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Abstract
We study the behavior of Haar coefficients in Besov and Triebel–Lizorkin spaces onR,
for a parameter range in which the Haar system is not an unconditional basis. First, we
obtain a range of parameters, extending up to smoothness s < 1, in which the spaces
Fs
p,q and Bs

p,q are characterized in terms of doubly oversampled Haar coefficients
(Haar frames). Secondly, in the case that 1/p < s < 1 and f ∈ Bs

p,q , we actually
prove that the usual Haar coefficient norm, ‖{2 j 〈 f , h j,μ〉} j,μ‖bsp,q remains equivalent
to ‖ f ‖Bs

p,q
, i.e., the classical Besov space is a closed subset of its dyadic counterpart.

At the endpoint case s = 1 and q = ∞, we show that such an expression gives
an equivalent norm for the Sobolev space W 1

p(R), 1 < p < ∞, which is related
to a classical result by Bočkarev. Finally, in several endpoint cases we give optimal
inclusions between Bs

p,q , F
s
p,q , and their dyadic counterparts.
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1 Introduction and Statement of Main Results

In this paper we investigate the validity of norm characterizations for elements f in
Besov and Triebel–Lizorkin spaces, Bs

p,q(R) and Fs
p,q(R), in terms of expressions

involving their Haar coefficients or suitable variations thereof. The novelty in the
current paper is that we obtain results for a range of the parameters (s, p, q) in which
theHaar system is not anunconditional basis of the above spaces (seeFigs. 1 and2); this
complements earlier work of the authors [11–14, 23]where a complete descriptionwas
given for the parameter range in which the unconditional or Schauder basis property
holds in each such space.

We denote the (inhomogeneous) Haar system in R by

H = {
h j,μ : j ≥ −1, μ ∈ Z

}
, (1.1)

where we let h(x) = 1[0, 12 )(x) − 1[ 12 ,1)(x) and

h j,μ(x) := h(2 j x − μ), if μ ∈ Z, j = 0, 1, 2, . . . (1.2)

Note that h j,μ is supported in the closure of the dyadic interval

I j,μ = [
2− jμ, 2− j (μ + 1)

)
.

In the case j = −1, we just let

h−1,μ := 1I−1,μ = 1[μ,μ+1), μ ∈ Z.

Let Fs
p,q(R) and Bs

p,q(R) denote the usual Triebel–Lizorkin and Besov spaces [27].
It has been shown in [23, 24, 30] that H is an unconditional basis of Fs

p,q(R) if and
only if s belongs to the range

max
{
1/p − 1, 1/q − 1

}
< s < min

{
1/p, 1/q, 1

}
; (1.3)

moreover, in the range (1.3), Fs
p,q is characterized by the property

∥∥∥
( ∞∑

j=−1

2 jsq
[ ∑

μ∈Z
2 j |〈 f , h j,μ〉|1I j,μ

]q)1/q∥∥∥
p

< ∞, (1.4)

and this expression defines an equivalent quasinorm in Fs
p,q .

It was also shown in [12] that H is a Schauder basis of Fs
p,q(R) (with respect to

natural enumerations) in the larger range

1/p − 1 < s < min
{
1/p, 1

}
, for all 0 < q < ∞. (1.5)
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Fig. 1 Parameter domain forH to be an unconditional basis (left figure) or a Schauder basis (right figure)
in Fs

p,q (R)

At the endpoints, the Schauder basis property holds for Fs
p,q if and only if

s = 1/p − 1 and 1/2 < p ≤ 1 (1.6)

also for all 0 < q < ∞; see [13]. These regions are depicted in Fig. 1.
For the spaces Bs

p,q(R) there is no such distinction, andH is an unconditional basis
under (1.5) (and also a Schauder basis under (1.6), if p = q); see [14]. Moreover, in
the range (1.5), Bs

p,q is characterized by the property

( ∞∑

j=−1

2 j(s− 1
p )q

( ∑

μ∈Z
|2 j 〈 f , h j,μ〉|p

)q/p)1/q
< ∞, (1.7)

and this expression in an equivalent quasinorm in Bs
p,q .

1.1 The Oversampled Haar Systems: Haar Frames

A main feature of this paper is to show that the above characterizations in terms of
Haar coefficients can be extended to the larger regions depicted in Fig. 2, provided
that we doubly oversample with Haar type coefficients obtained by a shift.

More concretely, we now define

h̃ j,ν(x) := h(2 j x − ν
2 ) if j = 0, 1, 2, . . . and ν ∈ Z. (1.8)

Observe that for even ν = 2μ we recover the original Haar functions, h̃ j,2μ = h j,μ

supported in I j,μ, but for odd ν we obtain a shifted Haar function

h̃ j,2μ+1 = h j,μ(· − 2− j−1),
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which is supported in the interval [2− j (μ+ 1/2), 2− j (μ+ 3/2)) = I j,μ + 2− j−1. As
before, for j = −1 we just let

h̃−1,ν := h−1,ν = 1[ν,ν+1).

Then the extended Haar system is defined by

H ext =
{
h̃ j,ν : j ≥ −1, ν ∈ Z

}
. (1.9)

In what follows we will need to work with appropriate spaces of distributions on
which the (generalized) Haar coefficients are well defined. Given a bounded interval
I ⊂ R, consider the linear functional (distribution)

λI ( f ) =
∫

I
f (x)dx, (1.10)

which applied to f ∈ L loc
1 satisfies the trivial inequality

|λI ( f )| ≤
∫

I
| f (x)|dx . (1.11)

Below, we shall also deal with distributions f , associated with certain negative
smoothness parameters, which may not belong to L loc

1 . To handle these we choose as
a reference space the set of distributions

B := B−1
∞,1(R). (1.12)

By standard embeddings, see e.g. [27, 2.7.1], we have

Bs
p,q(R) ↪→ B, if s >

1

p
− 1, or s = 1

p
− 1 and 0 < q ≤ 1, (1.13)

and

Fs
p,q(R) ↪→ B, if s >

1

p
− 1, or s = 1

p
− 1 and 0 < p ≤ 1. (1.14)

In particular, all the spaces that are used in Theorems 1.2–1.10 are embedded intoB.

Proposition 1.1 For a bounded interval I ⊂ R consider the distribution λI in (1.10).
Then

(i) λI extends to a bounded linear functional onB, with operator norm O(1+|I |).
(ii) For every h ∈ H ext the linear functional f �→ 〈 f , h〉 is bounded on B with

uniformly bounded operator norm.
(iii) If f ∈ B and 〈 f , h〉 = 0, for all h ∈ H , then f = 0.

Remark Clearly, using (1.11) one can also replace in (i) the spaceB withB + L loc
1 .

We note that L1 is not embedded intoB, see Remark 11.4.
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In the rest of the paper, when f ∈ B, we use the following notation, combining
the standard Haar coefficients with the coefficients obtained from the shifted Haar
functions:

c j,μ( f ) = 2 j |〈 f , h̃ j,2μ〉| + 2 j |〈 f , h̃ j,2μ+1〉| , (1.15)

when j = 0, 1, . . . , and

c−1,μ( f ) = 〈 f , h−1,μ〉 = 〈 f ,1[μ,μ+1)〉.

Our first main result provides a characterization where in (1.4) the Haar coefficients
2 j 〈 f , h j,μ〉 are replaced with the c j,μ( f ). This covers as well the quasi-Banach range
of parameters; see Fig. 2.

Theorem 1.2 Let 1/2 < p < ∞, 1/2 < q ≤ ∞ and

max{1/p − 1, 1/q − 1} < s < 1 . (1.16)

Then Fs
p,q(R) is the collection of all f ∈ B such that

∥∥∥
( ∞∑

j=−1

2 jsq
∣∣∣
∑

μ∈Z
c j,μ( f )1I j,μ

∣∣∣
q)1/q∥∥∥

p
< ∞. (1.17)

Moreover, the latter quantity represents an equivalent quasi-norm in Fs
p,q(R).

Using terminology introduced by Gröchenig [16], one may say that H ext is a
(quasi-)Banach frame1 for Fs

p,q(R). In signal processing language, this can be inter-
preted by saying that one may stably recover f from the sampled information
{〈 f , h〉 : h ∈ H ext}.

We remark that the condition s > 1
q − 1 in (1.16) is necessary, in view of the

examples in [23]; see Remark 4.3. The analogous characterization for Besov spaces
is valid in a larger range:

Theorem 1.3 Let 1/2 < p ≤ ∞, 0 < q ≤ ∞ and

1/p − 1 < s < 1.

Then Bs
p,q(R) is the collection of all functions f ∈ B such that

( ∞∑

j=−1

2 j(s−1/p)q
( ∑

μ∈Z
|c j,μ( f )|p

)q/p)1/q
< ∞.

Moreover, the latter quantity represents an equivalent quasi-norm in Bs
p,q(R).

1 In a Hilbert space H , a frame is a system of vectors {e j } ⊂ H , which for some constants A, B > 0

satisfies A‖ f ‖2H ≤ ∑

j
|〈 f , e j 〉|2 ≤ B‖ f ‖2H , ∀ f ∈ H .
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Fig. 2 Parameter domain forH ext to be a characterizing frame for Fs
p,q (R) (left figure, Theorem 1.2) and

Bs
p,q (R) (right figure, Theorem 1.3)

Figure2 shows the regions of parameters whereH ext is a characterizing frame for
each of the spaces Fs

p,q(R) and Bs
p,q(R).

