—such as a lattice constraint—on
supp(H). Resolving this problem is the aim of the present paper.

1.1 Fundamental Limits on Identifiability

Our first line of results establishes fundamental limits on the stable identifiability of
‘H in (2) in terms of supp(H) and {oy,}men. The approach we pursue is based on
the following insight. Defining the discrete complex measure 1= Y, . @m 85, v,
on ]R2, where 6, 1, denotes the Dirac point measure with mass at (z,, v,), the
input—output relation (2) can be formally rewritten as

(H,pc)(t):/ x(t — )M du(r,v), teR, (3)
]RZ

where we use throughout H,, instead of H for concreteness. Identifying the system
‘H,, thus amounts to reconstructing the discrete measure w from H,,x. More specifi-
cally, we wish to find necessary and sufficient conditions on classes ¢ of measures
guaranteeing stable identifiability bounds of the form

de(p, 1) < dm(Hpx, Hypx), forallp,u' € 2, 4)

for appropriate reconstruction and measurement metrics dr and dp,, respectively, where
w is the ground truth measure to be recovered and p’ is the estimated measure. The
class S can be thought of as modelling the prior information available about the
measure p facilitating its identification by restricting the set of potential estimated
measures ', In particular, the smaller the class 7, the “easier” it should be to satisfy
(4). In addition to the class .77 of measures itself, the existence of a bound of the
form (4) depends on the choice of the probing signal x, so we will later speak of
identifiability by x.

This formulation reveals an interesting connection to the super-resolution problem
as studied by Donoho [8], where the goal is to recover a discrete complex measure on
R, i.e., a weighted Dirac train, from low-pass measurements. The problem at hand,
albeit formally similar, differs in several important aspects. First, we want to identify
a measure (4 on R2,i.e., a measure on a two-dimensional set, from observations in one
parameter, namely (H,x)(¢),t € R. Next, the low-pass observations in [8] are replaced
by short-time Fourier transform (STFT)-type observations, where the probing signal
x appears as the window function. While super-resolution from STFT-measurements
was considered in [2], the underlying measure to be identified in [2] is, as in [8],
on R. Finally, [8] assumes that the support set of the measure under consideration is
confined to an a priori fixed lattice. While such a strong structural assumption allows
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for the reconstruction metric d; to take a simple and intuitive form, it unfortunately
bars taking into account the geometric properties of the support sets considered. By
contrast, the general definition of stable identifiability (see Definition 1) analogous
to [8] will pave the way for a theory of support recovery in the absence of a lattice
assumption. Specifically, we will relax the lattice constraint to the considerably less
stringent uniform separation constraint inf ¢ ;» sep(supp(u)) > 0, where, for a set
A C C, we define

sep(A) :=inf{|A —A'[: A, A € A, A # A} 5)

These differences make for very different technical challenges. Nevertheless, we
can follow the spirit of Donoho’s work [8], who established necessary and sufficient
conditions for stable identifiability in the classical super-resolution problem. Donoho’s
conditions are expressed in terms of the uniform Beurling density of the measure’s
(one-dimensional) support set and are derived using density theorems for interpolation
in the Bernstein and Paley-Wiener spaces [6] and for the balayage of Fourier-Stieltjes
transforms [5]. We will, likewise, establish a sufficient condition guaranteeing sta-
ble identifiability for classes of measures whose supports have density less than 1/2
“uniformly over the class 7 (formally introduced in Definition 2). In addition, we
show that this is also a necessary condition for classes of measures invariant under
time-frequency shifts and closed under a natural topology on the support sets. We
will see below, by way of example, that these requirements are not very restrictive.
The proofs of these results are based on the density theorem for interpolation in the
Bargmann-Fock space [7, 29-31], as well as several results on Riesz sequences from
[17].

1.2 Robust Recovery of the Delay-Doppler Support Set

The second goal of the paper is to address the implications of the identifiability con-
dition (4) on the recovery of the discrete measure . Concretely, suppose that we
want to recover a fixed measure p := ) N ®n 01,1, taken from a known class of
measures 7 assumed to be uniformly separated and stably identifiable (in the sense
of (4)) with respect to a probing signal x, and let {u,},eny C F€ be a sequence of
“estimated candidate measures” u, := ZmeN oz,(;f ) 8T(n) o for the recovery of . We
will show that, under a mild regularity condition 011’1)5, the uniform separation and
stable identifiability conditions on .7 guarantee that

Hy,x - Hyx == supp(H,,) — supp(H,) and

(@i nen = {Wm)men, (©6)

as n — oo, where the topologies in which these limits take place will be specified in
due course. In words, this result says that the better the measurements 7, match the
true measurement H,, the closer the estimated measures p,, are to the ground truth
. This, in particular, shows that “measurement matching” is sufficient for recovery
within stably identifiable classes 7, i.e., any algorithm that generates a sequence
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of measures {i,}neny C S satisfying H,,x — H,x will succeed in recovering
w € J. Crucially, we do not assume that the support sets supp(H,,) and supp(H,.,,),
for n € N, are confined to a lattice (or any other a priori fixed discrete set). To the
best of our knowledge, this is the first LTV system identification result on the robust
recovery of the discrete support set of the measure, instead of its weights only.

Notation. We write Bg(a) for the closed ball in C of radius R centered at a, and
denote its boundary by d Bg(a). Foraset S C C, we let 15 : C — R be the indicator
function of §, taking on the value 1 on S and 0 elsewhere. We will identify C with R2
whenever appropriate and convenient.

We say that a set A C C is discrete if, for all A € A, one can find a § > 0 such that
A —A/| > §, for all A" € A\{A}. Following the terminology employed in [17, §2.2],
we say that a set A C C is relatively separated if

rel(A) := sup {#(A N By (x)) : x € C} < o0.

Further, we say that A is separated (usually referred to as uniformly discrete in the
literature), if sep(A) > 0, with sep as defined in (5). Finally, for the separated sets
A1, As C R?, we define their mutual separation according to

ms(Ag, Ap) := inf A1 — Az @)
AMEAL,AMEA,
MFE

Note that points that are elements of both A1 and A, are excluded from consideration
in the expression for mutual separation.

For a Banach space B, we write |||z, B*, and (-, -) g5+ to denote the norm, the
topological dual of 5, and the dual pairing on B, respectively. Throughout the paper
we use p and g to denote conjugate indices in [1, oo] such that 1/p + 1/g = 1.
We write .# P for the vector space of all complex Radon measures on C of the form
w= ZAGA «,.8,, where A is a relatively separated discrete subset of R2, {ay }ren 18
a sequence in C, and the norm

el e | Caealeal”) it p et 00)
P sup; ca loal, if p =00

is finite. For such measures we define supp (1) := {A € A : ) # 0}. Furthermore,

fors > 0, we let 4 = {u € .#P : sep(supp(n)) > s}.

For a complex number A = 7 + iv (or the corresponding point (7, v) € R?), we
write (M, x)(1) := >V x(¢) for the modulation operator, (7;x)(¢) := x(¢ — 7) for
the translation operator, and 7w (A) = M, 7; for the combined time-frequency shift
operator. Recall that, for a nonzero Schwartz test function ¢ € S(R), the STFT with
respect to the window function ¢ is the map V), taking Schwartz distributions on R to
complex-valued functions on C according to

(V(px)(k) = (x, 77()\)§0>S’(R)><$(R), for x € S/(R), IS (C,
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where S’(R) denotes the set of tempered distributions on R. We take ¢ (¢) = 217"
to be the L?-normalized gaussian and, following [15], write

1/p
MER) = {x e S'(R) : ||x||M£(R) = (L |(V¢x)(k)|”m(k)pdk> < oo} ,

for the weighted modulation space on R of index p and weight functionm : C — Rx.
When m = 1, we use MP(R) to designate the unweighted modulation space. We
remark that ¢ has the convenient property of being its own Fourier transform, i.e.,
¢ = ¢. According to [15, Thm. 11.3.5, Thm. 11.3.6], M?(R) is a Banach space, and,
for p € [1, 00), its dual space can be identified with M7 (R) via the dual pairing

(f, &y mr@xma®) = (Vo Veg)Lr©)xra), for f e MP(R), g € MI(R). (8)

Finally, for real-valued functions f and g of several variables pq, ..., p, (Which
may be real or complex numbers, or even functions), and a non-negative integer m < n,
we write f <. p, g if there exists a non-negative quantity C = C(p1, ..., pm)
suchthat f < C g,aswellas f =<, p, gifbothf <, 5 gandg Sy pn f-
We use the notation f < g only if C is a universal constant, i.e., if it is independent
from all the py, ..., pn.

2 Contributions
2.1 Operators and Identifiability

In order to formalize our definition of identifiability (4), we first need to make sense of
the integral in (3). Concretely, we consider only probing signals x in the modulation
space M !(R) (also referred to in the literature as Sy, the Feichtinger algebra) and, for
a measure . € /7, we interpret (3) as a linear operator H, : M IR) - MP(R)
given by

Hyux = /sz(- —0eV du(r,v) == Y pA) T

Aesupp(p)

The convergence of this sum in the Banach space M” (R) is guaranteed by the following
proposition whose proof can be found in the Appendix.

Proposition 1 Let A be a relatively separated subset of C, and let p € [1, 00). Then,
(1) Ha : £P(A) x MY (R) — MP(R) given by

Hale,x) =Y aw()x, foralla € €P(A), x € M'(R),
LEA

is a well-defined continuous linear operator, in the sense of the sum converg-
ing unconditionally in the norm of MP (R). Moreover, this operator is bounded
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according to
IH A (e, ) Ime @y S Tel(A) lletller X1y ().

forall o € €P(A), x € M'(R).
(ii) For a fixed x € MLY(R), the adjoint operator (’HA(-, x))* : M4(R) — £9 of the
map €P > o — Ha (o, x) is given by
(Ha G, )) ) = {3, )X s @yxmr @) drea, fory € MIR).  (9)
Next, for a measure (1 = Y, .\ @;.8, € AP, define H,, : M'(R) - MP(R) by
Hy (%) = Hsupp(w) (@, x), for all x € MY (R). Then,
(iii) for every u € AP,

iallee S ||Hu||M1(1R)—>Mp(R)- (10)
As a consequence of item (iii) in Proposition 1, we have

lleer — palles 5 ||H;L1—M2”M1(R)—>MP(R) = ||Hu1 - HMHMI(R)—)MP(]R),

and therefore 11 = pp whenever H,, = H,,. In other words, the measures in .#”?
are completely characterized by their action on M ! (R), and thus there is a one-to-one
correspondence between the measures in .#” and the operators {H, : u € 47}
Note that this property is necessary for there to be any hope of recovering a measure
p from a measurement H,, x with respect to a single probing signal x.

In the remainder of the paper we will only be interested in stable identifiability,
which from now on we call simply identifiability, defined formally as follows.

Definition 1 (Identifiability) Let p € [1, co). We say that a class of measures 5 C
P is identifiable by a probing signal x € M!(R) if there exist constants C;, C; > 0
(that may depend on p and x) such that

Ci (ms(Ar, A2) A D) lur = p2ll,
forall ju1, po € S, where A := supp(i;), j € {1, 2}.

