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Abstract
In this paper, we use the representation theory of the group Spin(m) to develop
aspects of the global symbolic calculus of pseudo-differential operators on Spin(3) and
Spin(4) in the sense of Ruzhansky–Turunen–Wirth. A detailed study of Spin(3) and
Spin(4)-representations is made including recurrence relations and natural differential
operators acting on matrix coefficients. We establish the calculus of left-invariant dif-
ferential operators and of difference operators on the group Spin(4) and apply this to
give criteria for the subellipticity and the global hypoellipticity of pseudo-differential
operators in terms of their matrix-valued full symbols. Several examples of first and
second order globally hypoelliptic differential operators are given, including some
that are locally neither invertible nor hypoelliptic. The paper presents a particular case
study for higher dimensional spin groups.
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1 Introduction

The classic principal calculus of Hörmander over manifolds, which is based on the
notion of the symbol via localizations, has several limitations such as in the charac-
terisation of global and local hypoellipticity. This is due to the fact that one uses local
Euclidean Fourier analysis onmanifolds whichmakes only the principal part of a sym-
bol to be coordinate-invariant. But in the case of Lie groups one has another approach
based on harmonic analysis over these groups which allows for a global approach.
For instance, Zelditch [29] used the non-Euclidean harmonic analysis of Helgason to
replace the local Euclidean Fourier analysis to obtain a pseudo-differential calculus on
hyperbolic surfaces in the plane. Hereby, Helgason’s non-Euclidean harmonic analysis
is based on a Fourier transform given by eigenfunctions of the invariant Laplacian over
a suitable homogeneous space which has its own drawbacks. For a detailed description
on the historic development of calculi of pseudo-differential operators we refer to [21,
26].

During the last decade, a new and full symbol calculus over compact groups was
developed by Ruzhansky, Turunen, and Wirth which represents a non-commutative
extension of the classical Kohn–Nirenberg quantization. This calculus has several
advantages over the classic principal calculus of Hörmander. Given a Lie group G one
makes full use of its representation theory and the corresponding harmonic analysis
to create a global Fourier transform which allows the study of matrix-valued symbols
defined on G × ̂G and their characterisation using results from harmonic analysis on
phase space. This full symbol calculus has been extended to the case of type-1 groups
[18] and, recently, to a subelliptic pseudo-differential calculus on compact Lie group
[2] as well as to the case of nilpotent groups [9, 20].

As with all these abstract approaches there appears always the question of its real-
ization in concrete cases. The full symbol calculus over compact groups has been
explicitly worked out in the case of the n-dimensional torus and the case of SU(2).
But it also raises the question of how this calculus would look like in one of the
most important cases of compact groups, the case of Spin(m). The classic approach
to a Fourier symbol calculus over Spin(m), i.e., the case of spinor-valued functions,
consists in constructing Gelfand pairs and employing the spherical Dirac or Laplace
operator, see the classic work by Dieudonné [7]. Naturally, these approaches restrict
also the class of pseudo-differential operator symbols which can be considered and
to overcome this problem a full symbol calculus in the sense of Ruzhansky, Turunen,
and Wirth becomes even more important. In this paper, we are going to establish this
calculus for the group Spin(4). This choice is based on two reasons. First of all the
structure of group representations of Spin(m) makes it difficult to obtain explicit for-
mulae in the general case so that the case of Spin(4) will provide further insight into
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the general case. Secondly, the case of Spin(4) is important by itself in applications.
For instance, Spin(4) is the translation group on the three-sphere which appears in the
study of diffraction tomography and the construction of wavelet and Gabor frames
over the three-sphere [3]. While classically diffraction tomography is used to estab-
lish the so-called orientation density function of a fixed specimen, recent advances
have also created new interests in time-dependent versions of diffraction tomography
in structural analysis. Furthermore, discussion of perturbations of wavelet and Gabor
frames over the three-sphere will require the study of pseudo-differential operators
over Spin(4) in the same way as in the classic case. Additionally, Spin(4) also appears
in quantum gravity (see, e.g., in Spin(4) BF models [19]). Among other things, these
investigations require tools for the study of symbols of pseudo-differential operators
and global hypoellipticity of differential operators defined over function spaces on
Spin(4).

After recalling some necessary facts about the abstract case of the full symbol
calculus by Ruzhansky, Turunen, andWirth and Spin(3)-representations, we are going
to study Spin(4)-representations and their connections with harmonic and spinor-
valued monogenic polynomials. Hereby, we establish the necessary tools for a full
symbol calculus like matrix-coefficients, recurrence relations and difference operators
acting on them. This will allow us to work out details of the Fourier transform on
Spin(4), which in turn gives rise to the full symbol calculus. Furthermore, we are
going to obtain conditions on ellipticity and hypoellipticity.

In the end we provide some examples of differential operators to show the symbol
calculus in action.

2 Preliminaries on the Harmonic Analysis for Compact Groups

We start with some basic notations and results about harmonic analysis of a compact
Lie group. Let G be a compact Lie group of real dimension n with unit element e. A
finite-dimensional unitary representation ξ ofG is a continuous group homomorphism
ξ : G → U (dξ ) ofG into the group of unitary matrices of a certain dimension dξ . The
representation ξ is irreducible if ξ(x)A = Aξ(x) for all x ∈ G and some A ∈ C

dξ ×dξ

implies A = cI is a multiple of the identity. This is equivalent to the statement that
C
dξ does not have non-trivial ξ -invariant subspaces V ⊂ C

dξ with ξ(x)V ⊂ V for all
x ∈ G.

Two representations ξ1 and ξ2 are equivalent if there exists an invertible matrix B
with ξ1(x)B = Bξ2(x) for all x ∈ G. Let ̂G denote the set of all equivalence classes
of irreducible representations.

We further equip G by its normalized Haar measure. The group structure gives
rise to left and right translations, Lx : φ �→ φ(x−1 ·) and Rx : φ �→ φ(· x) of
functions on the group. These left- and right-translations are unitary on the Hilbert
space L2(G) of square integrable functions and therefore the translations give rise to
unitary representations x �→ Lx and x �→ Rx of the group G on the Hilbert space
L2(G). These representations split into irreducibles and give rise to the Peter–Weyl
Theorem in the following form, see [10, 21], or [28].
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Theorem 2.1 (Peter–Weyl) The space L2(G) decomposes as the orthogonal direct
sum of minimal bi-invariant subspaces parameterised by ̂G, that is

L2(G) =
⊕

[ξ ]∈̂G
Hξ , Hξ = {x �→ tr(Aξ(x)) | A ∈ C

dξ ×dξ }. (2.1)

The Fourier transform of f ∈ L2(G) is a matrix valued function on ̂G defined by

̂f (ξ) =
∫

G
f (x) ξ∗(x) dx (2.2)

with inverse given by

f (x) =
∑

[ξ ]∈̂G
dξ tr(ξ(x) ̂f (ξ)). (2.3)

Furthermore, the following Parseval identity holds

‖ f ‖2L2(G)
=
∑

[ξ ]∈̂G
dξ ‖̂f (ξ)‖2HS, (2.4)

where ‖A‖2HS = tr(A∗A) is the Frobenius or Hilbert–Schmidt norm of a matrix A.

On the group G the convolution of two integrable functions φ,ψ ∈ L1(G) is defined
by

(φ ∗ ψ)(x) =
∫

G
φ(y) ψ(y−1x) dy. (2.5)

The following convolution theorem on G is well-known. Note the change in the order
of the factors.

Theorem 2.2 Let φ,ψ ∈ L1(G). Then φ ∗ ψ ∈ L1(G) and (φ̂ ∗ ψ)(ξ) = ̂ψ(ξ)̂φ(ξ).

The Laplace–Beltrami operator LG ∈ Diff2(G) on the group G is bi-invariant,
i.e., it commutes with all Lx and Rx . Therefore, all of its eigenspaces are bi-invariant
subspaces of L2(G). Since Hξ are minimal bi-invariant subspaces, each of them has
to be eigenspace of LG and we denote the corresponding eigenvalue by −λ2ξ . Hence,
we obtain the following decomposition

LG φ = −
∑

ξ∈̂G
dξ λ2ξ tr(ξ(x)̂φ(ξ)). (2.6)

The notion of Fourier series extends naturally to C∞(G) and the space of dis-
tributions D′(G) with convergence in the respective topologies. Now, any operator
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A on G mapping C∞(G) to D′(G) gives rise to a matrix-valued full symbol
σA(x, ξ) ∈ C

dξ ×dξ , x ∈ G defined by

σA(x, ξ) := ξ(x)∗(Aξ)(x) (2.7)

which can be understood either pointwise or distributionally, as the product of a smooth
matrix-valued function ξ∗(x) with the matrix-valued distribution Aξ, i.e. σA(·, ξ) =
ξ∗Aξ as a distribution in the first variable, for all [ξ ] ∈ ̂G. Then it can be shown that

A f (x) =
∑

[ξ ]∈̂G
dξ tr(ξ(x) σA(x, ξ) ̂f (ξ)) (2.8)

holds asD′-convergent series. If it happens that the operator A maps C∞(G) to itself,
then (2.8) holds in the strong topology of C∞(G). For A and σA related by (2.8) we
write A = Op(σA). For a comprehensive treatment of this quantization we refer to
[21] and [24].

We denote the right-convolution kernel of A by RA, so that

A f (x) =
∫

G
KA(x, y) f (y) dy =

∫

G
RA(x, y−1x) f (y) dy. (2.9)

The symbol σA and the right-convolution kernel RA are related by σA(x, ξ) =
∫

G RA(x, y) ξ(y)∗ dy.
The class �m(G) of Hörmander’s pseudo-differential operators on G was fully

characterised in [21] and [22] using commutator properties with the vector fields in
Sobolev spaces, and in [23] by the behaviour of their matrix symbols. Before we give
a characterisation of the class �m(G) we fix some notations.

We say that Qξ is a difference operator of order k if it is given by Qξ
̂f (ξ) = ϕ̂Q f (ξ)

for a function ϕ = ϕQ ∈ C∞(G) vanishing of order k at the identity e ∈ G, i.e.,
(Px ϕQ)(e) = 0 for all left-invariant differential operators Px ∈ Diffk−1(G) of order
k − 1. We denote the set of all difference operators of order k as diffk(̂G). In the
sequel, for a function ϕ ∈ C∞(G) it will be also convenient to denote the associated
difference operator, acting on Fourier coefficients, by 	ϕ

̂f (ξ) := ̂ϕ f (ξ).

Definition 2.3 (cf. [23])LetG be a compactLie groupof dimensionnwith unit element
e. A collection of k ≥ n first order difference operators 	1, . . . ,	k ∈ diff1(̂G)

is called admissible, if the corresponding functions ϕ1, . . . , ϕk ∈ C∞(G) satisfy
dϕ j �= 0, j = 1, . . . , k, and rank(dϕ1(e), . . . , dϕk(e)) = n. It follows, in particular,
that e is an isolated zero of the family {ϕ j }kj=1. An admissible collection is called
strongly admissible if ∩ j {x ∈ G : ϕ j (x) = 0} = {e}.

The previous definition was adapted to a collection of k ≥ n first order difference
operators since this happens in our case. For a given admissible selection of difference
operators on a compact Lie Group G we use the multi-index notation

	α
ξ := 	

α1
1 · · · 	αk

k and ϕα(x) := ϕ1(x)
α1 · · ·ϕk(x)

αk (2.10)
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Furthermore, there exist corresponding differential operators ∂
(α)
x ∈ Diff |α|(G) such

that the Taylor’s formula

f (x) =
∑

|α|≤N−1

1

α!ϕ
α(x−1) ∂(α)

x f (e) + O(h(x)N ), h(x) → 0 (2.11)

holds true for any smooth function f ∈ C∞(G) and with h(x) the geodesic distance
from x to the identity element e (see [21, Sec. 10.6]). Additionally, we introduce
operators ∂α

x as follows. Let ∂x j ∈ Diff1(G), 1 ≤ j ≤ n = dimG, be a collection of
left-invariant first order differential operators corresponding to some linearly indepen-
dent family of the left-invariant vector fields on G. We denote ∂α

x = ∂
α1
x1 · · · ∂αn

xn . The
following theorem characterises Hörmander’s class of pseudo-differential operators
�m(G) by the behaviour of their matrix symbols.

Theorem 2.4 (cf. [23, Thm. 2.2]) Let A be a linear continuous operator from C∞(G)

to D′(G). Then the following statements are equivalent:

(A) A ∈ �m(G).

(B) For every left-invariant differential operator Px ∈ Diffk(G) of order k and every
difference operator Qξ ∈ diff l(̂G) of order l the symbol estimate

‖Qξ Px σA(x, ξ)‖op ≤ CQξ ,Px 〈ξ 〉m−l (2.12)

is valid, where 〈ξ 〉 = (1 + λ2ξ )
1/2 and −λ2ξ are the eigenvalues of LG.

(C) For an admissible selection 	1, . . . ,	m ∈ diff1(̂G) we have

‖	α
ξ ∂β

x σA(x, ξ)‖op ≤ Cα,β〈ξ 〉m−|α| (2.13)

for all multi-indices α, β. Moreover, sing supp RA(x, ·) ⊆ {e}.
(D) For a strongly admissible selection 	1, . . . ,	m ∈ diff1(̂G) we have

‖	α
ξ ∂β

x σA(x, ξ)‖op ≤ Cα,β 〈ξ 〉m−|α| (2.14)

for all multi-indices α, β.

The set of symbols σA satisfying either of equivalent conditions (B)-(D) is also
denoted by Sm(G), such that the operator quantization gives an isomorphism Op :
Sm(G) → �m(G). The composition of pseudodifferential operators gives again a
pseudo-differential operator with a symbol, which can be expressed as an asymptotic
expansion.

Theorem 2.5 (cf. [21, Thm. 10.7.9]) If A ∈ �m1(G) and B ∈ �m2(G) then A ◦ B ∈
�m1+m2(G) satisfies

σA◦B(x ξ) ∼
∑

α

1

α!
(

	α
ξ σA(x, ξ)

) (

∂(α)
x σB(x, ξ)

)

(2.15)

in the sense that σA◦B −∑|α|<N
1
α!
(

	α
ξ σA
)(

∂
(α)
x σB

) ∈ Sm1+m2−N (G) holds true.
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Note that the proof in [21] omits the crucial remainder estimates for the underlying
Taylor expansion. For a complete proof including the remainder estimates see e.g. [4,
Sections 9.5 and 9.7].

3 Irreducible Representations of Spin(m)

3.1 Notation

First we introduce some basic notation about Clifford algebras. We refer to [5] for
a more detailed overview. Let (e1, . . . , em) be the standard basis of the Euclidean
space R

m and R0,m be the real Clifford algebra generated by the vectors e1, . . . , em
such that e2j = −1 for j = 1, . . . ,m, and eie j = −e jei , for i, j = 1, . . . ,m, and
i �= j . An element a ∈ R0,m is of the form a = ∑

A aA eA, aA ∈ R for ordered
subsets A ⊆ {1, . . . ,m} and with e∅ = e0 = 1. The k-vector part of a is given
by [a]k = ∑

|A|=k aAeA and a = ∑m
k=0[a]k . Vectors x ∈ R

m are identified with
1-vectors x = ∑m

j=1 x je j ∈ R0,m . The Clifford product of two 1-vectors x and y
in R

m splits in a scalar part given by minus the inner product in R
m and the wedge

product:

x y = −x · y + x ∧ y. (3.1)

It holds −x · y = 1
2 (x y + y x) and x ∧ y = 1

2 (x y − y x). These can be extended to
the whole Clifford algebra by setting

−e j · [a]k ≡ [e j [a]k]k−1 = 1

2
(e j [a]k + (−1)k−1[a]ke j ) (3.2)

e j ∧ [a]k ≡ [e j [a]k]k+1 = 1

2
(e j [a]k − (−1)k−1[a]ke j ). (3.3)

The Dirac operator on R
m is given by ∂x = e1∂x1 + . . . + em∂xm and its null solutions

are called (left) monogenic functions. Right monogenic functions can also be defined
considering the multiplication of the partial derivatives by the basis elements on the
right.

