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Abstract
Thepaper dealswith the problemunderwhich conditions for the parameters s1, s2 ∈ R,
1 ≤ p, q1, q2 ≤ ∞ the Fourier transform F is a nuclear mapping from As1

p,q1(R
n)

into As2
p,q2(R

n), where A ∈ {B, F} stands for a space of Besov or Triebel–Lizorkin
type, and n ∈ N. It extends the recent paper ‘Mapping properties of Fourier trans-
forms’ (Triebel in Z Anal Anwend 41(1/2):133–152, https://doi.org/10.4171/ZAA/
1697, 2022) by the third-named author, where the compactness of F acting in the
same type of spaces was studied.

Keywords Fourier transform · Nuclear operators · Besov spaces · Triebel–Lizorkin
spaces

1 Introduction

Let F be the classical Fourier transform, extended in the usual way to S ′(Rn), n ∈ N.
The mapping properties

FS(Rn) = S(Rn), FS ′(Rn) = S ′(Rn), (1.1)
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and

F : L p(R
n) ↪→ L p′(Rn), 1 ≤ p ≤ 2,

1

p
+ 1

p′ = 1, FL2(R
n) = L2(R

n),

(1.2)
are cornerstones of Fourier analysis. These basic assertions have been complemented
in [25] covering in particular the following observation. Let As

p,q(R
n) with

A ∈ {B, F}, 1 < p, q1, q2 < ∞ and s1 ∈ R, s2 ∈ R, (1.3)

be the usual function spaces of Besov and Triebel–Lizorkin type. We denote

dnp = 2n

(
1

p
− 1

2

)
, 1 < p < ∞, n ∈ N, (1.4)

and introduce
τ n+
p = max(0, dnp) and τ n−

p = min(0, dnp). (1.5)

Then
F : As1

p,q1(R
n) ↪→ As2

p,q2(R
n) (1.6)

is compact if
both s1 > τ n+

p and s2 < τ n−
p . (1.7)

If (independently)
either s1 < τ n+

p or s2 > τ n−
p , (1.8)

then there is no continuous embedding of type (1.6). We refer to Fig. 1 below for some
diagram. It was one of the main aims of [25] to deal with the degree of compactness
of F in (1.6) in case of (1.7), expressed in terms of entropy numbers. In the present
paper we look for conditions ensuring that the mapping F in (1.6) is nuclear. Recall
that a linear continuous mapping T : A ↪→ B from the Banach space A into the
Banach space B is called nuclear if it can be represented as

T f =
∞∑
k=1

〈 f , a′
k〉 bk, {a′

k} ⊂ A′, {bk} ⊂ B, (1.9)

such that
∑∞

k=1 ‖a′
k |A′‖ · ‖bk |B‖ is finite, where A′ is the dual of A. In particular, any

nuclear mapping is compact. We refer to Sect. 3.1 for further details and some history
of the topic.

Our main result is Theorem 3.4 characterising in particular under which conditions
the compact mapping (1.6) under the assumptions (1.7) is nuclear. We refer to Fig. 3
below for some illustration.

The paper is organised as follows. In Sect. 2 we collect definitions and some
ingredients. This includes wavelet characterisations and weighted generalisations
As
p,q(R

n, wα) of the above unweighted spaces As
p,q(R

n), where the functionwα(x) =
(1+|x |2)α/2, α ∈ R, is a so-called ‘admissible’ weight. In Sect. 3 we recall first some
already known properties about nuclear embeddings between these spaces and prove
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Theorem 3.4. This will be complemented by related assertions for some limiting cases.
Finally, in Sect. 4 we collect some more or less immediate consequences when F is
considered as a mapping between weighted spaces of type As

p,q(R
n, wα).

2 Definitions and Ingredients

2.1 Definitions and Some Basic Properties

We use standard notation. Let N be the collection of all natural numbers and
N0 = N ∪ {0}. Let Rn be the Euclidean n-space where n ∈ N. Put R = R

1. Let
S(Rn) be the Schwartz space of all complex-valued rapidly decreasing infinitely dif-
ferentiable functions onRn and let S ′(Rn) be the dual space consisting of all tempered
distributions on Rn . Furthermore, L p(R

n) with 0 < p ≤ ∞, is the standard complex
quasi-Banach space with respect to the Lebesgue measure, quasi-normed by

‖ f |L p(R
n)‖ =

( ∫
Rn

| f (x)|p dx
)1/p

(2.1)

with the obvious modification if p = ∞. As usual, Z is the collection of all integers;
and Zn , n ∈ N, denotes the lattice of all points m = (m1, . . . ,mn) ∈ R

n with mk ∈ Z

for any k = 1, . . . , n.
If ϕ ∈ S(Rn), then

ϕ̂(ξ) = (Fϕ)(ξ) = (2π)−n/2
∫
Rn

e−i xξ ϕ(x) dx, ξ ∈ R
n, (2.2)

denotes the Fourier transform of ϕ. As usual, F−1ϕ and ϕ∨ stand for the inverse
Fourier transform, given by the right-hand side of (2.2) with i in place of −i . Here
xξ stands for the scalar product in Rn . Both F and F−1 are extended to S ′(Rn) in the
standard way, i.e.,

(F f )(ψ) = f (Fψ), if f ∈ S ′(Rn) and ψ ∈ S(Rn),

and similarly for F−1. Let ϕ0 ∈ S(Rn) with

ϕ0(x) = 1 if |x | ≤ 1 and ϕ0(x) = 0 if |x | ≥ 3/2, (2.3)

and let
ϕk(x) = ϕ0(2

−k x) − ϕ0(2
−k+1x), x ∈ R

n, k ∈ N. (2.4)

Since ∞∑
j=0

ϕ j (x) = 1 for x ∈ R
n, (2.5)

ϕ = {ϕ j }∞j=0 forms a smooth dyadic resolution of unity. Moreover, it follows from the

Paley–Wiener–Schwartz theorem that the Fourier transform of the distribution ϕ j f̂ as
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well as its inverse Fourier transform are entire analytic functions for any f ∈ S ′(Rn).
So the expression (ϕ j f̂ )∨(x) makes sense pointwise in Rn .

Definition 2.1 Let ϕ = {ϕ j }∞j=0 be the above dyadic resolution of unity. Let s ∈ R,
0 < q ≤ ∞.

(i) Let 0 < p ≤ ∞. Then Bs
p,q(R

n) is the collection of all f ∈ S ′(Rn) such that

‖ f |Bs
p,q(R

n)‖ϕ =
( ∞∑

j=0

2 jsq
∥∥(ϕ j f̂ )

∨ |L p(R
n)

∥∥q)1/q (2.6)

is finite (with the usual modification if q = ∞).
(ii) Let 0 < p < ∞. Then Fs

p,q(R
n) is the collection of all f ∈ S ′(Rn) such that

‖ f |Fs
p,q(R

n)‖ϕ =
∥∥∥( ∞∑

j=0

2 jsq |(ϕ j f̂ )
∨(·)|q

)1/q |L p(R
n)

∥∥∥ (2.7)

is finite (with the usual modification if q = ∞).