The significance of the term ms(A1, Az) in (11) becomes apparent when dealing
with classes .7 that contain measures with potentially arbitrarily close supports. For
a concrete example, consider the class 77 = {u € .47, #(supp(u)) = 1} of single
time-frequency shifts. This class contains the measures i = 80,0y and e = §(0,¢), for
alle > 0.Letx € M!(R)beaprobing signal satisfying the time-localization constraint
t x(¢) € L%(dr), but otherwise arbitrary. Then ms(supp(u), supp(ue)) = €, and

e Y Hux —Hyx) =€ "1 —e¥€)x — —Q2mi)x
in L2(R) = M%(R) as € — 0, and hence

Hx = Huexlla2 @y /ms(supp(i), supp(pee)) < Iz x(Dll 2y >0, (12)
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as € — 0. On the other hand, ||t — pc|l2 = +/2 is bounded away from 0 as € — O.
Thus, if the class 7 is to be identifiable, the lower bound in (4) needs to decay at least
linearly with ms(supp (1), supp(u2)), for ;y, ua € 2. In contrast to (12), one could
have another class %~ containing measures x’ and u,, for € > 0, so that ||H,/x —
HuéxIIMz(R)/ms(supp(M/), supp(u,)) — 0,as € — 0, ie., [[Hyx — Hy Xl 2wy
decays superlinearly with ms(supp(u”), supp(u.)). Classes such as ¢ are not covered
by our theory, and we hence exclude them from our definition of identifiability. In
summary, Definition 1 says that we consider a class of measures to be identifiable if
the decay of || H ., x — H i, X || p2 () @s ms(supp(i1), supp(i42)) — 01is not faster than
linear. This property will turn out to be crucial later when we discuss robust recovery
(specifically, in the proofs of Theorems 3 and 4).

2.2 A Necessary and Sufficient Condition for Identifiability

As already mentioned in the introduction, our necessary and sufficient condition for
identifiability will be expressed in terms of the density of support sets measured
uniformly over the class of measures under consideration. Concretely, we have the
following definition:

Definition 2 (Upper Beurling class density) Let £ be a collection of relatively sepa-
rated sets in R2, and, for R > 0, define (0, R)2 =(0,R)x(0,R) C R2.ForA € L,
let nt (A, (0, R)?) be the largest number of points of A contained in any translate of
(0, R)? in the plane. We then define the upper Beurling class density of £ according
to
+ 2
D1 (L) = lim sup sup L(ZLR))
R—o0 Ael R

We are now ready to state the first main result of the paper.

Theorem 1 (A sufficient condition for identifiability) Let p € (1,00) and s > 0,
let A C ML be a class of measures, and set L = {supp(u) : u € ). Suppose
that DY (L) < % . Then the class 7 is identifiable by the standard gaussian ¢(t) =

217 9 € M (R).

Crucially, the support sets supp(i) € £ in Theorem 1 are not assumed to be subsets
of a lattice or any other a priori fixed subset of R2. In particular, one allows . to
contain measures w1 and pp with arbitrarily small ms(supp(ie1), supp(u2)).

Note that a subclass % of an identifiable class # is trivially identifiable, and
accordingly the upper Beurling class density of the supports of measures in 2’ does
not exceed that of the support sets corresponding to 7. The sufficiency result in
Theorem 1 is therefore “compatible” with the inclusion relation on classes. By contrast,
the “non-identifiability” of aclass 5# C .#/ (i.e., the nonexistence of a probing signal
in M (R) by which the class would be identifiable) can only be meaningfully assessed
in terms of the Beurling density D" ({supp(u) : u € 5#}) for sufficiently rich classes
of measures. For example, one can construct arbitrarily large finite subsets .7 of .
with arbitrarily large D ({supp(n) : n € 5#}), and yet # will be identifiable (e.g.
by the standard gaussian, using the property that distinct time-frequency shifts of a
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gaussian are linearly independent). A converse statement to Theorem 1 can hence be
meaningfully formulated only for classes .77 that are “sufficiently rich” in a suitable
sense. In the present paper we will do this for classes of measures that are subspaces
of .Z?, invariant under time-frequency shifts, and closed under limits of supports.
Before providing the precise definition of these classes of measures, we need to
introduce the notion of weak convergence for subsets of C. Concretely, we say that
a sequence of separated subsets {A,},en converges weakly to A C C, and write

An S A, if
dist((A, N Br(z)) UBR(2), (AN Br(z)) UdBR(z)) > 0 asn — oo, (13)

for all R > 0 and z € C, where dist denotes the Hausdorff metric on the subsets of C.
We are now ready to formalize the type of classes covered by our necessity result.

Definition 3 (Regular #(L)? classes) Let p € (1,00) and s > 0, and let £ be a
collection of separated subsets of C.

(1) We say that L is closed and shift-invariant (CS]) if it is closed under limits with
respect to weak convergence, and A +z:={A+z: A€ A} e L, forall A € L
and z € C.

(ii) We define a class of measures 57 (L)” C .#P according to

ALY = { Y wb:Aelac zP(A)}.

reEA
We call 57 (L)P s-regular if £ is CSI and sep(A) > s, forall A € L.

Even though the conditions in Definition 3 are rather technical, they are not overly
restrictive, as evidenced by several examples of s-regular classes provided in §2.4.
We are now ready to state our second main result, which is a necessary condition
for identifiability of s-regular classes and as such constitutes a partial converse to
Theorem 1.

Theorem 2 (A necessary condition for identifiability of s-regular classes) Let p €
(1, 00) and s > 0, and let 7 (L)P be an s-regular class. If there exists an x € M'(R)
such that 7€ (L)P is identifiable by x, then DT (L) < %

2.3 Identifiability and Robust Recovery

In this subsection we formalize the claim (6) made in the introduction under the
assumption that x € M,L (R), with the weight function m(z) = 1 + |z|, for z € C.
Informally, this assumption imposes faster-than-linear decay on x in both the time and
frequency domains. Note that the L?-normalized gaussian ¢ is in M} (R), as its STFT
decays exponentially (by virtue of ¢ € S(R) and [15, Thm. 11.2.5]).

We begin by defining the weak-* topology on .Z;, for p € (1, 0o). Concretely,
foru € #F and a sequence {{ty}neN C MY we say that {u, },en converges to w in
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the weak-* topology of ./, and write p, —> pu, if

im [ Fdp = / Fdu. (14)
C C

n— oo

for all continuous f : C — C such that lim|;| f(z) = 0 and

< 0

sup  [f(z+ )l L)

yeC,|ylI<1

This definition corresponds to convergence in the weak-* topology on the Wiener
amalgam space W (M, L?), which will be defined and treated systematically in § 3.
In order to formalize (6), it will be helpful to first state the following weak-* recovery
result for s-regular classes:

Theorem 3 (Weak-* Recovery Theorem) Let p € (1, 00) and s > 0, and let 77 (L)?
be an s-regular class. Assume furthermore that 7€ (L) is identifiable by a probing
signal x € M,il (R), where m(z) = 1 + |z|. Then,

@) if u, o € F(LYP are such that Hy x = H,x, we have [I = p.
(ii) forp € S(LYP and {{in}nen a sequence in I (L)P, H,, x — Hyx inthe weak-*

topology of MP (R) if and only if wu, LN win AL

The proof of Theorem 3 relies crucially on the fact that the decay of the lower bound
in (11) as a function of ms(supp(xt1), supp(u2)) is not faster than linear.

Note that item (i) of Theorem 3 guarantees perfect recovery of measures in 57 (L)”
under perfect measurement matching. However, this does not go a long way towards
establishing (6) as item (ii) of the theorem deals with convergence in weak-* topologies
“only”. To illustrate that a stronger form of convergence is needed, consider the (1/2)-
regular class 7 (L£)?, where £ = {A C C : sep(A) > 1/2, #(A) < 2}. In this class

80.0+6n.0 2, 80,0 asn — oo (where §; , is again the Dirac point measure with mass at
(z, v)), and so, if one were to rely on the weak-* convergence guarantee only, it could
be argued that {80,0 + J,,0}nen recovers 8o 0. This sequence does, indeed, capture
the component &g o, but it also features the nonvanishing spurious component 6y 0.
Similarly, on the measurement side of (6), taking x = ¢ as the probing signal would
yield p+¢(-—n) — ¢ in the weak-* topology of L, but not in the norm topology. We
can thus hope that upgrading from weak-* convergence to norm convergence on the
measurement side of (6) might imply a stronger form of convergence of the sequence
of candidate measures to the target measure. The following theorem establishes that
this is, indeed, the case for s-regular classes ¢ (L£)”. Concretely, convergence of the
measurements in norm implies that the candidate measures w,, approximate arbitrarily
big finite sections of the target measure i and do not have any spurious components.

Theorem 4 (Robust Recovery Theorem) Let p € (1, 00) and s > 0, and let 77 (L)?
be an s-regular class. Assume furthermore that 7€ (L)P is identifiable by a probing
signal x € M,ln (R), where m(z) = 1 + |z|, and let C1 and C> be the corresponding
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constants such that (11) is fulfilled. Fix a p € 57 (L)P, write A = supp(u), and let
{tn}nen be a sequence in 7 (L)P such that |H,,x — Hux||mr@) — 0asn — oo.

Then, for every € > 0 and every finite subset A of A such that |u — pulgll, <€,
there is an N € N so that, for alln > N, the measures i, take the form

Hn = Za}(nn)(s)b"l‘en()\) + Pn,
reA

where |e,(M)| < € and |y — o < €, forall » € A, and | pallp < o2y €

One can view er A a)(L")S;LJren () as the “successfully recovered finite section”
of , which approximates both the time-frequency shifts and their weights within €
error, whereas p,, is the “spurious” component, whose norm is also proportional to €.
The constant of proportionality (C2/C1) - (s A 1)~! in the bound on lonllp can be
interpreted as a “condition number”, indicating that the spurious component is more
difficult to suppress when the ratio of identifiability constants C,/C1 is large, or when
the separation s of the measures under consideration is excessively small, which agrees
with our intuition on the behavior of the “difficult cases”.

2.4 Examples of Identifiable and Non-identifiable s-Regular Classes

Finally, we present several explicit families of s-regular classes and discuss their
identifiability in view of Theorems 1 and 2. Let p € (1,00),s > 0, N € N, 0 > 0,
and R > 0, and define the sets

L = (A C R? : sep(A)
LI = {A CR*:sep(A)

s},

Z
= s, #(A) < N}, and

LR = {A CR? :sep(h) = s, n+<A, (©, R)2) < OR?).

We call the corresponding sets 7 (Ly ' )P, %ﬂ(ﬁﬁ )P, and ¥ (ﬁRayR)p , the
Euclidean-separated, finite, and Rayleigh classes, respectlvely The following propo-
sition shows that these classes are s-regular.

Proposition2 Lets > 0, N € N, & > 0, and R > 0. Then the collections L;"

Ejz"N, and ERa} ¢.g are CSI and so the corresponding Euclidean-separated, finite, and
Rayleigh classes are s-regular.

Theorems 1 and 2 can be used to obtain the following identifiability results for these
classes.

Corollary 5 (Finite class) Let p € (1,00), s > 0, and N € N. Then the class
%”(ﬁﬁ )P is identifiable by the gaussian ¢(t) = 2177,

Corollary 6 (Euclidean-separated class) Let p € (1, 00) and s > 0. Then,
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1) ifs >2- 3’%, H(LSTYP is identifiable by ¢, and
1 e
(i) ifs <2373, LS is not identifiable by any probing signal.
Corollary 7 (Rayleigh class) Let p € (1, 00) and s € (0,0~'/2). Then,
(1) ifo < % %ﬂ(ﬁﬁlgﬂ)p is identifiable by ¢, for all R > 0, and
(i) if® > 3, there exists an Ry > 0 such that %(ﬁﬁ’;{ »)7 is not identifiable by any
probing signal, for all R > Ry.