The complex Clifford algebra Cm is the complexification of R0,m , i.e. Cm = C ⊗
R0,m . The main anti-involution in Cm is defined by

a =
∑

A⊂M

aA eA, eie j = e j ei , ei = −ei , e0 = e0. (3.4)

The complex Clifford algebra is equipped with the Clifford inner product defined by

〈a, b〉Cm = [ab]0 =
m
∑

|A|=0

(−1)|A|aA bA. (3.5)



32 Page 8 of 56 Journal of Fourier Analysis and Applications (2023) 29 :32

We will frequently use the Witt basis vectors

Tj = 1

2
(e2 j−1 − i e2 j ), T †

j = −1

2
(e2 j−1 + i e2 j ), j = 1, . . . M (3.6)

for M = �m
2 �. They satisfy T 2

j = 0 = (T †
j )

2 together with Ti Tj = −Tj Ti and

Ti T
†
j = −T †

j Ti for i �= j and Ti T
†
i + T †

i Ti = 1. For even m they generate all of Cm .
Later on we will use spaces of Cm-valued polynomials on R

m . For this, we recall
the Fischer inner product

〈P, Q〉 := [P(∂x )Q(x)]0
∣

∣

∣

x=0
= [(P(∂x )Q)(0)]0 (3.7)

defined for two such polynomials P and Q. This definition implies immediately that
homogeneous polynomials of different degree are Fischer orthogonal. The multiplica-
tion by the variable xi and the derivative ∂xi are Fischer-adjoint while the generators
ei of the Clifford algebra Cm are skew-adjoint

〈xi P, Q〉 = 〈P, ∂xi Q〉, 〈ei P, Q〉 = −〈P, ei Q〉. (3.8)

3.2 The Spin Group and H- and L-Representations

The spin group Spin(m) is realised as the set of even products of unit vectors, that is,

Spin(m) =
⎧

⎨

⎩

2k
∏

j=1

s j | s j ∈ R
m, |s j | = 1, k ∈ N

⎫

⎬

⎭

⊂ R
+
0,m, (3.9)

where R
+
0,m = span

R
{eA | |A| even} denotes the even subalgebra of R0,m . The spin

group is a double covering of SO(m) as seen by the group actionR
m � x �→ sxs ∈ R

m

on vectors. There are two distinguished representations of the spin group onCm -valued
functions on Cm defined by

H(s) f (x) = s f (sxs)s and L(s) f (x) = s f (sxs), (3.10)

where x ∈ Cm, s ∈ Spin(m), and f : Cm → Cm . TheH-representation corresponds to
the standard representation of SO(m) on scalar-valued functions f ∈ L2(Sm−1), while
the L-representation corresponds to the half-spin representations. Models for all irre-
ducible representations arise from decomposing H and L into irreducibles. Although
spin representations are an old topic (see [1]), here we follow [27] which construct
representation models based on simplicial harmonic and monogenic polynomials, i.e.,
harmonic and monogenic polynomials of simplicial variables. This is an extension of
the work in [11], where the authors consider simplicial harmonic polynomials which
provide only models for irreducible representations with integer weight of the SO(m)
group.
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The Lie algebra spin(m) can be realised as the space

spin(m) ∼= R
(2)
0,m = span

{1

2
ei, j := 1

2
eie j

∣

∣

∣ i < j, i, j = 1, . . . ,m
}

(3.11)

of bivectors in R0,m . The Cartan subalgebra h ⊂ spin(m) is given by

h = span
{1

2
e2 j−1,2 j

∣

∣

∣ j = 1, . . . , M =
⌊m

2

⌋}

. (3.12)

The exponential of h yields the maximal torus T ⊂ Spin(m)

T =
{

s = exp
(1

2
t1e1,2

)

· · · exp
(1

2
tM e2M−1,2M

)

∣

∣ ti ∈ [0, 2π [
}

, M =
⌊m

2

⌋

,

(3.13)

from which we can label all the unitary irreducible spin representations. Any repre-
sentation R : Spin(m) → Aut(V ) of Spin(m) on some vector space V is determined
by the restriction to the maximal torus and any representation of the maximal torus
invariant under the adjoint action of the group comes from a representation of the
group itself. The space V splits into subspaces generated by weight vectors v ∈ V
satisfying

dR
(1

2
t1e12 + · · · + 1

2
tM e2M−1,2M

)

v =
(

i
M
∑

j=1

l j t j
)

v (3.14)

for the derived representation dR : spin(m) → Aut(V ) and with weights l =
(l1, . . . , lM ) consisting entirely of either integer or half integer numbers. Factoring
out the action of the Weyl group, we obtain the highest weights given by the ordering

l = (l1, . . . , lM ) : l1 ≥ l2 ≥ . . . ≥ lM ≥ 0 if m = 2M + 1,

l = (l1, . . . , lM ) : l1 ≥ l2 ≥ . . . ≥ |lM | if m = 2M ,
(3.15)

where all li ∈ Z or all li ∈ Z + 1
2 .

3.3 Explicit Models

To construct explicit models for irreducible representations of Spin(m)we follow [27]
and consider k ≤ m vector variables x1, . . . , xk , where xi = ∑m

j=1 xi je j and Cm-
valued polynomials in these k vector variables. A polynomial P(x1, x1∧x2, . . . , x1∧
. . . ∧ xk) depending on the simplicial variables x1 ∧ . . . ∧ xi is called a simplicial
polynomial. A harmonic simplicial polynomial P is a simplicial polynomial satisfying

	xi P(x1, x1 ∧ x2, . . . , x1 ∧ . . . ∧ xk) = 0, i = 1, . . . , k. (3.16)
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The space of these polynomials is denoted byH(x1, . . . , xk). It is invariant under the
H-action. A monogenic simplicial polynomial P is characterised by the condition

∂xi P(x1, x1 ∧ x2, . . . , x1 ∧ . . . ∧ xk) = 0, i = 1, . . . , k. (3.17)

The space of monogenic simplicial polynomials is denoted byM(x1, . . . , xk) and is
invariant under the L-action.

Different to the notation from [27] we will parameterise representations and repre-
sentation spaces by theirweights andnot bydegrees of homogeneity of the polynomials
in the representation spaces.1

Case 1 For the highest weight (l1, . . . , lM−1, lM ), li ∈ N0, we take the highest weight
vector

ω(l1,...,lM )(x1, . . . , xM )

= 〈x1, T1〉l1−l2〈x1 ∧ x2, T1 ∧ T2〉l2−l3 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ . . . ∧ TM 〉lM
(3.18)

and let Spin(m) act by the H-representation on it. We recall that for s ∈ Spin(m) the
H-representation on simplicial functions is given by

H(s)F(x1, . . . , x1 ∧ . . . ∧ xM ) = s F(s x1s, . . . , s x1 ∧ . . . ∧ xM s)s. (3.19)

We denote the resulting representation space by

H(l1,...,lM )(R
m) = span{H(s)ω(l1,...,lM ) | s ∈ Spin(m)}. (3.20)

Case 2 For the highest weight (l1, . . . , lM−1,−lM ), li ∈ N0, we have to consider the
H-action on the highest weight vector

ω(l1,...,−lM )(x1, . . . , xM )

= 〈x1, T1〉l1−l2 〈x1 ∧ x2, T1 ∧ T2〉l2−l3 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ . . . ∧ TM−1 ∧ T †
M 〉lM .

(3.21)

The resulting representation space will be denoted by H(l1,...,−lM )(R
m).

For half-integer weights we have to realise the representations in the spinor space
of the complex Clifford algebra Cm . We distinguish between even and odd m. For
even m = 2M we use the pairwise commuting idempotents I j = Tj T

†
j = 1

2 (1 −
i e2 j−1e2 j ), j = 1, . . . , M , together with I ′

M = T †
MTM = 1

2 (1 + i e2 j−1e2 j ), to
construct the primitive idempotents

I+ = I1 · · · IM and I− = I1 · · · IM−1I ′
M . (3.22)

1 Although both parameterisations of representations have their own merits, we will always use weights as
parameters later on. This allows for direct comparison to abstract results on compact groups as used in [23,
25] or [2, 17].
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and define

S+
m = C

+
mI+, S−

m = C
+
mI−. (3.23)

They are both Spin(m)-invariant, minimal and inequivalent.
In the odd dimensional casem = 2M+1 there is up to equivalence only one spinor

space and we use

S = S+
m+1 = C

+
m+1I+. (3.24)

Case 3 For the highest weight (l1, . . . , lM−1, lM ), li ∈ N0 + 1
2 , we take the highest

weight vector

ω(l1,...,lM )(x1, . . . , xM )

= 〈x1, T1〉l1−l2 〈x1 ∧ x2, T1 ∧ T2〉l2−l3 · · · 〈x1 ∧ · · · ∧ xM , T1 ∧ . . . ∧ TM 〉lM− 1
2 I+,

(3.25)

and let Spin(m) act by the L-representation on it. We recall that for s ∈ Spin(m) the
L-representation on simplicial spinor functions is given by

L(s)F(x1, . . . , x1 ∧ . . . ∧ xM ) = s F(s x1 s, . . . , s x1 ∧ . . . ∧ xM s). (3.26)

We denote the resulting representation space by

M(l1,...,lM )(R
m) = span{L(s)ω(l1,...,lM ) | s ∈ Spin(m)}. (3.27)

Case 4 For the highest weight (l1, . . . , lM−1,−lM ), li ∈ N0 + 1
2 , we have to consider

the L-action on the highest weight vector

ω(l1,...,−lM )(x1, . . . , xM ) =
〈x1, T1〉l1−l2〈x1 ∧ x2, T1 ∧ T2〉l2−l3 · · ·

〈x1 ∧ · · · ∧ xM , T1 ∧ . . . ∧ TM−1 ∧ T †
M 〉lM− 1

2 I−.

(3.28)

The resulting representation space will be denoted by M(l1,...,−lM )(R
m).

To summarize, in the odd dimensional case (m = 2M + 1) the irreducible repre-
sentations of Spin(m) are obtained considering the H- and L-actions on the weight
vectors (3.21) and (3.28), correspondingly. In the even dimensional case (m = 2M)

all the irreducible representations of Spin(m) are obtained considering the H-action
on the weight vectors (3.18) and (3.21), and the L-action on the weight vectors (3.25)
and (3.28).
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4 Spin(3) Representations

In this section we collect results on Spin(3)-representations, in particular constructing
the irreducible modules from the theory explained in Sect. 3. These turn out to be also
important in the construction of Spin(4)-representations later on.

The group Spin(3) is the universal cover of SO(3) and can be realised inside the
even Clifford algebra R

+
3 . Moreover, it is isomorphic to the special unitary group

SU(2) and also isomorphic to the unit 3-sphere S
3 understood as the group of unit

length quaternions, i.e.

Spin(3) = {a ∈ R
+
0,3 : |a| = 1} ∼= S

3 ∼= SU(2). (4.1)

We want to make these isomorphisms explicit for later use. An element of Spin(3) is
of the form s = a0 + a1e12 + a2e13 + a3e23 such that |s|2 = a20 + a21 + a22 + a23 = 1.
It acts on vectors x = x1e1 + x2e2 + x3e3 ∈ R

3 by x �→ sxs and this mapping is
represented by the SO(3) rotation matrix

⎛

⎝

1 − 2a21 − 2a22 2(a0a1 − a2a3) 2(a0a2 + a1a3)
−2(a0a1 + a2a3) 1 − 2a21 − 2a23 2(a0a3 − a1a2)
−2(a0a2 − a1a3) −2(a0a3 + a1a2) 1 − 2a22 − 2a23

⎞

⎠ (4.2)

as a straightforward calculation within R0,3 shows. Identifying e12 = i, e13 = j und
e23 = k with the quaternion units yields an isomorphism R

+
0,3

∼= H and identifies
the spin group with the group of unit length quaternions. We identify H ∼= C

2 by
writing q = a0 + a1i + a2j + a3k = q1 + q2j with q1 = a0 + ia1 ∈ C and
q2 = a2 + ia3 ∈ C. Then in particular q = q1 − q2j is the quaternion conjugation
and quaternion multiplication corresponds to matrix multiplication for the associated
matrices

(

q1 q2
−q2 q1

)

, (4.3)

which belong to SU(2) whenever |q| = 1. This completes the isomorphisms in (4.1).
We rewrite the rotation matrix (4.2) in these complex coordinates for Spin(3). This
yields

1

2

⎛

⎝

(q21 − q22 + q21 − q22) i(−q21 + q22 + q21 − q22) 2(q1q2 + q1q2)
i(q21 + q22 − q21 − q22) (q21 + q22 + q21 + q22) 2i(q1q2 − q1q2)

−2(q1q2 + q1q2) 2i(q1q2 − q1q2) 2|q1|2 − 2|q2|2

⎞

⎠ . (4.4)

For later calculations we need the H-action on the polynomials z1 = x1 + ix2, z1 =
x1 − ix2 and x3. Using the rotation matrix (4.4) applied to x = (x1, x2, x3) ∈ R

3 we
obtain

H(q) z1 = q21 z1 + 2q1q2x3 − q22 z1, (4.5a)

H(q) z1 = −q22 z1 + 2q1q2x3 + q21 z1, (4.5b)
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H(q) x3 = −q1q2z1 + (|q1|2 − |q2|2)x3 − q1q2z1. (4.5c)

4.1 Representations of S
3 ⊂ H

Before explicitly giving irreducible Spin(3)-representations based on the general the-
ory of Sect. 3, we will recall the closely related irreducible S

3-representations from
[13, 21] (see also [10, 23, 28]). Since the quaternionic unit sphere S

3 can be viewed
as a subset of C

2 through S
3 = {(z1, z2) ∈ C

2 : |z1|2 + |z2|2 = 1} we write the
quaternion multiplication and conjugation in S

3 as

(z1, z2) • (w1, w2) = (z1w1 − z2w2, z1w2 + z2w1), (4.6a)

(z1, z2)
∗ = (z1,−z2). (4.6b)

Let P be the space of all polynomials P(z, w) = ∑

c j,k z jwk in two complex vari-
ables, and let Pm ⊂ P be the space of homogeneous polynomials of degree m

Pm =
{

P(z, w) =
m
∑

j=0

c j z
jwm− j

∣

∣

∣ c j ∈ C, j = 0, . . . ,m
}

. (4.7)

An orthonormal basis ofPm with respect to the Fischer inner product (or equivalently,
with respect to the normalised L2 inner product) consists of the set of functions

Pm
k (z1, z2) = 1√

(m − k)!√k! z
m−k
1 zk2, 0 ≤ k ≤ m, m ∈ N. (4.8)

ThegroupS
3 naturally acts onPm by right translation R(w1,w2) f (z1, z2) = f ((z1, z2)•

(w1, w2)). Next, we follow [13] and express the linear map R(w1,w2) : Pm → Pm with
respect to the orthonormal basis Pm

k , j = 0, . . . ,m. By straightforward computations
we have

√

(m − j)!√ j ! R(w1,w2)P
m
j (z1, z2)

= √(m − j)!√ j ! Pm
j ((z1, z2) • (w1, w2))

= (z1w1 − z2w2)
m− j (z1w2 + z2w1)

j

=
⎛

⎝

m− j
∑

k=0

(

m − j

k

)

(z1w1)
m− j−k(−z2w2)

k

⎞

⎠

⎛

⎝

j
∑

l=0

(

j

l

)

(z1w2)
j−l(z2w1)

l

⎞

⎠

=
m
∑

i=0

zm−i
1 zi2

∑

k+l=i

(−1)k
(

m − j

k

)(

j

l

)

w
m− j−k
1 wl

1w
j−l
2 wk

2

=
m
∑

i=0

1√
(m − i)!√i ! z

m−i
1 zi2
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×
min(i,m− j)
∑

k=max(0,i− j)

√

(m − i)! √i !
(

m − j

k

)(

j

i − k

)

w
m− j−k
1 wi−k

1 w
j−i+k
2 (−w2)

k .

(4.9)

Hence, for each j = 0, . . . ,m, we obtain

R(w1,w2)P
m
j (z1, z2) =

m
∑

i=0

Pm
i (z1, z2)

min(i,m− j)
∑

k=max(0,i− j)

Ck
i, j,m w

m− j−k
1 wi−k

1 w
j−i+k
2 (−w2)

k (4.10)

where

Ck
i, j,m =

√

(

m

i

)−1(m

j

)(

m − j

k

)(

j

i − k

)

, (4.11)

and, therefore, the matrix elements of the unitary representation

ξm : SU(2) ∼= S
3 → U(m + 1) (4.12)

are given by

ξm(w1, w2)i, j =
min(i,m− j)
∑

k=max(0,i− j)

Ck
i, j,m w

m− j−k
1 wi−k

1 w
j−i+k
2 (−w2)

k , 0 ≤ i, j ≤ m.

(4.13)

In particular, the first row contains the holomorphic polynomials, i.e.

ξm(w1, w2)0, j =
√

(

m

j

)

w
m− j
1 w

j
2 , 0 ≤ j ≤ m, (4.14)

while the first column contains polynomials of the form

ξm(w1, w2)i,0 =
√

(

m

i

)

wm−i
1 (−w2)

i , 0 ≤ i ≤ m. (4.15)

The following recurrence relations are taken from [13] and follow easily by direct
computation.
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Theorem 4.1 (cf. [13]) For every m ∈ N0 and all 0 ≤ i, j ≤ m the following recur-
rence relations hold

z1 ξm(z1, z2)i, j =
√
m + 1 − i

√
m + 1 − j

m + 1
ξm+1(z1, z2)i, j

+
√
i
√

j

m + 1
ξm−1(z1, z2)i−1, j−1 (4.16a)

z2 ξm(z1, z2)i, j =
√
m + 1 − i

√
j + 1

m + 1
ξm+1(z1, z2)i, j+1

−
√
i
√
m − j

m + 1
ξm−1(z1, z2)i−1, j (4.16b)

z1 ξm(z1, z2)i, j =
√
i + 1

√
j + 1

m + 1
ξm+1(z1, z2)i+1, j+1

+
√
m − i

√
m − j

m + 1
ξm−1(z1, z2)i, j (4.16c)

−z2 ξm(z1, z2)i, j =
√
i + 1

√
m + 1 − j

m + 1
ξm+1(z1, z2)i+1, j

−
√
m − i

√
j

m + 1
ξm−1(z1, z2)i, j−1 (4.16d)

where every expression out of domain is interpreted as zero.