Remark 2.2 These well-known inhomogeneous spaces are independent of the above
resolution of unity ϕ according to (2.3)-(2.5) in the sense of equivalent quasi-norms.
This justifies the omission of the subscriptϕ in (2.6), (2.7) in the sequel. Let usmention
here, in particular, the series of monographs [20–22, 24], where also one finds further
historical references, explanations and discussions. The above restriction to p < ∞ in
case of Fs

p,q(R
n) is the usual one, though many important results could be extended to

Fs∞,q(R
n), cf. [24] for the definition and properties of the spaces as well as historical

remarks. Here we stick to the above setting.
As usual we write As

p,q(R
n), A ∈ {B, F}, if the related assertion applies equally to

the B-spaces Bs
p,q(R

n) and the F-spaces Fs
p,q(R

n).We dealmainlywith the B-spaces.
The F-spaces can often be incorporated in related assertions using the continuous
embeddings

Bs
p,min(p,q)(R

n) ↪→ Fs
p,q(R

n) ↪→ Bs
p,max(p,q)(R

n), (2.8)

s ∈ R, 0 < p < ∞, 0 < q ≤ ∞. Occasionally we use also Sobolev-type embeddings
for Fs

p,q(R
n) spaces: If 0 < p1 < p2 < ∞, 0 < q1, q2 ≤ ∞ and s1, s2 ∈ R, then

Fs1
p1,q1(R

n) ↪→ Fs2
p2,q2(R

n) (2.9)

provided that s1 − n
p1

≥ s2 − n
p2
. Let

wα(x) = (1 + |x |2)α/2, x ∈ R
n, α ∈ R. (2.10)

Then Iα ,

Iα : f �→ (
wα f̂

)∨ = (
wα f ∨)∧

, f ∈ S ′(Rn), α ∈ R, (2.11)
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is a lift in the spaces As
p,q(R

n), s ∈ R, 0 < p < ∞, 0 < q ≤ ∞, mapping As
p,q(R

n)

isomorphically onto As−α
p,q (Rn),

IαA
s
p,q(R

n) = As−α
p,q (Rn), ‖(wα f̂ )∨|As−α

p,q (Rn)‖ ∼ ‖ f |As
p,q(R

n)‖, (2.12)

equivalent quasi-norms, see [24, Theorem 1.22, p. 16] and the references given there.
Of interest for us will be the Sobolev spaces (also called fractional Sobolev spaces or
Bessel potential spaces)

Hs
p(R

n) = Fs
p,2(R

n), s ∈ R, 1 < p < ∞, (2.13)

their Littlewood–Paley characterisations and

Is H
s
p(R

n) = L p(R
n), ‖(ws f̂ )

∨|L p(R
n)‖ = ‖ f |Hs

p(R
n)‖. (2.14)

Remark 2.3 For our arguments below we need the weighted counterparts of the spaces
As
p,q(R

n) as introduced in Definition 2.1. Let s, p, q be as there and let wα be the
weight according to (2.10). Then As

p,q(R
n, wα) is the collection of all f ∈ S ′(Rn)

such that (2.6), (2.7) with L p(R
n, wα) in place of L p(R

n) is finite. Here L p(R
n, wα)

is the complex quasi-Banach space quasi-normed by

‖ f |L p(R
n, wα)‖ = ‖wα f |L p(R

n)‖, 0 < p ≤ ∞, α ∈ R. (2.15)

These spaces have some remarkable properties which will be of some use for us later
on, see also [11] and [5, Sect. 4.2]. In particular, for all spaces f �→ wα f is an
isomorphic mapping,

‖wα f |As
p,q(R

n)‖ ∼ ‖ f |As
p,q(R

n, wα)‖, α ∈ R, (2.16)

and for all spaces the lifting (2.12) can be extended from the unweighted spaces to
their weighted counterparts,

IαA
s
p,q(R

n, wβ) = As−α
p,q (Rn, wβ),

‖(wα f̂ )∨|As−α
p,q (Rn, wβ)‖ ∼ ‖ f |As

p,q(R
n, wβ)‖, (2.17)

α ∈ R, β ∈ R. Both (substantial) assertions are covered by [22, Theorem 6.5, pp. 265–
266] and the references given there. Note that weights of type wα given by (2.10) are
also special Muckenhoupt weights when α > −n.

2.2 Wavelet Characterisations

Our arguments below rely onwavelet representations for some (unweighted) B-spaces.
Here we collect what we need and refer to the standard monographs for this topic [4,
13, 14, 26], where one can find related definitions and explanations.Wewill follow the
notation used in [24, Sect. 1.2.1, pp. 7–10]. Further remarks concerning wavelets in
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Besov and Triebel–Lizorkin spaces can be found in [22, Chap. 3] with a short summary
given in [22, Sect. 1.7].

As usual, Cu(R) with u ∈ N collects all bounded complex-valued continuous
functions on R having continuous bounded derivatives up to order u inclusively. Let

ψF ∈ Cu(R), ψM ∈ Cu(R), u ∈ N, (2.18)

be real compactly supportedDaubechieswaveletswith‖ψF |L2(R)‖ = ‖ψM |L2(R)‖ =
1 and ∫

R

ψM (x) xv dx = 0 for all v ∈ N0 with v < u. (2.19)

This means, in particular, that the functions

ψF,k(x) = ψF (x − k), ψ
j
M,k(x) = 2 j/2ψ

j
M,k(2

j x − k), k ∈ Z, j ∈ N0,

form an orthonormal basis in L2(R). Let n ∈ N and, when j = 0, let

G = (G1, . . . ,Gn) ∈ G0 = {F, M}n, (2.20)

which means that Gr is either F or M . Furthermore, for j ∈ N, let

G = (G1, . . . ,Gn) ∈ G j = {F, M}n∗, j ∈ N, (2.21)

which means that Gr is either F or M , where ∗ indicates that at least one of the
components of G must be an M . Note that the parameter j indicates that we take
different sets G j in case of j = 0 and j ∈ N. Let

ψ
j
G,m(x) =

n∏
l=1

ψGl

(
2 j xl − ml

)
, G ∈ G j , m ∈ Z

n, (2.22)

x ∈ R
n , where (now) j ∈ N0. Then

{
2 jn/2ψ

j
G,m : j ∈ N0, G ∈ G j , m ∈ Z

n} (2.23)

is an orthonormal basis in L2(R
n). Let

1 ≤ p, q ≤ ∞ and s ∈ R. (2.24)

Let u ∈ N be such that |s| < u, recall (2.18). Then f ∈ Bs
p,q(R

n) can be represented
as

f =
∞∑
j=0

∑
G∈G j

∑
m∈Zn

2 jn〈 f , ψ j
G,m〉ψ

j
G,m, (2.25)



Journal of Fourier Analysis and Applications (2023) 29 :38 Page 7 of 28 38

unconditional convergence being in S ′(Rn), with

‖ f |Bs
p,q(R

n)‖ ∼
( ∞∑

j=0

2 j(s− n
p )q

∑
G∈G j

( ∑
m∈Zn

2 jnp|〈 f , ψ j
G,m〉|p

)q/p
)1/q

, (2.26)

where the equivalence constants are independent of f , with the usual modification
if max(p, q) = ∞, cf. [22, Theorem 3.5] and [24, Sect. 1.2.1]. If max(p, q) < ∞,
then the series in (2.25) converges unconditionally in terms of the convergence in
Bs
p,q(R

n), hence also in terms of the convergence in S ′(Rn). Furthermore (2.23) is a
basis in Bs

p,q(R
n) if max(p, q) < ∞. From (2.26), (2.8) and the orthonormality of

the system (2.23) it follows that

‖ψ j
G,m |As

p,q(R
n)‖ ∼ 2 j(s− n

p )
, j ∈ N0, m ∈ Z

n, G ∈ G j , (2.27)

1 ≤ p, q ≤ ∞, s ∈ R, A ∈ {B, F} (with p < ∞when A = F), where the equivalence
constants can be chosen independently of j,G,m.

2.3 Mappings

We recall some mapping properties of the Fourier transform F obtained in [25]. This
covers also (more or less) what has already been said in the Introduction, (1.3)–(1.8).

Let n ∈ N, 1 < p < ∞ and s ∈ R. We use the notation

dnp = 2n

(
1

p
− 1

2

)
, 1 < p < ∞, n ∈ N, (2.28)

and define
τ n+
p = max(0, dnp) and τ n−

p = min(0, dnp). (2.29)

We denote by

Xs
p(R

n) =

⎧⎪⎨
⎪⎩
L p(R

n) if 2 ≤ p < ∞, s = 0,

Bs
p,p(R

n) if 2 ≤ p < ∞, s > 0,

Bs
p,p(R

n) if 1 < p ≤ 2, s ≥ dnp,

and

Y s
p(R

n) =

⎧⎪⎨
⎪⎩
Bs
p,p(R

n) if 2 ≤ p < ∞, s ≤ dnp,

Bs
p,p(R

n) if 1 < p ≤ 2, s < 0,

L p(R
n) if 1 < p ≤ 2, s = 0.