We remark that a related result, in the special case of the Hölder spaces Cα =
Bα∞,∞(R), α ∈ (0, 1), and using a 1/3-shifted Haar frame, has been recently obtained
by Jaffard and Krim; see [17, Theorem1]. As pointed out by A. Cohen in [17, Remark
5], related characterizations of Besov spaces Bs

p,q [0, 1], up to smoothness s < 1,
appeared in the spline community in the 70s (see e.g. [9, §12.2]), in that case in
terms of classes of best linear approximation by piecewise constant functions with
equally spaced (or sufficiently mixed) knots. In particular, compare the statements of
Theorems 1.3 and 1.4, with [9, Theorem 12.2.4] parts (iv) and (ii), respectively; see
also Remark 4.10.

1.2 Characterization ofW1
p(R)Via Haar Frames

We now let s = 1, and consider in the Banach range 1 ≤ p ≤ ∞ the Sobolev space
W 1

p(R), endowed with the usual norm

‖ f ‖W 1
p(R) = ‖ f ‖p + ‖ f ′‖p.

We also let BV (R) be the subspace of L1(R) for which the distributional derivative
belongs to the spaceM of bounded Borel measures (with the norm given by the total
variation of the measure) and define

‖ f ‖BV (R) = ‖ f ‖1 + ‖ f ′‖M.

Note that by our definition BV ⊂ L1 which deviates from the definition in some other
places in the literature. We have the following result, that provides characterizations
in terms of the oversampled Haar system H ext.
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Theorem 1.4 For all f ∈ B the following hold.
(i) If 1 < p ≤ ∞ then

‖ f ‖W 1
p

≈ sup
j≥−1

2 j(1−1/p)
( ∑

μ∈Z
|c j,μ( f )|p

)1/p
.

(ii) In the case p = 1 we have instead

‖ f ‖BV ≈ sup
j≥−1

∑

μ∈Z
|c j,μ( f )|.

Clearly part (ii) implies the inequality

sup
j≥−1

∑

μ∈Z
|c j,μ( f )| � ‖ f ‖W 1

1
(1.18)

for all f ∈ B. However the converse of this inequality fails as one checks by testing
it with f = 1[0,1] ∈ BV \ W 1

1 ; we have sup j
∑

μ |c j,μ(1[0,1])| < ∞.

The fact that the Sobolev W 1
p(R) norm can be expressed in terms of a discrete

norm of b1p,∞ type may seem surprising at first, but actually results of this sort can
be found in the literature since the 60s, see [1]. The theorem is also reminiscent of
characterizations via the uniform bounds for difference quotients h−1( f (· + h) − f ),
see [26, Prop V.3] and more recently [4, 5].

1.3 Dyadic Besov Spaces

In this section we present stronger results involving the standard Haar systemH , and
suitable dyadic variants Bs,dyad

p,q of the Besov spaces.
We first recall the definition of the sequence spaces bsp,q and f sp,q ; see [10]. If s ∈ R

and 0 < p, q ≤ ∞, we define, for β = {β j,μ} j≥−1,μ∈Z,

‖β‖bsp,q :=
( ∞∑

j=−1

[
2 j(s−1/p)

( ∑

μ∈Z
|β j,μ|p

) 1
p
]q) 1

q
, (1.19)

and if p < ∞ we let

‖β‖ f sp,q :=
∥∥∥
( ∞∑

j=−1

∣∣∣2 js
∑

μ∈Z
β j,μ1I j,μ(·)

∣∣∣
q)1/q∥∥∥

p
. (1.20)

These expressions have the obvious interpretations if max{p, q} = ∞.
We additionally define for every f ∈ B the quantity

‖ f ‖
Bs,dyad
p,q

:=
∥∥∥
{
2 j 〈 f , h j,μ〉} j,μ

∥∥∥
bsp,q
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and the vector spaces

Bs,dyad
p,q (R) =

{
f ∈ B : ‖ f ‖

Bs,dyad
p,q

< ∞
}
.

Observe that spanH ⊂ Bs,dyad
p,q , so the spaces are not null. Also, the quan-

tity ‖ f ‖
Bs,dyad
p,q

is a quasi-norm (not just a semi-norm), by Proposition 1.1. Since

2 j |〈 f , h j,μ〉| ≤ c j,μ( f ) we note the following immediate consequence of Theorem
1.4.

Corollary 1.5 If 1 ≤ p ≤ ∞ then

W 1
p ↪→ B1,dyad

p,∞ . (1.21)

To avoid pathological cases, below we shall typically consider the range

1

p
− 1 < s < 1, (1.22)

and some end-point cases of these. We remark that when s > 1 (or s = 1 and
0 < q < ∞), the spaces B1,dyad

p,q contain no nontrivial C1 functions (see Proposition
11.1), while for s < 1/p−1 the spaces are not complete (see Proposition 11.2). Recall
also that in the range 1/p − 1 < s < min{1/p, 1} we have Bs

p,q = Bs,dyad
p,q , cf. (1.7).

Assume now that (1.22) holds. By Theorem 1.3 we have Bs
p,q ↪→ Bs,dyad

p,q , and the
inclusion is proper provided that

1/p < s < 1, or s = 1/p and q < ∞ (1.23)

(since in that rangeHaar functions do not belong to Bs
p,q ). Our goal is to prove converse

inequalities of the form

‖ f ‖Bs
p,q

� ‖ f ‖
Bs,dyad
p,q

, provided that f ∈ Bs
p,q(R). (1.24)

Such inequalities will imply that ‖ · ‖
Bs,dyad
p,q

is an equivalent norm in Bs
p,q , a result

which may seem surprising outside the usual unconditionality region. Our first result
in this direction is the following.

Theorem 1.6 Let 1 < p ≤ ∞, 0 < q ≤ ∞, and 1/p < s < 1. Then (1.24) holds. In
particular, Bs

p,q is a proper closed subspace of Bs,dyad
p,q , and we have

‖ f ‖Bs
p,q

≈ ‖ f ‖
Bs,dyad
p,q

, for all f ∈ Bs
p,q(R). (1.25)

There are also some precedent results of this nature in the literature. When p =
q = ∞, a norm equivalence as in (1.25) (for continuous functions in the interval [0,1])
was proved by Golubov [15, Corollary 6]; see also [19, Corollary 3.2], [20, Theorem
7.c.3] and references therein.
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1.4 Inclusions for the Limiting Case s = 1

In what follows the notation X1 ↪→ X2 will indicate a continuous embedding of the
spaceX1 in the spaceX2. As already remarked above wemay focus on the cases s < 1
or s = 1, q = ∞, cf. Proposition 11.1.

We now state inclusions into the spaces Bs,dyad
p,q , in the case that s = 1 and q = ∞.

Note that in one of the inclusions we use the smaller space

F1,dyad
p,∞ :=

{
f ∈ B : {

2 j 〈 f , h j,μ〉} j≥−1
μ∈Z

∈ f 1p,∞
}
.

Theorem 1.7 Let 1/2 ≤ p ≤ ∞. Then the following hold.
(i) If 1/2 ≤ p < ∞ then

B1
p,q ↪→ B1,dyad

p,∞ ⇐⇒ q ≤ min{p, 2} , (1.26)

F1
p,q ↪→ B1,dyad

p,∞ ⇐⇒ q ≤ 2 . (1.27)

For p = ∞ we have
B1∞,q ↪→ B1,dyad∞,∞ ⇐⇒ q ≤ 1 . (1.28)

(ii) For 1/2 < p < ∞
F1
p,2 ↪→ F1,dyad

p,∞ . (1.29)

The next result gives a converse inequality to the embedding (1.21), which in
particular implies that

‖ f ‖
B1,dyad
p,∞

= sup
j≥−1

2 j(1−1/p)
( ∑

μ∈Z
|2 j 〈 f , h j,μ〉|p

)1/p

is an equivalent norm inW 1
p(R). Earlier bounds of this type, for absolutely continuous

functions in the interval [0, 1], can be found in the work of Bočkarev, see [1, The-
orem 7], [2, Theorem I.3.4], or [20, Corollary 7.b.2] and references therein. Below
we establish, by different methods, the following result, which is complementary to
Theorem 1.4.

Theorem 1.8 Let 1 < p ≤ ∞. Then

‖ f ‖W 1
p

� ‖ f ‖
B1,dyad
p,∞

, provided f ∈ W 1
p(R). (1.30)

In particular, W 1
p(R) is a proper closed subspace of B1,dyad

p,∞ , and it holds

‖ f ‖W 1
p

≈ ‖ f ‖
B1,dyad
p,∞

≈ ‖ f ‖
F1,dyad
p,∞

, for f ∈ W 1
p(R), 1 < p < ∞. (1.31)
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Remark The inequality in (1.30) (and hence, the first equivalence in (1.31)) is also
true when p = 1, due to the result of Bočkarev [1]. The proof we give here, however,
is only valid for p > 1.

1.5 Inclusions for the Limiting Case s = 1/p − 1

We state inclusions into the spaces Bs,dyad
p,q , in the case that s = 1/p − 1 and q = ∞.

Theorem 1.9 (i) For 0 < p, u ≤ ∞ the embedding B1/p−1
p,u ↪→ B1/p−1,dyad

p,q can only
hold when q = ∞.

(ii) If p ≥ 1/2 then

B1/p−1
p,q ↪→ B1/p−1,dyad

p,∞ ⇐⇒ q ≤ min{1, p} (1.32)

(iii) If 1/2 < p ≤ 1 then

F1/p−1
p,∞ ↪→ B1/p−1,dyad

p,∞ . (1.33)

Remark When p = 1, we also have the straightforward inequality

sup
j≥−1

∑

μ∈Z
|〈 f , h j,μ〉| � ‖ f ‖1, f ∈ L1,

which leads to the inclusion L1 ∩ B ⊂ B0,dyad
1,∞ .