One could also consider the class .77 ({E})? for a fixed lattice E = A(Z x Z) + b,
where A € R?*2 and b € R2, in which case the same techniques can be used to
establish that 7 ({E})? is sep(E)-separated, identifiable by ¢ if det(A) > 1, and not
identifiable by any probing signal if det(A) < 1.

3 Lattices, Beurling Densities, and Wiener Amalgam Spaces

In this section we introduce various technical tools used throughout the paper. We
begin with square lattices in C and write Q, = {wmu,, = y(m + in)}y, ez for the
square lattice in C of mesh size y > 0. Whenever we identify C with R?, Q, is
equivalently given by {(ym, yn) : m,n € Z}. Next, we define the (standard) upper
Beurling density, which is analogous to our Definition 2, but applies to individual
subsets of RZ, instead of classes of subsets.

Definition 4 (Upper Beurling density, [5, p. 346], [23, p. 47]) Let A be a relatively
separated set in R2, and, for R > 0, denote the largest number of points of A contained
in any translate of (0, R)? by nT (A, (0, R)?). We then define

(A, (0, R)?
DT(A) :=lim sup M
R2
R—o0
and call this quantity the upper (standard) Beurling density of A.

The following three lemmas, whose proofs are elementary and thus omitted, relate
the lattices £2,,, the upper Beurling class density, and the standard Beurling density.

Lemma 8 Let L be a collection of relatively separated sets in R?, and suppose that
DY (L) < 0o. Then,

(i) for every 8 > DT (L), there exists an Ry > 0 such that
n* (A, (0, R)*) <OR?,

forall A € L and R > Ry, and
(ii) D¥(L) > suppep D (A).

Definition5 Let A be a non-empty relatively separated subset of C, and let y > 0
and R > 0. We say that A is R-uniformly close to Q, = {wu , = y(m +in)}m nez
if there exists an enumeration {Ay » }n,n)ez of A (with index set Z C Z x Z) such
that |Apn — wmn|l < R, forall (m,n) € Z.
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Lemma9 Let A be a non-empty discrete set in C, and let 0 > 0, y > 0, and R > 0.
Ify=2 > 0 and n* (A, (0, R)?) < OR?, then there exists an R’ = R'(0,y,R) > 0
such that A is R'-uniformly close to Q.

Lemma 10 Let L be a set of relatively separated subsets of C, and let y > 0 and
R > 0. If A is R-uniformly close to Q,, for all A € L, then DT (L) < y 2

We conclude this section by formalizing Wiener amalgam spaces [9, 10] on C and
relating them to weak-* convergence on AP defined in (14). We adopt most of our
terminology from [17]. Let D(C) be the test space of smooth compactly supported
functions on C, with its usual inductive limit topology and the corresponding topo-
logical dual D'(C), called the space of distributions. Let B be a Banach space that
admits a continuous embedding into D’(C). Furthermore, fix a non-negative com-
pactly supported continuous function ¢ € D(C) forming a partition of unity, i.e.,
Zzezz Y(-—2) = 1l,and let m : C — R3¢ be a weight function of the form
m(z) = (14 |z])", for some r > 0. Then, for p € [1, oc], the Wiener amalgam space
W(B, L}) is defined as

W(B, L) = {f € D' Wy gy = |1 FC=Dlsm@, < oo} .

The definition of W (13, L) is independent of the choice of v/, and different v define
equivalent norms on W (B, LP). Informally, W (B, LYY is the space of distributions
(i.e., generalized functions) on C that are “locally in B and “globally in L%”.

Next, we claim that .Z c W (M, LP), for p € (1, oo, where M is the space of
regular complex-valued Borel measures on C with the total variation norm. To see this,
let r > 0 be such that supp(y/) C B, (0). Now, for ameasure it = ), 5 ®1) € MY
denote |u|? := )", c 4 laal? 8. Then Holder’s inequality yields

v —lm< Y IOtA|<< > 1'1)1/q( > IOlAIP>

AEANB,(2) AEANB,(2) AEANB,(2)
1/p

_o\ /4
Sv (Sep(A) 2) (/C]l{yngr}dlul”(y)) , forzeC,

where the last inequality follows since one can pack at most 72 /(sep(A)/2) 2 spheres
of radius sep(A)/2 in B, (z). Therefore, as sep(A) > s Tonelli’s theorem yields
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p
< Tyje—yi<ry dlpel? |d
Lp(dz)ww,sfc[[c (lz=y1<ry il ] 2

= [ [ tiemsinds it = o2t < o
[N —

[ = 2l

=mr?

andso € W(M, LP). As ju € .4} was arbitrary, we have therefore shown that

Ieliwm.Ley Swps lillp,  forall w e 47, 15)

which establishes .7 c W(M, LP).
Now, by the Riesz-Markov-Kakutani representation theorem [27, Thm. 6.19], M
can be identified with the topological dual C of

Co = {f € L*(C) : f continuous, | l‘im [ f(2)| = 0} ,

via the pairing (i, f) = [ fdu. Therefore, by [10, Thm. 2.8], we have that
| f)IB, ;) (y) is integrable w.r.t. the product measure d|u|(y) x dz on C x C,
foru € WM, L?) and f € W(Cyp, L?), and W(M, L?) can be identified with the
topological dual of W (Co, L?) via the dual pairing

(e f) = [C [ fc ?113,@@] dz.

An application of Fubini’s theorem hence yields

. f) = / [ / 7<y)13,<z><y>du<y>} dz
C C

= f Fie)) / 1yjo—yi<ry dz dpe(y) = mr? f Fdu.
C C

Thus, as 7772 is a constant depending only on the choice of ¥ through supp(y/) C

B, (0), one can instead use the following simpler dual pairing to effect the correspon-
dence between W (M, LP) and W (Cy, L9)*:

= [Fau= ¥ T@mw.

A€supp(p)

for u € W(M, LP) and f € W(Cy, LY?). Therefore, definition (14) of weak-* con-
vergence in .#! corresponds precisely to convergence in the weak-* topology on
W (M, L?) (i.e., the weak topology generated by W (Cy, LY)).

Finally, in the special case of weak convergence of subsets of R? defined in (13),
following [17, p. 398], we have that, if inf,cn sep(A,) > 0, then weak convergence

of subsets A, L Ads equivalent to ), A, 00— Y sea O in the weak-* topology
W(Co, L").
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4 Proof of Theorem 1

As already mentioned in the introduction, the proof of Theorem 1 relies on the theory
of interpolation of entire functions. The idea for the proof is based on [1, Thm. 1]
(which, in turn, uses the argument developed by Brekke and Seip in [7]) where the
lower bound (analogous to the left-hand side of (11)) unfortunately depends in a
non-explicit manner on the supports of the individual measures in the identifiability
condition. As our goal is to obtain an explicit lower bound, namely, a constant multiple
of the minimum separation of the supports, our theorem needs to be stated in terms of
the class density (according to Definition 2) instead of simply considering the standard
Beurling density (according to Definition 4) of the supports of the individual measures
in the class. This difference will also require delving deeper into the interpolation
theory underlying the proof of [1, Thm. 1].

We begin our exposition of the required technical tools by defining the Weierstrass
oy -function associated with ), = {wp,» = y(m +in)}m nez:

z Z 1 z2
) =72 1— —_— =, e C.
oy(2) =z l_[ ( wm,n) exp (a)m,n + 260,2,,,,1) Z

(m,m)eZ2\{(0,0)}
We will need several basic facts about this function, which can be found in [32] along
with a more detailed account of its properties. Concretely, we note that the infinite
product in the definition of o, converges absolutely uniformly on compact subsets
of C, and therefore defines an entire function. Moreover, o, satisfies the following
growth estimate:

Lemma 11 ([32, Cor. 1.21]) We have |0y ()|e” 27 "< = d(z.Q,), where
d(z,2y) = min{|z — o| : © € Q} denotes the Euclidean distance from z to the
lattice Q2.

In order to enable working with measures ;. whose supports are not subsets of lat-
tices, we will need to perturb the zeros of the Weierstrass o, -function. We will do
so following [32] and [31, p. 109]. Concretely, let Z C Z x Z be an index set with
(0,0) € Z, and let A = {Ay, 1} (m.n)ez be a discrete subset of C with A, , # 0 for
(m,n) € Z\ {(0,0)}. We now define the modified Weierstrass function associated
with A by

— (-1 p— 2 12 C
gn@=@—%0 ] R A )»mn+§w,2nn , z€C.

(m,n)eI\{(0,0)}

(16)

According to [32, Lem. 4.21], provided there exist y > 0 and R > 0 such that A is
R-uniformly close to €2,,, expression (16) converges uniformly on compact subsets of
C to an entire function with zero set A. The proof of Theorem 1 relies on constructing
and controlling the growth of an entire function interpolating a sequence of values
{Br}ren at the points of A = supp(u1) U supp(u2), where uq, up € MY are the
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measures for which (11) is to be established. This will be achieved by means of
“basis functions” that interpolate the one-hot sequences {1, —3/1}rea, for A’ € A. The
following lemma furnishes a prototype for these basis functions, obtained by “dividing
out” a zero of the modified Weierstrass function associated with A, as well as a growth
bound reminiscent of [32] and [31, §2.2], with the crucial difference that our bound
makes the dependence on the mutual separation of supp(u1) and supp(uz) explicit.
The proof of the lemma largely follows [32], the only difference being that we need
to take the specific form A = supp(u1) U supp(u2) of A into account, carrying out
the calculations more explicitly to extract the dependence on the mutual separation of
supp(1) and supp(u2).

Lemma 12 Let A = {Au,n}on.n)ez be arelatively separated subset of C with kg0 = 0.
Furthermore, let p, s, 0, y, and R be positive real numbers, and set Q, = {wp n =
y(m+in)}m ez . Define Iy = {(m,n) € I : |Apynl| < %} and suppose that

() #(Zs) <2, and, if Ty = {(0,0), (m’, n')}, then | A | > p,
(i) nT(A, (0, RN?) < OR'? forall R > R, and
(iii) [Amn — Omanl < R, forall (m,n) € I.

Now, let g5 be given by (16) and define g : C — C according to

w
(m,n)ely m,n

1 2
I1 <1— ‘ )exp SR ) (17)
®Om.n Om.n Zwm’n

(m,n)eZ*\T

Then,

(@) ga0) = 1 and g (Am.n) = 0, for (m,n) € Z\{(0, 0)}, and
(b) there exist constants C > 0 and ¢ > 0 depending only on s, 6, y, and R such that

FA@le 2 < C(p A D) TLedl 08 lE forqll 7 € C. (18)

The proof of Lemma 12 can be found in the Appendix.
The next preparatory step towards the proof of Theorem 1 is to relate Gabor systems

generated by ¢(t) = 217" with entire functions of suitably bounded growth by
means of the Bargmann transform. Concretely, we will work with a definition of the
Bargmann transform consistent with [16] in order to facilitate arguments involving the
isometry property between modulation spaces and Bargmann-Fock spaces introduced
next. For conjugate indices p, g € [1, oo], the Bargmann-Fock space F7 (C) is defined
as the set of all entire functions F' for which || F'|| £pc) < 0o, where

1/p
IFll7rc) = ( / |F<z)|"eP"'Z'2/2dz) . for p € [1, 00),
C
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and

2
I Fll goo(cy = sup | F(z)| e "1/,
zeC

The Bargmann transform is now defined as the linear map %6 : M?(R) — F?(C)
given by

(B f)(2) = 257/ / AT f(dr, 2 e C
R

According to [16, §1.4], the Bargmann transform is an isometric isomorphism between
the Banach spaces M”(R) and F?(C), i.e., it is bijective and

1B fllzrcy = I fllmr@, forall f e MP(R). 19)

Following [18], when p € [1, 0c0), the topological dual of F?(C) can be identified
with F7(C) via the pairing

N 2
(F, G)rrcyxFu() =/CF(Z)G(Z)6_”'Z' dz,

for F € FP(C) and G € F4(C).
The following lemma is a generalization (from L2(R) to M4?(R)) of the standard
identity [15, Prop. 3.4.1] relating the Bargmann transform with time-frequency shifts

of the gaussian ¢(t) = Qi

Lemma 13 Letq € [1, 00). Then, foreveryy € M4(R) and . = t+iv € C, we have

. _ 2 —
(v, TOQ) ma@yxmr®y = € e T2 (B y) ().