For convenience, we have sketched in the usual ( 1p , s)-diagram in Fig. 1 below the
corresponding areas for the definition of Xs

p and Y
s
p indicating the space B

s
p,q(R

n) by
its parameters s and p, neglecting q.
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We collect what is already known about the continuity and compactness of the map
F : Xs1

p (Rn) ↪→ Y s2
p (Rn).

Theorem 2.4 ([25]) Let 1 < p < ∞, s1∈ R, s2 ∈ R and τ n+
p , τ n−

p be given by (2.29)
with (2.28).

(i) Then

F : Xs1
p (Rn) ↪→ Y s2

p (Rn) with s1 ≥ τ n+
p and s2 ≤ τ n−

p (2.30)

is continuous. This mapping is even compact if, and only if, both s1 > τ n+
p and

s2 < τ n−
p .

(ii) Furthermore, if there is a continuous mapping

F : Bs1
p,p(R

n) ↪→ Bs2
p,p(R

n), (2.31)

Fig. 1 Parameter areas for the
definition of spaces Xs

p and Y s
p ,

and their continuous embedding
(2.31).



Journal of Fourier Analysis and Applications (2023) 29 :38 Page 9 of 28 38

then both s1 ≥ τ n+
p and s2 ≤ τ n−

p .

Remark 2.5 These assertions are covered by [25, Theorem 3.2, Corollary 3.3]. There
one also finds results about the entropy numbers ek(F), k ∈ N, of F which further
characterise the ‘degree of compactness’, cf. [25, Theorem 4.8].

Corollary 2.6 Let 1 < p < ∞, 0 < q1, q2 ≤ ∞, s1, s2 ∈ R. Let A ∈ {B, F}. Then

F : As1
p,q1(R

n) ↪→ As2
p,q2(R

n) (2.32)

is compact if both s1 > τ n+
p and s2 < τ n−

p .
If s1 < τ n+

p or s2 > τ n−
p , then there is no continuous map (2.32).

Proof This is an immediate consequence of Theorem 2.4 together with the elementary
embeddings As+ε

p,q1(R
n) ↪→ Bs

p,p(R
n) ↪→ As−ε

p,q2(R
n), ε > 0. If s1 > τ n+

p and s2 <

τ n−
p , then one can choose ε > 0 such that s̃1 = s1−ε > τ n+

p and s̃2 = s2+ε < τ n−
p . So

by the elementary embeddings As1
p,q1(R

n) ↪→ Bs̃1
p,p(R

n) and Bs̃2
p,p(R

n) ↪→ As2
p,q2(R

n)

the operator (2.32) can be factorised through the compact operator

F : Bs̃1
p,p(R

n) ↪→ Bs̃2
p,p(R

n). (2.33)

On the other hand, if s1 < τ n+
p and the operator (2.32) is continuous, then we can

choose ε > 0 such that s̃1 = s1 + ε < τ n+
p . If we also put s̃2 = s2 − ε, then by the

elementary embeddings the operator (2.33) can be factorised through the continuous
operator (2.32). This contradicts the second statement of Theorem 2.4. A similar
argument works if s2 > τ n+

p .

The above result shows that s1 = τ n+
p and s2 = τ n−

p are natural barriers if one
wishes to study continuous and compact mappings of type (2.32). The observation
justifies (1.6)–(1.8). It also implies that the compactness restrictions s1 > τ n+

p and
s2 < τ n−

p in what follows are natural. We complement the above assertion in Sect. 3.3
where we shall also deal with the limiting cases p = 1 and p = ∞.

3 Nuclear Mappings

3.1 Preliminaries

A linear continuous mapping T : A ↪→ B from the (complex) Banach space A into
the (complex) Banach space B is called nuclear if it can be represented as

T f =
∞∑
k=1

〈 f , a′
k〉 bk, {a′

k} ⊂ A′, {bk} ⊂ B, (3.1)
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such that
∑∞

k=1 ‖a′
k |A′‖ · ‖bk |B‖ is finite. Here A′ is the dual of A. Then

‖T |N (A, B)‖ = inf
∞∑
k=1

‖a′
k |A′‖ · ‖bk |B‖ (3.2)

is the related nuclear norm, where the infimum is taken over all representations (3.1).
In particular any nuclear mapping is compact. The collection of all nuclear mappings
between complex Banach spaces is a symmetric operator ideal, see [16, 8.2.6, p. 108],
[17, p. 280]. Here symmetric means that T ′ : B ′ ↪→ A′ is nuclear if T : A ↪→ B is
nuclear.

Remark 3.1 Grothendieck introduced the concept of nuclearity in [7] more than 60
years ago. It provided the basis for many famous developments in functional analy-
sis afterwards, we refer to [16], and, in particular, to [17] for further historic details.
In Hilbert spaces H1, H2, the nuclear operators N (H1, H2) coincide with the trace
class S1(H1, H2), consisting of those T with singular numbers (sk(T ))k∈N ∈ �1. It
follows directly from the definition that nuclear operators can be approximated by
finite-rank operators. However, it is well known from the remarkable Enflo result [6]
that there are compact operators between Banach spaces which cannot be approxi-
mated by finite-rank operators. This led to a number of—meanwhile well-established
and famous—methods to circumvent this difficulty and find alternative ways to ‘mea-
sure’ the compactness or ‘degree’ of compactness of an operator, e.g. the asymptotic
behaviour of its approximation or entropy numbers. In all these problems, the decom-
position of a given compact operator into a series is an essential proof technique. It
turns out that in many of the recent contributions [2, 3, 8, 10, 23] studying nuclearity,
a key tool in the arguments are new decomposition techniques as well, adapted to the
different spaces. This is also our intention now.

In addition to the tools described above we will rely on the following two observa-
tions about nuclear embeddings between function spaces.

Let � be a bounded Lipschitz domain in R
n , n ∈ N, (bounded interval if n = 1).

Then As
p,q(�) is, as usual, the restriction of the spaces As

p,q(R
n) as introduced in

Definition 2.1 and Remark 2.2.

Proposition 3.2 Let

1 < p1, p2, q1, q2 < ∞ and s1 ∈ R, s2 ∈ R. (3.3)

(i) The embedding
id : As1

p1,q1(�) ↪→ As2
p2,q2(�) (3.4)

is compact, if, and only if,

s1 − s2 > nmax

(
1

p1
− 1

p2
, 0

)
. (3.5)
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Fig. 2 Parameter areas for the compactness and nuclearity of embedding (3.4).

(ii) The embedding (3.4) is nuclear if, and only if,

s1 − s2 > n − nmax

(
1

p2
− 1

p1
, 0

)
. (3.6)

The classical condition (3.5) can be found e.g. in [5, p. 60]. Part (ii) of the proposition
was proved in [23, Theorem, p. 3039], clarifying some limiting cases compared with
what was already known before, cf. [15, 18]. In [10] we also dealt with the situations
p = 1 and p = ∞. Let us briefly illustrate the situation in Figure 2 above. This has
to be understood in the sense that for a fixed source space As1

p1,q1(�), that is, given
parameters s1, p1 (and q1 hidden), we indicate the area of parameters s2 and p2 (and q2
hidden again) such that the embedding id, given by (3.4), in the corresponding target
space As2

p2,q2(�) is compact or nuclear, respectively.
Secondly we need the counterpart of this result for weighted spaces As

p,q(R
n, wα)

as introduced in Remark 2.3 with wα as in (2.10). Let p1, p2, q1, q2 and s1, s2 be as
in (3.3). Let −∞ < α2 ≤ α1 < ∞. We consider the embedding

idα : As1
p1,q1(R

n, wα1) ↪→ As2
p2,q2(R

n, wα2) where α = α1 − α2 ≥ 0, (3.7)

extended to the indicated limiting cases 1 and ∞ for the parameters p1, p2, q1 and q2.