1.6 The Case s = 1/p

When 1 < p < ∞, the standard Haar characterization of Besov spaces implies that

Bs
p,q(R) = Bs,dyad

p,q (R) ,
1

p
− 1 < s <

1

p
.

On the other hand, Theorem 1.6 implies the norm equivalence

‖ f ‖Bs
p,q

≈ ‖ f ‖
Bs,dyad
p,q

, f ∈ Bs
p,q ,

1

p
< s < 1.

These two results might suggest that the norm equivalence could hold also at the
dividing line s = 1/p. Here we show that this is not the case, at least when q = ∞.

Theorem 1.10 Let 1 ≤ p < ∞. Then
(i) there exists a sequence { fN }∞N=1 of functions in B1/p

p,∞ such that

‖ fN‖
B1/p,dyad
p,∞

= 1 and ‖ fN‖
B1/p
p,∞

� N ,

(ii) B1/p,dyad
p,∞ \ B1/p

p,∞ �= ∅.
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Remarks (i) The previous result shows that, if 1 < p < ∞, then Theorem 1.6 cannot
hold at the dividing line s = 1/p (at least if q = ∞). Namely, the embedding of
B1/p
p,∞ into B1/p,dyad

p,∞ , which is established by Theorem 1.3, is proper, that is, B1/p
p,∞ �

B1/p,dyad
p,∞ , and moreover, on the smaller space B1/p

p,∞, the norms are not equivalent,
i.e.,

sup
{‖ f ‖

B1/p
p,∞

: f ∈ B1/p
p,∞ and ‖ f ‖

B1/p,dyad
p,∞

= 1
} = ∞ . (1.34)

Both statements are an immediate consequence of Theorem 1.10.
(ii) Observe that BV (R) ↪→ B1

1,∞(R) and that for p = 1 we have the embedding

BV (R) ↪→ B1,dyad
1,∞ as a consequence of Theorem 1.4. Theorem 1.10 shows that this

embedding is also proper, i.e. B1,dyad
1,∞ \ BV (R) �= ∅.

1.7 Further Directions

We mention a few problems left open in this paper.

1.7.1 Besov-Type Spaces

Concerning (1.34) in Theorem 1.10, we do not know whether the inequality

‖ f ‖
B1/p
p,∞

≤ C ‖ f ‖
B1/p,dyad
p,∞

(1.35)

could be true for 1 < p < ∞when restricted to f ∈ S(R). It is also open to determine
whether such inequality could hold if the B1/p

p,∞ norm is replaced by B1/p
p,q with q < ∞.

1.7.2 Fsp,q Versus F
s,dyad
p,q

It would be interesting to establish an optimal analogue of Theorem 1.6 for Triebel–
Lizorkin spaces.

1.7.3 Wavelet Frames

The sharp results on the failure of unconditional convergence of Haar expansions in
[23] (described above) have been extended by R. Srivastava [25] to classes of spline
wavelets withmore restrictive smoothness assumptions. It is then natural to investigate
extensions of our results on Haar frames to suitable classes of oversampled systems
of spline wavelets.

1.7.4 Higher Dimensions

In this paper we have found it appropriate to present our results for function spaces in
R (rather than R

d ). It seems likely that many arguments in the paper could be adapted,
with only standard modifications, to the higher dimensional context (such as those in
§4 or §6). On the other hand, the arguments in which the 1-dimensional setting is more
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present (such as the bootstrapping in §7) may require more elaborate changes. We do
not pursue these questions here.

1.8 Structure of the Paper

In §2 we compile notation and known results about maximal operators in function
spaces. We also review some properties about the Chui-Wang wavelet basis, that will
be used later in our proofs.

In §3 we clarify the role of the space B and prove Proposition 1.1.
In §4 we consider the characterization of function spaces via Haar frames, giving

the proofs of Theorems 1.2 and 1.3 (as a combination of four Propositions 4.1, 4.4,
4.5 and 4.9).

In §5 we establish Haar frame characterizations of Sobolev and bounded variation
spaces and give a proof of Theorem 1.4.

In §6 we prove the sufficiency of the conditions for the embeddings into B1,dyad
p,∞

or F1,dyad
p,∞ in Theorem 1.7, and the sufficiency for the conditions of embedding into

B1/p−1,dyad
p,∞ in Theorem 1.9.
In §7 we prove Theorems 1.6 and 1.8.
In §8 we prove necessary conditions for the embeddings into B1,dyad

p,∞ . Specifically,
in Theorem 1.7 the necessary conditions q ≤ p in (1.26), q ≤ 2 in (1.27), (1.26), and
q ≤ 1 in (1.28) correspond to Lemmas 8.1, 8.2, and 8.3, respectively.

In §9 we obtain necessary conditions in part (ii) of Theorem 1.9 for the embeddings
into B1/p−1,dyad

p,∞ .
In §10 we prove Theorem 1.10.
In §11 we give a simple proof for the fact thatC1 functions in B1,dyad

p,q , with q < ∞,

are constant (Proposition 11.1); moreover show that Bs,dyad
p,q is not complete when s <

1/p − 1 (Proposition 11.2) and finally prove part (i) of Theorem 1.9 (see Proposition
11.3).

2 Preliminaries on Function Spaces andWavelet Bases

2.1 Definition of Spaces

Let s ∈ R and 0 < p, q ≤ ∞ be given. We shall use both definitions and character-
izations of Bs

p,q and Fs
p,q in terms of dyadic frequency decompositions and in terms

of sequences of compactly supported kernels with cancellation (see e.g. [28, 2.5.3,
2.4.6] or [29, §1.3,1.4] where the terminology local means is used).

Consider two functions β0, β ∈ S(R) such that |β̂0(ξ)| > 0 when |ξ | ≤ 1 and
|β̂(ξ)| > 0 when 1/4 ≤ |ξ | ≤ 1. Assume further that β(·) has vanishing moments up
to a sufficiently large order M ∈ N, that is,

∫

R

β(x) xm dx = 0 when m < M . (2.1)
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The precise value of M is not relevant, but for the properties used in the paper it will
suffice with

M > 1/p + |s| + 2. (2.2)

We let βk(x) := 2kβ(2k x), k ≥ 1, and define for k ∈ N0 the convolution operators

Lk f := βk ∗ f ,

acting on distributions f ∈ S ′(R).
The Besov space Bs

p,q(R) is the set of all distributions f ∈ S ′(R) such that

‖ f ‖Bs
p,q

:=
( ∞∑

k=0

(
2ks‖Lk f ‖p

)q)1/q
< ∞. (2.3)

If p < ∞, the Triebel–Lizorkin space Fs
p,q(R) is the set of all f ∈ S ′(R) such that

‖ f ‖Fs
p,q

:=
∥∥∥
( ∞∑

k=0

2ksq |Lk f (x)|q
)1/q∥∥∥

p
< ∞. (2.4)

Different choices of β0, β give rise to the same spaces and equivalent quasi-norms;
see e.g. [29, Theorem 1.7]. From now on we will assume that

supp β0 ⊂ (−1/2, 1/2) and supp β ⊂ (−1/2, 1/2).

We shall often use the following decomposition of distributions in S ′(R). Let η0 ∈
C∞
0 (R) be supported on {|ξ | < 3/4} and such that η0(ξ) = 1 when |ξ | ≤ 1/2. Define

the convolution operators 	0, and 	k for k ≥ 1, by

	̂0 f (ξ) = η0(ξ)

β̂0(ξ)
f̂ (ξ)

	̂k f (ξ) = η0(2−kξ) − η0(2−k+1ξ)

β̂(2−kξ)
f̂ (ξ), k ≥ 1.

Then, for all f ∈ S ′(R) we have

f =
∞∑

k=0

Lk	k f (2.5)

with convergence in S ′(R). Also, it holds

( ∞∑

k=0

(
2ks‖	k f ‖p

)q)1/q
� ‖ f ‖Bs

p,q
,

and likewise for the F-norms.
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2.2 Maximal Functions

We follow Triebel [27, 28]. Given f ∈ L loc
1 (R), consider the Hardy-Littlewood

maximal function, defined by

M f (x) := sup
x∈I

1

|I |
∫

I
| f (x)| dx , (2.6)

where the sup is taken over all intervals I that contain x . A classical result of Fefferman
and Stein asserts that, if 1 < p < ∞ and 1 < q ≤ ∞ then

∥∥∥
(∑

j

|M f j |q
)1/q∥∥∥

p
�

∥∥∥
(∑

j

| f j |q
)1/q∥∥∥

p
. (2.7)

for all sequences of measurable functions { f j } with finite right hand side.
Let us further define the Peetre maximal functions [21]. Given j ∈ N and A > 0

we let

M∗∗
j,A f (x) = sup

h∈R
| f (x + h)|

(1 + 2 j |h|)A .

Let E j be the set of distributions f ∈ S ′(R) such that supp f̂ is supported in an
interval of diameter ≤ 2 j+2. Then for all f ∈ E j it holds

M∗∗
j,A f (x) �s,A

[
M(| f |s)(x)]1/s, (2.8)

provided that s ≥ 1/A; see [21] or [27, Theorem 1.3.1]. In particular, if 0 < p ≤ ∞
and A > 1/p then

‖M∗∗
j,A f ‖p ≤ Cp,A‖ f ‖p, f ∈ E j . (2.9)

Also, from (2.7) and (2.8), if 0 < p < ∞, 0 < q ≤ ∞ and A > max{1/p, 1/q}, then
∥∥∥
(∑

j

|M∗∗
j,A f j |q

)1/q∥∥∥
p

≤ Cp,q,A

∥∥∥
(∑

j

| f j |q
)1/q∥∥∥

p
(2.10)

for all sequences of functions ( f j ) such that f j ∈ E j .
Below we shall also use the (smaller) maximal functions

M j f (x) = sup
|h|≤2− j

| f (x + h)| and M∗
j f (x) = sup

|h|≤2− j+2
| f (x + h)|. (2.11)

Note that for all A > 0 it holds

M j f (x) ≤ M∗
j f (x) � M∗∗

j,A f (x),
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so in particular, for all 0 < p ≤ ∞ we have

∥∥M∗
j f ‖p � ‖ f ‖p, f ∈ E j . (2.12)

We shall also make use of the following elementary inequality: if 0 < p ≤ ∞ then

‖M∗
j f ‖p � 2
/p ‖M j+
 f ‖p, 
 ≥ 0. (2.13)

To prove this assertion, if we let xν = ν2−( j+
), then we have

M∗
j f (x) ≤ sup

|ν|≤2
+2
|M j+
 f (x + xν)| ≤

( ∑

|ν|≤2
+2

|M j+
 f (x + xν)|p
) 1

p
.