Before finally embarking on the proof of Theorem 1, we state the following two
lemmas that will facilitate the application of the more specialized theory of Bargmann-
Fock spaces. The first lemma is about abstract Banach spaces and an easy consequence
of the inverse mapping theorem [28, Cor. 2.12] and the Hahn-Banach theorem [28,
Thm. 3.6].

Lemma14 Let A : X — Y be a continuous linear operator between the Banach
spaces X and Y. We then have:

(1) If A is bounded below (i.e., there exists a ¢ > 0 such that || Ax| > cl|lx||, for all
x € X), then the adjoint A* : Y* — X* is surjective.

(ii) Suppose that there exists a constant a > 0 such that, for every f € X*, there is a
g € Y*with A*g = f and a||glly* < || f | x*. Then A is bounded from below by
a.

The second lemma concerns Wiener amalgam spaces and its proof can be found in
the Appendix.

Lemma 15 Let p € [1,00), let A C R? be a separated subset, and set s = sep(A).

Then
| Y e - )

rEA

< o
Lr(R2) ~ P.S ||f||W(L00,Ll)|| ||ZP(A),
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for all {a)}s.en C €P(A) and f € W(L™®, LY.

Proof of Theorem 1 Fix 11, up € 5 and let A; = supp(u;), for j € {1,2}, and
A = A1 U Ay. We can then write u; — up = ZAeA o, 8;, where o € £P(A), so that
leer — p2llp = lleller and Hy @ — Hy@ = Hala, @), for HA(-, @) @ £P(A) —
MP (R) as defined in the statement of Proposition 1. With this, (11) is equivalent to

Ci(ms(A1, A2) A)lleller < IHA (e, @) lmr@) < Callaller, (20)

and hence it suffices to find constants C; = Ci(p,7,¢) > 0 and C; =
Cy(p, 7, ¢) > 0 such that (20) holds. To this end, first note that by item (i) of
Proposition 1 we have

IHA (o, @) e @)y S rel(A)llec]l .
Furthermore, as @, w2 € MY, we have
rel(A1 U Ap) <rel(Ap) +rel(Az) < s72,

and so the upper bound in (20) holds for some C, > 0 depending on ¢ and s, as
desired.

We proceed to establish the lower bound in (20). Note that this bound holds trivially
if ms(Aq, Ax) =0or A = Ay = &, so suppose w.l.o.g. that ms(A1, Az) > 0 and
A1 # . Then, in particular, A # &. Now, as Ha (-, ¢) : £P(A) - MPR) is a
continuous linear operator between Banach spaces, Lemma 14 implies that it suffices
to find a C; = C1(p, 72, ¢) > 0 such that the following statement holds:

(P1) Forevery B € £9(A), there existsay € M4 (R) such that (HA (-, 9))* (y) = B
and

Ci(ms(Ar, A2) A1) [Iylmary < 1Bllea.

By item (ii) of Proposition 1 and Lemma 13, we have the following expression for
(HA (-, ¢))* in terms of the Bargmann transform:

(HAG,o)* () = (e e ™ 2B y) D)icrriven, y€MIR).  (21)

Thus, as the Bargmann transform is an isometric isomorphism between M” (R) and
FP(C), and the map {By}a—rriver — (Bre ™ ™ }ieraiven is an isometric isomor-
phism on ¢9(A), the statement (P1) is equivalent to the following statement about
interpolation:

(P2) For every B € £1(AN), there exists an F € F49(C) such that ef’TWZ/ZF(X) =
B, forall . € A, and

Ci(ms(A1, A2) A)IFlFac) < lIBlles- (22)

To prove (P2), we will apply the construction developed in [7] (and also used in [1,
Thm. 1]), making use of the interpolation basis functions provided by Lemma 12. To
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thisend, fix @ > 0 and y > O such that 2D* (L) <20 < y~2 < 1,and let B € £9(A)
be arbitrary. Then, by Lemma 8, there exists an Ry > 0 (depending only on J¢) such
thatn* (A}, (0, R)?) < OR?, for j € {1,2}and R > Ro. Now, for each A € A, define
the set A, = (M — X : ) e A}. We will seek to apply Lemma 12 to each of the sets
A » as A ranges over A. To this end, first note that

nt(Ax, (0, R)?) = nT (A, (0, R)?) <nt (A1, (0, B + 1T (A2, (0, R)?) < 20R?,

forall R > Ry. Therefore,asy < (29)_1/ 2 itfollows by Lemma 9 that there exists an
R' = R0, y, Ro) such that A; is R’-uniformly close 0 Qy = {wn,n =y(m+in):
m,n € Z}. In particular, there exists an enumeration AA = {Am n}(m e such that
|km n—Omn| < R, forall (m,n) € 7. Note that 0 € A, by definition of A . In order
to apply Lemma 12 we need to additionally ensure that we work with an enumeration
of AA = {Am,n}(m,nez (possibly different from the enumeration A A= {Am ,,}(m n) F)

that satisfies Ag o = 0. To this end, let (i, ng) € 7 be the index such that )‘mo,no =0,
and define Z and {A,; 1} (m,n)ez as follows:

—1£0,0) ¢ Z, set Z = (Z \ {(mo, no)}) U {(0, 0)}, and let

0, if (m, n) = (0, 0),
Dy if (m,yn) € T\ {(0,0)}

Amp =

—If(0,0) € 7, set T = Z, and let

0, if (m, n) = (0, 0),
Aman = {Xo,0, if (m,n) = (mo, no),
)"m,l’ls lf (ms n) € I\ {(01 0)1 (m07 n())}

The new enumeratlon AA = {Am.n}m.n)ez satisfies [Ao,0 — wo,0l = 0 and |Ayq,n9 —
Omg,ngl < |Ao ol + |Am0 no =~ @mo.nel < 2R’, and thus we have |A;; , — @pm.n| < 2R,
for all m,n) € Z. The set A, therefore fulﬁlls the assumptions of Lemma 12 with
p =ms(A, A2) A3, 5,6, y,and R := Ry Vv (2R’), and so the function g_; :=
§1~\x (- =), where §1~\x is defined according to (17), satisfies

— |1, it =2
)y =1" , forall)' € A, 23
8§ =00 i 22 23)
and
lg_s(2)] < C(p A1)~ le3y limtlrelz=tlogli=2l  forallz e C,  (24)

where ¢ > 0 and C > 0 depend on s, 6, y, and R. Moreover, as A was arbitrary, (23)
and (24) hold for all A € A. Next, following [31, p. 112], we consider the interpolation
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function

F@) =Y ™ 5 ¢ ). (25)

rEA

To see that F is a well-defined element of F4(C), observe that

_T,2 T2
IF@le 30 <Y pale 27 g5 ()]
reA
< C(p A 1)—1 Z |ﬁk|e—%(1—)/_2)|Z—x‘2+€‘2—x| log\z—Xl
reEA

=ClenD™ > > IBIfz =), forallzeC,

Jell,2) heA;

where f(z) = exp [ - %(1 — vy ) |z|* + c|z| log |z|]. Now, as y 2 < 1, we have that

decays exponentially, and so f € W (L, Ll). Lemma 15 thus yields
ys exp Yy y

| > 18-

AEA;

< o Nlea, forj e {1,2},
Loqc) P I f lwroo, .ty {Bitren;llea, for j € {1,2}

and so

IFlFoe = [FOe 3y,
<coan™| X Y sse-n|

Je(l,2) heA;

< -1
L) P Clon D) lIBllea-
(26)

Now, recall that p := ms(A1, Az) A 3, and hence ms(A1, A2) A1 S p A L. This
together with (26) establishes (22) with some C; > 0 dependingons, 8, ¥, R, and R’.
As these quantities ultimately depend only on s and J#, so does C;. Finally, (25) and
the basis interpolation property (23) together yield F (1) = ™ A?/2 B, forall A € A.
We have thus established (P2), thereby concluding the proof of the theorem. O

5 Proof of Theorem 2

In the proof of Theorem 2 we will make use of the following results from [17], as well
as a combinatorial lemma about squares in the plane, whose proof can be found in the
Appendix.

Theorem 16 (Non-uniform Balian-Low Theorem, [17, Cor. 1.2]) Let A be a relatively
separated subset of R? and x € M'(R). If {m(AM)x}ren is a Riesz sequence, i.e.,
12 sen ATx 2Ry =X ax llcllzay forall c e 02(A), then DT (A) < 1.
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Theorem 17 ([17, Thm. 3.2]) Let A be a relatively separated subset of R* and x
M](R). Then || Z}\eA armMxllmr®) <ax llcleray, ¢ € €P(A), holds for some
p € [1, oo] if and only if it holds for all p € [1, o).

Lemma 18 ([17, Lem. 4.5]) Let {A,}neN be a sequence of relatively separated sub-
sets of R2. If sup, N rel(A,) < oo, then there exists a subsequence {Ay, }ken that
converges weakly to a relatively separated set.

Lemma19 Let Y C R% n € N, and suppose that K, is a square in the plane of
side length ~/2(2" + 1) such that #(K, N'Y) > 2%" + 1. Then there exist squares
Ko, K1, ..., K,—1 so that, forevery j € {0,1,...,n — 1},

(i) K;j C K11, K has sides of length V227 4 1) parallel to the sides of Kjy1, and
Kjand K shqre a corner,
(i) #(K;NY) > 2% 4+ 1.

We call a sequence (Ko, K1, ..., Ky) satisfying (i) and (ii) a sequence of nested
squares.

Proof of Theorem 2 We argue by contradiction, so suppose that 5 (£)? is identifiable,
but DT (L) > % Define y, = v/2(1 +27") and R, = 2(2" + 1), for n € N. It then
follows by Lemma 10 that, for every n € N, there exists a i, € 7 (L)? such that
supp(fi,) is not R,-uniformly close to €2,,. Indeed, if this were not the case for
some n € N, we would have DT (£) < yn’z < %, contradicting our assumption that
DH(L) > % Fix such a i, for each n.

Now, for a fixed n € N, define the sets

Se = [V2Q"+ DE V2R + Dk + D)
x[V2@" + DEV2Q" + D+ D) C R,

for (k, £) € Z?, forming a partition of the plane into squares of side length ~/2(2" +
1). As every Sk ¢ consists of exactly 22" fundamental cells of the lattice Q,, and
the diagonal of Sk ¢ has length R, there must exist a pair (k,, £,) € 72 such that
#(Sk,.¢, N supp(iLy)) = 221 4 1, for otherwise supp(iL,,) would be R,-uniformly
close to Qy , contradicting our choice of [ij,.