Proposition 3.3 Let 1 ≤ p1 < ∞, 1 ≤ p2 ≤ ∞ (with p2 < ∞ for F-spaces),
1 ≤ q1, q2 ≤ ∞, s1, s2 ∈ R, and α = α1 − α2 ≥ 0.



38 Page 12 of 28 Journal of Fourier Analysis and Applications (2023) 29 :38

(i) idα given by (3.7) is compact if, and only if,

α > nmax

(
1

p2
− 1

p1
, 0

)
and s1 − s2 > nmax

(
1

p1
− 1

p2
, 0

)
. (3.8)

(ii) idα given by (3.7) is nuclear if, and only if,

α > n + nmin

(
1

p2
− 1

p1
, 0

)
and s1 − s2 > n + nmin

(
1

p1
− 1

p2
, 0

)
.

(3.9)

For the compactness result (i) we refer to [22, Prop. 6.29], [11, Thm. 2.3], [5, Thm.
and Rem. 4.2.3] (in the context of so-called admissible weights) and [9, Prop. 2.8]
(in the context of Muckenhoupt weights). The nuclearity part (ii) is covered by [10,
Theorem 3.12, p. 14] combined with the lifting (2.17), see also [10, Cor. 3.15, p.22].

3.2 Main Assertion

We first restrict ourselves to the non-limiting situation, that is, we assume 1 < p, q <

∞. We consider the limiting cases when p, q ∈ {1,∞} in Sect. 3.3 below. Let s ∈ R.
Then

As
p,q(R

n)′ = A−s
p′,q ′(Rn),

1

p
+ 1

p′ = 1

q
+ 1

q ′ = 1, (3.10)

is the well-known duality in the framework of the dual pairing
(S(Rn),S ′(Rn)

)
, cf.

[20, Theorem 2.11.2, p. 178]. LetF be the Fourier transform as introduced in Sect. 2.1
and let F f ∈ As

p,q(R
n) be expanded according to (2.25). Then

F f =
∞∑
j=0

∑
G∈G j

∑
m∈Zn

2 jn 〈F f , ψ j
G,m

〉
ψ

j
G,m

=
∞∑
j=0

∑
G∈G j

∑
m∈Zn

2 jn 〈 f ,Fψ
j
G,m

〉
ψ

j
G,m

(3.11)

follows from F ′ = F in the context of the dual pairing
(S(Rn),S ′(Rn)

)
and

〈F f , ψ j
G,m〉 = 〈 f ,Fψ

j
G,m〉 what can be justified by (3.10) and the properties of

the wavelets ψ
j
G,m .

Our main result in this paper reads as follows.

Theorem 3.4 Let 1 < p, q1, q2 < ∞ and let s1 ∈ R, s2 ∈ R. Then

F : As1
p,q1(R

n) ↪→ As2
p,q2(R

n) (3.12)
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is nuclear if, and only if, both

s1 >

{
n for 1 < p ≤ 2,
2n
p for 2 ≤ p < ∞,

and s2 <

{
−2n(1 − 1

p ) for 1 < p ≤ 2,

−n for 2 ≤ p < ∞.

(3.13)

Remark 3.5 Note that (3.13) can also be written as s1 > n − τ n+
p′ and s2 < −n − τ n−

p′
with τ n+

p′ and τ n−
p′ as in (2.29) with (2.28), replacing p by p′ and using 1

p + 1
p′ = 1.We

return to this observation in Remark 3.6 below. There one also finds some illustration
of the corresponding parameter areas in Fig. 3. This discussion will be extended in
Remark3.15 to the limiting cases p = 1 and p = ∞where compactness andnuclearity
coincide.

Proof Step 1 First we prove that (3.13) ensures that F in (3.12) is nuclear. We choose
s̃1, s̃2 ∈ R such that s1 > s̃1 > nmin

{
1, 2

p

}
and s2 < s̃2 < −nmin

{
1, 2

p′
}
. Then by

elementary embeddings (monotonicity of the spaces As
p,q(R

n) with respect to s) and
(2.13) the operator (3.12) can be factorised in the following way,

As1
p,q1(R

n) ↪→ Hs̃1
p (Rn)

F
↪→ Hs̃2

p (Rn) ↪→ As2
p,q2(R

n).

Thus, by the ideal property of N , it is sufficient to prove that the operator

F : Hs1
p (Rn) ↪→ Hs2

p (Rn), 1 < p < ∞, (3.14)

is nuclear if the conditions (3.13) hold. We recall that Hs
p(R

n) are the Sobolev spaces
according to (2.13), (2.14), normed by

‖ f |Hs
p(R

n)‖ = ‖(ws f̂ )
∨ |L p(R

n)‖, 1 < p < ∞, s ∈ R, (3.15)

with ws(x) = (1 + |x |2)s/2, x ∈ R
n .

Step 2 Let 1 < p ≤ 2. We rely on (3.11). By (2.27) one has the following equiva-
lence

2 jn‖ψ j
G,m |Hs2

p (Rn)‖ ∼ 2 j(s2+n− n
p )

, j ∈ N0, m ∈ Z
n . (3.16)

It follows from the duality (3.10) and (2.13) that Hs1
p (Rn)′ = H−s1

p′ (Rn). Then one
obtains from (3.15) and the Hausdorff–Young inequality (1.2) that

‖Fψ
j
G,m |H−s1

p′ (Rn)‖ = ‖F(
w−s1ψ

j
G,m

) |L p′(Rn)‖
≤ c1 ‖w−s1ψ

j
G,m |L p(R

n)‖
≤ c2(1 + 2− j |m|)−s1 2− j np ,

(3.17)

j ∈ N0, m ∈ Z
n , where we used that ψ j

G,m given by (2.22) has a support within a ball

centred at 2− jm and with radius c2− j . Then (3.11), (3.16), (3.17) applied to (3.1),
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(3.2) show that

‖F |N (
Hs1

p (Rn), Hs2
p (Rn)

)‖ ≤ c
∞∑
j=0

∑
m∈Zn

(1 + 2− j |m|)−s12 j(s2+n− 2n
p )

≤ c′
∞∑
j=0

2 j(s2+n− 2n
p )

∞∑
k=0

∑
2− j |m|∼2k

(1 + 2k)−s1

≤ c′′
∞∑
j=0

2 j(s2+n− 2n
p )

( ∑
|m|≤2 j

1 +
∞∑
k=1

2−ks12( j+k)n
)

≤ c′′′
∞∑
j=0

2 js2+ j2n(1− 1
p )

∞∑
k=0

2−k(s1−n) < ∞
(3.18)

if both s1 > n and s2 < − 2n
p′ . Here we could omit the summation over G ∈ G j since

it is finite for any j and has at most 2n summands. Moreover, the third inequality
follows from the elementary combinatorial estimate #{m ∈ Z

n : |m| ∼ 2�} ∼ 2n�.
This proves that F is nuclear as claimed in (3.13) for 1 < p ≤ 2.

Step 3 Let 2 ≤ p < ∞. As recalled in Sect. 3.1 the operator idealN is symmetric.
Then one obtains from the above-mentioned duality for Hs

p(R
n) and F = F ′ that

F : Hs1
p (Rn) ↪→ Hs2

p (Rn), 2 < p < ∞, (3.19)

is nuclear if, and only if,

F : H−s2
p′ (Rn) ↪→ H−s1

p′ (Rn),
1

p
+ 1

p′ = 1, (3.20)

is nuclear. So it follows from Step 2 that F is nuclear as claimed in (3.13) for 2 ≤
p < ∞.