Then, taking L p quasi-norms one easily obtains (2.13).

2.3 Chui–WangWavelets

The proofs of Theorems 1.2 and 1.3 will require a characterization in terms of a
wavelet basis generated by the Chui-Wang polygon and its dual.

Define the m-fold convolution Nm of characteristic functions of [0, 1), i.e. N1 =
1[0,1), and, for m ≥ 2, Nm = Nm−1 ∗ 1[0,1). In particular we get for m = 2 the hat
function

N2(x) =

⎧
⎪⎨

⎪⎩

x, x ∈ [0, 1],
2 − x, x ∈ [1, 2],
0, x ∈ R \ [0, 2].

(2.14)

Let

N2; j,ν(x) := N2(2
j x − ν), j ≥ 0, ν ∈ Z,

which is a hat function adapted to supp N2; j,ν = [2− jν, 2− j (ν + 2)].
The next elementary observation will be crucial in what follows.

Lemma 2.1 If f is locally absolutely continuous in R, then for all j ≥ 1 and ν ∈ Z it
holds

〈 f ′,N2; j,ν〉 = −2 j 〈 f , h̃ j−1,ν〉, (2.15)

while for j = 0 it holds

〈 f ′,N2;0,ν〉 = −〈 f , h−1,ν〉 + 〈 f , h−1,ν+1〉, ν ∈ Z.

Proof Integrating by parts one has

〈 f ′,N2; j,ν〉 = −〈 f , (N2; j,ν)′〉.
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Now, a simple computation gives

(N2; j,ν)′ = 2 j1(2− j ν,2− j (ν+1)) − 2 j1(2− j (ν+1),2− j (ν+2))

= 2 j1I j,ν − 2 j1I j,ν+1 = 2 j h̃ j−1,ν,

where the last equality follows from the definition of the shifted Haar system in (1.8)
(if j ≥ 1). Combining the two expressions one obtains (2.15). The case j = 0 is
similar. ��

TheChui-Wang polygon [7, Theorem1], [6, 6.2.5, 6.2.6] is the compactly supported
wavelet given by

ψ(x) = 1

2

2∑


=0

(−1)
N4(
 + 1)N ′′
4 (2x − 
) ,

= 1

2

2∑


=0

(−1)
N4(
 + 1)
2∑

j=0

(−1) j
(
2

j

)
N2(2x − j − 
)

=
∑

k∈Z
bk · N2(2x − k)

(2.16)

where (bk) is a finite sequence supported in {0, . . . , 4}. The wavelet ψ is compactly
supported and has two vanishing moments, i.e.,

∫
ψ(x)dx = ∫

xψ(x)dx = 0. For
j ∈ N0 and μ ∈ Z let

ψ j,μ(x) = ψ(2 j x − μ),

while for j = −1 we let

ψ−1,μ(x) = N2;0,μ(x) = N2(x − μ).

Then we have the orthogonality relations with respect to different scales

〈ψ j,μ, ψ j ′,μ′ 〉 = 0 , j �= j ′.

In contrast to that it only forms a Riesz basis within one and the same scale with
respect to different translations. The dual basis can be computed precisely [8] and does
not provide compact support. However, the coefficients ak in

ψ∗(x) =
∑

k∈Z
akψ(x − k) (2.17)

are exponentially decaying; see the paper [8] for explicit formulas for ak , and Fig.
3 below for a graphical representation. Observe from (2.17) that also ψ∗ has two
vanishing moments.
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Fig. 3 The Chui-Wang wavelet �2 of order 2 and its dual �∗
2

Using this construction, Derevianko and Ullrich provided the following character-
ization for the Fs

p,q and Bs
p,q spaces; see [8, Theorem 5.1].

Theorem 2.2 [8] Let 0 < p ≤ ∞, 0 < q ≤ ∞.
(i) If p < ∞ and

max{1/p, 1/q} − 2 < r < 1 + min{1/p, 1/q, 1} (2.18)

then we have for all f ∈ B−2
∞,1(R)

‖ f ‖Fr
p,q

≈
∥∥∥
( ∞∑

j=−1

2 jrq
∣∣∣
∑

μ∈Z
2 j 〈 f , ψ j,μ〉1I j,μ

∣∣∣
q)1/q∥∥∥

p
. (2.19)

(ii) If
1/p − 2 < r < max{1 + 1/p, 2} (2.20)

then we have for all f ∈ B−2
∞,1(R)

‖ f ‖Br
p,q

≈
( ∞∑

j=−1

2 j(r−1/p)q
[ ∑

μ∈Z
|2 j 〈 f , ψ j,μ〉|p

]q/p)1/q
. (2.21)

Remark 2.3 Concerning part (i), we remark that the result stated in [8, Theorem 5.1],
requires the additional restriction r < 1, which comes from a similar restriction in
[8, Proposition 5.4]. This restriction, however, can be lifted and replaced by r <

1 + max{1/p, 1/q}, using a complex interpolation argument which involves part (ii)
(case p = q), as we discuss in Step 3 of Proposition 4.5 below.

3 Haar Functions as Linear Functionals onB: Proof of Proposition 1.1

3.1 Proof of (i) and (ii)

Since every h ∈ H is a difference of two characteristic functions of intervals of length
≤ 1 part (ii) is an immediate consequence of part (i). It suffices to analyze λI on B,
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for each bounded interval I . Let f ∈ B = B−1
∞,1(R). Using the decomposition in

(2.5) we can write f = ∑∞
k=0 Lk fk where the Fourier transform f̂k is supported in

{ξ : |ξ | ≤ 2k} and the fk satisfy

∑

k≥0

2−k‖ fk‖∞ � ‖ f ‖B; (3.1)

here, Lk f = βk ∗ f where β0, β are even functions in C∞
c (−1/2, 1/2), and βk =

2kβ(2k ·), for k ≥ 1. Also,
∫

β(x)dx = 0.
We let λI ( f ) := ∑∞

k=0 〈 fk, Lk1I 〉, which we sometimes denote by 〈 f ,1I 〉. Note
that

‖L01I ‖1 � |I |. (3.2)

By (3.1) one needs to show that ‖Lk1I ‖1 � 2−k for k ≥ 1; one actually gets the better
estimate

‖Lk1I‖1 � min{|I |, 2−k}, k ≥ 1. (3.3)

Hence |λI ( f )| � max{|I |, 1}∑
k≥0 2

−k‖ fk‖∞ and we deduce that λI extends to a
bounded linear functional on B, with ‖λI‖B∗ � max{1, |I |}.

It remains to verify (3.3). Fix I , with center yI , and assume first that 2−k > |I |.
Then the function Lk1I = βk ∗ 1I is supported in an interval centered at yI with
length O(2−k) and satisfies |βk ∗ 1I (x)| ≤ ‖βk‖∞ ‖1I ‖1 � 2k |I |. Thus we obtain
‖βk ∗ 1I ‖1 � |I | which is in (3.3) in this case.

Now assume 2−k ≤ |I |. Let y+ and y− be the endpoints of I . Let Uk be the union
of the two closed intervals of length 2−k+2 centered at y+ and y−. Then βk ∗ 1I

is supported in Uk , which has size |Uk | = O(2−k). This assertion, combined with
‖βk ∗ 1I ‖∞ ≤ ‖βk‖1 = O(1), also implies (3.3) in this case.

3.2 Proof of (iii)

For the argument belowwe shall use the dyadic averaging operators, defined for N ≥ 0
by

EN f (x) :=
∑

μ∈Z
2N 〈 f ,1IN ,μ

〉1IN ,μ
(x). (3.4)

In view of (i), these operators can be defined acting on distributions f ∈ B such that
EN : B → L∞ has operator norm O(2N ).

Let now f ∈ B such that 〈 f , h〉 = 0, for all h ∈ H . Since each 1IN ,μ
belongs to

spanH , this implies that EN f = 0, for all N ≥ 0. We then must show that f = 0,
which is a direct consequence of part (b) in the following lemma.

Lemma 3.1 (a) The operators EN satisfy the uniform bound

sup
N≥0

∥∥EN‖B→B−1∞,∞ < ∞.

(b) If f ∈ B then ‖EN f − f ‖B−1∞,∞ → 0 as N → ∞.
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Proof Part (a) is implicit in [14]. Indeed, it follows by combining the estimates stated
in the four propositions in [14, §4], for the cases s = −1 and p = ∞.

We now show part (b). Let f ∈ B and write f = ∑∞
k=0 Lk fk as at the beginning

of §3.1. The above series converges in S ′ and also in theB-norm. Then, given ε > 0
one can find g = ∑J

k=0 Lk fk such that

‖ f − g‖B < ε.

Observe that g is bounded, since

‖g‖∞ ≤
J∑

k=0

‖Lk fk‖∞ �
J∑

k=0

‖ fk‖∞ � 2J‖ f ‖B.