The previous recurrence relations can bewritten inmatrix form using suitablematrices
filled up with zeros and suitable weights in their entries.

Definition 4.2 (cf. [13]) For m ≥ 0 we define the matrices a−(m), a+(m) ∈
R

(m+1)×(m+2) by

a−(m) = 1√
m + 1

⎛

⎜

⎜

⎜

⎜

⎝

√
m + 1 0 · · · 0 0

0
√
m

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0
√
1 0

⎞

⎟

⎟

⎟

⎟

⎠

, (4.17a)

a+(m) = 1√
m + 1

⎛

⎜

⎜

⎜

⎜

⎝

0
√
1 0 · · · 0

0 0
√
2

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0
√
m + 1

⎞

⎟

⎟

⎟

⎟

⎠

. (4.17b)
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For m ≥ 1 we define the matrices b−(m), b+(m) ∈ R
(m+1)×m by

b−(m) = 1√
m + 1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 · · · 0√
1 0 · · · 0

0
√
2

. . .
...

...
. . .

. . . 0
0 · · · 0

√
m

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.18a)

b+(m) = 1√
m + 1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

√
m 0 · · · 0

0
√
m − 1

. . .
...

...
. . .

. . . 0
0 · · · 0

√
1

0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.18b)

and for convenience, we set b−(0) = b+(0) = 0.

Theorem 4.3 (cf. [13]) For every m ∈ N0 the following recurrence relations hold

z1 ξm(z1, z2) = a−(m)ξm+1(z1, z2)a−(m)� + b−(m)ξm−1(z1, z2)b−(m)�,

(4.19a)

z2 ξm(z1, z2) = a−(m)ξm+1(z1, z2)a+(m)� − b−(m)ξm−1(z1, z2)b+(m)�,

(4.19b)

−z2 ξm(z1, z2) = a+(m)ξm+1(z1, z2)a−(m)� − b+(m)ξm−1(z1, z2)b−(m)�,

(4.19c)

z1 ξm(z1, z2) = a+(m)ξm+1(z1, z2)a+(m)� + b+(m)ξm−1(z1, z2)b+(m)�.

(4.19d)

It is possible to define shift operators acting on thematrix coefficients of a given rep-
resentation. They are related to left- respectively right-invariant differential operators
on S

3.

Definition 4.4 (cf. [13]) For differentiable functions S
3 � (z1, z2) �→ f (z1, z2) ∈ C

we define the following differential operators

∂+ = −z2∂z1 + z1∂z2 , ∂− = z2∂z1 − z1∂z2 , (4.20a)

∂
†
+ = z1∂z2 − z2∂z1, ∂

†
− = −z1∂z2 + z2∂z1 . (4.20b)

It is easy to see that the operators ∂± and ∂
†
± are linear combination of rotational

derivatives. The operators ∂± are left invariant and the operators ∂
†
± are right invariant.

This means that

R(w1,w2)∂
†
± f (z1, z2) = ∂

†
±R(w1,w2) f (z1, z2), (4.21a)

L(w1,w2)∂± f (z1, z2) = ∂±L(w1,w2) f (z1, z2) (4.21b)
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holds true for the right translation R(w1,w2) f (z1, z2) = f ((z1, z2) • (w1, w2)) and
the left translation L(w1,w2) f (z1, z2) = f ((w1, w2)

−1 • (z1, z2)) = f ((w1,−w2) •
(z1, z2)) on the group S

3.

Theorem 4.5 (cf. [13]) For every m ∈ N0 and 0 ≤ i, j ≤ m the following relations
hold

∂
†
+(ξm)i, j = √

m − i
√
i + 1 (ξm)i+1, j , (4.22a)

∂
†
−(ξm)i, j = √

m + 1 − i
√
i (ξm)i−1, j , (4.22b)

∂+(ξm)i, j = −√m − j
√

j + 1 (ξm)i, j+1, (4.22c)

∂−(ξm)i, j = −√m + 1 − j
√

j (ξm)i, j−1, (4.22d)

where every matrix coefficient outside of the matrix is understood as zero.

The previous relations can be written in matrix form using two special matrices
σ+(m/2) and σ−(m/2) defined as follows. The use ofm/2 instead ofm as argument is
related to the parametrisation of representations by weights instead of by homogeneity
used later on.

Definition 4.6 (cf. [13]) For m ≥ 0 we define the matrices σ+(m/2), σ−(m/2) ∈
R

(m+1)×(m+1) by

σ+(m/2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 · · · 0 0
−√

m 0 · · · 0 0

0 −√
2(m − 1)

. . .
...

...
...

. . .
. . . 0 0

0 · · · 0 −√
m 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, (4.23a)

σ−(m/2) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 −√
m 0 · · · 0

0 0 −√
2(m − 1)

. . .
...

...
...

. . .
. . . 0

0 0 · · · 0 −√
m

0 0 · · · 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.23b)

They satisfy σ+(m/2) = σ−(m/2)�.

Corollary 4.7 (cf. [13]) For every m ∈ N0 the following relations hold

∂+ξm(z1, z2) = ξm(z1, z2) σ+(m/2), (4.24a)

∂−ξm(z1, z2) = ξm(z1, z2) σ−(m/2), (4.24b)

∂
†
+ξm(z1, z2) = σ

†
+(m/2) ξm(z1, z2), (4.24c)

∂
†
−ξm(z1, z2) = σ

†
−(m/2) ξm(z1, z2), (4.24d)
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where σ
†
+(m/2) = −σ+(m/2)� = −σ−(m/2) and σ

†
−(m/2) = −σ−(m/2)� =

−σ+(m/2).

Remark 4.8 The matrices σ±(m/2) can be obtained as

σ+(m/2) = ∂+ξm |(1,0) and σ−(m/2) = ∂−ξm |(1,0), (4.25)

where we apply the operators entrywise and use the point evaluation at (1, 0). Thus,
they are the matrix-valued symbols of the left-invariant differental operators ∂± ∈
Diff1(S3) in the sense of Sect. 2.

4.2 H-Representations: Spherical Harmonics inR
3

We follow the approach of Sect. 3. By (3.21) and (3.5) the weight vector ωl(x) for
l ∈ N0 is given by

ωl(x) = 〈x, T1〉l =
( x1 − ix2

2

)l = ( z1
2

)l
. (4.26)

We renormalise the weight vector considering 2T1 instead of T1 obtaining the poly-
nomial zl1. To perform the H-action on ωl(x) we consider (4.5b) and we get

H(q) zl1 = 〈qxq, 2T1〉l = (q21 z1 + 2q1q2x3 − q22 z1)
l . (4.27)

Using multi-index notation α = (α1, α2, α3) ∈ N
3
0, |α| = α1 + α2 + α3, and α! =

α1!α2!α3!, and the multinomial theorem to further expand (4.27) we obtain

H(q) zl1 =
∑

|α|=l

l!
α! (q

2
1 z1)

α1 (2q1 q2 x3)
α2 (−q22 z1)

α3

=
2l
∑

j=0

q2l− j
1 (−q2)

j
∑

|α|=l
α2+2α3= j

l!
α! z

α1
1 (−2x3)

α2(−z1)
α3 ,

(4.28)

where in the last line we put α2 + 2α3 = j, which yields 2α1 + α2 = 2l − j from
|α| = l. The 2l + 1 polynomials given by

Pl
j (z1, z1, x3) =

∑

|α|=l
α2+2α3= j

l!
α! z

α1
1 (−2x3)

α2(−z1)
α3 , j = 0, . . . , 2l, (4.29)

suffice to build the representation space from the weight vector. As the dimension
of the representation to weight l is 2l + 1, the polynomials must also belong to the
representation space and form a basis. The polynomials are orthogonal with respect
to the Fischer inner product (3.7)

〈Pl
j , P

l
k 〉 = [Pl

j (2∂z1 , 2∂z1 , ∂x3)P
l
k(z1, z1, x3)]0|z1,z1,x3=0 = 0, j �= k, (4.30)
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due to the non-matching orders of the monomials and in order to calculate their norm,
we use

〈Pl
j , P

l
j 〉 = [Pl

j (2∂z1, 2∂z1 , ∂x3)P
l
j (z1, z1, x3)]0|z1,z1,x3=0

=
∑

|α|=l
α2+2α3= j

(l!)2
α! 2l+α2 = cl, j . (4.31)

The inner product is calculated using the Fischer duality z1 �→ 2∂z1 , z1 �→ 2∂z1 , and
x3 �→ ∂x3 .

The following lemma provides a relation between trinomial and binomial coeffi-
cients.

Lemma 4.9 For α = (α1, α2, α3) ∈ N
3
0 it holds

∑

|α|=l
α2+2α3= j

l!
α!2

α2 =
(

2l

j

)

. (4.32)

Proof Multiplication by x j = xα2+2α3 and summing over j yields

2l
∑

j=0

∑

|α|=l
α2+2α3= j

l!
α!2

α2xα2+2α3 =
∑

|α|=l

l!
α1!α2!α3!1

α1(2x)α2x2α3

= (1 + 2x + x2)l = (1 + x)2l =
2l
∑

j=0

(

2l

j

)

x j

(4.33)

based on the multinomial theorem. Comparing powers of x yields the desired result.
��

Using Lemma 4.9 we can write the normalising constants cl, j as

cl, j =
(

2l

j

)

2l l!, j = 0, . . . , 2l (4.34)

and obtain 2l + 1 orthonormal spherical harmonics (4.29) on R
3 spanning the rep-

resentation space Hl(R
3) for the given weight l ∈ N. It remains to express H(q) in

this basis in order to obtain the matrix coefficients and to obtain the relation to the
representations constructed in Sect. 4.1.

For this, we consider the H-action on the orthogonal polynomials Pl
j . For each

j = 0, . . . , 2l, we use first the actions (4.5a)-(4.5c) and then the multinomial theorem
to obtain
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H(q)Pl
j (z1, z1, x3)

=
∑

|α|=l
α2+2α3= j

(

l

α

)

(q21 z1 + 2q1q2x3 − q22z1)
α12α2

× (q1q2z1 − (|q1|2 − |q2|2)x3 + q1q2z1)
α2(q22 z1 − 2q1q2x3 − q21z1)

α3

=
∑

|α|=l
α2+2α3= j

∑

|β|=α1

∑

|γ |=α2

∑

|δ|=α3

γ2
∑

n=0

(

l

α

)(

α1

β

)(

α2

γ

)(

α3

δ

)(

γ2

n

)

2α2−γ2

× q2β1+β2+γ1+n
1 qγ3+δ2+2δ3+n

1 qγ1+γ2−n+2δ1+δ2
2 (−q2)

β2+2β3+γ3+γ2−n

× zβ1+γ1+δ1
1 (−2x3)

β2+γ2+δ2 (−z1)
β3+γ3+δ3 .

(4.35)

Putting βλ + γλ + δλ = ελ, λ = 1, 2, 3 and since |α| = l, |β| = α1, |γ | = α2,
|δ| = α3 we obtain that |ε| = ε1 + ε2 + ε3 = l. Moreover, putting ε2 + 2ε3 = i and
β2 + 2β3 + γ3 + γ2 − n = k and since α2 + 2α3 = |γ | + 2|δ| = j we obtain the
following identities

2β1 + β2 + γ1 + n = 2l − j − k,

γ3 + δ2 + 2δ3 + n = i − k,

γ1 + γ2 + 2δ1 + δ2 − n = j − i + k.

(4.36)

Since 2 l − j − k ≥ 0, i − k ≥ 0, and j − i + k ≥ 0 we get that max(0, i − j) ≤ k ≤
min(i, 2l − j). Therefore, (4.35) can be written as

1√
cl, j

H(q)Pl
j (z1, z1, x3) =

2l
∑

i=0

min(i,2l− j)
∑

k=max(0,i− j)

tki, j,2l q
2l− j−k
1 qi−k

1 q j−i+k
2 (−q2)

k

× 1√
cl,i

∑

|ε|=l
ε2+2ε3=i

(

l

ε

)

zε11 (−2x3)
ε2(−z1)

ε3,

(4.37)

for some coefficients tki, j,2l .Comparing (4.37) with (4.10), wemust have the following
identifications between the matrix coefficients (4.10) and (4.37): m �→ 2 l, w1 �→ q1,
and w2 �→ q2. Thus, the matrix coefficients related to the (normalised) basis of
harmonic polynomials Pl

j associated with the weight l ∈ N0 are given by

(ξ
Spin(3)
l (q1, q2))i, j =

min(i,2l− j)
∑

k=max(0,i− j)

Ck
i, j,2l q

2l− j−k
1 qi−k

1 q j−i+k
2 (−q2)

k , i, j = 0, . . . , 2l

(4.38)

whereCk
i, j,2l is given by (4.11) withm = 2l. Therefore, it holds tki, j,2l = Ck

i, j,2l .Con-
sequently, the relationship between these H-representations and the representations
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constructed in Sect. 4.1 is given by

ξ
Spin(3)
l (q1, q2) = ξ2l(q1, q2). (4.39)

Next we give two examples. For l = 1, the module H1(R
3) has dimension 3

and an orthonormal basis is given by { 1√
2
z1, −x3, − 1√

2
z1}. The matrix coefficients

associated to this basis are

ξ
Spin(3)
1 (q1, q2) =

⎛

⎝

q21
√
2 q1q2 q22

−√
2 q1q2 |q1|2 − |q2|2

√
2 q1q2

q22 −√
2 q1q2 q21

⎞

⎠ . (4.40)

For l = 2, the module H2(R
3) has dimension 5 and an orthonormal basis is given

by

{

1

2
√
2
z21, − 1√

2
z1x3,

1

2
√
3
(2x23 − z1z1),

1√
2
x3z1,

1

2
√
2
z21

}

. (4.41)

The matrix coefficients ξ
Spin(3)
2 (q1, q2) associated to this basis are

⎛

⎜

⎜

⎜

⎝

q41 2 q31q2
√
6 q21q

2
2 2 q1q

3
2 q42

−2 q31q2 q21 (|q1|2 − 3|q2|2)
√
6 q1q2(|q1|2 − |q2|2) q22 (3|q1|2 − |q2|2) 2 q1q

3
2√

6 q21q
2
2 −√

6 q1q2(|q1|2 − |q2|2) (|q1|2 − |q2|2)2 − 2|q1|2|q2|2
√
6 q1q2(|q1|2 − |q2|2)

√
6 q21q

2
2

−2 q1q
3
2 q22(3|q1|2 − |q2|2) −√

6 q1q2(|q1|2 − |q2|2) q21(|q1|2 − 3|q2|2) 2 q31q2

q42 −2 q1q
3
2

√
6 q21q

2
2 −2 q31q2 q41

⎞

⎟

⎟

⎟

⎠

.

(4.42)

4.3 L-Representations: Spinor-ValuedMonogenics inR
3

In the 3-dimensional case there is only one basic spinor representation S ∼= S+
4 =

C
+
4 I+ = span

C
{1, e13}I+, where the idempotent I+ is given in terms of the Witt

basis elements (as introduced in Sect. 3)

T1 = 1

2
(e1 − ie2), T2 = 1

2
(e3 − ie4),

T †
1 = −1

2
(e1 + ie2), T †

2 = −1

2
(e3 + ie4),

(4.43)

by I+ = I1I2, with I1 = T1T
†
1 and I2 = T2T

†
2 . For z ∈ S+

4 we put z = (z+, z−) ∈
C
2 such that z = z+I+ − z−e13I+. Now, considering the left multiplication by
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q = a1 +a2e12 +a3e13 +a4e23 ∈ Spin(3) on the spinor representation S+
4 we obtain

q(z+ − z−e13)I+
= (a0 + a1e12 + a2e13 + a3e23)(z

+ − z−e13)I+
=
(

(a0 + ia1)z+ + (a2 + ia3)z− − (−(a2 − a3i)z+ + (a0 − ia1)z−)e13
)

I+,

(4.44)

where we have used the multiplication rules of the Clifford algebra and the identities
e12I+ = iI+ and e23I+ = −ie13I+ following from the basic rules e2I+ = −ie1I+
and e4I+ = −ie3I+. The linear transformation (4.44) can again be written as an
SU(2)-action given by

(

q1 q2
−q2 q1

)(

z+
z−
)

, (4.45)

where q1 = a0 + ia1 and q2 = a2 + ia3 and z = z+I+ − z−e13I+.
Next, we perform the L-action on theweight vectorωl(x) = z

l− 1
2

1 I+ for l ∈ N0+ 1
2

to obtain the representation space for the half-integer weight. Based on (4.5b), (4.45),
and (4.28), we get

L(q) ωl(x) = q 〈q x q, 2T1〉l− 1
2 I+

= [q1(q21 z1 + 2q1q2x3 − q22 z1)
l− 1

2 − (−q2(q
2
1 z1 + 2q1q2x3 − q22z1)

l− 1
2 )e13] I+

=
[
2l−1
∑

j=0

q2l− j
1 (−q2)

j P
l− 1

2
j (z1, z1, x3)

−
(
2l−1
∑

j=0

q2l−1− j
1 (−q2)

j+1P
l− 1

2
j (z1, z1, x3)

)

e13
]

I+

=
[
2l−1
∑

j=0

q2l− j
1 (−q2)

j P
l− 1

2
j (z1, z1, x3)

−
(

2l
∑

j=1

q2l− j
1 (−q2)

j P
l− 1

2
j−1 (z1, z1, x3)

)

e13
]

I+

=
2l
∑

j=0

q2l− j
1 (−q2)

j
[

P
l− 1

2
j (z1, z1, x3) − P

l− 1
2

j−1 (z1, z1, x3)e13

]

I+. (4.46)

where we set for convenience P
l− 1

2−1 (z1, z1, x3) = P
l− 1

2
2l (z1, z1, x3) = 0. Therefore,

we have obtained the 2 l + 1 S+
4 -valued monogenic polynomials

˜Pl
j (z1, z1, x3) = [Pl− 1

2
j (z1, z1, x3) − P

l− 1
2

j−1 (z1, z1, x3)e13]I+, j = 0, . . . , 2l.