Step 4We prove in two steps that the conditions (3.13) are also necessary to ensure
that F in (3.12) is nuclear. Let 2 ≤ p < ∞ and let

F : As1
p,q1(R

n) ↪→ As2
p,q2(R

n), (3.21)

be nuclear. According to (3.13) we wish to prove that s2 < −n and s1 > 2n
p . Let us

take k ∈ N such that k > s1. Since we have an elementary continuous embedding
Wk

p(R
n) = Fk

p,2(R
n) ↪→ As1

p,2(R
n), by the ideal property of N it follows that the

mapping
F : Wk

p(R
n) ↪→ As2

p,q2(R
n) (3.22)

is nuclear. Now we proceed to the proof of the condition s2 < −n if the operator
(3.22) is nuclear. Let f ∈ L p′(Rn, wk), p′ = p

p−1 , according to (2.15). Then for any
multi-index α ∈ N

n
0 with |α| ≤ k, the function ξ �→ ξα f (ξ) belongs to L p′(Rn). So
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using the modification of the Hausdorff–Young inequality (1.2) for the inverse Fourier
transform we get that

DαF−1 f (x) = i |α| F−1(ξα f (ξ)
)
(x) ∈ L p(R

n), |α| ≤ k, (3.23)

and consequently F−1 : L p′(Rn, wk) ↪→ Wk
p(R

n). Now (3.22) and FF−1 = id
imply that the mapping

id : L p′(Rn, wk) ↪→ As2
p,q2(R

n) (3.24)

is nuclear. But now s2 < −n is an immediate consequence of Proposition 3.3(ii)
applied to (3.24).

Step 5We prove that s1 > 2n
p if the operator (3.12) is nuclear and 2 ≤ p < ∞. We

proceed by contradiction. So let us assume that s1 ≤ 2n
p . Let us choose an arbitrary

s < s2 and q0 = min{p, q1}. Then

B
2n
p
p,q0(R

n) ↪→ As1
p,q1(R

n)
F
↪→ As2

p,q2(R
n) ↪→ Bs

p,p(R
n).

So, we can factorise the operator

F : B
2n
p
p,q0(R

n) ↪→ Bs
p,p(R

n), 2 ≤ p < ∞, (3.25)

through the nuclear operator (3.12) and in consequence the operator (3.25) is also
nuclear by virtue of the ideal property of N . Let us fix an arbitrary number α ∈
(−∞, s). The mappings Iα : Bs

p,p(R
n) ↪→ Bs−α

p,p (Rn) and F−1 : Bs−α
p,p (Rn) ↪→

B
dnp
p,p(R

n) are both continuous. The continuity of the second operator follows from
Theorem 2.4, since s − α > 0 = τ n+

p and dnp = τ n−
p . Using the ideal property of N

again we obtain nuclearity of the mapping

F−1 ◦ Iα ◦ F : B
2n
p
p,q0(R

n) ↪→ B
dnp
p,p(R

n). (3.26)

But F−1 ◦ Iα ◦ F is a factorisation of the mapping

Wα : B
2n
p
p,q0(R

n) ↪→ B
dnp
p,p(R

n), f �→ wα f ,

and W−α : B
2n
p
p,q0(R

n, w−α) ↪→ B
2n
p
p,q0(R

n) is an isometry. This implies that the map-
ping

id = Wα ◦ W−α : B
2n
p
p,q0(R

n, w−α) ↪→ B
dnp
p,p(R

n)

is nuclear. Therefore it follows fromProposition 3.3 that 2np −dnp > nwhich contradicts
2n
p − dnp = n.
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The corresponding assertions for 1 < p ≤ 2 are amatter of duality. The justification
of s1 > n in (3.13) can be proved similarly as in Step 4. The corresponding assertion
for s2 is based on (3.10).

Remark 3.6 In the Fig. 3 below we sketched in the usual
( 1
p , s

)
-diagram the param-

eter areas where the Fourier operator F is nuclear—as a proper subdomain of the
compactness area, recall Fig. 1. Note that, using the notation (2.29) with (2.28), one
could rewrite the condition (3.13) for the nuclearity of F in (3.12) as well as for the
compactness in (2.32) as: F is compact, if

s1 > τ n+
p and s2 < τ n−

p

and F is nuclear, if, and only if,

s1 > n − τ n+
p′ and s2 < −n − τ n−

p′ .

This explains somehow the reflected and shifted ‘nuclear’ parameter areas compared
with the compactness areas, see also Fig. 2.

Remark 3.7 Let us briefly mention that the method from Step 5 of the proof of Theo-
rem 3.4, that is, to ensure s1 > 2n/p for 2 ≤ p < ∞, can also be used if 1 < p ≤ 2.
If we assume that s2 ≥ −2n

(
1 − 1

p

) = dnp − n and fix arbitrary s > s1, then we get
the nuclearity of the mapping

F : Bs
p,p(R

n) ↪→ B
dnp−n
p,max(p,q2)

(Rn), (3.27)

which is the counterpart of (3.25). Moreover, taking α < −s and using the continuity

of the operators F−1 : B
dnp
p,p(R

n) ↪→ Bs+α
p,p (Rn) and Iα : Bs+α

p,p (Rn) ↪→ Bs
p,p(R

n)

together with the factorisation Wα = F ◦ Iα ◦ F−1, we prove the nuclearity of

Wα : Bdnp
p,p(R

n) ↪→ B
dnp−n
p,max(p,q2)

(Rn). But this implies the nuclearity of the embedding

id : Bdnp
p,p(R

n, w−α) ↪→ B
dnp−n
p,max(p,q2)

(Rn)

which contradicts (3.9).

3.3 Limiting Cases

So far we excluded the values 1 and ∞ for the parameters p, q1, q2 in Theorem 3.4.
We now collect what can be said about these limiting cases.

Proposition 3.8 Let 1 < p < ∞, 1 ≤ q1, q2 ≤ ∞, and let s1 ∈ R, s2 ∈ R. Then

F : Fs1
p,q1(R

n) ↪→ Fs2
p,q2(R

n) (3.28)

is nuclear if, and only if, (3.13) is satisfied.
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Fig. 3 Parameter areas for the
compactness and continuity of
F given by (3.10).

Proof Step 1 The sufficiency of the assumptions (3.13) follows by Theorem 3.4
together with the elementary embeddings for the spaces Fs

p,q(R
n). We can take s̃1

and s̃2 such that s1 > s̃1 > nmin{1, 2
p } and s2 < s̃2 < −nmin{1, 2

p′ }. Then for any
q̃1 and q̃2 such that 1 < q̃1, q̃2 < ∞, we have

Fs1
p,q1(R

n) ↪→ Fs̃1
p,q̃1

(Rn)
F
↪→ Fs̃2

p,q̃2
(Rn) ↪→ Fs2

p,q2(R
n),

where Theorem 3.4 ensures the nuclearity of the middle mapping, and thus also of
(3.28).

Step 2 We prove the necessity of the condition (3.13). The case 1 < q1, q2 < ∞ is
covered by Theorem 3.4. So it remains to consider the situation when the parameters
q1 or q2 attain the limiting values 1 or∞. First we consider the following composition,

Fs̃1
p,q̃1

(Rn) ↪→ Fs1
p,q1(R

n)
F
↪→ Fs2

p,q2(R
n) ↪→ Fs̃2

p,q̃2
(Rn), (3.29)
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where the parameters s̃i , q̃i , i = 1, 2, will be chosen appropriately below. We would
like to reduce the argument further and claim that it is sufficient to prove the necessity
of the assumption concerning s2 if q2 = ∞, and concerning s1 if q1 = 1. This can
be seen as follows. Let ε > 0. If q2 = ∞ and q1 > 1, then we may choose s̃1 = s1
and q̃1 ≤ q1 such that 1 < q̃1 < ∞, and s̃2 = s2 − ε and 1 < q̃2 < ∞. Thus the
necessity of the condition (3.13) for s1 follows from Theorem 3.4 applied to (3.29).
On the other hand, if q1 = 1 and q2 < ∞, then we can take s̃1 = s1 + ε, 1 < q̃1 < ∞,
s̃2 = s2 and q2 ≤ q̃2 such that 1 < q̃2 < ∞. Then the necessity of the condition
(3.13) for s2 follows once more from Theorem 3.4 applied to (3.29). If 2 ≤ p < ∞
and q2 = ∞, then the argument that was used in Step 4 of the proof of Theorem 3.4
shows the necessity of s2 < −n in this case. Here we benefit from the fact that in
Proposition 3.3 the case q2 = ∞ is covered.