Asimilar reasoning shows that ‖g′‖∞ < ∞, so in particular g is uniformly continuous.
Thus there exists an integer N0 ∈ N such that

‖g − EN g‖∞ < ε, for all N ≥ N0.

Combining these assertions, and using the trivial embeddings

L∞ ↪→ B ↪→ B−1∞,∞,

we obtain, for all N ≥ N0,

‖ f − EN f ‖B−1∞,∞ ≤ ‖ f − g‖B + ‖g − EN g‖∞ + ‖EN (g − f )‖B−1∞,∞
� 2ε + C ‖g − f ‖B � ε,

where in the second inequality we have used part (a).

Remark 3.2 As H. Triebel pointed out to us, it is possible to give a different proof of
Proposition 1.1 based on duality identities as in [27, Remark 2, p.180]. To do so, one
can regard 〈 f ,1I 〉 as a duality pairing using the facts 1I ∈ B1

1,∞ = (B̊−1
∞,1)

∗, and
f ∈ B̊−1

∞,1 whenever f ∈ B with compact support.

4 Characterizations by Haar Frames: Proofs of Theorems 1.2 and 1.3

The proofs of Theorems 1.2 and 1.3 will follow from the four Propositions 4.1, 4.4,
4.5 and 4.9 stated below.

The first proposition is a strengthening of [30, Proposition 2.8]. It gives one of the
inclusions asserted in Theorems 1.2 and 1.3. The region of indices is the same as in
Fig. 2. We set c( f ) = {c j,μ( f )} j≥−1,μ∈Z with c j,μ( f ) as in (1.15).

Proposition 4.1 Let 0 < p, q ≤ ∞ and s ∈ R.
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(i) If p < ∞ and max{1/p − 1, 1/q − 1} < s < 1 , then for all f ∈ Fs
p,q

‖c( f )‖ f sp,q � ‖ f ‖Fs
p,q

. (4.1)

(ii) If 1/p − 1 < s < 1, then for all f ∈ Bs
p,q

‖c( f )‖bsp,q � ‖ f ‖Bs
p,q

.

Proof To avoid dealing separately with h̃ j,ν with ν even or odd, we prove a slightly
more general result. For a fixed δ ∈ [0, 1] and for j ≥ 0 and μ ∈ Z, consider the
shifted Haar function

hδ
j,μ(x) := h j,μ(x − δ2− j ) = h

(
2 j x − (μ + δ)

)
,

whose support is the interval I j,μ+δ2− j . When j = −1, we just let hδ−1,μ = h−1,μ =
1[μ,μ+1). Part (i) will then be a consequence of the following estimate

∥∥∥
( ∞∑

j=−1

2 jsq
∣∣∣
∑

μ∈Z
2 j 〈 f , hδ

j,μ〉1I j,μ

∣∣∣
q)1/q∥∥∥

p
� ‖ f ‖Fs

p,q
, (4.2)

where the constants are independent of δ ∈ [0, 1]. Indeed, (4.1) follows from (4.2)
applied to δ = 0 and δ = 1/2.

We now prove (4.2) for a fixed δ ∈ [0, 1]. In the proof below we denote by � j,μ

the set of discontinuity points of hδ
j,μ, that is

� j,μ = {
(μ + δ + i)2− j : i = 0, 1

2 , 1
}
.

Lemma 4.2 Let g ∈ L loc
1 (R), k ∈ N0 and j ≥ −1. Then

a) If k ≥ j then

∣∣2 j 〈g, Lkh
δ
j,μ〉∣∣ � 2−(k− j)

∑

z∈� j,μ

Mk(g)(z); (4.3)

moreover, for every A > 0,

∣∣2 j 〈g, Lkh
δ
j,μ〉∣∣1I j,μ(x) � 2−(k− j) M∗

j (g)(x)

� 2−(k− j) 2(k− j)A M∗∗
k,A(g)(x).

(4.4)

b) If j > k then, for every A > 0,

∣∣2 j 〈g, Lkh
δ
j,μ〉∣∣1I j,μ(x) � 2−( j−k) Mk(g)(x)

� 2−( j−k) M∗∗
k,A(g)(x).

(4.5)
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Proof a) If k ≥ j then the function Lkhδ
j,μ = βk ∗hδ

j,μ is supported in� j,μ +O(2−k)

and has size

‖βk ∗ hδ
j,μ‖∞ ≤ ‖βk‖1 = O(1).

This immediately gives (4.3). Now, if z ∈ � j,μ and x ∈ I j,μ we have

Mkg(z) = sup
|h|≤2−k

|g(z + h)| ≤ sup
|u|≤2− j+2

|g(x + u)| = M∗
j (g)(x)

� 2(k− j)A M∗∗
k,A(g)(x),

which together with (4.3) proves (4.4).
b) If k < j and x ∈ I j,μ, then the function Lkhδ

j,μ = βk ∗ hδ
j,μ is supported in

x + O(2−k), and we can bound its size by

|Lkh
δ
j,μ(u)| � 22(k− j). (4.6)

This last assertion follows from the property
∫
hδ
j,μ = 0, by writing

|Lkh
δ
j,μ(u)| =

∣∣∣
∫ (

βk(u − y) − βk(u − x)
)
hδ
j,μ(y) dy

∣∣∣

=
∣∣∣
∫ ∫ 1

0
β ′
k

(
u − (1 − t)x − t y

)
dt (x − y) hδ

j,μ(y) dy
∣∣∣

� 22k−2 j ,

using in the last step that |x − y| ≤ 2− j+1 when x ∈ I j,μ and y ∈ supp hδ
j,μ.

Combining the above support and size estimates, one easily obtains (4.5). ��
We continue the proof of Proposition 4.1.i. Let f ∈ Fs

p,q , and write it as f =∑
k=0 Lk fk with fk = 	k f as in (2.5). Note that, since Fs

p,q ⊂ B, we have

〈 f , hδ
j,μ〉 =

∞∑

k=0

〈 fk, Lkh
δ
j,μ〉.

Now, the estimates in Lemma 4.2, suitably applied to each fk , can be grouped into

∑

μ

∣∣2 j 〈 f , hδ
j,μ〉∣∣1I j,μ(x) �

∑
k≥0 2

−|k− j |2A (k− j)+ M∗∗
k,A( fk)(x)

(
 = k − j) �
∑


∈Z
a(
, A)M∗∗

j+
,A[ f j+
](x) =: G j (x), (4.7)

where we set fm ≡ 0 for m < 0 and

a(
, A) =
{

2
 : 
 < 0,
2(A−1)
 : 
 ≥ 0.

(4.8)
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At this point one takes L p(
q) quasi-norms of the above expressions. Letting u :=
min{p, q, 1}, and using the u-triangle inequality we obtain

∥∥∥
( ∑

j≥−1

∣∣∣2 jsG j

∣∣∣
q)1/q∥∥∥

p

�
(∑


∈Z

[
a(
, A)2−s


∥∥∥
(∑

j∈Z
|2( j+
)sM∗∗

j+
,A[ f j+
]|q
)1/q∥∥∥

p

]u)1/u

� ‖ f ‖Fs
p,q

(∑


∈Z

(
a(
, A)2−s
)u

)1/u
� ‖ f ‖Fs

p,q
,

(4.9)

where in the last line we use Peetre’s maximal inequality (2.10) and A >

max{1/p, 1/q}, and in the last step we additionally need that A − 1 < s < 1. This
can always be achieved for an appropriate choice of A because of our assumption
max{ 1p , 1

q } − 1 < s < 1.
As before, part (ii) in Proposition 4.1 will be a consequence of the more general

estimate
( ∞∑

j=−1

2 j(s−1/p)q
( ∑

μ∈Z
|2 j 〈 f , hδ

j,μ〉|p
)q/p)1/q

� ‖ f ‖Bs
p,q

, (4.10)

for δ ∈ [0, 1]. Notice that

Bj := 2− j/p
(∑

μ

∣∣2 j 〈 f , hδ
j,μ〉∣∣p

) 1
p =

∥∥∥
∑

μ

∣∣2 j 〈 f , hδ
j,μ〉∣∣1I j,μ

∥∥∥
p
. (4.11)

We shall argue a bit differently to refine the pointwise estimate in (4.7). Observe from
Lemma 4.2 that we can also write

∥∥∥
∑

μ

∣∣2 j 〈 fk, Lkh
δ
j,μ〉∣∣1I j,μ

∥∥∥
p

� 2−|k− j |∥∥M∗
min{ j,k}( fk)

∥∥
p

by (2.13) � 2−|k− j | 2
(k− j)+

p
∥∥Mk( fk)

∥∥
p

= a(k − j, 1
p )

∥∥Mk( fk)
∥∥
p,

using in the last step the definition of a(
, A) in (4.8). So, letting as before u :=
min{p, q, 1}, and using the u-triangle inequality we obtain

( ∑

j≥−1

(2 js B j )
q
) 1

q �

�
(∑


∈Z

[
a(
, 1

p ) 2−s

(∑

j∈Z
|2( j+
)s

∥∥M j+
[ f j+
]
∥∥q
p

)1/q]u)1/u

� ‖ f ‖Bs
p,q

(∑


∈Z

(
a(
, 1

p ) 2−s
)u
)1/u

� ‖ f ‖Bs
p,q

.