(4.47)
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As this is the dimension of the representation space, we know that they are indeed
linearly independent and thus must form a basis. Note that for j = 0 we obtain

˜Pl
0(z1, z1, x3) = z

l− 1
2

1 I+, i.e. the weight vector, while for j = 2l we get
˜Pl
2 l(z1, z1, x3) = −(−z1)l−

1
2 e13I+.

To obtain an orthonormal basis for Ml(R
3), we still need to compute the Fischer

inner products (3.7) of the polynomials. By (4.30)

〈˜Pl
j ,
˜Pl
k 〉 = 〈Pl− 1

2
j , P

l− 1
2

k 〉 + 〈Pl− 1
2

j−1 , P
l− 1

2
k−1 〉 = 0, j �= k, (4.48)

follows and the normalizing constants

dl, j = 〈˜Pl
j ,
˜Pl
j 〉 = 〈Pl− 1

2
j , P

l− 1
2

j 〉 + 〈Pl− 1
2

j−1 , P
l− 1

2
j−1 〉 = cl− 1

2 , j + cl− 1
2 , j−1

=
(

2l

j

)

2l−
1
2

(

l − 1

2

)

! (4.49)

are obtained for j = 0, . . . , 2l. We will endow the representation spaceMl(R
3) with

the basis obtained by normalising ˜Pl
j .

To obtain the matrix coefficients associated to (4.47), we calculate the L-action on
these orthogonal polynomials ˜Pl

j . Using (4.45) we obtain for each j = 0, . . . , 2 l

L(q)˜Pl
j (x) =q ˜Pl

j (qxq)

=[q1Pl− 1
2

j (qxq) + q2P
l− 1

2
j−1 (qxq) + (q2Pl− 1

2
j (qxq) − q1P

l− 1
2

j−1 (qxq)
)

e13
]I+.

(4.50)

Using (4.37) we see that the maximal exponents of q1 and q2 are q
2 l− j−k
1 and q j−i+k

2 .
Therefore, we can write (4.50) using the renormalised basis (4.47) in the form

1
√

dl, j
L(q)˜Pl

j (x) =
2l
∑

i=0

min(i,2l− j)
∑

k=max(0,i− j)

tki, j,2l q
2l− j−k
1 qi−k

1 q j−i+k
2 (−q2)

k

× 1
√

dl,i

(

P
l− 1

2
i (z1, z1, x3) − P

l− 1
2

i−1 (z1, z1, x3)e13
)

I+,

(4.51)

for some still to be determined coefficients tki, j,2l . Comparing (4.51) with (4.10), we
must have the identifications m �→ 2 l, w1 �→ q1, and w2 �→ q2 between the matrix
coefficients (4.10) and (4.51). Therefore, the matrix coefficients related to the basis of
monogenic polynomials ˜Pl

j associated with the weight l ∈ N0 + 1
2 are given by

(ξ
Spin(3)
l (q1, q2))i, j =

min(i,2l− j)
∑

k=max(0,i− j)

Ck
i, j,2l q

2l− j−k
1 qi−k

1 q j−i+k
2 (−q2)

k, (4.52)
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for i, j = 0, . . . , 2l andwithCk
i, j,2l given by (4.11) form = 2l. Thus, tki, j,2 l = Ck

i, j,2 l
and consequently, the relationship between the spinor-valued representations and the
representations constructed in Sect. 4.1 is

ξ
Spin(3)
l (q1, q2) = ξ2l(q1, q2). (4.53)

Next we give two examples. For l = 1
2 , the representation space M 1

2
(R3) has

dimension 2 and an orthonormal basis is given by {I+, −e13I+}. The matrix coeffi-
cients associated to this basis are

ξ
Spin(3)
1
2

(q1, q2) =
(

q1 q2
−q2 q1

)

. (4.54)

For l = 3
2 , the module M 3

2
(R3) has dimension 4 and an orthonormal basis is given

by

{

1√
2
z1I+,

1√
6
(−2x3 − z1e13)I+,

1√
6
(−z1 + 2x3e13)I+,

1√
2
z1e13I+

}

.

(4.55)

The associated matrix coefficients are

ξ
Spin(3)
3
2

(q1, q2) =

⎛

⎜

⎜

⎜

⎜

⎝

q31
√
3 q21q2

√
3 q1q22 q32

−√
3 q21q2 q1(|q1|2 − 2|q2|2) q2(2|q1|2 − |q2|2)

√
3 q1q

2
2√

3 q1q22 −q2(2|q1|2 − |q2|2) q1(|q1|2 − 2|q2|2)
√
3 q21q2

−q32
√
3 q1q

2
2 −√

3 q21q2 q31

⎞

⎟

⎟

⎟

⎟

⎠

. (4.56)

5 Spin(4) Representations

5.1 Prerequisites

We start by recalling the notation from Sect. 3. We use an orthonormal basis
{e1, e2, e3, e4} of R

4 and denote by R0,4 the real 24-dimensional Clifford algebra
over R

4 generated by the relations e2i = −1, i = 1, . . . , 4 and eie j = −e jei , i �= j .
The group Spin(4) consists of even products of unit vectors

Spin(4) =
⎧

⎨

⎩

2k
∏

j=1

s j : s j ∈ R
4, |s j | = 1, k ∈ N

⎫

⎬

⎭

⊂ R
+
0,4. (5.1)
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Later on wewill make use of the isomorphism Spin(4) ∼= Spin(3)×Spin(3) following
from the identifications R

+
0,4

∼= R0,3 ∼= H ⊕ H, which we recall next. Due to [5,

Section 0.5.4] we can write a ∈ R
+
0,4 in the form a = ω+a+ + ω−a− with a± ∈

R
+
0,3 = span{1, e12, e13, e23} ∼= H and ω± = 1

2 (1 ± e1234). These elements ω± are
mutually annihilating idempotents satisfying

ω2± = ω±, ω+ω− = ω−ω+ = 0, ω+ + ω− = 1, ω± = ω±. (5.2)

As ω± commute with a+ and a− we can also write a = a+ω+ + a−ω−. Applying
this decomposition to elements s ∈ Spin(4) we obtain

s = sω+ + qω− with q, s ∈ Spin(3) (5.3)

together with

ss′ = ss′ω+ + qq ′ω− for s′ = s′ω+ + q ′ω− with q ′, s′ ∈ Spin(3) (5.4)

making the isomorphism explicit. For an arbitrary element x ∈ R
4 putting x =

∑4
i=1 xiei and observing that for each i = 1, . . . , 4 it holds ω+ei = eiω− and

ω−ei = eiω+ we obtain

s x s = (sω+ + qω−) x (sω+ + qω−)

= sxsω−ω+ + sxqω2− + qxsω2+ + qxqω+ω−
= sxq ω− + qxs ω+,

(5.5)

which describes a rotation in R
4 induced by (q, s) ∈ Spin(3) × Spin(3). Due to the

isomorphism Spin(3) ∼= S
3 and the identification of R

4 with C
2 we can write the

action s x s inside C
2. Putting q = (q1, q2), s = (s1, s2) ∈ S

3, and x = (z1, z2) ∈ C
2

yields after a lengthy calculation

s x s = (q1(s1z1 + s2z2) + q2(s1z2 − s2z1)
)

+ (q1(s1z2 − s2z1) − q2(s1z1 + s2z2)
)

j
(5.6)

identifying C
2 with H. Next, we describe the Spin(4) action on the spinor spaces S±

4 .
A realisation of S+

4 was already described in Sect. 4.3. Considering s = sω+ + qω−
with q, s ∈ Spin(3) we obtain for S+

4 the half-spin action

(sω+ + qω−)(z+ − z−e13)I+ = q(z+ − z−e13)I+ (5.7)

as ω+I+ = 0, ω−I+ = I+, and ω+, ω− commute with e13. Thus on S+
4 the action

corresponds to the left multiplication by q ∈ Spin(3) ∼= S
3 and hence by (4.45) also

to the matrix multiplication

(

q1 q2
−q2 q1

)(

z+
z−
)

. (5.8)
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For S−
4 , we get the half-spin action

(sω+ + qω−)(z+ − z−e13)I− = s(z+ − z−e13)I−. (5.9)

Thus, this action corresponds to the left multiplication by s ∈ Spin(3) ∼= S
3 and as in

(4.45) we see that it corresponds to the matrix-multiplication

(

s1 s2
−s2 s1

)(

z+
z−
)

. (5.10)

5.2 H-Representations: Spherical Harmonics inR
4

Following Sect. 3, we construct explicitly the representations associated to the weights
(l1, l2),with l1, l2 ∈ N0, and 0 ≤ l2 ≤ l1. Considering x =∑4

i=1 xiei , y =∑4
i=1 yiei

by (3.18) the (normalised) weight vector is given by

ω(l1,l2)(x, y) = 〈x, 2T1〉l1−l2〈x ∧ y, 4T1 ∧ T2〉l2 = z l1−l2
1 (z1w2 − w1z2)

l2 ,(5.11)

where z1 = x1 + ix2, z2 = x3 + ix4, w1 = y1 + iy2 and w2 = y3 + iy4. Representing
an element s = sω+ + qω− ∈ Spin(4) by two unit quaternions q = (q1, q2), s =
(s1, s2) ∈ S

3 and using complex coordinates for x = (z1, z2), y = (w1, w2) ∈ C
2

equation (5.6) yields

〈s x s, 2T1〉 = q1s1z1 + q1s2z2 + q2s1z2 − q2s2z1
= q1 (s1z1 + s2z2)

︸ ︷︷ ︸

Q1

−q2 (s2z1 − s1z2)
︸ ︷︷ ︸

Q2

(5.12)

and

〈s x ∧ y s, 4 T1 ∧ T2〉 = 〈(s x s) ∧ (s y s), 4 T1 ∧ T2〉
= q21 (z1w2 − z2w1)

︸ ︷︷ ︸

Q3

−q1q2 (z1w1 − z1w1 + z2w2 − z2w2)
︸ ︷︷ ︸

Q4

+ q22 (z1w2 − z2w1)
︸ ︷︷ ︸

Q5

.

(5.13)

Thus, we obtain for the H-action on the weight vector ω(l1,l2)(x, y) and by using
shorthand notations Q j for the terms marked above
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H(s)ω(l1,l2)(x, y) = 〈s x s, 2T1〉l1−l2〈s x ∧ y s, 4 T1 ∧ T2〉l2

=
l1−l2
∑

i=0

(

l1 − l2
i

)

ql1−l2−i
1 (−q2)

i Ql1−l2−i
1 Qi

2

2l2
∑

j=0

q2l2− j
1 (−q2)

j

∑

|α|=l2
α2+2α3= j

l2!
α! Q

α1
3 Qα2

4 Qα3
5

=
l1−l2
∑

i=0

2l2
∑

j=0

(

l1 − l2
i

)

ql1+l2−i− j
1 (−q2)

i+ j Ql1−l2−i
1 Qi

2

∑

|α|=l2
α2+2α3= j

l2!
α! Q

α1
3 Qα2

4 Qα3
5 .

(5.14)

Collecting the powers of q this can be written as

H(s)ω(l1,l2)(x, y) =
l1+l2
∑

k=0

ql1+l2−k
1 (−q2)

k
∑

i+ j=k

(

l1 − l2
i

)

Ql1−l2−i
1 Qi

2

∑

|α|=l2
α2+2α3= j

l2!
α! Q

α1
3 Qα2

4 Qα3
5 . (5.15)

The terms Q3, Q4 and Q5 are independent of the spinor s = sω+ + qω−. For Q1 and
Q2 we extract the dependence on s and obtain (with l = l1 − l2)

Ql−i
1 Qi

2 = (s1z1 + s2z2)
l−i (s2z1 − s1z2)

i

=
l
∑

m=0

s l−m
1 (−s2)

m
min(i,m)
∑

n=max(0,m+i−l)

(−1)i
(

l − i

m − n

)(

i

n

)

zl−i−m+n
1 zn1 z

i−n
2 (−z2)

m−n .

(5.16)

Thus, defining the following polynomials

Slm,i (z) = (−1)i
(

l

i

) min(i,m)
∑

n=max(0,m+i−l)

(

l − i

m − n

)(

i

n

)

zl−i−m+n
1 zn1z

i−n
2 (−z2)

m−n,

(5.17)

Ql2
j (z ∧ w) =

∑

|α|=l2
α2+2α3= j

l2!
α! Q

α1
3 Qα2

4 Qα3
5 , (5.18)
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where z = z1T1 − z1T
†
1 + z2T2 − z2T

†
2 and w = w1T1 − w1T

†
1 + w2T2 − w2T

†
2 are

the Hermitian variables constructed from x and y, we can write (5.15) as

H(s)ω(l1,l2)(x, y) =
l1+l2
∑

k=0

ql1+l2−k
1 (−q2)

k
l1−l2
∑

m=0

s l1−l2−m
1 (−s2)

m

∑

i+ j=k

Sl1−l2
m,i (z) Ql2

j (z ∧ w). (5.19)

From (5.19) the tensor product structure of the Spin(4)-representations of weight
(l1, l2), li ∈ N0, l1 ≥ l2 can be seen.

Lemma 5.1 Let l1, l2 ∈ N0 with l1 ≥ l2. Then the polynomials

∑

i+ j=k

Sl1−l2
m,i (z) Ql2

j (z ∧ w), (5.20)

for k = 0, . . . , l1+l2 andm = 0, . . . , l1−l2, form an orthogonal basis ofH(l1,l2)(R
4).

In particular the dimension of the (l1, l2)-representation is (l1 + l2 + 1)(l1 − l2 + 1).

Proof By construction, these polynomials generate the representation space H(l1,l2)

(R4). To obtain orthogonality with respect to the Fischer inner product we consider
their degrees of homogeneity in certain sets of variables. First we distinguish holomor-
phic variables z1, z2, w1, w2 from their antiholomorphic counterparts z1, z2, w1, w2.
Then due to (5.18) the polynomial Sl1−l2

m,i (z) is of holomorphic degree i and of anti-

holomorphic degree l1 − l2 − i , while Ql2
j (z ∧ w) is of holomorphic degree j and

antiholomorphic degree 2l2 − j . Thus, the polynomials (5.20) are holomorphic of
degree k and antiholomorphic of degree l1 + l2 − k.

Next we consider a mixed form of degree, considering the variables z1, z2, w1, w2

the mixed degree of the polynomial Sl1−l2
m,i (z) is of degree m and Ql2

j (z ∧ w) of mixed
degree l2 and thus the above polynomials (5.20) are of mixed degree m + l2.

It follows that for given l1 and l2 and different k andm the polynomials (5.20) have
different homogeneities and are thus Fischer orthogonal. ��

Next, we construct the representations associated to the weights (l1, l2)with l1, l2 ∈
Z and l1 ≥ −l2 > 0. By (3.21) the corresponding (normalised) weight vector is given
by

ω(l1,l2)(x, y) = 〈x, 2T1〉l1+l2〈x ∧ y,−4T1 ∧ T †
2 〉−l2 = z l1+l2

1 (z2w1 − z1w2)
−l2 .

(5.21)

Using again q = (q1, q2), s = (s1, s2) ∈ S
3 to describe elements of the spin group

and x = (z1, z2), y = (w1, w2) ∈ C
2 as complex coordinates, equation (5.6) yields

again

〈s x s, 2T1〉 = s1 (q1z1 + q2z2)
︸ ︷︷ ︸

˜Q1

−s2 (q2z1 − q1z2)
︸ ︷︷ ︸

˜Q2

(5.22)
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and now

〈s x ∧ y s,−4 T1 ∧ T †
2 〉 = 〈(s x s) ∧ (s y s),−4 T1 ∧ T †

2 〉
= s21 (z1w2 − z2w1)

︸ ︷︷ ︸

˜Q3

−s1s2 (z1w1 − z1w1 + z2w2 − z2w2)
︸ ︷︷ ︸

˜Q4

+s22 (z1w2 − z2w1)
︸ ︷︷ ︸

˜Q5

.