If q2 < ∞ and 1 < p ≤ 2, and the mapping

F : Fs1
p,1(R

n) ↪→ Fs2
p,q2(R

n)

is nuclear, then, by duality, the mapping

F : F−s2
p′,q ′

2
(Rn) ↪→ F−s1

p′,∞(Rn)

is nuclear. So −s1 < −n is a consequence of the last argument.
Now we consider the case 2 < p < ∞ and q1 = 1. We choose r with 2 < r < p

and s3 such that

s3 = s1 + n

r
− n

p
. (3.30)

Then by the Sobolev type embedding, cf. (2.9),

Hs3
r (Rn) = Fs3

r ,2(R
n) ↪→ Fs1

p,1(R
n)

F
↪→ Fs2

p,q2(R
n) (3.31)

this implies that
F : Hs3

r (Rn) ↪→ Fs2
p,q2(R

n) (3.32)

is nuclear. Since Is3(F−1( f )) = F−1(ws3 f ) and ws3 f ∈ Lr ′(Rn) if f ∈
Lr ′(Rn, ws3), r

′ < 2, it follows from the Hausdorff–Young inequality that

‖F−1 f |Hs3
r (Rn)‖ = ‖F−1(ws3 f

) |Lr (R
n)‖ ≤ c ‖ws3 f |Lr ′(Rn)‖. (3.33)

Now FF−1 = id combined with (3.32) shows that

id : Lr ′(Rn, ws3) ↪→ Fs2
p,q2(R

n) (3.34)

is nuclear if (3.32) was nuclear. Thus Proposition 3.3(ii) implies that

s3 > n − nmax

(
1

r ′ − 1

p
, 0

)
= n − n

r ′ + n

p
= n

r
+ n

p
, (3.35)
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which leads to

s1 = s3 − n

r
+ n

p
>

n

r
+ n

p
− n

r
+ n

p
= 2n

p
. (3.36)

Analogously we can prove the necessity in the case 1 < p < 2 and q2 = ∞. We
choose r such that p < r < 2 and s3 given by

s3 = s2 + n

r
− n

p
. (3.37)

Now the Sobolev embeddings, recall (2.9), imply

Fs1
p,q1(R

n)
F
↪→ Fs2

p,∞(Rn) ↪→ Hs3
r (Rn), (3.38)

which finally leads to the nuclearity of

F : Fs1
p,q1(R

n) ↪→ Hs3
r (Rn). (3.39)

Thus in the same way as above, since ws3F( f ) = F(Is3( f )) and ‖F−1 f |Lr ′
(Rn, ws3)‖ = ‖F f |Lr ′(Rn, ws3)‖, it follows from the Hausdorff–Young inequality
that

‖F−1 f |Lr ′(Rn, ws3)‖ = ‖F f |Lr ′(Rn, ws3)‖ ≤ c ‖F−1(ws3F f ) |Lr (R
n)‖

= c ‖ f |Hs3
r (Rn)‖. (3.40)

Combined with F−1F = id and (3.39) this leads to the nuclearity of

id : Fs1
p,q1(R

n) ↪→ Lr ′(Rn, ws3). (3.41)

Another application of Proposition 3.3(ii) implies

− s3 > n + n

r ′ − n

p
. (3.42)

Consequently,

s2 < −2n

(
1 − 1

p

)
, (3.43)

which concludes the proof of the necessity of the conditions (3.13) in all cases.

Corollary 3.9 Let 1 < p < ∞, 1 ≤ q1, q2 ≤ ∞ and let s1 ∈ R, s2 ∈ R. Then

F : Bs1
p,q1(R

n) ↪→ Bs2
p,q2(R

n) (3.44)

is nuclear if (3.13) is satisfied.
Conversely, the nuclearity of (3.44) implies (3.13) in all cases apart from 2 < p < ∞
and q1 = 1, or 1 < p < 2 and q2 = ∞. In case of 2 < p < ∞ and q1 = 1 the
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nuclearity of (3.44) implies s1 ≥ 2n
p , while in case of 1 < p < 2 and q2 = ∞ the

nuclearity of (3.44) implies s2 ≤ −2n
(
1 − 1

p

)
.

Proof Step 1 The sufficiency of the assumptions (3.13) can be proved in exactly
the same way as in Proposition 3.8, Step 1 of its proof by substituting F-spaces by
corresponding B-spaces.

Step 2 As for the necessity we can use the same argument as in Step 2 of that proof,
to reduce the argument to the assumption concerning s2 if q2 = ∞, and concerning
s1 if q1 = 1. In case of q1 = 1, 1 < p ≤ 2, or q2 = ∞ and 2 ≤ p < ∞, we
can follow the same arguments as presented at the beginning of Step 2 in the proof
of Proposition 3.8. Since the argument works for any ε > 0, it proves the inequality
s1 ≥ 2n

p if 2 < p < ∞, and s2 ≤ −2n
(
1 − 1

p

)
if 1 < p < 2. The strict inequalities

in case of 2 ≤ p < ∞ and q2 = ∞, or 1 < p ≤ 2 and q1 = 1, can be proved in the
same way as in Step 2 of the above-mentioned proof.

Remark 3.10 To prove the necessity of the strict inequalities for F-spaces in the cases
1 < p < 2 and q2 = ∞, or 2 < p < ∞ and q1 = 1, we benefit from the independence
of the Sobolev embeddings of the q-parameters, cf. (2.9) and (3.31). This holds for
Triebel–Lizorkin spaces, unlike for Besov spaces. So our argument does not work in
that context.

Next we consider the case p = 1. If 1 ≤ q1, q2 < ∞, we can extend Theorem 3.4
in the desired way.

Proposition 3.11 Let 1 ≤ q1, q2 < ∞ and let s1, s2 ∈ R. Then

F : As1
1,q1

(Rn) ↪→ As2
1,q2

(Rn) (3.45)

is nuclear if, and only if,
s1 > n and s2 < 0. (3.46)

Proof It is sufficient to consider the Besov spaces, i.e.,

F : Bs1
1,q1

(Rn) ↪→ Bs2
1,q2

(Rn), 1 ≤ q1, q2 < ∞, (3.47)

since Bs
1,1(R

n) ↪→ Fs
1,q(R

n) ↪→ Bs
1,q(R

n) for any s ∈ R and 1 ≤ q < ∞. By [20,
Thm. 2.11.2, p. 178] we have the following duality

Bs1
1,q1

(Rn)′ = B−s1
∞,q ′

1
(Rn)

and according to (2.27) the estimates for the norms of the wavelets

2 jn‖ψ j
G,m |Bs2

1,q2
(Rn)‖ ∼ 2 js2 , j ∈ N0, m ∈ Z

n, G ∈ G j . (3.48)

Firstwe assume that (3.46) holds andweprove the nuclearity of (3.45).As for p ≤ 2
we have the continuity of the Fourier transform F : L p(R

n) ↪→ B0
p′,p(R

n) (see [19,
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Theorem 1]) and we also have a continuous embedding B0∞,1(R
n) ↪→ B0

∞,q ′
1
(Rn).