We set Ky} = Sg,.¢, and apply Lemma 19 with K "and Y = supp(iL,) to obtain
a sequence (KO, K i’, .. K ) of nested squares. Next let A,, be the center of Ko
and note that, as L is shift—invariant by assumption, there exists a measure u, €
2 (L)P with support supp(iL,,) — A,. Therefore, setting K = K " — An, we have that

(Ky, KY, ..., K}})is asequence of nested squares, #(K” ﬂsupp(,un)) > 2%/ 4+ 1,and
= [—\/_, \/_) [ \/_, \/_),foralln e Nand j € {0, 1, ..., n}. We next need

to verify the following auxiliary claim.
Claim Let r € N and suppose that {Mn"}keN is a subsequence of {iin}neN Such that

K;lj = K;lz, forall j € {1,2,...,r} and all k > j. Then there exists a further

r+l r+l
subsequence {“n;“ teen such that I(H’_Jrl1 = r+1 Jforallk > r + 1.
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Proof of Claim: Let.# be the set of squares K’ C K 7 of side length \/5(2”rl + 1) such

that K’ and K," have parallel sides and share a corner. As (K g LKL :f‘H)

is a sequence of nested squares, for all k > r + 1, we have that K:’j_l e X, for all
k>zr+1.But#x = 4 and therefore at least one element of #~ appears infinitely

often in the sequence {K 11 }&>r+1. We can therefore extract a subsequence {u,, rtl HeeN

r+l V+l
of {Mn;}keN such that KH’_J]] = r+1 ,forall k > r + 1, establishing the claim. O

Now, as Kj = Kg, for all n € N, we can apply a diagonalization argument
together with the Claim to construct a subsequence {jt,, }ken Of {its}nen such that
K;L’ = K; " forall j € Nand all k > j. Next, as S (L)" is s-regular, we have
infpcp sep(A) s > 0, and so sup;cy rel(supp(in,)) S s~1 < oo. Therefore,
by passing to a further subsequence of {u,, Jxen if necessary, Lemma 18 implies
the existence of a set A* C R? such that supp(in,; ) % A*as k — oo. Then, as

#(K; N supp(in;)) = > 22/ 4+ 1, we have

(AN 10.v2Q7 + 1)+ 217) = #(AT N K]+ oY) =2 41,
for all sufficiently large j € N, and so

2% 41 1
DY (A*) > limsup + =—. (27)

i (V2@ + 1)+ 2)2

Now, as L is CSI, we have A* € L and A* + (%,O) € L. Moreover, as
sep(supp(in,)) = s, for all k € N, we have sep(A*) > s, and so ms(A*, A* +
(5.0)) > 5. Therefore, as we assumed #'(L)” to be identifiable, there exist
C1, C> > 0 depending on p and £ and a probing signal x € M (R) such that

Z mr(A)x

reA

ci(5a1)Ivl, < <G il

MP(R)

for all v € .#” supported on A := A* U (A* + (3, 0)), and so by Theorems 17 and
16 we must have DT (A) < 1. On the other hand, (27) implies

DY (A)=2DT(A%) > 1,

which stands in contradiction to DT (A) < 1. Our initial assumption must hence be
false, concluding the proof of the theorem. O
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6 Proofs of Theorems 3 and 4

We start with the following proposition that quantifies the behavior of Riesz sums
of time-frequency shifts of the probing signal x under perturbation of the individual
time-frequency shifts. We do so under a mild condition on the time-frequency spread
of the probing signal. Concretely, x will be assumed to be an element of the weighted
modulation space M\ (R) = {f € S': V, f € L} (R)}.

Proposition3 Let p € [1,00), A C C be a separated set, and o € €7 (A). Suppose
that x € M,L (R) with the weight function m(z) = 1 + |z|. Then,

() there existsa ® € W(L*>®, L") depending only on x such that
Vo (x — m(e)x)|(u, v) < |€|P(u, v),

forall (u,v) € R* and e € C with |e] < 1.
(i)

H Zam(k)x _ ZakeZniRe(k)Im(sk) T+ £3)x H

MP(R)
reA reA

Sposix 1€llesocayllelleray,

foralle = {&)}ren € £°°(A) such that ||e||go(p) < L.

Proof (i) Fix an € € C with |¢| < 1. We note that
Vo (x —m(€)x)| < [Vp(x — Mim@e)X)| + [VoMime) (x — Tree)X)| (28)

and bound each term on the right-hand side separately, beginning with the second
term. To this end, we first define the auxiliary quantity F(u, v) = (Vyx)(u, v)e2Tiny,
Then, for all (x, v) € R? and 7 € R, we have

Vo (x — Tex)|(u, v) = [(Vpx)(, v) — e T Vyx) (u — 7, )|
=|F(u,v) — F(u—1,v)|
0
=‘ 0, F)(u+r,v)dr| <|t| sup |0, F)(u+r,v)l.

—T re[—r,0]
Therefore, for all (u, v) € R2,

Vo Mime)(x — Tree)X) (4, v) = [V (x — TRe(e)x) |(u, v — Im(€))

< [Re(e)|  sup [0y F)(u +r, v —Im(e))|
re[—Re(e),0]

<lel - sup  |@uF)u+r,v+r)l, (29
I(ri,r2) oo <1
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where we used the assumption |e| < 1. Next, recalling the definition of F', we have

|0, F)(u, v)| = )(3,4 Vpx) (u, 1))) p2riuy + V) (u, v) - 3u62m’uv

= [0y (x, My TZye) + 2mivix, MyTu9)]

< V) (u, v)| + 27 [u[|(Vpx) (u, V)], (30)
where interchanging d,, with the inner product in the last step is justified due to Vyx €
L} (R?) (which follows from [15, Prop. 12.1.2]). Therefore, (29) and (30) together
yield

Vo Mime) (X — Tree)X)|(u, v) < €] - sup  W(u+ry,v+r), 3D
[1(r1,r2) o <1

for all (u, v) € R?, where we set
W(u, v) = |(Vyx)(, v)| + 27 (Ju| 4 [v]) |(Vpx) (u, v)].
We bound the first term in (28) in a similar manner, this time using another auxiliary
quantity, namely G(u, v) = (VoX)(u, v)e> ™  Then, employing the fundamental
identity of time-frequency analysis [15, Eq. (3.10)]
Vrg)u,v) = e*Z”"””(Vfg\)(v, —u), feS, geS, (u,v)eR?

and the fact that ¢ = ¢, we obtain

Ve (x — Mm@ X) |, v) = [Ve(x = Time)X) | (v, —u)
<lel - sup [(0,G)(w+r, —(u+r2))l, (32)

12 llee <1
and
1(0,G) (v, —u)| < |V X) (v, —u)| + 27 |u||(VypX) (v, —u)| (33)
<IV5 D, —w)] + 27 [ul | (V5 D) (v, —u)] (34)
= |(Vyrx) (u, v)| + 27 |u||(Vypx) (u, v)| (35)
for all (u,v) € R?, where (33) is obtained analogously to (30), in (34) we used
¢’ = i¢’, and in (35) we again used the fundamental identity of time-frequency
analysis.

Combining (32) and (35) thus yields

Vo (x — Mm@ )|, v) < le| - sup  W(u+r,v+r), (36)
IGr1r2) o<1
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and so (31) and (36) together give

Vo(x —m(e)x)|(u,v) < 2le| - sup  W(u+r,v+r).
11,72 lloo <1

Therefore, in order to complete the proof of item (i), it suffices to take

d(u,v) = sup 29 (u+ri,v+r),
1. r2) o<1

and show that ® € W(L*®, L1). In fact, as

IPllw o 1) S / sup ®(u + y1, v+ y2) dudv
R [[(y1,y2) o<

<2/ sup W(u+ry,v+rp)dudv
R? [|(r1,r2) 00 <2

S I lw e,y

it suffices to establish that & € W(L°, L'). To this end, note that Ve xll g2y =
XMl a1 (wy (see [15, Prop. 11.4.2]), and so by [15, Prop. 12.1.11] we get Vyx €
W(L>, L'). Next, as ¢ € M. (R) and x € M} (R), we have by [15, Prop. 12.1.11]
that Vyx € W(L®, L,ln). Therefore, using |u| + |v| < 14 |u + iv] = m(u + iv), it
follows that

W llw ooty S WVexlwee oty + Vpxllwwe 1) < 00,

as desired.
(i1) Recalling the definition of || - || s (r), We have

H Zam(k)x _ Z o, 2T IREIMED) ) 4oy H

MP(R)
rEA reEA

= ” Z ) Vy(r(M)x) — Z oy, @2 IRe()Im(er) Vo (A + £3)x) HL
reA reEA

= H Z o) Vo(mr(A)(x — 7T(€A)x))‘
AEA

P(R?)

LP(R2)

where we used the commutation relation (A + &) = e 27ReMWIMED) 7 (3 )7(g;).
Now, by item (i) we get

Vo (W) (x — 7 (e)x)| = [V (x — m(en)x)| (- = 1) < lleflewa)y@(- — 1)
pointwise, for all A € A, and so, by Lemma 15, we find that
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[Y v - me)

p (TR2
reA LPGED
< HZ s lll€lleooa)y P (- — 1) HLP(RZ) S el llaliera)-
AEA
This establishes (ii) and completes the proof. O

We next show that weak-* convergence of measures i, € .#; implies weak-*
convergence of the measurements H,,,x € M?(R).

Proposition4 Let p € (1,00), x € M,L (R) with the weight function m(z) = 1 + |z|,
and let {jiplnen C ML be a sequence converging to some . € ML in the weak-*
topology of W(Co, L9). Then H,,,x — H,x in the weak-* topology of MP (R).

Proof As p € (1,00), MP(R) is reflexive and so its weak and weak-* topologies
coincide [15, Thm. 11.3.6]. Due to the dual pairing (8), this topology is generated by
the linear functionals (-, y)yr®)xme®), for y € M?(R), and so we have to show
that

nli{go<Hﬂ"x’ VI @®yxma@®) = (Hux, V) mr®xma@®), forally e M7 (R).(37)
Now, for y € M4(R), set f, (1) := (y, 7(M)X) ma®)xmr®), for A = v 4+ iv. If we
show that f, € Co, we will then have

(Hu, X Y mp®yxma®) = Z pn (AN (T (R) X, ¥) e (R)x M4 (R)
Aesupp(pn)
= (s fy)W(M,LP)xW(Co,L7)> (38)

since the dual pairing is continuous in its first argument, and so, as pu, Zou by
assumption, (38) will imply (37). Therefore, in order to complete the proof it suffices
to show that f, € Cy, forall y € M7(R).

To this end, fix an arbitrary y € M9(RR) and note that then V, y € W(L*°, L?) by
[15, Thm. 12.2.1]. On the other hand, Holder’s inequality yields

|| = |, TG)x) s yx e |
< /Rz | Vo), v)| |V (W)x) (u, v)| dudv
< /Rz | Vo), v)| |(Vpx) @ — 7, v — v)| dudv
= (Vpyl * [Vpx(=-)D(T, v). (39)
Next, as x € MI(R), we have Vyox € W(L®, Ll) by [15, Thm. 12.2.1], which,
together with V,y € L7(R?) and (39), implies by [15, Thm. 11.1.5] that f, €

W(L®, L9). This, in particular, shows that fy,(z) — 0 as |z] — oo. Consider now
arbitrary A € C and € € C with |e| < 1. Then, by applying item (i) of Proposition 3
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with x replaced by (1)x, we find a ®; € W(L*®, L') ¢ W(L*®, L?) depending
only on x and X such that

Ve ()x — m(e)m(M)x)| < le] -
pointwise. We thus have

lmr()x — 7 (A + €)xllpmr(R)
= 7 (A)x — 2T REOMD) () Qx| o )

= IrW)x e ‘1 _ 62niRe(e)Im(k)‘

+ I (M)x — 7w (e)m(Mxlmrw)

27iRe(e)Im(R) ‘ + el

< Il |1 e NPl Loz

and so lime_,¢ |7 (A 4+ €)x — w(M)x|| mr®r) = 0. Therefore, by the continuity of the
dual pairing in the second argument, we get

fyA+e)=(y, m(A+€)x) ma®r)xmp®R)—> (¥, T(M)X)ma®)xmp®R) = fy(X) ase—0,
and so, as A was arbitrary, we deduce that f) is continuous. We have hence established

that f, € Cop, completing the proof. O

We are now ready to prove Theorems 3 and 4. In addition to Propositions 3 and 4,
we will need the Banach-Alaoglu theorem as well as the inequality (15).