(5.23)

Using these short-hand notations we compute the H-action on the weight vector
ω(l1,l2)(x, y) following the lines of (5.14) as

H(s)ω(l1,l2)(x, y) = 〈s x s, 2T1〉l1+l2 〈s x ∧ y s,−4 T1 ∧ T †
2 〉−l2

=
l1−l2
∑

m=0

sl1−l2−m
1 (−s2)

m
∑

i+ j=m

(

l1 + l2
i

)

˜Ql1+l2−i
1

˜Qi
2

∑

|α|=|l2|
α2+2α3= j

|l2|!
α! ˜Q

α1
3
˜Qα2
4
˜Qα3
5

=
l1+l2
∑

k=0

ql1+l2−k
1 (−q2)

k
l1−l2
∑

m=0

s l1−l2−m
1 (−s2)

m
∑

i+ j=m

˜Sl1+l2
k,i (z) ˜Ql2

j (z ∧ w)

(5.24)

with

˜Slk,i (z) = (−1)i
(

l

i

) min(i,k)
∑

n=max(0,k+i−l)

(

l − i

k − n

)(

i

n

)

zl−i−k+n
1 zn1z

i−n
2 (−z2)

k−n, (5.25)

and obtained from Slk,i (z) by complex conjugating z2 and

˜Ql2
j (z ∧ w) =

∑

|α|=|l2|
α2+2α3= j

|l2|!
α! ˜Q

α1
3
˜Qα2
4
˜Qα3
5 (5.26)

obtained from Q|l2|
j (z ∧ w) by complex conjugating z2 and w2.

Lemma 5.2 Let l1, l2 ∈ Z with l1 ≥ −l2 > 0. Then the polynomials

∑

i+ j=m

˜Sl1+l2
k,i (z) ˜Ql2

j (z ∧ w), (5.27)

for k = 0, . . . , l1+l2 andm = 0, . . . , l1−l2, form an orthogonal basis ofH(l1,l2)(R
4).

Proof The proof follows again by considering holomorphic, antiholomorphic and
mixed degrees of the polynomials. ��
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5.3 L-Representations: Spinor-ValuedMonogenics inR
4

In this section we construct the representations associated to the weights
(

l1, l2
)

with
l1, l2 ∈ Z + 1

2 , and l1 ≥ |l2|. First we consider the case l2 ≥ 0 and the corresponding
L-representation on the space of S+

4 -valued simplicial monogenic polynomials. From
(5.7), (5.8), and (5.19) we obtain

L(s)ω(l1,l2)(x, y) = q 〈s x s, 2T1〉l1−l2 〈s x ∧ y s, 4 T1 ∧ T2〉l2− 1
2 I+

=
[

q1

l1+l2−1
∑

k=0

ql1+l2−k−1
1 (−q2)

k
l1−l2
∑

m=0

s l1−l2−m
1 (−s2)

m
∑

i+ j=k

Sl1−l2
m,i (z) Q

l2− 1
2

j (z ∧ w)

+ q2

l1+l2−1
∑

k=0

ql1+l2−k−1
1 (−q2)

k
l1−l2
∑

m=0

s l1−l2−m
1 (−s2)

m

∑

i+ j=k

Sl1−l2
m,i (z) Q

l2− 1
2

j (z ∧ w)e13
]

I+

=
l1+l2
∑

k=0

ql1+l2−k
1 (−q2)

k
l1−l2
∑

m=0

s l1−l2−m
1 (−s2)

m

×
[
∑

i+ j=k

Sl1−l2
m,i (z) Q

l2− 1
2

j (z ∧ w) −
∑

i+ j=k−1

Sl1−l2
m,i (z) Q

l2− 1
2

j (z ∧ w)e13
]

I+.

(5.28)

where we used
∑

i+ j=−1 S
l1−l2
m,i (z) Q

l2− 1
2

j (z ∧ w) =∑i+ j=l1+l2 S
l1−l2
m,i (z) Q

l2− 1
2

j (z ∧
w) = 0. Due to the orthogonality between our basis functions of H(l1,l2)(R

4) we
conclude:

Corollary 5.3 Let l1, l2 ∈ N0 + 1
2 with l1 ≥ l2. Then the monogenic polynomials

[
∑

i+ j=k

Sl1−l2
m,i (z) Q

l2− 1
2

j (z ∧ w) −
∑

i+ j=k−1

Sl1−l2
m,i (z) Q

l2− 1
2

j (z ∧ w)e13
]

I+ (5.29)

for k = 0, . . . , l1+l2 andm = 0, . . . , l1−l2 form an orthogonal basis ofM(l1,l2)(R
4).

The calculations for the representations of weight
(

l1, l2
)

with l1, l2 ∈ Z + 1
2 and

l1 ≥ −l2 > 0 on the space of S−
4 -valued polynomials are similar. Indeed,

L(s)ω(l1,l2)(x, y) = s 〈s x s, 2T1〉l1+l2 〈s x ∧ y s,−4 T1 ∧ T †
2 〉−l2− 1

2 I−

=
[

s1

l1+l2
∑

k=0

ql1+l2−k
1 (−q2)

k
l1−l2−1
∑

m=0

s l1−l2−m−1
1 (−s2)

m
∑

i+ j=m

˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧ w)

+s2

l1+l2
∑

k=0

ql1+l2−k
1 (−q2)

k
l1−l2−1
∑

m=0

s l1−l2−m−1
1 (−s2)

m

∑

i+ j=m

˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧ w)e13
]

I−
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=
l1+l2
∑

k=0

ql1+l2−k
1 (−q2)

k
l1−l2
∑

m=0

s l1−l2−m
1 (−s2)

m

×
[
∑

i+ j=m

˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧ w) −
∑

i+ j=m−1

˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧ w)e13
]

I− (5.30)

where we used
∑

i+ j=−1
˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧ w) =∑i+ j=l1−l2
˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧
w) = 0. Again we conclude:

Corollary 5.4 Let l1, l2 ∈ Z+ 1
2 with l1 ≥ −l2 > 0. Then the monogenic polynomials

[
∑

i+ j=m

˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧ w) −
∑

i+ j=m−1

˜Sl1+l2
k,i (z) ˜Q

l2+ 1
2

j (z ∧ w)e13
]

I− (5.31)

for k = 0, . . . , l1+l2 andm = 0, . . . , l1−l2 form an orthogonal basis ofM(l1,l2)(R
4).

5.4 Matrix Coefficients

To describe all Spin(4) representations ξ(l1,l2), we consider the lattice

�Spin(4) = {(l1, l2) ∈ Z
2 ∪
(

Z + 1

2

)2

| l1 ≥ |l2|} (5.32)

consisting of pairs of integers and pairs of half-integers. In Sects. 5.2 and 5.3 we con-
structed orthogonal bases for the representation spaces of the Spin(4) representations
ξ(l1,l2) for all (l1, l2) ∈ �Spin(4). This choice of bases allows to make direct use of the
tensor product structure of these representations. By construction, we have

ξ(l1,l2)(s) = ξ(l1,l2)(q, s) = ξ
Spin(3)
l1+l2

2

(q) ⊗ ξ
Spin(3)
l1−l2

2

(s) = ξ l1+l2(q) ⊗ ξ l1−l2(s),

(5.33)

where s = sω+ + qω− and ⊗ denotes the Kronecker product of the matrices. Each
ξ(l1,l2)(s) is a unitary matrix of dimension

d(l1,l2) = d l1+l2
2

d l1−l2
2

= (l1 + l2 + 1)(l1 − l2 + 1). (5.34)

Figure 1 shows the infinite triangle of Spin(4) representations acting on harmonic
modulesH and monogenic modulesM. At the borders of the infinite triangle, we can
observe the Spin(3) representations ξ

Spin(3)
l1+l2

2

⊗1 in red and the Spin(3) representations

1 ⊗ ξ
Spin(3)
l1−l2

2

in blue.
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H(0,0) M( 1
2 ,l2)

H(1,l2) M( 3
2 ,l2)

H(2,l2) M( 5
2 ,l2)

H(3,l2) · · ·

(3, 3) · · ·(
5
2 ,

5
2

)

(2, 2) (3, 2) · · ·(
3
2 ,

3
2

) (
5
2 ,

3
2

)

(1, 1) (2, 1) (3, 1) · · ·(
1
2 ,

1
2

) (
3
2 ,

1
2

) (
5
2 ,

1
2

)

(0, 0) (1, 0) (2, 0) (3, 0) · · ·(
1
2 ,− 1

2

) (
3
2 ,− 1

2

) (
5
2 ,− 1

2

)

(1,−1) (2,−1) (3,−1) · · ·(
3
2 ,− 3

2

) (
5
2 ,− 3

2

)

(2,−2) (3,−2) · · ·(
5
2 ,− 5

2

)

(3,−3) · · ·
Fig. 1 Harmonic and monogenic modules of Spin(4) representations ξ(l1,l2)

5.5 Recurrence Relations

In the following two sections we discuss the general structure of matrix coefficients
of the representations we have constructed. First, we prove recurrence relations for
the matrix coefficients and then we define differential operators corresponding (up to
factors) to shifts in the matrix coefficients of a given representation.

Definition 5.5 For all (l1, l2) ∈ �Spin(4) we define the following matrices:

A±(l1, l2) = a±(l1 + l2) ⊗ Il1−l2+1,

B±(l1, l2) = b±(l1 + l2) ⊗ Il1−l2+1,

C±(l1, l2) = Il1+l2+1 ⊗ a±(l1 − l2),

D±(l1, l2) = Il1+l2+1 ⊗ b±(l1 − l2),

where a±(l1 ± l2) and b±(l1 ± l2) are the matrices given in Definition 4.2.

Using the matrices just defined we can transfer the recurrence relations given in
Theorem 4.3 to the Spin(4) case. To simplify the expressions we use A± instead of
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A±(l1, l2) and the same for the other matrices. The notation introduced will also be
used later on when dealing with difference operators and the group Fourier transform.

Theorem 5.6 For all (l1, l2) ∈ �Spin(4) the three term recurrence relations

q1 ξ(l1,l2)(q, s) = A− ξ(l+1 ,l+2 )(q, s) A�− + B− ξ(l−1 ,l−2 )(q, s) B�− , (5.35a)

q2 ξ(l1,l2)(q, s) = A− ξ(l+1 ,l+2 )(q, s) A�+ − B− ξ(l−1 ,l−2 )(q, s) B�+ , (5.35b)

−q2 ξ(l1,l2)(q, s) = A+ ξ(l+1 ,l+2 )(q, s) A�− − B+ ξ(l−1 ,l−2 )(q, s) B�− , (5.35c)

q1 ξ(l1,l2)(q, s) = A+ ξ(l+1 ,l+2 )(q, s) A�+ + B+ ξ(l−1 ,l−2 )(q, s) B�+ , (5.35d)

s1 ξ(l1,l2)(q, s) = C− ξ(l+1 ,l−2 )(q, s)C�− + D− ξ(l−1 ,l+2 )(q, s) D�−, (5.35e)

s2 ξ(l1,l2)(q, s) = C− ξ(l+1 ,l−2 )(q, s)C�+ − D− ξ(l−1 ,l+2 )(q, s) D�+, (5.35f)

−s2 ξ(l1,l2)(q, s) = C+ ξ(l+1 ,l−2 )(q, s)C�− − D+ ξ(l−1 ,l+2 )(q, s) D�−, (5.35g)

s1 ξ(l1,l2)(q, s) = C+ ξ(l+1 ,l−2 )(q, s)C�+ + D+ ξ(l−1 ,l+2 )(q, s) D�+ (5.35h)

hold true, where we used the notation

l+j = l j + 1

2
and l−j = l j − 1

2
, j = 1, 2. (5.36)

for the neighbouring weights in the weight lattice.

Proof Theorem 4.3 together with the mixed product property (A ⊗ B)(C ⊗ D) =
(AC) ⊗ (BD) of the Kronecker product yields

q1 ξ(l1,l2)(q, s) = q1ξ l1+l2(q) ⊗ ξ l1−l2(s)

=
(

a−(l1 + l2) ξ l1+l2+1(q) a−(l1 + l2)
�)⊗ ξ l1−l2(s)

+
(

b−(l1 + l2) ξ l1+l2−1(q) b−(l1 + l2)
�)⊗ ξ l1−l2(s)

= (a−(l1 + l2) ⊗ Il1−l2+1
) (

ξ l1+l2+1(q) ⊗ ξ l1−l2(s)
) (

a−(l1 + l2)
� ⊗ Il1−l2+1

)

+ (b−(l1 + l2) ⊗ Il1−l2+1
) (

ξ l1+l2−1(q) ⊗ ξ l1−l2(s)
) (

b−(l1 + l2)
� ⊗ Il1−l2+1

)

= A− ξ(l+1 ,l+2 )(q, s) A�− + B− ξ(l−1 ,l−2 )(q, s) B�− (5.37)

and thus the first identity follows. The remaining identities are proved analogously.
Note that for the last four formulas the sum of the weights stays the same while the
difference is altered by ±1. ��

Example 5.7 Thematrix recurrence relations yield three term relations for coefficients.
We provide one example obtained by plugging in the definition of the matrices a± and
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b± from (4.2). It follows that

q1 ξ(l1,l2)(q, s)i, j =
√
r − �i/p� √

r − � j/p�
r

ξ(l+1 ,l+2 )(q, s)i, j

+
√�i/p� √� j/p�

r
ξ(l−1 ,l−2 )(q, s)i−p, j−p

(5.38)

with r = l1 + l2 + 1 and p = l1 − l2 + 1.

The next theorem provides second order recurrence relations following from The-
orem 5.6.

Corollary 5.8 For all (l1, l2) ∈ �Spin(4) the following matrix recurrence relations hold

q1s1 ξ(l1,l2)(q, s) = (a−(l1 + l2) ⊗ a−(l1 − l2)
)

ξ(l1+1,l2)(q, s)
(

a−(l1 + l2) ⊗ a−(l1 − l2)
)�

+ (a−(l1 + l2) ⊗ b−(l1 − l2)
)

ξ(l1,l2+1)(q, s)
(

a−(l1 + l2) ⊗ b−(l1 − l2)
)�

+ (b−(l1 + l2) ⊗ a−(l1 − l2)
)

ξ(l1,l2−1)(q, s)
(

b−(l1 + l2) ⊗ a−(l1 − l2)
)�

+ (b−(l1 + l2) ⊗ b−(l1 − l2)
)

ξ(l1−1,l2)(q, s)
(

b−(l1 + l2) ⊗ b−(l1 − l2)
)�

,

(5.39a)

q2s2 ξ(l1,l2)(q, s) = (a−(l1 + l2) ⊗ a−(l1 − l2)
)

ξ(l1+1,l2)(q, s)
(

a+(l1 + l2) ⊗ a+(l1 − l2)
)�

− (a−(l1 + l2) ⊗ b−(l1 − l2)
)

ξ(l1,l2+1)(q, s)
(

a+(l1 + l2) ⊗ b−(l1 − l2)
)�

− (b−(l1 + l2) ⊗ a−(l1 − l2)
)

ξ(l1,l2−1)(q, s)
(

b+(l1 + l2) ⊗ a+(l1 − l2)
)�

+ (b−(l1 + l2) ⊗ b−(l1 − l2)
)

ξ(l1−1,l2)(q, s)
(

b+(l1 + l2) ⊗ b−(l1 − l2)
)�

,

(5.39b)

q2s2 ξ(l1,l2)(q, s) = (a+(l1 + l2) ⊗ a+(l1 − l2)
)

ξ(l1+1,l2)(q, s)
(

a−(l1 + l2) ⊗ a−(l1 − l2)
)�

− (a+(l1 + l2) ⊗ b+(l1 − l2)
)

ξ(l1,l2+1)(q, s)
(

a−(l1 + l2) ⊗ b−(l1 − l2)
)�

− (b+(l1 + l2) ⊗ a+(l1 − l2)
)

ξ(l1,l2−1)(q, s)
(

b−(l1 + l2) ⊗ a−(l1 − l2)
)�

+ (b+(l1 + l2) ⊗ b+(l1 − l2)
)

ξ(l1−1,l2)(q, s)
(

b−(l1 + l2) ⊗ b−(l1 − l2)
)�

,

(5.39c)

q1s1 ξ(l1,l2)(q, s) = (a+(l1 + l2) ⊗ a+(l1 − l2)
)

ξ(l1+1,l2)(q, s)
(

a+(l1 + l2) ⊗ a+(l1 − l2)
)�

+ (a+(l1 + l2) ⊗ b+(l1 − l2)
)

ξ(l1,l2+1)(q, s)
(

a+(l1 + l2) ⊗ b+(l1 − l2)
)�

+ (b+(l1 + l2) ⊗ a+(l1 − l2)
)

ξ(l1,l2−1)(q, s)
(

b+(l1 + l2) ⊗ a+(l1 − l2)
)�

+ (b+(l1 + l2) ⊗ b+(l1 − l2)
)

ξ(l1−1,l2)(q, s)
(

b+(l1 + l2) ⊗ b+(l1 − l2)
)�

,

(5.39d)

where every expression out of domain is interpreted as zero.