Now using the lift property for Besov spaces we obtain that

‖Fψ
j
G,m |B−s1

∞,q ′
1
(Rn)‖ = ‖I−s1Fψ

j
G,m |B0

∞,q ′
1
(Rn)‖ (3.49)

≤ c‖F(w−s1ψ
j
G,m) |B0∞,1(R

n)‖ ≤ c′ ‖w−s1ψ
j
G,m |L1(R

n)‖
≤ c′′(1 + 2− j |m|)−s1 2− jn,

where j ∈ N0, m ∈ Z
n . Then (3.11), (3.48), (3.49) applied to (3.1), (3.2) show in the

same way as in (3.18) that

‖F |N (
Bs1
1,q1

(Rn), Bs2
1,q2

(Rn)
)‖ ≤ c1

∞∑
j=0

∑
m∈Zn

(1 + 2− j |m|)−s12 j(s2−n)

≤ c2

∞∑
j=0

2 js2
∞∑
k=0

2−k(s1−n) < ∞
(3.50)

as s1 > n and s2 < 0. This proves that F is nuclear as claimed.
Nowweassume thatF givenby (3.47) is a nuclear operator. Let f ∈ Bs2

1,q2
(Rn).Due

to the continuous embedding Bs2
1,q2

(Rn) ↪→ Bs2
1,∞(Rn) and the lift property for Besov

spaces we obtain Is2( f ) ∈ B0
1,∞(Rn). Using the continuity of the Fourier transform

F : B0
1,∞(Rn) ↪→ L∞(Rn) (see [19, Theorem 1]) and the mapping properties of Is2 ,

cf. (2.12), we get

‖ws2F−1 f |L∞(Rn)‖ = ‖ws2F f |L∞(Rn)‖ = ‖FF−1ws2F f |L∞(Rn)‖ (3.51)

≤ c ‖Is2 f |B0
1,∞(Rn)‖ ≤ c′‖ f |Bs2

1,q2
(Rn)‖.

We combine (3.47) and (3.51) with the identity id = F−1 ◦ F and get the following
nuclear embedding,

id : Bs1
1,q1

(Rn)
F
↪→ Bs2

1,q2
(Rn)

F−1

↪→ L∞(ws2 ,R
n). (3.52)

Thus, the embedding id : Bs1
1,q1

(Rn) ↪→ L∞(ws2 ,R
n) and obviously also the embed-

ding id : Bs1
1,q1

(Rn, w−s2) ↪→ L∞(Rn) are nuclear. But L∞(Rn) ↪→ B0∞,∞(Rn),
therefore the embedding

id : Bs1
1,q1

(Rn, w−s2) ↪→ B0∞,∞(Rn)

is also nuclear, and another application of Proposition 3.3(ii) implies −s2 > 0 and
s1 > n.
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Remark 3.12 We would like to mention that one can also use a more direct argument
to prove the above extensions. This would be based on the modifications

F : L1(R
n) ↪→ B0∞,1(R

n) (3.53)

and
F : B0

1,∞(Rn) ↪→ L∞(Rn) (3.54)

of the Hausdorff–Young mappings. Here (3.53) follows from

‖F f |B0∞,1(R
n)‖ ∼

∞∑
j=0

‖F−1(ϕ j f ) |L∞(Rn)‖

≤ c
∞∑
j=0

‖ϕ j f |L1(R
n)‖

∼ ‖ f |L1(R
n)‖

(3.55)

where the last equivalence follows from the properties of the dyadic resolution of unity
{ϕ j }, cf. (2.3)–(2.5). In an analogous way (3.54) is a consequence of

‖F f |L∞(Rn)‖ ∼ sup
j∈N0

‖ϕ jF f |L∞(Rn)‖

≤ c sup
j∈N0

‖F−1ϕ jF f |L1(R
n)‖

= c ‖ f |B0
1,∞(Rn)‖.

(3.56)

Now we can use (3.53) in (3.49) and (3.54) in (3.51).

Finally, by duality arguments, one can cover the case p = ∞, when A = B and
1 < q1, q2 ≤ ∞. But using Proposition 3.11, we even have a characterisation in this
case.

Corollary 3.13 Let 1 < q1, q2 ≤ ∞ and s1, s2 ∈ R. Then

F : Bs1∞,q1(R
n) ↪→ Bs2∞,q2(R

n) (3.57)

is nuclear if, and only if,
s1 > 0 and s2 < −n. (3.58)

Proof Let s1 > 0 and s2 < −n. Then by Proposition 3.11, the mapping F :
B−s2
1,q ′

2
(Rn) ↪→ B−s1

1,q ′
1
(Rn) is nuclear. So, a duality argument and symmetry of the

ideal N imply nuclearity of (3.57).
We come to the necessity. Note first, that by Proposition 3.11

F : Bs1
1,q1

(Rn) ↪→ Bs2
1,q2

(Rn), 1 ≤ q1, q2 < ∞, (3.59)
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is nuclear if, and only if, s1 > n, s2 < 0. Then F is also compact. Conversely, if
F in (3.59) is compact, then the decomposition in (3.52) implies the compactness
of F : Bs1

1,q1
(Rn, w−s2) ↪→ B0∞,∞(Rn), which by Proposition 3.3 implies s1 > n,

s2 < 0. In other words, F in (3.59) is nuclear if, and only if, it is compact.
Let now, conversely, F in (3.57) for some s1 ∈ R and s2 ∈ R, be nuclear. Then for

the same s1 ∈ R and s2 ∈ R both F in (3.57) and

F : ◦
Bs1∞,q1(R

n) ↪→ ◦
Bs2∞,q2(R

n), 1 < q1, q2 ≤ ∞, (3.60)

are compact. Here
◦
Bs∞,q(R

n) stands for the closure of S(Rn) in Bs∞,q(R
n), which is

a proper subspace of Bs∞,q(R
n). The Fourier transform F maps S(Rn) onto S(Rn).

Therefore it follows from (3.57) that its restriction to
◦
Bs1∞,q1(R

n) is a continuous

mapping into
◦
Bs2∞,q2(R

n). Using the duality

◦
Bs∞,q(R

n)′ = B−s
1,q ′(Rn), s ∈ R, 1 ≤ q ≤ ∞,

1

q
+ 1

q ′ = 1, (3.61)

cf. [20, Remark 2.11.2/2, p. 180], then

F : B−s2
1,q ′

2
(Rn) ↪→ B−s1

1,q ′
1
(Rn), 1 ≤ q ′

1, q
′
2 < ∞, (3.62)

is compact. This requires −s2 > n and −s1 < 0.

Remark 3.14 Note that the nuclear counterpart of the argument in (3.60) is not clear,
maybe not true, as there is no projection operator from �∞ onto c0, [1, Corollary 2.5.6,
p. 46], on which a related proof could be based. Furthermore, according to [17, p. 343]
the operator idealN is not injective which would otherwise ensure the nuclear version
of (3.60).

Remark 3.15 Let us remark that

F : Bs1
1,q1

(Rn) ↪→ Bs2
1,q2

(Rn), 1 ≤ q1, q2 < ∞, (3.63)

is nuclear if, and only if, it is compact. The same phenomenon can be observed for

F : Bs1∞,q1(R
n) ↪→ Bs2∞,q2(R

n), 1 < q1, q2 ≤ ∞, (3.64)

which is nuclear if, and only if, it is compact. In view of Theorems 2.4 and 3.4
this is different from the situation for 1 < p < ∞, when the conditions for the
nuclearity of F are indeed stronger than for its compactness. In other words, for
F : Bs1

p,q1(R
n) ↪→ Bs2

p,q2(R
n) compactness and nuclearity coincide if, and only if,

p = 1 or p = ∞ (with appropriately chosen q1, q2), as can be also seen from the
reformulated conditions in Remark 3.6 or in Fig. 3. We always have n − τ n+

p′ ≥ τ n+
p

and −n − τ n−
p′ ≤ τ n−

p , with both inequalities turning into equalities only in each of
the cases p = 1 and p = ∞.
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A similar phenomenon was observed in [10, Cor. 3.16, Rem. 3.18] related to the
situations on domains as described in Proposition 3.2, and for weighted spaces, recall
Proposition 3.3.