Proof of Theorem 3 (i) Let w, i € S (L)? be such that Hyx = H,x, write p =
D oaen @b, L= Y 5ok @387, and for R > 0 define
§g = min {|x — 2| : 2 € A N Bg(0), IeK\A}A%M, and
={heA\A:[X>R+8g dix, A) <8g).
Informally, §g is the distarlce betvgﬂeen A and A restricted to the disk Br(0) (not
counting the points in A N A), and A is the part of the support of & which is at least
R + dg away from the origin and everywhere within g of A. Fix an R > 0, and, for

*eA R, Write X(A) for the point of A such that |A )»(k)| < 8g. Note that this point
is unique, as S < s/2. Next, define the measures

ﬁ}e _ Z ay eZnilm(A(A)—A)Re(k)(SMK) and
XEKR

A= 2. @nd%

and note that ﬁ}e is the measure obtained by “shifting the support” of the restricted
measure plx, onto A, and [i% is the remaining part of /1.
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Next, we have ms(supp(u — ﬁ}e), supp(ﬁ%e)) > Sg. Now, as supp(u — ﬁ}e) C
supp(u) and supp(ﬁ%) C supp(ur), we have that pu — ﬁ}e and ﬁ% are elements of
J€(L)P, and so the identifiability condition (11) can be applied to the measures p — ﬁ}e
and ﬁ%, yielding

~1 _ ~2
Ci(6r A Dl — g — 1zllp
< M Hpx — H,;}ex - Hﬁ%x”MP(R)

= |Hpgx — Hﬁ}ex — Hﬁ%xHMp(R)

N ~ 27 mGG)-DRe) (5 (T H
NZ: oz w(h)x NZ: age (A (A))x MPE®)
rLEAR AEAR

Spsx Or - oo ek, llers

where in the last step we used item (ii) of Proposition 3 with ¢ = {A(X) — X}Xe Ape
noting that [A(X) — A| < 8z < 1, forall X € Ag. Therefore, dividing by 8z and C|
and absorbing C; by replacing the dependency of < on s by a dependency on 57 (£)”,
we obtain

~]1 ~2
I —iig — Brllp S poewyrx Haadyex, ller-

Now, as R > 0 was arbitrary and [[{oex}, 5, ller — 0 as R — oo, we deduce that
l—F k=Pl — Oas R — oo.Moreover, as || (u—D) L)l p < 0= —gl p,
we obtain [[(ix — )Lkl = 0as R — oo, which implies ;i = p and hence
completes the proof of (i).

(i1) The “if” direction follows immediately by Proposition 4. To show the “only if”
direction, suppose that H,,x — H,x in the weak-* topology of M”(R). It then
suffices to establish that every subsequence of {i,},en has a further subsequence
that converges to p in the weak-* topology of .#!. To this end, fix an arbitrary
subsequence {ty,; }keN Of {iy}nen and let A = supp(u) and Ay = supp(uy, ). We
then have lim sup,, rel(Ax) < s72 < o0, and so by [17, Lem. 4.5], {Ag}ren has a
subsequence {Ag,}ren that converges weakly to a relatively separated set A. Note
that, as sep(Ag) > s, for all k € N, we also have sep(K) > 5. Now, using (15) and
the identifiability condition (11), we have

sup ”/’L"kg lwm,Lp) S,p,s sup ”ﬂnkl lp S,p,jf(ﬁ)l’,x sup ”Hunk xXllmr@®) < 00,
keN keN keN ¢

and therefore, by the Banach-Alaoglu theorem [28, Thm. 3.15], { ke }een has a subse-
quence, which we will w.l.o.g. also denote by {1, ke }een to lighten notation, such that

Iy, 2, [i, forsome i € W(M, LP). Note that then supp(i) C A as Ag, = A,and
so i € A (L)P. It remains to show that i = . To this end, note that by Proposition 4
we have H,,,x — Hzx in the weak-* topology of M7”(R), and so by uniqueness of
weak-* limits we deduce that Hyx = H,x. From this it follows by item (i) of the
theorem that ;i = w, which finishes the proof. O
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Proof of Theorem 4 Fix ¢ > 0 and an arbitrary finite subset A C A such that lw —
Illp < €, where we set ;f = puly, and write & = ), 5 @x8. Then |[Hpx —
Huxllmr @) < Cae by the identifiability condition. Next, as H,,,x — H,x in norm,
this convergence also holds in the weak-* topology, and so by Theorem 3 we have

Un Rl . We can therefore decompose each p,, according to w,, = v, + p,, where

Vn = Zain)bﬂenm’
reA

and lim,,_, o0 oz)(f’) = a;, limy— o0 [€2(1)| = 0, forevery A € A. Now, foreveryn € N,

define the “shifted” measure

T, = Za)(\”)672niRe(A)Im(e)L) 5.

reA

Then, as A is finite, we have lim,_, oo ||e,1||eoo(7\) = 0 and sup, .y ||oz(”) ||ep(7\) < 00,
which together with item (ii) of Proposition 3 yields
Hz,x — Hy, x e w)

Zain)e—zm'Re(x)lm(sx)n(k)x _ Z“y’)”()‘ +ep(W))x HM
reA reh

P(R)

Spsax lenllgo®lle™ gz = 0 asn — oo. (40)

To bound || 0, | p, we employ the identifiability condition (11) with the measures
pn and L — V,. Concretely, we note that supp(p,) C supp(u,) and supp(it — v,,) C
supp(it) C supp(u), and so p, and & — v, are indeed elements of J#(L)?. Now,
ms(supp(t — V), supp(pn)) = § — llen (M llgooxy > /2, for sufficiently large
n, and so, by combining (40), [[Hpx — Hux|lmr@®r) < Cz€, and the assumption
limy, o0 [ Hy,x — Hpxllpr®) = 0, we get

N ~ o~
C1 (5 A= = pully < IHx = Mo x = Hy, Xl

= |Hpx — Hz,x — Hy,x + Hy, x| s ®)
< Hpx = Huxllme @y + 1Hwx — Hy, X me )
+ Mo, x — Hy,xlmr®)
< 2Che (41

for large enough n. On the other hand, ||iZ — v, — pullp = llonllp, and so

2C, 4Cy
€< €,
Ci(s/2A 1) Cisnl)

lonllp <
for all sufficiently large n. This concludes the proof. O
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7 Proofs of Proposition 2 and Corollaries 5,6, and 7

Proof of Proposition 2 Let L be any of the classes LS ,E?“N, and EY 6. R It then follows
directly from the definitions of these sets that A +z := {L +z : A € A} € L, for
all A € £ and z € R?, so it remains to verify closure under weak convergence. To
this end, let {A,},eNn be a sequence in £ such that A, L Aasn — 00, for some
A C RZ. In all three cases we have that inf,cn sep(A,) > s implies sep(A) > s,
which establishes that £5° is CSI.

Suppose now that £ = E??N. It then suffices to show that #A < N. To this end,
let A be an arbitrary finite subset of A, and consider a point A € A. Then, for all
sufficiently large n, there exists a A, € A, such that |A — &,| < (sep(K) A$)/2. We
deduce that, for all sufficiently large n, there is a /N\n C Ay so that #KV, = #A. But
#A, < N,foralln € N, by definition of the class Ef’nN, hence we must have #A < N.
Now, as A was arbitrary, it follows that #A < N, and so A € E??N. This establishes
that £ is CSI.

For £ = E?ZYR, fix an arbitrary translate K° = (x,x+ R) x (y,y + R) of
(0, R)?, and consider a point A € A N K3 . Then as K, is open, we have that

X,y

for all sufficiently large n there exists a A, € A, such that A — A,| < s/2 and
A € K3} Therefore, as A was arbitrary,and ANK?; 1s finite, we have #(ANK 3 ) <

#(A, N K oy < OR?, for sufficiently large n. Thus as K7 |, was arbitrary, we obtain
(A, (0, R)z) < OR? andso A € Es z;/yR This estabhshes that Ls VR is CSI and
thereby completes the proof. O

Proof of Corollary 5 The proof is effected by verifying the conditions of Theorem 1. As
s:=inf, £in, sep(A) > 0, by definition of £fin SN it suffices to show that D+ (E?“N) <

2 . To this end, note that, for R > 2+/N, we have

nt (A, (0, R)Z) N 1
su 5 5 < -,
AeLfn, R (2«/_ N2 4
and therefore D*(L',ﬁ ) < 1/4 < 1/2, as desired. O

Proof of Corollary 6 First assume that s > 2 - 3*i. In view of Theorem 1, it again
suffices to verify that D™ L3Py < % . To do this, we will need a special case of the
plane packing inequality by Folkman and Graham [13]:

Let K be a compact convex set. Then any subset of K whose any two points are at
least 1 apart (in the Euclidean metric) has cardinality at most %Area(K )+ %Per(K )+
1.

For our purposes K will be a square of side length R, to be specified later. By
scaling, we see that then any subset of [0, R]?> whose any two points are at least s apart

2 1
has cardinality at most fT + 2R 41 Leto € (7§s 3) and Ry > 0 such that
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2(sR())’1 + RO_2 <0 - %s’z. Then, for all A € Eiep and R > Ry, we have

2R22R
SAETS

Thus, noting that n (A, (0, R)?) < nt (A, [0, R]?), we obtain

2
nT(A, [0, RT%) +1< (%s2 +2(sRo) "' + ROZ) R> < OR>.

(A, (0, R)?
DHLEP) = lim sup sup uz)) <0 <
R—00 AefP R

)

-

and so (L ¥)? is identifiable by the probing signal ®.
Now consider the case s < 2-3~ Tandletr = 2 3_’ A = {rm(l, 0)+rn(%, ﬁ) :

2
m,n € Z} € L. Then D+(A ) = (‘[ 2) = %, and so, by Lemma 8, we have
DHLYP) > DT(A) = 7. It thus follows by Theorem 2 that J# (L5 7)? is not
identifiable. O

Proof of Corollary 7 In the case 0 < 1 it follows directly from the definition of upper
Beurling class density that D*([lgep) 6 < 1/2 and so Theorem 1 implies that
H (Elfaey R)p is identifiable by the probing signal ¢.