5.6 Differential Relations for Matrix Coefficients

Thematrix coefficients of the Spin(4) representations can be generated using particular
first order differential operators. This is a consequence of Theorem 4.5, for which we
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provide the details now. We use again a pair q = (q1, q2) ∈ S
3 and s = (s1, s2) ∈ S

3

of unit quaternions as coordinates for s = sω+ + qω− ∈ Spin(4), cf. Sect. 5.

Definition 5.9 On Spin(4) we define the following first order differential operators

∂q+ = q2∂q1 − q1∂q2 , ∂s+ = s2∂s1 − s1∂s2 ,

∂q− = −q2∂q1 + q1∂q2 , ∂s− = −s2∂s1 + s1∂s2 ,

∂
†
q+ = −q1∂q2 + q2∂q1, ∂

†
s+ = −s1∂s2 + s2∂s1 ,

∂
†
q− = q1∂q2 − q2∂q1, ∂

†
s− = s1∂s2 − s2∂s1 .

These operators are complex linear combinations of rotational derivatives and,
moreover, are left or right invariant operators.

Let s, s0 ∈ Spin(4) be given by s = sω+ + qω− and s0 = s0ω+ + q0ω− with
q, s, q0, s0 ∈ S

3. Then by the properties of the idempotents ω± it is easy to see that
the left translation on Spin(4) is given by s−1

0 s = s0s ω+ + q0q ω−, while the right
translation is given by ss0 = ss0 ω++qq0 ω−. Consequently, left and right translations
for functions f (q, s) are given by

L(q0,s0) f (q, s) = f (q0q, s0s), (5.40a)

R(q0,s0) f (q, s) = f (qq0, ss0) (5.40b)

in these coordinates. The following statement follows by direct calculation similar to
(4.21).

Theorem 5.10 The operators ∂q±, ∂s± are left invariant and the operators ∂
†
q±, ∂

†
s±

are right invariant on Spin(4), that is,

L(q0,s0) ◦ ∂q± = ∂q± ◦ L(q0,s0), L(q0,s0) ◦ ∂s± = ∂s± ◦ L(q0,s0) (5.41a)

together with

R(q0,s0) ◦ ∂
†
q± = ∂

†
q± ◦ R(q0,s0), R(q0,s0) ◦ ∂

†
s± = ∂

†
s± ◦ R(q0,s0). (5.41b)

We now determine derivatives of our representations. Using the matrix relations
(4.24a)–(4.24d) we can obtain the following differential relations.

Theorem 5.11 For all (l1, l2) ∈ �Spin(4) the following identities

∂
†
q± ξ(l1,l2)(q, s) =

(

σ
†
±
(

l1 + l2
2

)

⊗ Il1−l2+1

)

ξ(l1,l2)(q, s), (5.42a)

∂q± ξ(l1,l2)(q, s) = ξ(l1,l2)(q, s)

(

σ±
(

l1 + l2
2

)

⊗ Il1−l2+1

)

, (5.42b)

∂
†
s± ξ(l1,l2)(q, s) =

(

Il1+l2+1 ⊗ σ
†
±
(

l1 − l2
2

))

ξ(l1,l2)(q, s), (5.42c)
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∂s± ξ(l1,l2)(q, s) = ξ(l1,l2)(q, s)

(

Il1+l2+1 ⊗ σ±
(

l1 − l2
2

))

(5.42d)

hold true with

σ
†
±
(

l1 + l2
2

)

= −σ∓
(

l1 + l2
2

)

and σ
†
±
(

l1 − l2
2

)

= −σ∓
(

l1 − l2
2

)

.

(5.43)

and for σ± given by (4.23).

Proof Weprove only the identity for ∂†q+, the remaining ones are obtained analogously.
By using (5.33), (4.24c), and the mixed-product property for the Kronecker product,
we obtain

∂
†
q+ ξ(l1,l2)(q, s) =

(

∂q+ ξ l1+l2(q)
)

⊗ ξ l1−l2(s)

=
(

σ
†
+
(

l1 + l2
2

)

ξ l1+l2(q)

)

⊗ ξ l1−l2(s)

=
(

σ
†
+
(

l1 + l2
2

)

⊗ Il1−l2+1

)

(

ξ l1+l2(q) ⊗ ξ l1−l2(s)
)

=
(

σ
†
+
(

l1 + l2
2

)

⊗ Il1−l2+1

)

ξ(l1,l2)(q, s). (5.44)

��
Example 5.12 On the level of matrix coefficients this allows to switch around between
different indices. We only give some formulas

∂
†
q± ξ(l1,l2)(q, s)i, j = √

r − δ± − �i/p� √�i/p� + δ± ξ(l1,l2)(q, s)i±p, j (5.45)

∂q± ξ(l1,l2)(q, s)i, j = −√r − δ± − � j/p� √� j/p� + δ± ξ(l1,l2)(q, s)i, j±p (5.46)

where r = l1 + l2 + 1, p = l1 − l2 + 1, δ+ = 1, δ− = 0, and every expression out of
domain is interpreted as zero.

Corollary 5.13 For all (l1, l2) ∈ �Spin(4) the following relations hold

∂
†
q+ ∂

†
s± ξ(l1,l2)(q, s) =

(

σ
†
+
(

l1 + l2
2

)

⊗ σ
†
±(

l1 − l2
2

)

)

ξ(l1,l2)(q, s), (5.47a)

∂
†
q− ∂

†
s± ξ(l1,l2)(q, s) =

(

σ
†
−
(

l1 + l2
2

)

⊗ σ
†
±
(

l1 − l2
2

))

ξ(l1,l2)(q, s), (5.47b)

∂q+ ∂s± ξ(l1,l2)(q, s) = ξ(l1,l2)(q, s)

(

σ+
(

l1 + l2
2

)

⊗ σ±
(

l1 − l2
2

))

, (5.47c)

∂q− ∂s± ξ(l1,l2)(q, s) = ξ(l1,l2)(q, s)

(

σ−
(

l1 + l2
2

)

⊗ σ±
(

l1 − l2
2

))

(5.47d)
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for σ± and σ
†
± given by (4.23).

6 Calculus

6.1 Left Invariant Differential Operators

The differential operators ∂q±, ∂s± appearing in the recurrence relations for matrix
coefficients allow to construct all left-invariant differential operators. To see this, we
first provide a basis for the space of left-invariant vector fields on Spin(4), i.e. for the
Lie algebra spin(4).

Note, that the differential operators ∂q± and ∂s± are complex derivatives and that
on a formal level ∂∗

q+ = −∂q−. To obtain elements of the Lie algebra, we form
combinations of them.

Definition 6.1 We define the left invariant differential operators

D1q = − i
2
(∂q− + ∂q+), D1s = − i

2
(∂s− + ∂s+) (6.1a)

D2q = 1

2
(∂q− − ∂q+), D2s = 1

2
(∂s− − ∂s+) (6.1b)

D3q = [D1q ,D2q ] = − i
2
[∂q+, ∂q−], D3s = [D1s,D2s] = − i

2
[∂s+, ∂s−]. (6.1c)

Remark 6.2 The operators ∂q+ and ∂s+ are sometimes called creation operators, while
the operators ∂q− and ∂s− are called annihilator operators (cf. [23, Remark 12.2.3.]
where the operators are denoted by ∂+ and ∂−, and [28, p. 140] where the operators
are denoted by Ĥ+ and Ĥ−). It is also customary to define

∂q0 = 1

2
[∂q+, ∂q−] (6.2)

and denote this as the neutral operator. The operator D3q can thus be written as D3q =
−i∂q0.

Proposition 6.3 The commutator relations hold

[D1q ,D2q ] = D3q , [D2q ,D3q ] = D1q , [D3q ,D1q ] = D2q , (6.3a)

[D1s,D2s] = D3s, [D2s,D3s] = D1s, [D3s,D1s] = D2s, (6.3b)

together with [Dνq ,Dμs] for all μ, ν ∈ {1, 2, 3}. Furthermore, the set {Dμq ,Dνs |
μ, ν = 1, 2, 3} forms an (orthonormal) basis of the Lie algebra spin(4).

Proof The last identity follows from the direct product decomposition of Spin(4). For
the remaining identities we are concentrating on derivatives with respect to the compo-
nent q, the remaining ones are obtained similarly. The first commutator relation holds
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by definition. For the second commutator relation we observe that by straightforward
calculation

[∂q+, ∂q−] = −q1∂q1 + q2∂q2 + q1∂q1 − q2∂q2 (6.4)

such that

[∂q+, [∂q+, ∂q−]] = −2∂q+ and [∂q−, [∂q+, ∂q−]] = 2∂q−. (6.5)

Therefore, we obtain

[D2q ,D3q ] = − i
4

([∂q−, [∂q+, ∂q−]] − [∂q+, [∂q+, ∂q−]])

= − i
4
(2∂q− + 2∂q+) = D1q (6.6)

together with

[D3q ,D1q ] = −[D1q ,D3q ] = 1

4
([∂q−, [∂q+, ∂q−]] + [∂q+, [∂q+, ∂q−]])

= 1

4
(2∂q− − 2∂q+) = D2q . (6.7)

��
The Laplace–Beltrami operator L on Spin(4) is given by

L = D2
1q + D2

2q + D2
3q + D2

1s + D2
2s + D2

3s

= −1

2
(∂q+∂q− + ∂q−∂q+ + ∂s+∂s− + ∂s−∂s+) − ∂2q0 − ∂2s0.

(6.8)

If we denote by H(l1,l2) the complex linear span of the matrix coefficients of ξ(l1,l2),

H(l1,l2) = span{s �→ ξ(l1,l2)(s)i, j : 0 ≤ i, j ≤ d(l1,l2) − 1}, (6.9)

the following theorem holds true.

Theorem 6.4 The space H(l1,l2) is an eigenspace of L with eigenvalue

λl1,l2 = −
( (l1 + l2)(l1 + l2 + 2)

4
+ (l1 − l2)(l1 − l2 + 2)

4

)

= − l21 + 2l1 + l22
2

. (6.10)

Proof This follows directly from (6.8) in combination with the formulas of Theo-
rem 4.5 for the matrix coefficients of the Spin(3)-representation. ��
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For later use we define

〈ξl1,l2〉 = √1 − λl1,l2 =
√

1 + l1 + l21 + l22
2

. (6.11)

6.2 The Group Fourier Transform on Spin(4)

First, we introduce notation and recall some basic facts. Then the characterisations of
function spaces on Spin(4) follows from abstract arguments, as presented in [21] and
[23]. See also [16] for the relation between certain function spaces on direct products
of groups.

The group Fourier transform on Spin(4) is given in terms of all equivalence classes
of irreducible representations

ξ(l1,l2)(sω+ + qω−) = ξ
Spin(3)
l1+l2

2

(q) ⊗ ξ
Spin(3)
l1−l2

2

(s). (6.12)

For an integrable function f ∈ L1(Spin(4)) we define

̂f (l1, l2) =
∫

Spin(4)
f (s) ξ(l1,l2)(s)

∗ ds, (6.13)

where we integrate with respect to the normalised Haar measure on the group Spin(4).
Note that by uniqueness of the Haar measure and by the direct product structure
Spin(4) " Spin(3) × Spin(3) the Haar measure on Spin(4) is also the tensor product
of the normalised Haar measures on both factors.

The Fourier transform maps L2(Spin(4)) unitarily onto a sequence space. For this
we define �2 := �2(Ŝpin(4)) to be the space of all sequences

σ : �Spin(4) � (l1, l2) �→ σ(l1, l2) ∈ C
d(l1,l2)×d(l1,l2) (6.14)

such that

‖σ‖2
�2

=
∑

(l1,l2)∈�Spin(4)

d(l1,l2)‖σ(l1, l2)‖2HS < ∞. (6.15)

This space is clearly a Hilbert space and we endow it with its natural inner product.
Now, Peter–Weyl Theorem 2.1 implies

Theorem 6.5 The Fourier transform is unitary from L2(Spin(4)) to �2(Ŝpin(4)) with
inverse

f (s) =
∑

(l1,l2)∈�Spin(4)

d(l1,l2) tr(̂f (l1, l2)ξ(l1,l2)(s)) (6.16)
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and Plancherel identity

‖ f ‖2L2(Spin(4)) =
∑

(l1,l2)∈�Spin(4)

d(l1,l2) ‖̂f (l1, l2)‖2HS. (6.17)

Remark 6.6 In the particular case f (sω+ + qω−) = f1(q) f2(s) with fi ∈
L2(Spin(3)), the Kronecker product representation of the Fourier coefficients

̂f (l1, l2) =
∫

Spin(4)
f (s) ξ(l1,l2)(s)

∗ ds

=
∫

Spin(3)
f1(q) ξ

Spin(3)
l1+l2

2

(q)∗ dq ⊗
∫

Spin(3)
f2(s) ξ

Spin(3)
l1−l2

2

(s)∗ ds

= ̂f1

(

l1 + l2
2

)

⊗ ̂f2

(

l1 − l2
2

)

. (6.18)

in terms of the Spin(3) Fourier transforms imply

f (sω+ + qω−) =
∑

m1∈ 1
2N0

(2m1 + 1) tr
(

̂f1(m1) ξ
Spin(3)
m1 (q)

)

×
∑

m2∈ 1
2N0

(2m2 + 1) tr
(

̂f2(m2) ξ
Spin(3)
m2 (s)

)

.
(6.19)

Here we made use of tr(A ⊗ B) = tr(A) tr(B) together with (5.34). This also allows
to split the Plancherel formula into a double sum

‖ f ‖2L2(Spin(4)) =
∑

m1∈ 1
2N0

(2m1 + 1)‖̂f1(m1)‖2HS
∑

m2∈ 1
2N0

(2m2 + 1)‖̂f2(m2)‖2HS

(6.20)

based on the product formula ‖A⊗B‖HS = ‖A‖HS‖B‖HS for Hilbert-Schmidt norms.

The group Fourier transform extends naturally to distributions. The space
D′(Spin(4)) of distributions is the topological dual space of smooth functions
C∞(Spin(4)). As usual for a function f ∈ L1(Spin(4)) and ϕ ∈ C∞(Spin(4)) we
define T f ∈ D′(Spin(4)) by

〈T f , ϕ〉 =
∫

Spin(4)
f (s)ϕ(s) ds (6.21)

and use the same notation for the dual pairing between distributions and functions.
For a distribution T ∈ D′(Spin(4)) its Fourier transform ̂T is defined by ̂T (l1, l2) =
〈T , ξ∗

(l1,l2)
〉.
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6.3 Function Spaces

Sobolev spaces are characterised in terms of the Laplacian. Thus, for r ∈ R the space
Hr (Spin(4)) has the familiar characterisation

f ∈ Hr (Spin(4)) ⇐⇒ (−L)r f ∈ L2(Spin(4))

⇐⇒ 〈ξ(l1,l2)〉r ̂f (l1, l2) ∈ �2(Ŝpin(4)) (6.22)

in terms of the group Fourier transform. This allows to characterise spaces of smooth
functions and of distributions. In the following, we denote by s := s(Ŝpin(4)) the
space of rapidly decaying matrix sequences

ρ : �Spin(4) →
⋃

d

C
d×d (6.23)

such that the dimension of ρ(l1, l2) equals d(l1,l2) = (l1 + l2 + 1)(l1 − l2 + 1) and

sup
(l1,l2)∈�Spin(4)

‖ρ(l1, l2)‖HS〈ξ(l1,l2)〉N < ∞ (6.24)

for any number N . The particular choice of matrix norm does not matter due to the
polynomial growth of 〈ξ(l1,l2)〉 in the dimension d(l1,l2). We also denote by s′ :=
s′(Ŝpin(4)) the space of all such matrix sequences with

sup
(l1,l2)∈�Spin(4)

‖ρ(l1, l2)‖HS〈ξ(l1,l2)〉−N < ∞ (6.25)

for one number N . Both are equippedwith their natural locally convex topology arising
from (6.24) and (6.25), respectively. Using this topology the spaces s and s′ are dual
to each other.

Theorem 6.7 The Fourier transform provides isomorphisms

1. F : C∞(Spin(4)) → s
2. F : D′(Spin(4)) → s′

and thus characterises smooth functions in terms of rapidly decaying sequences of
Fourier coefficients and distributions in terms of moderately growing sequences of
Fourier coefficients.