4 Weighted Spaces

Let again As
p,q(R

n, wα), A ∈ {B, F}, and s, p, q as in Definition 2.1 be the weighted
spaces as introduced in Remark 2.3 where we restrict ourselves to the distinguished
weights

wα(x) = (
1 + |x |2)α/2, x ∈ R

n, α ∈ R. (4.1)

So far we concentrated mainly on the unweighted spaces As
p,q(R

n) and used their
weighted generalisations as tools caused by the specific mapping properties ofF . But
under these circumstances it is quite natural to ask how weighted counterparts of the
main assertions obtained in the above Sect. 3 and in [25] may look like. Fortunately
enough there is no need to extend the quite substantial machinery underlying the
related theory for the spaces As

p,q(R
n) to the weighted spaces As

p,q(R
n, wα) (what

might be possible), but there is an effective short-cut based on qualitative arguments
which will be described below. We rely on the same remarkable properties of the
spaces As

p,q(R
n, wα) which we already described in Sect. 2.1 with a reference to [22,

Theorem 6.5, pp. 265–266]. In particular, the multiplier

Wβ : f �→ wβ f , f ∈ S ′(Rn), β ∈ R, (4.2)

is for all these spaces an isomorphic mapping,

Wβ A
s
p,q

(
R
n, wα

) = As
p,q(R

n, wα−β),

‖wβ f |As
p,q(R

n, wα−β)‖ ∼ ‖ f |As
p,q(R

n, wα)‖, α ∈ R, β ∈ R,
(4.3)

and the lift Iγ , γ ∈ R,

Iγ : f �→ (
wγ f̂

)∨ = (
wγ f ∨)∧

, f ∈ S ′(Rn), γ ∈ R, (4.4)

for the spaces As
p,q(R

n) according to (2.12) generates also the isomorphic mappings

Iγ A
s
p,q(R

n, wα) = As−γ
p,q (Rn, wα),

‖(wγ f̂ )∨|As−γ
p,q (Rn, wα)‖ ∼ ‖ f |As

p,q(R
n, wα)‖, (4.5)

α ∈ R, γ ∈ R, s ∈ R and 0 < p, q ≤ ∞ (p < ∞ for F-spaces).
Note that by the definitions of Wβ in (4.2) and Iγ in (4.4),

F ◦ Wβ ◦ Iγ = Iβ ◦ Wγ ◦ F on S ′(Rn),
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which directly leads to the decomposition of F into

F = W−γ ◦ I−β ◦ F ◦ Wβ ◦ Iγ on S ′(Rn). (4.6)

We shall benefit from this observation below, see also Remark 4.2.
Although not needed, it might illuminate what is going on that any f ∈ S ′(Rn)

belongs to a suitable weighted space of the above type. More precisely, one has for
fixed 0 < p, q ≤ ∞ that

S(Rn) =
⋂

α∈R,s∈R
Bs
p,q(R

n, wα) and S ′(Rn) =
⋃

α∈R,s∈R
Bs
p,q(R

n, wα). (4.7)

This is more or less known and was proved in [12].
In what follows we are not interested in generality. This may explain why we

suppose as in Theorem 3.4 that 1 < p, q1, q2 < ∞, whereas it is quite clear that at
least some of the arguments below apply also to a wider range of these parameters.

Proposition 4.1 Let 1 < p, q1, q2 < ∞ and s1 ∈ R, s2 ∈ R. Let −∞ <

α1, α2, β, γ < ∞ and A ∈ {B, F}. Then there is a continuous mapping

F : As1+γ
p,q1 (Rn, wα1+β) ↪→ As2+β

p,q2 (Rn, wα2+γ ) (4.8)

if, and only if, there is a continuous mapping

F : As1
p,q1(R

n, wα1) ↪→ As2
p,q2(R

n, wα2). (4.9)

Furthermore, F in (4.8) is compact if, and only if, F in (4.9) is compact, and F in
(4.8) is nuclear if, and only if, F in (4.9) is nuclear.

Proof Step 1. Let F in (4.9) be continuous and let f ∈ As1
p,q1(R

n, wα1+β). Then due
to (4.3), wβ f ∈ As1

p,q1(R
n, wα1), so

‖F(wβ f ) |As2
p,q2(R

n, wα2)‖ ≤ c ‖wβ f |As1
p,q1(R

n, wα1)‖. (4.10)

By (4.4) one has
F ◦ Wβ = Iβ ◦ F . (4.11)

Inserted in (4.10) one obtains by (4.3) and (4.5) that

‖F f |As2+β
p,q2 (Rn, wα2)‖ ≤ c ‖ f |As1

p,q1(R
n, wα1+β)‖. (4.12)

This proves the continuity ofF in (4.8) with γ = 0. Let againF in (4.9) be continuous
and let f ∈ As1+γ

p,q1 (Rn, wα1). Then due to (4.5), Iγ f ∈ As1
p,q1(R

n, wα1), so

‖F(Iγ f ) |As2
p,q2(R

n, wα2)‖ ≤ c ‖Iγ f |As1
p,q1(R

n, wα1)‖. (4.13)

By (4.4) one has
F ◦ Iγ = Wγ ◦ F . (4.14)
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Inserted in (4.13) one obtains by (4.3) and (4.5) that

‖F f |As2
p,q2(R

n, wα2+γ )‖ ≤ c ‖ f |As1+γ
p,q1 (Rn, wα1)‖. (4.15)

This proves the continuity of F in (4.8) with β = 0. A combination of the above
arguments for γ = 0 and β = 0 shows that F in (4.8) is continuous for all β ∈ R and
γ ∈ R if F in (4.9) is continuous. But this covers also the reverse step from (4.8) to
(4.9). Indeed, it is sufficient to take s̃1 = s1 − γ , s̃2 = s2 − β, α̃1 = α1 − β, α̃2 =
α2 − γ and then As̃1+γ

p,q1 (Rn, wα̃1+β) = As1
p,q1(R

n, wα1) and As̃2+β
p,q1 (Rn, wα̃2+γ ) =

As2
p,q1(R

n, wα2).
Step 2. The above arguments combine supposed mapping properties for F with

isomorphisms of type (4.3) and (4.5). But then not only continuity is inherited, but
also compactness and nuclearity.

Remark 4.2 The strategy of the above proof can be illustrated by the following com-
mutative diagram:

As1
p,q1(R

n, wα1)
W−β−−⇀↽−−
Wβ

As1
p,q1(R

n, wα1+β)
I−γ−−⇀↽−−
Iγ

As1+γ
p,q1 (Rn, wα1+β)

F
⏐⏐� ⏐⏐�F

As2
p,q2(R

n, wα2)
Iβ

↼−−−−⇁
I−β

As2+β
p,q2 (Rn, wα2)

Wγ

↼−−−−⇁
W−γ

As2+β
p,q2 (Rn, wα2+γ )

Here the mappings (4.8) and (4.9) can be found on the left-hand and right-hand side
of the diagram, while travelling around in the diagram is based on (4.6).

Now one can extend assertions about continuity, compactness and nuclearity for
the unweighted spaces As

p,q(R
n) to their weighted counterparts.

Theorem 4.3 Let 1 < p, q1, q2 < ∞ and s1 ∈ R, s2 ∈ R. Let β ∈ R, γ ∈ R and
A ∈ {B, F}.
(i) Let dnp and τ n+

p , τ n−
p be as in (2.28), (2.29). Then

F : As1+γ
p,q1 (Rn, wβ) ↪→ As2+β

p,q2 (Rn, wγ ) (4.16)

is compact if both s1 > τ n+
p and s2 < τ n−

p .
(ii) Then F in (4.16) is nuclear if, and only if, both

s1 >

{
n for 1 < p ≤ 2,
2n
p for 2 ≤ p < ∞,

and s2 <

{
−2n(1 − 1

p ) for 1 < p ≤ 2,

−n for 2 ≤ p < ∞.

(4.17)

Proof This follows immediately from Proposition 4.1 with α1 = α2 = 0 combined
with Corollary 2.6 and Theorem 3.4.
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Remark 4.4 It was one of the main aims of [25] to measure the degree of compactness
of

F : Bs1
p,q1(R

n) ↪→ Bs2
p,q2(R

n), (4.18)

1 < p, q1, q2 < ∞ and s1 > τ n+
p , s2 < τ n−

p in terms of entropy numbers. Proposi-
tion 4.1 and its proof show that these assertions can also be extended to the compact
mappings in (4.16).

Remark 4.5 It is quite obvious that one can relax the assumptions 1 < q1, q2 < ∞
for the compact mappings in (4.16) by 0 < q1, q2 ≤ ∞. This applies also to related
entropy numbers as mentioned in Remark 4.4.
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