(4.12)
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Observe that this time we apply the simpler estimate ‖Mk[ fk]‖p � ‖ fk‖p, see (2.12),
while the very last step requires 1/p − 1 < s < 1. ��
Remark 4.3 In view of the examples in [23], the condition s > 1/q − 1 is necessary
in Proposition 4.1.i, even for the validity of the weaker inequality

‖ f ‖
Fs,dyad
p,q

:=
∥∥∥
( ∞∑

j=−1

2 jsq
∣∣∣
∑

μ∈Z
2 j 〈 f , h j,ν〉1I j,μ

∣∣∣
q)1/q∥∥∥

p
� ‖ f ‖Fs

p,q
. (4.13)

Indeed, arguing as in [23, §6], for each N ≥ 2 one constructs a (smooth) function
f = fN ∈ F1/q−1

p,q (R) and a finite set,2 E = EN ⊂ H such that if 0 < q ≤ p < ∞
then

‖ f ‖
F1/q−1
p,q (R)

� N 1/q and ‖PE ( f )‖
F1/q−1
p,q (R)

≥ N 1+ 1
q , (4.14)

where PE ( f ) denotes the projection onto span{h}h∈E . Now observe that

‖ f ‖
Fs,dyad
p,q

≥ ‖PE ( f )‖
Fs,dyad
p,q

� ‖PE ( f )‖Fs
p,q

,

using in the last step the inequality in (4.20) (which holds for s = 1/q − 1). Thus, we
conclude from (4.14) that

‖ f ‖
F1/q−1,dyad
p,q

� N ‖ f ‖
F1/q−1
p,q

.

We turn to the converse inequalities inTheorems 1.2 and 1.3,whichwill be proved in
Proposition 4.9. Before doing so we shall need some results concerning the inclusions
Fs,dyad
p,q ↪→ Fs

p,q (and likewise for B-spaces) for the usual Haar system. Results of
this nature can be found in [30, Proposition 2.6], but we give here direct proofs which
are valid in a larger range of indices. These may have an independent interest.

The first result is obtained by duality from Proposition 4.1, but the range of indices
is restricted to 1 < p, q < ∞. Recall the definitions of the sequence spaces bsp,q , f

s
p,q

in (1.19) and (1.20).

Proposition 4.4 Let 1 < p, q < ∞.
(i) If −1 < s < min{1/p, 1/q} and β = {β j,μ} ∈ f sp,q then

f :=
∞∑

j=−1

∑

μ∈Z
β j,μh j,μ (4.15)

converges in Fs
p,q(R) and

‖ f ‖Fs
p,q

� ‖β‖ f sp,q (4.16)

2 In the notation of [23, §6] one should consider sets A of consecutive Haar frequencies, so that the
associated “density” number in [23, (43)] takes the value Z = N .
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(ii) If −1 < s < 1/p and β = {β j,μ} ∈ bsp,q then (4.15) converges in Bs
p,q(R)

and

‖ f ‖Bs
p,q

� ‖β‖bsp,q . (4.17)

Proof Consider the following duality pairing for sequences

〈
α, β

〉 :=
∑

j

2− j
∑

μ

α j,μ β j,μ

=
∑

j

∫ ∞

−∞

(∑

μ

α j,μ1I j,μ(x)
)(∑

μ′
β j,μ′1 j,μ′(x)

)
dx ≤ ‖α‖ f sp,q‖β‖ f −s

p′,q′ .

We define the so-called analysis (or sampling) operator A by

A : Fs
p,q(R) −→ f sp,q

f �−→ A f ( j, μ) = 2 j 〈 f , h j,μ〉. (4.18)

Its dual operator A ′ (the synthesis operator) is given by

A ′β(x) =
∑

j,μ

β j,μh j,μ(x). (4.19)

Indeed, if f ∈ Fs
p,q and β = {β j,μ} is a finite sequence, then

〈A f , β〉 =
∑

j

2− j
∑

μ

2 j 〈 f , h j,μ〉 · β j,μ

=
∫

f (x)
∑

j

∑

μ

β j,μh j,μ(x) dx =
∫

f (x)A ′β(x) dx .

By Proposition 4.1, the operator A : Fs
p,q(R) → f sp,q is bounded when max{1/p −

1, 1/q − 1} < s < 1. Hence, if we assume that 1 ≤ p, q < ∞, then A ′ will be
bounded from f −s

p′,q ′ to F−s
p′,q ′(R), where

−1 < −s < min{1/p′, 1/q ′}.

In other words, if −1 < s < min{1/p, 1/q} and 1 < p, q ≤ ∞ then

∥∥∥
∑

j,μ

β j,μh j,μ

∥∥∥
Fs
p,q

� ‖β‖ f sp,q .

The proof of part (ii) is completely analogous. ��
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F s
p,q-spaces

1/p

s

1 2

1

−1
1
q − 2

s = 1
p

s = 1
p −2

1/q

1

Bs
p,q-spaces

1/p

s

1 2

1

−1

1

Fig. 4 Parameter domain for the validity of Proposition 4.5, for Fs
p,q (R) (left figure) and Bs

p,q (R) (right
figure)

In the following proposition we extend the previous estimate to the quasi-Banach
range of parameters. The proof, which is now more involved, uses a non-trivial inter-
polation argument from [30, Proposition 2.6]. The range of indices we obtain is larger
than in [30]; see Fig. 4.

Proposition 4.5 Let 0 < p, q ≤ ∞.
(i) If p < ∞ andmax{1/p, 1/q, 1}−2 < s < min{1/p, 1/q}, then for everyβ ∈ f sp,q
the series in (4.15) converges to a distribution f in Fs

p,q(R), and it holds

‖ f ‖Fs
p,q

� ‖β‖ f sp,q . (4.20)

Moreover if q < ∞ the series in (4.15) converges unconditionally in Fs
p,q , and

otherwise in Fs−ε
p,∞(R), for all ε > 0.

(ii) If max{1/p, 1} − 2 < s < 1/p, then for every β ∈ bsp,q the series in (4.15)
converges to a distribution f in Bs

p,q(R), and it holds

‖ f ‖Bs
p,q

� ‖β‖bsp,q . (4.21)

Moreover, if q < ∞ the series in (4.15) converges unconditionally in the norm of
Bs
p,q , and otherwise in the quasi-norm of Bs−ε

p,∞(R), for all ε > 0.

Proof It suffices to prove the results when f = ∑
j≥−1

∑
μ∈Z β j,μh j,μ, with (β j,μ)

a finite sequence of scalars. The other assertions will then follow by completeness of
the spaces.
Step 1 Let Lk , k ≥ 0, be the local convolution operators from Sect. 2.1. If j ≥ −1 is
fixed, then we have

∣∣∣Lk

( ∑

μ∈Z
β j,μh j,μ

)
(x)

∣∣∣ ≤
∑

μ∈Z
|β j,μ| · |(Lkh j,μ)(x)| =: G j,k(x). (4.22)
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Arguing as in Lemma 4.2, one sees that, in the case 
 = j − k > 0, then

supp Lkh j,μ ⊂ μ2− j + O(2−k) and
∣∣(Lkh j,μ)(x)

∣∣ � 2−2
, (4.23)

while in the case 
 = j − k ≤ 0 we have

supp Lkh j,μ ⊂ μ2− j + O(2− j ) and
∣∣(Lkh j,μ)(x)

∣∣ � 1. (4.24)

The following lemma is a variation of a result by Kyriazis; see [18, Lem. 7.1]. For
r > 0 we denote

Mr (g)(x) = [
M(|g|r )(x)]1/r ,

where M is the usual Hardy-Littlewood maximal operator.

Lemma 4.6 Let 0 < r ≤ 1. Then, it holds

G j,k(x) � a( j − k) Mr

(∑

μ

|β j,μ|1I j,μ

)
(x). (4.25)

where a(
) = 2−2
2
/r if 
 > 0, and a(
) = 1 if 
 ≤ 0.

Proof Assume that 
 = j − k > 0. If x ∈ I j,ν , for some fixed ν ∈ Z, then the size
and support estimates in (4.23) give

G j,k(x)
r �

∑

μ:|μ−ν|≤2 j−k

|β j,μ|r 2−2
r .

On the other hand, if x ∈ I j,ν ,

M
(∑

μ

|β j,μ|r 1I j,μ

)
(x) � 2k

∫

|y−2− j ν|≤2·2−k

(∑

μ

|β j,μ|r 1I j,μ

)
(y) dy

≥ 2k− j
∑

μ:|μ−ν|≤2 j−k

|β j,μ|r .

These two estimates clearly give (4.25) in the case 
 > 0. The case 
 ≤ 0 is proved
similarly using (4.24). ��

Wecontinuewith the proof of Proposition 4.5.i. Belowwe shall agree that βm,μ = 0
and Gm,k ≡ 0 whenever m < −1. Then letting u = min{p, q, 1}, we can apply the
u-triangle inequality and the above results to obtain

‖ f ‖Fs
p,q

=
∥∥∥
(∑

k≥0

|2ks Lk f |q
)1/q∥∥∥

p
≤

∥∥∥
(∑

k≥0

(2ks
∑


∈Z
Gk+
,k)

q
)1/q∥∥∥

p



Journal of Fourier Analysis and Applications (2023) 29 :39 Page 27 of 51 39

�
[∑


∈Z

(
a(
) 2−
s

)u∥∥∥
(∑

k≥0

[
2(k+
)s Mr

( ∑

μ∈Z
|βk+
,μ|1Ik+
,μ

)]q) 1
q
∥∥∥
u

p

] 1
u

�
∥∥∥
( ∑

m∈Z

(
2ms

∑

μ∈Z
|βm,μ|1Im,μ

)q) 1
q
∥∥∥
p
,

where the last line is justified by the Fefferman-Stein inequality (2.7), provided r <

min{p, q, 1}, and the finite summation in 
 ∈ Z holds whenever 1/r − 2 < s < 0 .
Such an r can always be chosen under the assumption

max{1/p, 1/q, 1} − 2 < s < 0

(which in particular implies p, q > 1/2). We shall see in Step 3 below how to enlarge
this range to cover as well the cases s ≥ 0.