6.4 Differential and Pseudo-Differential Operators on Spin(4)

In a next step we provide details on the differential and pseudo-differential calculus
on the group Spin(4).
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Table 1 Symbols for some left and right invariant first order differential operators

Left-invariant Right-invariant
operator Left symbol operator Right symbol

∂q± σ±(
l1+l2
2 ) ⊗ Il1−l2+1 ∂

†
q± −σ∓(

l1+l2
2 ) ⊗ Il1−l2+1

∂q0 σ0(
l1+l2
2 ) ⊗ Il1−l2+1 ∂

†
q0 −σ0(

l1+l2
2 ) ⊗ Il1−l2+1

∂s± Il1+l2+1 ⊗ σ±(
l1−l2
2 ) ∂

†
s± −Il1+l2+1 ⊗ σ∓(

l1−l2
2 )

∂s0 Il1+l2+1 ⊗ σ0(
l1−l2
2 ) ∂

†
s0 −Il1+l2+1 ⊗ σ0(

l1−l2
2 )

Table 2 Symbols for some left and right invariant second order differential operators

Left-invariant Right-invariant
operator Left symbol Operator Right symbol

∂q+ ∂s± σ+(
l1+l2
2 ) ⊗ σ±(

l1−l2
2 ) ∂

†
q+ ∂

†
s± σ−(

l1+l2
2 ) ⊗ σ∓(

l1−l2
2 )

∂q− ∂s± σ−(
l1+l2
2 ) ⊗ σ±(

l1−l2
2 ) ∂

†
q− ∂

†
s± σ+(

l1+l2
2 ) ⊗ σ∓(

l1−l2
2 )

6.4.1 Symbolic Calculus of Invariant Operators

Now,we discuss the symbolic calculus for operators on Spin(4).We recall fromSect. 2
that an operator A : C∞ → D′ is said to be left-invariant if it commutes with left
translations, i.e. if A ◦ Ls0 = Ls0 ◦ A for any s0 = q0ω+ + s0ω− with L given by
(5.40a). Any such operator A can be expressed in terms of a left-symbol σA in the
form of a Fourier multiplier

A f (s) =
∑

(l1,l2)∈�Spin(4)

d(l1,l2) tr( σA(l1, l2) ̂f (l1, l2) ξ(l1,l2)(s)). (6.26)

Similarly, right invariant operators B : C∞ → D′ with B ◦ Rs0 = Rs0 ◦ B correspond
to right multiplication of the Fourier coefficients by a right-symbol σ †

B

B f (s) =
∑

(l1,l2)∈�Spin(4)

d(l1,l2) tr( ̂f (l1, l2) σ
†
B(l1, l2) ξ(l1,l2)(s)). (6.27)

It is important to distinguish between left and right-symbols here, right-invariant oper-
ators also posses (variable coefficient) left-symbols.

In Tables 1 and 2 we present symbols for some left-invariant respectively
right-invariant differential operators on Spin(4). The formulas for symbols are a con-
sequence of Theorem 5.11 and Corollary 5.13 and given in terms of σ± from (4.23)
and with σ0 = [σ+, σ−], i.e. with σ0(m/2)i j = 1

2 (m − 2 j)δi j for every m ∈ N0 and
0 ≤ i, j ≤ m.

Mapping properties of left-invariant operators are characterised in terms of dif-
ference operators acting on their symbols. We recall the definition first before
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Table 3 Difference operators of order 1 for s = sω+ + qω− ∈ Spin(4)

Difference operator Associated Function Difference operator Associated function

	−−
q ϕ(q, s) = q1 − 1 	−−

s ϕ(q, s) = s1 − 1

	−+
q ϕ(q, s) = q2 	−+

s ϕ(q, s) = s2

	+−
q ϕ(q, s) = −q2 	+−

s ϕ(q, s) = −s2

	++
q ϕ(q, s) = q1 − 1 	++

s ϕ(q, s) = s1 − 1

providing properties of the difference operators of our choice. A difference opera-
tor 	 : s′ → s′ acting on moderate matrix sequences is defined in terms of a function
ϕ ∈ C∞(Spin(4)) via 	̂f = ̂ϕ f using the group Fourier transform ̂f of distributions
f ∈ D′(Spin(4)). If ϕ vanishes to first order at the identity, we call 	 a first order
difference operator.

There are different ways to construct first-order difference operators. At first glance
the concept of difference operators introduced in [8] seems to be a natural choice for
difference operators defined over tensor products of compact Lie groups, but it has a
major drawback. In general, arbitrary tensor products of representations are not irre-
ducible and require another decomposition making the construction of an admissible
collection rather difficult. In the present case this approach leads to the same difference
operators which we introduce here in a more direct way.

We use particular difference operators related to the matrix entries of the represen-
tations ξ( 12 ,± 1

2 ). As pointed out in [23] this construction leads to difference operators
satisfying a finite Leibniz rule. To fix notation, we collect them in Table 3.

We recall the following result from [25]. We will use multi-index notation for
difference operators and write 	α = (	−−

q )α1 · · · (	++
s )α8 for α ∈ N

8
0 and formulate

the multiplier theorem [25, Theorem 3.5] for the particular case of Spin(4).

Theorem 6.8 (Multiplier theorem, [25]) Let A : C∞(Spin(4)) → D′(Spin(4)) be a
left-invariant operator on Spin(4) with left-symbol σA satisfying

‖σA(l1, l2)‖op +
∑

|α|≤3

〈ξ(l1,l2)〉|α|‖	ασA(l1, l2)‖op + 〈ξl1,l2〉4‖%∗2 σA(l1, l2)‖op ≤ C

(6.28)

with the particular second order difference %∗ = 	++
q + 	−−

q + 	++
s + 	−−

s ∈
diff2(Ŝpin(4)). Then A is bounded on Lp(Spin(4)) for 1 < p < ∞ and of weak type
(1, 1).

Explicit formulas for the difference operators from Table 3 follow from the recur-
rence relations given in Theorem 5.6.

Theorem 6.9 The difference operators of order 1 given in Table 3 are explicitly given
by

	±±
q σ(l1, l2) = l1 + l2

l1 + l2 + 1
A±(l−1 , l−2 )�σ(l−1 , l−2 ) A±(l−1 , l−2 )
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+ l1 + l2 + 2

l1 + l2 + 1
B±(l+1 , l+2 )�σ(l+1 , l+2 ) B±(l+1 , l+2 ) − σ(l1, l2),

(6.29a)

	±∓
q σ(l1, l2) = l1 + l2

l1 + l2 + 1
A±(l−1 , l−2 )�σ(l−1 , l−2 ) A∓(l−1 , l−2 )

− l1 + l2 + 2

l1 + l2 + 1
B±(l+1 , l+2 )�σ(l+1 , l+2 ) B∓(l+1 , l+2 ), (6.29b)

	±±
s σ(l1, l2) = l1 − l2

l1 − l2 + 1
C±(l+1 , l−2 )�σ(l+1 , l−2 )C±(l+1 , l−2 )

+ l1 − l2 + 2

l1 − l2 + 1
D±(l−1 , l+2 )�σ(l−1 , l+2 ) D±(l−1 , l+2 ) − σ(l1, l2),

(6.29c)

	±∓
s σ(l1, l2) = l1 − l2

l1 − l2 + 1
C±(l+1 , l−2 )�σ(l+1 , l−2 )C∓(l+1 , l−2 )

− l1 − l2 + 2

l + 1
D±(l−1 , l+2 )�σ(l−1 , l+2 ) D∓(l−1 , l+2 ) . (6.29d)

Proof We consider the first difference operator 	−−
q . By using the first matrix recur-

rence relation from Theorem 5.6 and the cyclic property of the trace, we obtain

q1 f (s) =
∑

(l1,l2)∈�Spin(4)

d(l1,l2) tr
(

̂f (l1, l2) q1 ξ(l1,l2)(s)
)

=
∑

(l1,l2)∈�Spin(4)

d(l1,l2) tr
(

̂f (l1, l2) A−(l1, l2) ξ(l+1 ,l+2 )(s) A−(l1, l2)
� )

+
∑

(l1,l2)∈�Spin(4)

d(l1,l2) tr
(

̂f (l1, l2) B−(l1, l2) ξ(l−1 ,l−2 )(s) B−(l1, l2)
� )

=
∑

(l1,l2)∈�Spin(4)+( 12 , 12 )

d(l−1 ,l−2 ) tr
(

̂f (l−1 , l−2 ) A−(l−1 , l−2 ) ξ(l1,l2)(s) A−(l−1 , l−2 )�
)

+
∑

(l1,l2)∈�Spin(4)−( 12 , 12 )

d(l+1 ,l+2 ) tr
(

̂f (l+1 , l+2 ) B−(l+1 , l+2 ) ξ(l1,l2)(s) B−(l+1 , l+2 )�
)

=
∑

(l1,l2)∈�Spin(4)+( 12 , 12 )

d(l−1 ,l−2 ) tr
(

A−(l−1 , l−2 )� ̂f (l−1 , l−2 ) A−(l−1 , l−2 ) ξ(l1,l2)(s)
)

+
∑

(l1,l2)∈�Spin(4)−( 12 , 12 )

d(l+1 ,l+2 ) tr
(

B−(l+1 , l+2 )� ̂f (l+1 , l+2 ) B−(l+1 , l+2 ) ξ(l1,l2)(s)
)

.

(6.30)

As for indices just outside �Spin(4) the matrices A± and B± vanish, the last sums can
be rewritten as sums over �Spin(4). Making use of the identities

d(l+1 ,l+2 )

d(l1,l2)
= l1 + l2 + 2

l1 + l2 + 1
,

d(l−1 ,l−2 )

d(l1,l2)
= l1 + l2

l1 + l2 + 1
(6.31)
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and subtracting byσ(l1, l2)weobtain the expression for	−−
q . The remaining formulas

are obtained similarly from Theorem 5.6. ��
Corollary 6.10 When σ(l1, l2) = ρ( l1+l2

2 ) ⊗ τ( l1−l2
2 ) is of tensor product form, the

difference operators of order 1 given in Table 3 are explicitly given by

	±±
q ρ

(

l1 + l2
2

)

⊗ τ

(

l1 − l2
2

)

= (	±±ρ)

(

l1 + l2
2

)

⊗ τ

(

l1 − l2
2

)

, (6.32a)

	±∓
q ρ

(

l1 + l2
2

)

⊗ τ

(

l1 − l2
2

)

= (	±∓ρ)

(

l1 + l2
2

)

⊗ τ

(

l1 − l2
2

)

, (6.32b)

	±±
s ρ

(

l1 + l2
2

)

⊗ τ

(

l1 − l2
2

)

= ρ

(

l1 + l2
2

)

⊗ (	±±τ)

(

l1 − l2
2

)

, (6.32c)

	±∓
s ρ

(

l1 + l2
2

)

⊗ τ

(

l1 − l2
2

)

= ρ

(

l1 + l2
2

)

⊗ (	±∓τ)

(

l1 − l2
2

)

, (6.32d)

where

	±±ρ(l) = 2l

2l + 1
a±(2 l−)�ρ(l−) a±(2 l−)

+ 2l + 2

2l + 1
b±(2 l+)�ρ(l+) b±(2 l+) − ρ(l), (6.33a)

	±∓ρ(l) = 2l

2l + 1
a±(2 l−)�ρ(l−) a∓(2 l−)

− 2l + 2

2l + 1
b±(2 l+)�ρ(l+) b∓(2 l+) (6.33b)

are the difference operators onSpin(3) given in terms of a± and b± fromDefinition 4.2.

Corollary 6.11 A matrix sequence is of the form σ(l1, l2) = ρ( l1+l2
2 ) ⊗ Il1−l2+1 if and

only if

	±±
s σ = 	±∓

s σ = 0. (6.34)

Similarly, it is of the form σ(l1, l2) = Il1+l2+1 ⊗ τ( l1+l2
2 ) if and only if

	±±
q σ = 	±∓

q σ = 0. (6.35)

InTable 4we show the difference operators applied to the symbols of the elementary
first order differential operators ∂qν, ∂sμ, ν, μ ∈ {0,+,−} and the Laplacian L on
the group. The table can be computed using Corollary 6.10 in combination with the
first columns of [23, Table 1], the symbol of the Laplacian is corrected here.

By construction, difference operators are mutually commuting operators. Differ-
ences acting on symbols of differential operators are best calculated using the Leibniz
rule for difference operators combined with Table 4. From [23] it follows that
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Table 4 Difference operators acting on some symbols

σ∂q0 σ∂q+ σ∂q− σL

	−−
q

1
2 Id 0 0 −σ∂q0 − 3

4 Id

	−+
q 0 Id 0 −σ∂q−

	+−
q 0 0 Id −σ∂q+

	++
q − 1

2 Id 0 0 σ∂q0 − 3
4 Id

σ∂s0 σ∂s+ σ∂s− σL

	−−
s

1
2 Id 0 0 −σ∂s0 − 3

4 Id

	−+
s 0 Id 0 −σ∂s−

	+−
s 0 0 Id −σ∂s+

	++
s − 1

2 Id 0 0 σ∂s0 − 3
4 Id

	
i j
q (στ) = (	

i j
q σ)τ + σ(	

i j
q τ) −

∑

k∈{+,−}
(	ik

q σ)(	
k j
q τ), i, j ∈ {+,−}

(6.36)

and similarly for 	
i j
s . We show how to apply this to compute the difference operators

acting on the symbol of the partial Laplacians

Ls = −1

2
(∂s+∂s− + ∂s−∂s+) − ∂2s0 and

Lq = −1

2
(∂q+∂q− + ∂q−∂q+) − ∂2q0 (6.37)

and thus the Laplacian L. As σLq = (− 1
2 (σ+σ− + σ−σ+) − σ 2

0 ) ⊗ I it follows that

− 2	++
q σLq = (	++(σ+σ− + σ−σ+ + 2σ 2

0 )) ⊗ Il1−l2+1

=
(

(	++σ+)σ− + σ+(	++σ−) +
∑

j∈{+,−}
(	+ jσ+)(	 j+σ−)+

+ (	++σ−)σ+ + σ−(	++σ+) +
∑

j∈{+,−}
(	+ jσ−)(	 j+σ+)+

+ 2
(

(	++σ0)σ0 + σ0(	
++σ0 +

∑

j∈{+,−}
(	+ jσ0)(	

j+σ0)
)

)

⊗ Il1−l2+1

=
(

(	+−σ−)(	−+σ+) + 2
(

(	++σ0)σ0 + σ0(	
++σ0) + (	++σ0)(	

++σ0)
)

)

⊗ I

= (Il1+l2+1 − 2σ0 + 1

2
Il1+l2+1) ⊗ Il1−l2+1

(6.38)

where we made use of 	++σ+ = 0 and 	+−σ0 = 0 to simplify the expression. The
calculation for the remaining differences 	±±

q σLq and 	±±
s σLs is similar and due to

	±±
s σLq = 	±±

q σLs = 0 the formulas for differences applied to σL follow.
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6.4.2 Symbolic Calculus of Pseudodifferential Operators

A continuous linear operator A mapping C∞(Spin(4)) toD′(Spin(4)) can be charac-
terised by its matrix-valued full left-symbol

σA : Spin(4) × �Spin(4) � (s, l1, l2) �→ σA(s, l1, l2) ∈ C
d(l1,l2)×d(l1,l2) (6.39)

defined by

σA(s, l1, l2) := ξ(l1,l2)(s)
∗(A ξ(l1,l2))(s). (6.40)

By definition

A f (s) =
∑

(l1,l2)∈�Spin(4)

d(l1,l2) tr
(

σA(s, l1, l2) ̂f (l1, l2) ξ(l1,l2)(s)
)

(6.41)

holds true as D′-convergent series. For A and σA related by (6.41) we write A =
Op(σA).

In [21, 23] the Hörmander class �k(G) of pseudo-differential operators of order
k on a compact Lie group G was characterised in terms of these full symbols, also
(ρ, δ)-classes �k

ρ,δ have been introduced there. We recall this and the resulting char-
acterisations of ellipticity and hypoellipticity of operators for the particular case of
Spin(4).

Adapted to the difference operators 	α , α ∈ N
8
0, we find left-invariant differential

operators ∂(α) of order |α| such that Taylor’s formula (2.11) and Theorem 2.5 hold
true. Although these differential operators play a crucial role for the calculus, we will
use a different set of differential operators for our purposes. We use the multi-index
notation

∂β = (∂q+)β1(∂q0)
β2(∂q−)β3(∂s+)β4(∂s0)

β5(∂s−)β6 , β ∈ N
6
0, (6.42)

and point out that ∂α �= ∂(α) are different operators. However, ∂(α) is a complex linear
combination of ∂β with |β| ≤ |α|.
Theorem 6.12 ([23, Theorems 2.2 and 2.6])] Let A be a linear continuous opera-
tor from C∞(Spin(4)) to D′(Spin(4)) with matrix-valued full symbol σA(s, l1, l2) ∈
C
d(l1,l2)×d(l1,l2) . Then A ∈ �k(Spin(4)) if and only if

‖	α∂β σA(s, l1, l2)‖op ≤ Cα,β〈ξ(l1,l2)〉k−|α| (6.43)

for all multi-indices α and β uniformly in s ∈ Spin(4) and (l1, l2) ∈ �Spin(4).
Moreover, the rapid off-diagonal decay property of the symbol

|	α∂βσA(s, l1, l2)i, j | ≤ CA,α,β,N (1 + |i − j |)−N 〈ξ(l1,l2)〉k−|α| (6.44)

holds true uniformly in s ∈ Spin(4), (l1, l2) ∈ �Spin(4) and 0 ≤ i, j < d(l1,l2).
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In order to obtain symbolic estimates for the (multiplicative) inverse of a symbol
σ = σ(s, l1, l2) we will use the following result taking from [23]. It implies ellipticity
and also hypoellipticity of certain operators within the calculus.