For 0 > 5, suppose by way of contradiction that there exists a sequence {R;},eN

of positive numbers such that lim,,_, oo R, = 00 and 7 (CRay )1’ is identifiable, for
all n € N. Let {y, }nen be a sequence of positive numbers such that y, > 012 > 5

and
214 (R R <0,

foralln € N, and lim,,—, ~ ¥, = 6~1/2, We then have

nt(Qy,, (0, Ry)?) < ( nVn 1) +4 (Rnyn_l + 1) < 6OR,,

where the second term takes into account the points of €2,, along the four sides

of the square (0, Ry)?. Therefore, Q,, € H (L?Zy R, )P, for all n € N, and so, as

lim, o0 yn =6 and > 1, itfollows by Lemma 8 that DF (E?ZYR )= DH(Q,,) =

v > E’ for all sufficiently large n. This stands in contradiction to Theorem 2,

completing the proof. O
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Appendix: Proofs of Auxiliary Results

Proof of Proposition 1 Note that H , is, in fact, the synthesis operator treated in [17],
and so items (i) and (ii) follow immediately from [17, §2.5]. We proceed to establish

(iii). To this end, recall that ¢(¢) = Z%e:’”z, fix an arbitrary (x, w) € A, and let A be
a finite subset of A such that (x, w) € A. Then, fora, b € R and (z, v) € A, we have

(MyTe M_ D0, TegaM_p@) b R)x MP(R)
= (o, T 4 Mw+bT—rM—v7:c+aM—b‘P>L2(]R)
= e A () T Mo Toe Moy 5 Teva®) 12 ()

_ e—2m'(x+a)be2nir(v+b) (0, T_q M(w+b)+(—v—b)7—(x+a)—t¢>LZ(R)

— e—2m'(x+a)b62m’r(v+b)e—2m'a(w—v) ((p’ wav,]d(x+a)frfa‘p>L2(]R)

e—2m’ab62ﬂirve—Zﬂia(w—v)—Znib(x—t)(Vw(p)(x —T,w— U),

and therefore

eZ:r[iab (H[N\ (Ol, Mfa)fb%(p)y 7;+aM7b¢)Mq(R)><MP(R)

— Z ary eZm‘rve—27ria(w—v)—2nib(x—r) (V(p(p)(x —T,w— ). 42)
(r,v)ex

Now, let € > 0 be arbitrary. We multiply both sides of (42) by € e~Te@+b%) and
integrate over (a, b) € R?. Then, as the Fourier transform of /€@ (- \/€) is ¢ (-//€),
the integral of the right-hand side equals

; 2 27.—1
Z ar’veZJTzrve—ﬂ[(w—v) +(x—1)%]e (V‘p(p)(x T w—v),
(r,v)ex

and the integral of the left-hand side satisfies

M1 (R)xMP(R)

/2 Ee—JTG(aZ-‘rbZ)eZT[iab (HX (a, M—w—b%ﬁo), ,Z;—FaM—b(p)
R

_ 2.2
i/ ce we(a“+b*)
R2

_ 2,12
< [ e IR NIM s Tl I Tera Mo e da

da db ‘

(HK (Olv M—w—blfa(ﬂ)’ IZ;-HIM—}?w)Mq (R)XMP(R)‘ dadb

S HZ @ )@l @) el w)-
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We hence deduce that

3 2T @) ) gy (e — 70 — 1)
(r,u)ex
S ITHZF (@, D@l gy llellme @)

and so, upon letting € — 0, we obtain

U0 V) (0, 0)| < IIHx (o, @l a1 my 19l 9 .-

Next, note that we can write Hy = Ha —H MRS and so, by item (i) of the proposition,
there exists a universal constant C > 0 such that

IHZ (e, ) < THA @ )+ C ot eanxller-

Therefore, since (V) (0, 0) = ||<,o||i2 ® = 1, we have

orol < (IHa@ I+ Clendeniller) 19l e el .

The term || {oz}; ¢ MR |ler can now be made arbitrarily small by choosing a sufficiently
large A, and hence we deduce that

lx,0l < ITHA (e D@l ) ll@llme ).

As (x, w) € A was arbitrary, we obtain

lallee = sup |ax,wl < IHA (e )@l ) 1@ llme®),
(x,w)eA

establishing (10). m]

Proof of Lemma 12 Note that the terms z — Ao o and z in the defining expressions of g
and g cancel owing to Ag o = 0, so the interpolation property (a) follows immediately.
We may hence proceed to establishing statement (b). To this end, we begin by observing
that the assumptions (i), (ii), and (iii) remain valid and the conclusion of the lemma
unchanged if we replace p by p A1 and R by RV 1V (3y), so we may assume w.l.0.g.
that p < 1and R > 1V (3y). Now, set 7/ := Z\{(0, 0)} and write

T2 12
~ Ty _ oy(2)e” 27 Izl d(z, A) i )
ga(x)e 2 G ; (2), (43)

where d is the Euclidean distance from a point to a subset of C and

_ d(z, QJ/) l—[ exp ( < < ) (I- Z/)‘m,n) eXp(Z/)\m,n)

d(z, N) ®Om.,n )\m,n 1- Z/wm,n) CXP(Z/wm,n).
(m,n)eLy

h(z)

(m,n)el’
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Note that |d(z, A)/z] < 1 owing to 0 € A, and by Lemma 11 we have

loy, (z)le_%y_2|zlz/d(z, Q,) <, 1, so in order to complete the proof it suffices to
establish

Ih(2)| Sso.p.r 0 el vz e C, (44)

for some ¢ = c(s, 0, y, R) > 0. This will be effected by bounding various auxiliary
quantities associated with 4. To this end, we begin by bounding

l—[ (I — z/Am,n) exp(z/Am,n)

haux (z) 1= (1 — z/wm.n) exp(z/wm,n) ’

(m,n)eA(z)

from above, where A(z) C T is given by
A(R) ={(m,n) €T : |hnl > 2zl \/6R} .

To this end, we first establish the following basic bounds valid for all z € C and
(m,n) € A(z):
(A1) |omnl > 5R, |wm.nl/|Amnl € (5/6,5/4),
(A2) |2/@mnl < $1(21<ar) + 71 (jz>4R), and
(A3) |z/Amunl < 1/2.
The inequality in (A1) follows from |wp »| = |Am.n| — R > 6R — R = 5R, and the
upper and lower bounds on |wy, »|/|Am.,| are due to |wp | = | Amn| — R > %|Am‘n|
and [Amn| = |wmal — R > %|wm,n|. To show (A2), consider the cases |z] < 4R
and [z| > 4R separately. If |z| < 4R, then |z/wpm x| < 4R/(SR) = 4/5, whereas if
|z| > 4R, then |wm.n| > lAmnl — R > 2|z| — R > Z|z| and s0 |z/wma| < 4/7.
Finally, (A3) follows directly by the definition of A(z).

Now, using (A2), we have

l—[ 1 — Z/)\m,n” eXP(Z/)»m,nN

[T — z/wm,nll exp(z/@m,n)l

1+ 1)es
<<]1“z>4m + Ljjz1<4r) H #)

4y 4
mmeac (1—35)e73
lomn|<F1zI<TR

l—[ [T — 2/ Am.ull €Xp(z/Am,n)]

1 —z/wm nll exp(z/wm )]

[haux (2)] <
(m,n)€A(z)

(m,n)eA(z)
|om,nl>F 2]
1—2z/A ex A
SV,R 1_[ ( z/ m,n) p(z/ m,n) . VzeC, (45)
- (1= Z/wm,n)exp(Z/wm,n)
(m,n)eA(z)

where we set ~
A@) = {(m,n) € AQ@) : lomal > 121}
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Next, for z € C and (m, n) € A(z), it follows by (A2) that 1 — z/w, n and 1 —z/zm n
lie in the domain C \ R¢q of the complex logarithm, which we denote by Log. We
can thus write

1_[ (1- Z/)‘m,n) CXP(Z/)\m,n)

1 - Z/wm,n) CXP(Z/wm,n)

(m,n)eA(z)
= 1_[ exp|:Log(1— < )—i— < —Log(l— < >— Zj|
~ )&m,n Am,n ®Om.n ®Om.,n
(m,n)eA(z)
g | z k gy | z k
= T e~ (5) 2 (6n)
- — k \ Am.n — k \on.n
(m,n)eA(z) k=2 k=2

> Z%(%—M} )]

(m, n)eA(Z) k=2

which together with (45) yields

lzIk | 1 1
|haux (2)] Sy,R CXP[ Z Z P Ak_ , VzeC. (46)
(m.n)eA(z) k=2 @m.n .

Using (A1), we further have

L | o = @ 020 7 omal
Ohu M| loma [Fmn ||
R Joma 24 (8)
Joma* (£)"
<SR- 15 || Y, (47)

forall z € C, (m,n) € A(z), and all k € N. Next, defining caux (z, R) := & v 5R,

(A1) and (A2) imply that X(z) C {(m,n) € VAR |wm.n| > caux(z, R)}, forall z € C,
and so (46) and (47) together yield

5R|Z| _
[naux (2)] < exp|: Z Z -1 Sk | (k+1)i|

(m,n)eA(z) k=2

5R
gexp[ ) Z |Z| 150 n|—(k+l)]

(m, n)eZ2
|@m,n|>caux (z,R)
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o SRIzIF —(k+1)

k=2 (m,n)eZ?
|CUm,n |>cCaux (z,R)

Recall that R > 3y, and so caux(z, R) = % V5R > % \% 20712/ implies

Caux(z, R) — y/\/i 2 0.95 caux(z, R) > 1.6 [z]. (49)

Now, write K,, for the square of side length y centered at (0, 0) and use R > 3y and
(49) to obtain the following bound

Yo lomal Y

[@m.n|>caux (z,R)

k+1
|wm,n|+% * kel
< ¥ (=) wl=®D dwl (50)
(my,ny)+K,

| n
|@wm n|>caux (z,R) ’

Y k+1
<(+:5) | w44 [du)
5RV2 |wl>cax (@ R) =25

1 k+1 27 1—k
<14 —— = ,R) — 2
( + 15«/§> K—1 (Caux(Z ) V/\/_)
< 1.045 127 (162

< 11-0.65%|z|'*, (51)

for all z € C\{0} and k£ > 2. We next use (51) in (48) to obtain

[o)0]
5R|z|¥ _
[haux (D] Sy R exp|:2T 2155 11-0.65%|z)17*

k=2
55 —
k
< exp [R B > 0975 ]
k=2
L eMORIZ w7 e C. (52)

We are now ready to bound %, and do so by treating the cases |z| > 3R and |z] < 3R
separately.

Case |z| > 3R : We analyze h(z) as a product h(z) = ]_[Zzl hy(z), where

1 1
hl(z)zexp[z Z (A -5 >i|

(m,n)eT’\TI;
[Am . <21z
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d(z, 2y) 1 —2z/A
hz(Z) — )4 1_[ / m,n ,
d(z, N) , I —z/wmn
(m,n)el’
‘)\m,n_Z|<2R
1—2z/A 1—2z/A
h3(z) = l—[ ﬁ, h4(z) = H ﬁ, and
(m,n)el’ </ @m.n (m,n)el’ 2/ @m.n
|)‘m,n_z‘>2R |)\m,n_Z|>2R
|m,n|<2R |@wm,n1>2R
Mm,nlgzlz‘
1—2z/A exp(z/A
hs(z) = 1—[ ( /Xm.n) €xp(z/ m,n)

(m,n)el’ (1 — z/wp n) exp(z/@mn)’

|)tm,n|>2|z‘

and bound the functions 4 ; in order.