Step 2 We now prove (4.21). The same notation as above gives

‖ f ‖Bs
p,q

=
(∑

k≥0

(
2ks‖Lk f ‖p

)q)1/q ≤
(∑

k≥0

(2ks
∥∥

∑


∈Z
Gk+
,k

∥∥
p)

q
)1/q

.

At this point we distinguish two cases, 
 > 0 and 
 ≤ 0. In the first case we use
literally the same arguments as above; since for the 
q(L p) quasi-norm we just use the
scalar Hardy-Littlewood maximal inequality we only need to impose r < min{1, p},
together with s > 1/r − 2. Such an r can always be chosen under the assumption

max{1/p, 1} − 2 < s.

To control the sum over 
 ≤ 0 we must replace the crude bound in (4.24) by the
sharper estimate

supp Lkh j,μ ⊂ � j,k + O(2−k) and
∣∣(Lkh j,μ)(x)

∣∣ � 1, (4.26)

where � j,μ are the discontinuity points of h j,μ; see the proof of Lemma 4.2.a. So, if

 = j − k ≤ 0 we have

∥∥Gk+
,k
∥∥
p � 2−k/p

( ∑

μ∈Z
|βk+
,μ|p

)1/p
.
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Using as before the u-triangle inequality, this yields

(∑

k≥0

(
2ks

∥∥
∑


≤0

Gk+
,k
∥∥
p

)q)1/q

�
[∑


≤0

2u( 1
p −s)


(∑

k≥0

{
2(k+
)(s− 1

p )
( ∑

μ∈Z
|βk+
,μ|p

)1/p}q) u
q
] 1
u

�
(∑


≤0

2u( 1
p −s)


) 1
u
( ∑

m∈Z

{
2m(s− 1

p )
( ∑

μ∈Z
|βm,μ|p

)1/p}q) 1
q
,

where the sum in 
 ≤ 0 is a finite constant due to the assumption s < 1/p. This
completes the proof of part (ii) in Proposition 4.5.

Step 3 In the Triebel–Lizorkin case, the direct argument in Step 1 only allows for
s < 0 (and p, q > 1/2), which is the desired region only when q = ∞ or p → ∞.
By Step 2, the range of parameters can be extended to s < 1/p when p = q. Then,
a complex interpolation argument in the three indices (s, 1/p, 1/q), as proposed by
Triebel in [30, Prop. 2.6], gives the validity of the result for all max{1/p, 1/q, 1}−2 <

s < min{1/p, 1/q}; see Fig. 5. ��
Remark 4.7 We remark that the decomposition of a distribution f ∈ S ′ as an infinite
series

f =
∑

j≥−1

∑

μ∈Z
β j,μh j,μ (4.27)

may not necessarily be unique. For instance, the Dirac delta satisfies

δ = 1[0,1) +
∞∑

j=0

2 j h j,0 = 1[−1,0) −
∞∑

j=0

2 j h j,−1 in S′(R).

In this example, the coefficient sequences belong to bsp,q if s < 1
p − 1 (or s = 1

p − 1
and q = ∞), and the same happens for the property δ ∈ Bs

p,q(R). For such cases of

1
p 1

q

s

2 2
1
p 1

q

s

2 2

Fig. 5 Parameter domain for F-spaces in Steps 1 and 2 (left figure), and after the interpolation argument
in Step 3 (right figure) of the proof of Proposition 4.5
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non-uniqueness, Proposition 4.5 should be interpreted as

‖ f ‖Bs
p,q

� inf
{
‖(β j,μ)‖bsp,q : (4.27) holds

}
,

and likewise for the Fs
p,q -quasinorms.

The next result shows that uniqueness holds when s > 1/p − 1.

Corollary 4.8 Let 0 < p, q ≤ ∞ and s ∈ R.
(i) If p < ∞ andmax{1/p−1, 1/q−2} < s < min{1/p, 1/q} then for all f ∈ B

it holds

‖ f ‖Fs
p,q

�
∥∥∥
( ∞∑

j=−1

∣∣∣2 js
∑

μ∈Z
2 j 〈 f , h j,μ〉1I j,μ

∣∣∣
q)1/q∥∥∥

p
. (4.28)

(ii) If 1/p − 1 < s < 1/p then for all f ∈ B it holds

‖ f ‖Bs
p,q

�
( ∞∑

j=−1

2 j(s−1/p)q
( ∑

μ∈Z
|2 j 〈 f , h j,μ〉|p

)q/p)1/q
. (4.29)

Proof Let f ∈ B be such that the right hand side of (4.28) is finite. By Proposition
4.5 this implies the convergence of the series

g :=
∞∑

j=−1

∑

μ∈Z
2 j 〈 f , h j,μ〉h j,μ,

to some distribution g ∈ Fs
p,q ↪→ B. Due to the range of parameters, and the con-

vergence in Fs−ε
p,q (R) for ε small enough, we also have convergence inB. We deduce

that 〈g, h〉 = 〈 f , h〉 for all h ∈ H , and therefore, by Proposition 1.1, that f = g.
Finally, Proposition 4.5 gives (4.28). The proof for (4.29) works analogously. ��

We finally turn to the remaining implications in Theorems 1.2 and 1.3, which are
also valid in a larger range.

Proposition 4.9 Let 0 < p, q ≤ ∞ and s ∈ R be such that

1

p
− 1 < s < 1 + 1

p
.

(i) If p < ∞ and additionally 1/q − 2 < s < 2 + 1/q, then for all f ∈ B

‖ f ‖Fs
p,q

� ‖c( f )‖ f sp,q (4.30)

(ii) For all f ∈ B it holds

‖ f ‖Bs
p,q

� ‖c( f )‖bsp,q (4.31)
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Proof Note that, for all f ∈ S ′(R), it holds

‖ f ‖Fs
p,q

≈ ‖ f ‖Fs−1
p,q

+ ‖ f ′‖Fs−1
p,q

, (4.32)

see e.g. [27, 2.3.8] . We shall bound each of the summands in (4.32) by the right hand
side of (4.30).

Clearly ‖ f ‖Fs−1
p,q

� ‖ f ‖Br
p,p

for any s − 1 < r . We distinguish two cases. In case
s > 1/p we choose r := 1/p − ε, for a sufficiently small ε > 0 so that

1/p − 1 < r < 1/p and s − 1 < r < s; (4.33)

this is possible by the assumption s < 1 + 1/p. In case s ≤ 1/p we put r := s − ε,
for some ε > 0 so that (4.33) also holds (this time using the assumption s > 1/p−1).
Hence, from the embeddings Br

pp ↪→ Fs−1
pq and f spq ↪→ brpp, together with Corollary

4.8.ii, we obtain

‖ f ‖Fs−1
p,q

� ‖ f ‖Br
p,p

� ‖{2 j 〈 f , h j,μ〉} j,μ‖brpp � ‖{c j,μ( f )} j,μ‖ f spq . (4.34)

Wenow take care of the second term in (4.32).Herewequote the analog ofCorollary
4.8.i for the Chui-Wang system {ψ j,μ}, which can be obtained from [8, Proposition
5.4] and Remark 2.3 above. Letting r = s − 1, this gives

‖ f ′‖Fr
p,q

�
∥∥∥
( ∑

j≥−1

2 jrq
∣∣∣
∑

μ∈Z
2 j 〈 f ′, ψ j,μ〉1I j,μ(x)

∣∣∣
q)1/q∥∥∥

p
, (4.35)

provided

max{1/p − 1, 1/q − 2} − 1 < r < 1 + min{1/p, 1/q},
which holds when 1/p − 1 < s < 1/p + 1 and 1/q − 2 < s < 2 + 1/q.

Now, recall that

ψ j,μ(x) =
∑

k∈Z
bkN2(2

j+1x − (2μ + k)
)
, (4.36)

for a sequence of coefficients bk supported in {0, . . . , 4}; see (2.16). In addition, we
know from Lemma 2.1 that

〈 f ′,N2(2
j+1 · −ν)〉 = −2 j+1〈 f , h̃ j,ν〉, j ≥ 0, ν ∈ Z (4.37)

(and a similar expression for j = −1). So, combining (4.36) and (4.37), we obtain an
estimate for |2 j 〈 f ′, ψ j,μ〉| in terms of the coefficients c j,μ+
( f ), 
 ∈ {0, 1, 2}, which
inserted into (4.35) gives

‖ f ′‖Fr
p,q

�
2∑


=0

∥∥∥
( ∑

j≥−1

2 jrq
∣∣∣
∑

μ∈Z
c j,μ+
( f )1I j,μ(x)

∣∣∣
q)1/q∥∥∥

p
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� ‖(c j,μ( f )) j,μ‖ f spq ,

using in the last step a maximal function estimate as in Lemma 4.6. This, together
with (4.34) concludes the proof of part (i).

The result for Bs
p,q in part (ii) goes similarly, using instead Corollary 4.8.ii, and the

corresponding version for the Chui-Wang system {ψ j,μ} which can be obtained from
[8, Proposition 5.3]. ��
Remark 4.10 As pointed out by one of the referees, in the specific case of Besov spaces
Bs
p,q(R) with 1/p ≤ s < 1 (and 1 < p ≤ ∞), one could give a more direct proof of

the inequality

‖ f ‖Bs
p,q

� ‖c( f )‖bsp,q , f ∈ L1
loc(R),

by estimating the modulus of continuity ω( f , 2− j )L p(R) in terms of the errors of best
linear approximation by piecewise constants over the collections of intervals {I j,μ}μ∈Z
and {I j,μ + 2− j−1}μ∈Z. When s > 1 (or s = 1 and q < ∞) this argument also shows
that

‖c( f )‖bsp,q < ∞ �⇒ ω( f , 2− j )L p(R) = o(2− j ),

which in turn implies that f is constant (see e.g. [9, Ch 2, Prop 7.1]). This type of
reasoning is reminiscent of some works that appeared in the spline community in the
70s, see e.g. [22, Theorem 3] or the references quoted in [9, §12.2].