Lemma 6.13 ([23, Lem. 4.5]) Let k ≥ k0 and 0 ≤ δ < ρ ≤ 1. Let the matrix symbol
σ(s, l1, l2) satisfy the (ρ, δ)-estimates of order k

‖	α∂βσ(s, l1, l2)‖op ≤ Cα,β 〈ξ(l1,l2)〉k−ρ|α|+δ|β| (6.45)

for all multi-indices α and β and uniformly in s ∈ Spin(4) and (l1, l2) ∈ �Spin(4).
Assume further that σ(s, l1, l2) is invertible for all s ∈ Spin(4) and (l1, l2) ∈ �Spin(4)
and satisfies

‖σ(s, l1, l2)−1‖op ≤ C〈ξ(l1,l2)〉−k0 (6.46)

for all s ∈ Spin(4) and (l1, l2) ∈ �Spin(4) and if k0 < k in addition that

‖σ(s, l1, l2)−1(	α∂βσ(s, l1, l2)
)‖op ≤ C 〈ξ(l1,l2)〉−ρ|α|+δ|β| (6.47)

for all s ∈ Spin(4) and (l1, l2) ∈ �Spin(4).
Then the symbol σ−1(s, l1, l2) = σ(s, l1, l2)−1 satisfies the (ρ, δ)-estimates of

order −k0

‖	α∂βσ−1(s, l1, l2)‖op ≤ C ′
α,β 〈ξ(l1,l2)〉−k0−ρ|α|+δ|β| (6.48)

for all multi-indices α and β and uniformly in s ∈ Spin(4) and (l1, l2) ∈ �Spin(4).

As consequence, one obtains combined with Theorem 2.5 and the standard con-
struction of parametrices within the calculus characterisations of ellipticity and local
hypoellipticity. We recall these theorems before giving examples on Spin(4) later on.
First we give a characterisation of the elliptic operators in �k(Spin(4)) in terms of
their global symbols.

Theorem 6.14 [23, Thm. 4.1] An operator A ∈ �k(Spin(4)) is elliptic if and only if
its matrix valued symbol σA(s, l1, l2) is invertible for all but finitely many (l1, l2) ∈
�Spin(4) and for all such (l1, l2) satisfies

‖σ−1
A (s, l1, l2)‖op ≤ C 〈ξ(l1,l2)〉−k (6.49)

uniformly in s ∈ Spin(4).

We say that a symbol σA belongs to the symbol class Skρ,δ(Spin(4)) if estimate
(6.45) holds true for all multi-indices α, β and uniformly in the remaining variables.
We recall the existence of parametrices for operators with such symbols under suitable
conditions on the multiplicative inverse of the symbol. It is again taken from [23] and
provides an analogue of the well-known hypoellipticity result of Hörmander [15],
requiring conditions on lower order terms of the symbol.
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Theorem 6.15 ([23, Thm. 5.1.]) Let k ≥ k0 and 1 ≥ ρ > δ ≥ 0. Let A ∈
Op(Skρ,δ(Spin(4))) be a pseudo-differential operator with the matrix-valued sym-

bol σA = σA(s, l1, l2) ∈ Skρ,δ(Spin(4)) which is invertible for all but finitely many
(l1, l2) ∈ �Spin(4) and satisfies for all such (l1, l2)

‖σA(s, l1, l2)−1‖op ≤ C 〈ξ(l1,l2)〉−k0 (6.50)

uniformly in s ∈ Spin(4). Assume further that

‖ σ−1
A (s, l1, l2)

(

	α∂β σA(s, l1, l2)
) ‖op ≤ C 〈ξ(l1,l2)〉−ρ|α|+δ|β| (6.51)

for all multi-indices α and β, all s ∈ Spin(4), and all but finitely many (l1, l2). Then
there exists an operator B ∈ Op(S−k0

ρ,δ (Spin(4)) such that AB − I and BA − I map
D′(Spin(4)) to C∞(Spin(4)).

Consequently, A is locally hypoelliptic and

sing supp Au = sing supp u for all u ∈ D′(Spin(4)). (6.52)

Note, that the parametrix B provided by this theorem satisfies the subelliptic esti-
mates ‖B f ‖Hr � ‖ f ‖Hr+k0 with k0 independent of r ∈ R.

7 Examples

To conclude this paper we provide examples of operators on Spin(4) having interesting
ellipticity and hypoellipticity properties.

Example 7.1 (See [23, Example 5.2]) Consider the operator D3q + c, with c ∈ C.
Using the identity D3q = − i

2∂q0 and the symbols given in Table 1, we have

σD3q+c(l1, l2) = c − i
2
σ0

(

l1 + l2
2

)

⊗ Il1−l2+1

=
([

c − i
2
(l1 + l2 − 2 j)

]

δi j

)

(l1+l2+1)×(l1+l2+1)
⊗ Il1−l2+1

(7.1)

and this symbol is invertible for all (l1, l2)-representations if and only if ic /∈ 1
2Z. The

inverse satisfies (D3q + c)−1 ∈ Op(S00,0(Spin(4))) since

	−−
q σ(D3q+c)−1 = σ

(D3q+c+ i
2 )−1 ,

	++
q σ(D3q+c)−1 = σ

(D3q+c− i
2 )−1 ,

	+−
q σ(D3q+c)−1 = 	−+

q σ(D3q+c)−1 = 0

(7.2)
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together with

	−−
s σ(D3q+c)−1 = 	++

s σ(D3q+c)−1 = 	+−
s σ(D3q+c)−1 = 	−+

s σ(D3q+c)−1 = 0

(7.3)

by using Corollary 6.10. Therefore, the operators D3q + c satisfy subelliptic estimates
with loss of one derivative and are thus globally hypoelliptic.

Example 7.2 Any left-invariant vector field on Spin(4) can be conjugated by an inner
automorphism to a constant multiple of

X = D3q + κD3s (7.4)

with parameterκ ∈ R.We investigate this in dependence ofκ. Considering the symbol
of the operator we obtain

2i σX(l1, l2) = σ0

(

l1 + l2
2

)

⊗ Il1−l2+1 + κ Il1+l2+1 ⊗ σ0

(

l1 − l2
2

)

, (7.5)

where σ0(
m
2 ) = 1

2 (m − 2 j)δi j = diag(−m
2 ,−m

2 + 1, . . . , m
2 − −1, m

2 ). This matrix
is diagonal with entries given as sums

(

l1 + l2
2

− j

)

+ κ

(

l1 − l2
2

− k

)

(7.6)

for 0 ≤ j ≤ l1 + l2 and 0 ≤ k ≤ l1 − l2. Both terms vanish for some admissible
k and l if both l1 + l2 and l1 − l2 are even. Thus, there are always infinitely many
(l1, l2) ∈ �Spin(4) for which σX(l1, l2) is not invertible and none of the left-invariant
vector fields on Spin(4) can be globally hypoelliptic.

This is in contrast to toriTn ,where hypoelliptic left-invariant vector fields are known
to exist, see [12] and [6]. In [17] a new notion of hypoellipticity was introduced. We
say that X is hypoelliptic modulo ker X, if for f ∈ D′ with X f ∈ C∞ we find an
element g ∈ ker X such that f − g ∈ C∞.

The vector field X is globally hypoelliptic modulo ker X if (and only if) κ is
irrational and non-Liouville. Indeed, such a number κ can only be approximated to
finite order by rationals (cf. [14, §11.7]) and hence

∣

∣

∣

∣

(

l1 + l2
2

− j

)

+ κ

(

l1 − l2
2

− k

)∣

∣

∣

∣

≥ c

(∣

∣

∣

∣

l1 + l2
2

− j

∣

∣

∣

∣

+
∣

∣

∣

∣

l1 − l2
2

− k

∣

∣

∣

∣

)−μ

(7.7)

with constants c andμ for all (l1, l2) ∈ �Spin(4) and 0 ≤ j ≤ l1+l2 and 0 ≤ k ≤ l1−l2
such that ( l1+l2

2 − j) + κ( l1−l2
2 − k) �= 0. The term in parantheses on the right hand

side is clearly bounded by 〈ξ(l1,l2)〉 and thus we obtain a lower bound on the symbol
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by a multiple of 〈ξ(l1,l2)〉−μ. This implies the subelliptic estimate

‖ f − g‖Hr (Spin(4)) ≤ C‖X f ‖Hr+μ−1(Spin(4)), (7.8)

where the Fourier coefficients of g equal those of f on the zeros of σX and in turn the
global hypoellipticity modulo ker X follows.

Example 7.3 Next, we consider the (partial) Laplacians

Lq = ∂q+∂q− + ∂q−∂q+ + ∂2q0 (7.9)

and

Ls = ∂s+∂s− + ∂s−∂s+ + ∂2s0 (7.10)

together with the Laplacian L = Ls + Lq . Their symbols are given by

σLq (l1, l2) = − (l1 + l2)(l1 + l2 + 2)

4
I, σLs (l1, l2) = − (l1 − l2)(l1 − l2 + 2)

4
I

(7.11)

and

σL(l1, l2) = − l21 + 2l1 + l22
2

I (7.12)

(see also Theorem 6.4). While the latter one is elliptic, the symbols of the two partial
Laplacians Lq and Ls vanish for l1 = −l2 and for l1 = l2, respectively.

Clearly any combinationLq +κLs with κ > 0 is elliptic. For κ < 0 the behaviour
of this operator depends on number theoretic properties of κ as the next example
shows.

Example 7.4 The ultra-hyperbolic operator

Lq − κLs (7.13)

with κ > 0 is hypoelliptic for irrational non-Liouville numbers κ. To see this, we
consider its symbol

σLq−κLs (l1, l2) = − (l1 + l2)(l1 + l2 + 2) − κ(l1 − l2)(l1 − l2 + 2)

4
I. (7.14)

This is clearly invertible for irrational κ and (l1, l2) �= (0, 0). Furthermore, if κ is
non-Liouville we find a maximal approximation order and hence there is a number
μ such that κ can not be rationally approximated to this order (see e.g. [14, Chapter
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§11.4 und §11.7]) and hence there is a constant C > 0 such that there are at most
finitely many couples (l1, l2) with l1 �= l2 and

∣

∣

∣

∣

κ − (l1 + l2)(l1 + l2 + 2)

(l1 − l2)(l1 − l2 + 2)

∣

∣

∣

∣

<
1

C((l1 − l2)(l1 − l2 + 2))μ
. (7.15)

Thus, apart from those (l1, l2), it follows that

‖σ−1
Lq−κLs

(l1, l2)‖op ≤ 4C((l1 − l2)(l1 − l2 + 2))μ−1 ≤ C̃〈ξ(l1,l2)〉2μ−2, l1 �= l2

(7.16)

together with the estimate

‖σ−1
Lq−κLs

(l, l)‖op ≤ 1

l(l + 1)
, l1 = l2 = l �= 0. (7.17)

Thus, the operator satisfies the subelliptic estimate

‖ f ‖Hr (Spin(4)) ≤ C‖Lq f − κLs f ‖Hr+2μ−2(Spin(4)) (7.18)

between Sobolev spaces with loss of 2μ derivatives. We leave it open whether the
parametrix to this operator is pseudodifferential in our calculus.

Example 7.5 We consider the following sub-Laplacian on Spin(4)

Lsub = D2
1q + D2

2q + D2
1s + D2

2s + D2
3s

= −1

2
(∂q+∂q− + ∂q−∂q+ + ∂s+∂s− + ∂s−∂s+) − ∂2s0.

(7.19)

with symbol given by the diagonal matrix

σLsub (l1, l2) =
((

(l1 + l2 − 2i)2 − (2l21 + 4l1 + 2l22)

4

)

δi j

)

(l1+l2+1)×(l1+l2+1)

⊗ Il1−l2+1.

(7.20)

As all the entries are non-zero, we conclude that the operatorLsub has trivial null space.
As symbol of a second order differential operator it belongs to the class S2(Spin(4))
and thus satisfies the norm estimate

‖	α σLsub(l1, l2)‖op ≤ Cα 〈ξ(l1,l2)〉2−|α| (7.21)

for all multi-indices α. The operator is not elliptic, but it is subelliptic with loss of
one derivative. We are going to show this next by appealing to Theorem 6.14. The
pointwise inverse of the symbol satisfies the norm estimate

‖σ−1
Lsub

(l1, l2)‖op = 4

l21 + 2l1(2 − l2) + l22
≤ C 〈ξ(l1,l2)〉−1 (7.22)
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for all admissible (l1, l2) with C = √
7 being the sharp constant. In particular, we

obtain the subelliptic estimate

‖ f ‖Hr (Spin(4)) ≤ C‖Lsub f ‖Hr−1(Spin(4)) (7.23)

for all Sobolev regularities r ∈ R.
The condition (6.51) of Theorem 6.14 is satisfied with ρ = 1

2 and for α = 0 or
|α| ≥ 2. Hence, it remains to check the case of first order differences. For this we use
	−−

q σLsub = 	++
q σLsub = − 1

2 Id together with

‖σ−1
Lsub

(l1, l2)[	+−
q σLsub(l1, l2)]‖op = ‖σ−1

Lsub
(l1, l2)σ∂q+(l1, l2)]‖op

= 4
√
l1 + l2

l21 + 2l1(2 − l2) + l22
≤ C 〈ξ(l1,l2)〉−

1
2

(7.24)

and an analogous statement for 	−+
q . Concerning the differences in s we can make

use of the relations 	−−
s σLsub = −σ∂s0 − 3

4 Id , 	
++
s σLsub = σ∂s0 − 3

4 Id , 	
+−
s σLsub =

−σ∂s+ , and 	−−
s σLsub = −σ∂s− directly arising from the partial Laplacian.

Hence, Lsub has a pseudo-differential parametrix L�
sub ∈ Op(S−1

1
2 ,0

(Spin(4))).

Further examples can be constructed along the lines of [23, Section 5]. As proofs
are similar, we only provide the results.

Example 7.6 The following analogue of the heat operator on Spin(4)

H = D3q − D2
1q − D2

2q − D2
1s − D2

2s − D2
3s = D3q − Lsub (7.25)

has a parametrixH� ∈ Op(S−1
1
2 ,0

(Spin(4))) and, consequently, it satisfies the sub-elliptic

estimate

‖ f ‖Hr (Spin(4)) ≤ C‖H f ‖Hr−1(Spin(4)) (7.26)

for all Sobolev regularities r ∈ R.

Example 7.7 The operators

S± = ±iD3q − Lsub. (7.27)

are analogues of the Schrödinger operator on Spin(4). These operators have non-trivial
distributions in their null-spaces and can thus be not hypoelliptic.

However, the operators S± + c with c ∈ C\R are globally hypoelliptic.

Our last example shows a differential operator with non-constant coefficients which
cannot be written as tensor product of Spin(3) operators.
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Example 7.8 Let us consider the operator

A = a(s)(D2
1q + D2

2q) + b(s)(D2
1s + D2

2s) (7.28)

with a, b ∈ C∞(Spin(4)) such that '(θa(s)) ≥ ca > 0 and '(θb(s)) ≥ cb > 0 for
all s ∈ Spin(4) and for a fixed complex number θ ∈ C \ {0}. The full symbol of the
operator A can be written as the Kronecker sum

σA(s, l1, l2) = C ⊕ D = C ⊗ Il1−l2+1 + Il1+l2+1 ⊗ D (7.29)

with

C =
(

a(s)
(

(l1 + l2 − 2 j)2

4
− (l1 + l2)(l1 + l2 + 2)

4

)

δi j

)

(l1+l2+1)×(l1+l2+1)
,

D =
(

b(s)
(

(l1 − l2 − 2 j)2

4
− (l1 − l2)(l1 − l2 + 2)

4

)

δi j

)

(l1−l2+1)×(l1−l2+1)
.

(7.30)

Since '(θa) and '(θb) are both positive and (l − 2 j)2 − l(l + 2) ≤ −2 l and 0 ≤
j ≤ l and every l ∈ N0, we conclude that the symbol is invertible for all s ∈ Spin(4)
and all (l1, l2) ∈ �Spin(4) \ {(0, 0)} with eigenvalues satisfying

'(θ Spec σA(s, l1, l2)) ≥ '(θa(s))(l1 + l2) + '(θb(s))(l1 − l2), (7.31)

where Spec σA denotes the spectrum of the matrix σA. As symbol of a second order
differential operator we also know that σA ∈ S2(Spin(4)) and it remains to ask for
symbolic properties of σ−1

A (s, l1, l2) for (l1, l2) �= (0, 0). As the absolutely smallest
eigenvalue corresponds to the operator norm of the inverse, we observe

‖σA(s, l1, l2)−1‖op = 2

|ca(l1 + l2) + cb(l1 − l2)| ≤ C 〈ξ(l1,l2)〉−1 (7.32)

for all (l1, l2) ∈ �Spin(4) \ {(0, 0)}. Hence, condition (6.51) of Theorem 6.15 holds
with ρ = 1

2 and δ = 0. Thus, the operator A has a pseudo-differential parametrix
A� ∈ Op(S−1

1
2 ,0

(Spin(4))) and therefore satisfies the subelliptic estimate

‖ f ‖Hs (Spin(4)) ≤ C‖A f ‖Hs−1(Spin(4)) (7.33)

for all s ∈ R.
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