Bounding hi: Note that A, ,| > 3R implies |wpn | > 2R, and hence |Apm | =
|wm.nl — R > %lwm,n |. We thus have the following bound for (m, n) € 7'\ Z:

1 Mm,n - wm,nl

<A<y @™+ ¥ 7 + Ly, 53R
{Imn| <3R) {Imn|>3R) [y —

)Lm,n ®Om,n

< ]1{|,\,,,,,,|g31e}(2f1 + 7Y 4 2R|wm.n] 72,

and therefore, as #{(m,n) € 7' : |Ay.n| < 3R} < 99 R2,

1 1
lhi(z)| < exp| |zl E - }
, 1 Zm,n ®Om.,n
(m,n)el’
[zm,n <2z

gexp[%R%zs—l+y‘1)|z|+2R|z|- > |wm,n|‘2]. (53)

(m,n)el’
|om n|<2]z|+R

Recalling that log |z] > log(3R) > log(3) > 0, we can bound in a manner similar to
(51) to obtain

L (v 5V
> |wm’n|2<< ﬁ) /V< jw| =2 |duw|

a
mmel’ 14 ﬁ\|w|<2\z|+R+ﬁ
|wm.n|<2‘z|+R

Sy.r loglz]. 34
Using this in (53) thus yields

|h1 ()] < ectEToe ], (55)
for some ¢; = ¢1(s, 0, y, R) > 0 and all z € C such that |z| > 3R.
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Bounding hy: We write |hy| = h5"™ /hge“, where

1 [Am,n — 2l
ho'M(z) = ———— and
? d(z, A) [1 , Al
(m,n)el’
‘)Lm,n_dng
|wm,n — 2|
h(zien(z) - —m,r =~
Q
d(z, y) (m.myeT’ ||
Mm,n*l‘gz}e

In order to bound 25", we observe that one of the following two circumstances occurs:

— The distance from z to A is minimized at Ap 9, and so d(z, A) = |z| > 3R > 1.

— The distance from z to A is minimized at a point A, ,, where (m,n) € 7', and
so the term d(z, A) cancels with one of the factors |A,, , — z| in the product over
{m,n) eT": [Am,n — 2| < 2R}

These facts lead to the following bound

Aman— 2l V1
e < [ LmeHYL e, (56)
1z| = [Am,n — 2l
(m,n)eZ’ ?

I)\m,n_zlng

For h$™, we similarly observe that either (Rez,Imz) € [—%, §1%, or d(z, @)
cancels with a factor |y, , —z| in the product over {(m, n) € ' : |Ay.n—2z| < 2R}.In
either case the numerators of the terms remaining in the product satisfy |, , —z| = %,
and we thus have

14 (y/2) A1
hden(z) 2 (_ A 1)
2 «/E 1_[ , |Wm,n — Amonl + [Amn — 2| + 2]
(m,n)e<12R
‘)‘m.n_zl\
N Al 160 R?
> (L A 1) (L) , (57)
V2 3R + |z

The inequalities (56) and (57) together yield

2
lha(2)| ok 1211F <g g el (58)

Bounding h3: Recall that |, ,| > % for all (m, n) € Z'\Z,, and there is at most one
(m’,n") € Z; \ {(0, 0)}, and for this (m’, n’) we have |A,/ | > p, by assumption (i).
We thus get

h@i=  [] DElmal o lomal P =2

|1_Z/wm,n| b |)\m,n| I)‘-m,n_z|_R

(m,n)eZ’ (m,n)el’
|)Lm,n_Z|>2R |)Lm,n_Z|>2R
|@m n| <2R |@m n| <2R
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: 2R 2R L[ 4R TR
<t I G/ A12R—RSF ((s/2)/\1>
|wm,n|<2R

SS,)/,R )071- (59)

Bounding hy: We write |hg| = h3"™ /h$e", where

Omop — A Omop — A
e = ] ’1—7’"’" miland W@ =[] ’1_7’“ mon
, U)m,n_ " a)m,n
(m,n)el’ (m,n)el’
[Am,n—z|>2R [Amn—z>2R
‘wm,n‘>2R |@m,n|>2R
[Am,n <2zl [Am,n|<22]

Now, fix a z € C with |z] > 3R and write z = 7/ + wy ¢, where (k, £) € 7? and
(Rez/,Imz) € [-4, 4] Then, as

{(ms n) € WA Mm,n - Z| >2R, |)‘mn| < 2|Z|}
C{m,n) € Z* : |wmp — 21> R, |Omn — 2| < 3|z| + R},

and Q, — wy ¢ = 2, we have the following bound

|Wm,n — Am,nl R
13" (2)| < (1 + 7) < (1 + 7)
4 1_[ |wm,n - Z| 1_[ |a)m,n - Z|

(m,n)el’ (m,n)eZ?
[Am.n—2|>2R R<|wmn—z|<3]z|+R
|@mn|>2R
[Am | <22]
R
= 1_[ I+ ﬁ
Wmn — Wk — 2
(m,n)eZ? e
R<‘wm,n_wk,l_z/‘<3lz‘+R
R
B L (60)
|wm,n v

(m,n)eZ?
R<|wmn—7'|1<3]z|+R

where in the lastinequality we used log(14+x) < x forx > 0.Now, |wy, ,—z'| > Rand
R = 3y imply |wm n| > R_\/LE > \/57’ and so |y n —2'| = |wm,n|_\% > %|wm,n|~

We therefore have

1 2
=< >

|wm,n a4

||
R<|omn—2'|<31z1+R R—25 <l <Blel+R+T5 "
|@m,n| + <
’ V2 —1
< > ol |w] ™" dw|
s s +K.
R*%<‘wm,n‘<3|1|+R+% mn (my.ny) 4
d lw| ™" dw]
~y.R w w
R_ \/75 R—/2y <||<3lzl+R+v/2y
SyA,R |z]. 61)
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As z was arbitrary, (61) holds for all z € C with |z| > 3R. Using (61) in (60) thus
yields

|h™ (z)] < ecd (62)

for some ;"™ = ¢;""(y, R) > O and all z € C with |z| > 3R.

The quantity 4" is bounded from below in a similar fashion:

DOm.n — )Lm,n R
mrer= 1 \1——w > 1 (1— " |)1
(m.n)eT’ mn (m,n)eZ? e
U\lm.n*lllziR 2R<|wmn|<2]z|+R
Om.n|>
Mm,nlgz‘zl
2R
> ex - , (63)
Z P Z |p |

2R<|wm,n|<2|1‘+R

where in the last inequality we used log(1+x) > 2x forx € [—%, O]. Another integral

bound yields
1
> o Skl
2R<|wpnl L2l2+R "

which together with (63) gives
Ih$E (2)] = e~ (64)

for some cge“ = cge“ (y,R) > 0 and all z € C with |z] > 3R. Combining (62) and
(64) thus yields

ha(z)] < el HeE™Mlel, (65)

for all z € C with |z] > 3R.

Bounding hs: Note that |1, ,| > 2|z| implies |A,; | > 2|z| > 6R, and so {(m, n) €
T Amal > 2|z|} = A(z). We thus have hs = hyyy, which satisfies (52).

Bounding h: We combine (55), (58), (59), (65), and (52) to obtain

_ num _ .den —
|h(z)| Ss,g,y,R P le(l+C4 +cy +1100R)|z|+c1lz|log |z] < 0 ledlz\loglz\7 (66)

for some d = d(s,0,y, R) > 0 and all z € C with |z| > 3R. This completes the
derivation of the desired upper bound on # in the case |z| > 3R.
Case |z| < 3R: We write h(z) = he(z)h7(z), where

1 - z/)‘m,n) eXP(Z/)»m,n)

d(Z,Q ) 1 —Z/)\mn
he(z) = =[] — ad m@=]] :
d(z, A) , 1 —z/omn , (1 = z/wm,n) exp(z/@m,n)
(m,n)eZ’ (m,n)eZ’
[Am,n|<OR [Am.n|>6R
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Note that [A;; »| > 6R and |z| < 3R together imply |Ap | > 2|z|, and s0 A7 = hgux.
Hence it only remains to bound /. To this end, write |hg| = hg"™/ hgen, where

Z )\-m n — Z d Z wm n Z
he'™(z) = [ = and h{(z) = [T =
A A Q
d(z, A) (m.myeT’ m,n d(z, )/) (m.myeT’ ®m,n
[Am,n | SOR [Am,n|SOR

Now, the term d(z, A) cancels with either z or one of the factors A,, , — z, and
similarly, d(z, €2,) cancels with either z or one of the factors w,, , — z. In either
case the numerators of the terms remaining in the product satisty |w,, , — 2| = %
We again recall that |A,, ,| > % for all (m,n) € Z' \ Z, and there is at most one
(m’,n") € Z; \ {(0, 0)}, and for this (m’, n’) we have |A, | = p. These observations
together yield the following bounds:

g™ )l <3Rp~" [

1449 R?
(Al +1zD A1 <3R _1<(9R)A1)

s/2)v1 s/2) Vv 1
ey 72 /2
[Am,n | <OR
1449 R?
2)nl 2)A1
e > ] /2 > (92 . forzeCst |zl < 3R.
l©Om,n — Al + | Am,nl 7R
(m,n)eT’ ’ ’ ’
[Am.n | SOR

Therefore |h6(2)| Ss.6.y.R p~ 1, for z with |z| < 3R, which together with (52) yields
h(@)] Ss0.p.8 0~ e1|z], forz e Csit. |z] < 3R. (67)

The inequalities (66) and (67) can now be combined to yield the bound (44), concluding
the proof.
O

Proof of Lemma 13 Consider first the case when y € S(R) is a Schwartz function. We
then have y € L2(R), and thus

<y1 ﬂ()\)qj)Mq(R)xMP(lR) = <V(ﬂy7 an()\')(p)L‘/(Rz)XLP(RZ)

B //Rz("wxs, £) Wy (9) (5, &) dsde

_ /R YO @ di (68)
= (Vpoy)(X)
_ e—nirve—ﬂ\Klz/z(iBy)()_L), (69)

where (68) follows from [15, Thm. 3.2.1], and (69) is by [15, Prop. 3.4.1].

Now take an arbitrary y € M9(R). As S(R) is dense in M?(R) for g € [1, co)
(see [15, Prop. 11.3.4]), we can take a sequence {y,}-; C S(R) such that y, — y
in M4 (R). The calculation above thus shows that

(Vs TV b &y oy = ¢ Ve 2By, ) (R), Ve N (70)
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Furthermore, as the dual pairing is continuous, we have

(Y, TV)Q) Ma®yxMP@®R) = (¥, T(A)@) maR)xMP(R) aSn — OO.

On the other hand, by the isometry property (19) we also have |By, — Byl r«) =
lvs — yllme®y — 0 as n — oo. Thus, as the evaluation functional F FQ) is
continuous on F4(C) (see [32, Lem. 2.32]), we obtain (B f,)(A) — (B f)(X), which
together with (70) and (69) establishes the claim of the proposition. O

Proof of Lemma 15 For m, n € 7 write
K = [ 25 (ma = 3) . 25 (mi+3)) x [ 35 (= ). 25 (m.+ 1))

and, for A € A, let (m,, n,) be the (unique) element of 7?2 such that A € K,.n- Note
that, as sep(A) = s, every K,, , contains at most one element of A. Next, define the
functions

2 -
AR =23 wlk,,,, @ ad f@) = max |/ (z + w).
P S8

We then have

S lnllf =01 < Y lnl £ (2= s +in)/v2)

rEA rEA

< /CA<w)f(z—w>|dw| = (A% f)(2),

for all z € C. Therefore, using [15, Prop. 11.1.3, (a)] (with constant submultiplicative
and v-moderate weight functions v = m = 1), we obtain

1A% fllere) < Ao lAlLe© S 57221 fllwees. oy llellera),

where the last inequality follows by computing the norm of A explicitly. O

Proof of Lemma 19 Note that it suffices to prove the claim for j = n — 1, as the general
statement then follows by induction. To this end, divide K, into four disjoint squares
of side length +/2 (2”_l + %) By the pigeonhole principle, one of these squares must
contain at least 22(*—D 41 points of K;; Y. Denote this square by K’, and let K, be
the square which contains K’ and satisfies property (i) in the statement of the Lemma.
Then #(K,_1 NY) > #(K'NY) >22"=D 41, and so K, satisfies (ii), as desired.

O
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