We are finally ready to give the

Proof of Theorems 1.2 and 1.3 Just combine Propositions 4.1 and 4.9. Note that the
smallest range of parameters corresponds to that in Proposition 4.1. ��

5 W1
p and BV : Proof of Theorem 1.4

The proof has three steps. We use the classical norm definition for W 1
p(R), when

1 ≤ p ≤ ∞, namely

‖ f ‖W 1
p

:= ‖ f ‖p + ‖ f ′‖p.

Step 1

We show that, for 1 ≤ p ≤ ∞, it holds

sup
j≥−1

2 j(1−1/p)
(∑

ν∈Z
|2 j 〈 f , h̃ j,ν〉|p

)1/p
� ‖ f ‖W 1

p
, f ∈ W 1

p(R), (5.1)
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moreover

sup
j≥−1

∑

ν∈Z
|2 j 〈 f , h̃ j,ν〉| � ‖ f ‖BV , f ∈ BV (R), (5.2)

In view of Lemma 2.1, for every j ≥ 0 we have

∣∣2 j+1〈 f , h̃ j,ν〉
∣∣ ≤

∫
| f ′(x)N2; j+1,ν(x)| dx � 2− j/p′[

∫

Ĩ j,ν
| f ′|p dx

]1/p
, (5.3)

where Ĩ j,ν = supp N2; j+1,ν = [ν/2 j+1, (ν + 2)/2 j+1]. Hence,

sup
j≥0

2 j(1−1/p)
(∑

ν∈Z
|2 j 〈 f , h̃ j,ν〉|p

)1/p
� ‖ f ′‖p.

Likewise, if j = −1 we simply have

|〈 f , h̃−1,ν〉| =
∣∣∣
∫

I0,ν
f (x)dx

∣∣∣ ≤
( ∫

I0,ν
| f (x)|pdx

)1/p

and hence

(∑

ν∈Z
|〈 f , h̃−1,ν〉|p

)1/p
� ‖ f ‖p.

We have thus established (5.1). To handle (5.2) we work with an approximation of the
identity, {�
}where�
 = 2
�(2
·)with� ∈ C∞

c and
∫

� = 1. Let f ∈ BV (which
implies f ∈ L∞). Then �
 ∗ f ∈ W 1

1 with ‖�
 ∗ f ‖W 1
1

� ‖ f ‖BV and �
 ∗ f (x) →
f (x) almost everywhere. By dominated convergence 〈�
 ∗ f , h̃ j,ν〉 → 〈 f , h̃ j,ν〉 and
by a further application of Fatou’s lemma and (5.1)

∑

ν∈Z
|2 j 〈 f , h̃ j,ν〉| ≤ lim inf


→∞
∑

ν∈Z
|2 j 〈 f ∗ �
, h̃ j,ν〉| � lim inf


→∞ ‖�
 ∗ f ‖W 1
1

� ‖ f ‖BV ,

where the implicit constants are independent of j . This yields (5.2).
Step 2. We show that, for 1 ≤ p ≤ ∞, we have

‖ f ‖p � sup
j≥−1

2 j(1−1/p)
(∑

ν∈Z
|2 j 〈 f , h̃ j,ν〉|p

)1/p =: A(p) = A.

Recall from Lemma 3.1.b that EN f → f in S ′. Assuming (as we may) that
f ∈ B has finite right hand side it suffices to show that EN f converges in L p

and supN≥0

∥∥EN f
∥∥
p � A. To see this, one expands

EN f = E0 f +
∑

0≤ j<N

∑

μ∈Z
2 j 〈 f , h j,μ〉h j,μ,
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and notes that

∥∥
∑

μ∈Z
2 j 〈 f , h j,μ〉h j,μ

∥∥
p = 2− j/p

( ∑

μ∈Z
|2 j 〈 f , h j,μ〉|p

) 1
p ≤ 2− j A,

hence ‖EN1 f − EN2 f ‖p � 2−N1 A, for all N2 > N1, and thus

‖ f ‖p ≤ sup
N

‖EN f ‖p ≤ A.

Step 3.
We finally show, for 1 < p ≤ ∞, that

‖ f ′‖p � sup
j≥−1

2 j(1−1/p)
(∑

ν∈Z
|2 j 〈 f , h̃ j,ν〉|p

)1/p =: A,

and when p = 1 then f ′ is a finite Borel measure and ‖ f ′‖M � A. Consider the
multiresolution analysis in L2(R) generated by the subspaces

VN = span
{
NN ,μ := N2(2

N+1 · −μ) : μ ∈ Z

}
, N = −1, 0, 1, 2, ...

That is,VN consists of continuous piecewise linear functionswith nodes in 2−N−1
Z.

Let N ∗(·) be the (polygonal) function which generates the dual Riesz basis to
{NN ,μ : μ ∈ Z}; see e.g. [7, §3]. Then, the operator

h ∈ L2 �−→ PN (h) :=
∑

μ∈Z
2N 〈h,N ∗

N ,μ〉NN ,μ

is the orthogonal projection onto VN . Let

gN (x) :=
∑

μ∈Z
2N 〈 f ′,NN ,μ〉N ∗

N ,μ(x).

Using Lemma 2.1,3 we have the uniform bound

2− N
p

( ∑

μ∈Z
|2N 〈 f ′,NN ,μ〉|p

) 1
p

� 2N (1− 1
p )

( ∑

μ∈Z
|2N 〈 f , h̃N ,μ〉|p

) 1
p ≤ A < ∞.

3 Note that, in view of Proposition 1.1, one can give a meaning to the identity 〈 f ′,NN ,μ〉 =
−2N+1 〈 f , h̃N ,μ〉 in Lemma 2.1 also for distributions f ∈ B.
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So, the exponential decay ofN ∗(·)guarantees that the series defining gN (x) converges,
and moreover

‖gN‖p � 2−N/p
( ∑

μ∈Z
|2N 〈 f ′,NN ,μ〉|p

)1/p ≤ A. (5.4)

Then, if p > 1 there exists g ∈ L p which is the weak ∗-limit of a subsequence of
{gN }. Now, if j, ν are fixed, for all N ≥ j we have

〈gN , ψ j,ν〉 =
〈
f ′,

∑

μ∈Z
2N 〈ψ j,ν ,N ∗

N ,μ〉NN ,μ

〉
= 〈 f ′, ψ j,ν〉, (5.5)

because PN (ψ j,ν) = ψ j,ν . Thus, taking limits as N → ∞ in (5.5) we obtain

〈g, ψ j, ν〉 = 〈 f ′, ψ j, ν〉, for all j, ν.

This implies that g = f ′ ∈ L p and ‖ f ′‖p � A.
When p = 1 the weak* sequential-compactness argument only provides that

‖g‖M � A and then ‖ f ′‖M � A. ��

6 Embeddings into Bs,dyadp,∞ : The Cases s = 1 and s = 1/p − 1

In this section we prove the sufficiency of the conditions for the embeddings into
B1,dyad
p,∞ or F1,dyad

p,∞ in Theorem 1.7 and the sufficiency for the conditions of embedding

into B1/p−1,dyad
p,∞ in Theorem 1.9.

Lemma 6.1 Let 1/2 ≤ p ≤ ∞, 1
p − 1 ≤ s ≤ 1. Then Bs

p,min{p,1} ↪→ Bs,dyad
p,∞ is a

continuous embedding.

Proof Using the notation in the proof of part (ii) of Proposition 4.1 we can write

‖ f ‖
Bs,dyad
p,∞

= sup
j≥−1

2 js B j

where Bj is defined as in (4.11) with δ = 0. Letting u = min{p, 1}, we obtain for
each j , arguing as in relation (4.12)

2 js B j �
(∑


∈Z

[
a(
, 1

p ) 2 js
∥∥M j+
( f j+
)

∥∥
p

]u)1/u

�
(
sup

∈Z

a(
, 1
p )2−
s

)
‖ f ‖Bs

p,u
,

where a(
, 1/p) = 2(1/p−1)
 for 
 > 0 and a(
, 1/p) = 2
 for 
 < 0. Since
sup
∈Z a(
, 1/p)2−s
 < ∞ whenever 1/p − 1 ≤ s ≤ 1, we obtain the desired
inequality ‖ f ‖

Bs,dyad
p,∞

� ‖ f ‖Bs
p,min{p,1} . ��
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Proposition 6.2 Let 1/2 < p < ∞. Then F1
p,2 ↪→ F1,dyad

p,∞ is a continuous embedding.

Proof Let f ∈ F1
p,2. we must show that

‖ f ‖
F1,dyad
p,∞

= ∥∥ sup
j≥−1

2 j
∑

ν∈Z
|2 j 〈 f , h j,ν〉|1I j,ν

∥∥
p � ‖ f ‖F1

p,2
.

With the notation from Sect. 2.1, we write f = ∑
k≥0 Lk fk , and for each j ≥ −1 we

split f = � j f + �⊥
j f where

� j f :=
j∑

k=0

Lk fk, and �⊥
j f :=

∑

k> j

Lk fk .

If j = −1, we understand that �−1 f = 0 and �⊥−1 f = f . We shall first bound

A0 := ∥∥ sup
j≥0

2 j
∑

ν∈Z
|2 j 〈� j f , h j,ν〉|1I j,ν

∥∥
p.

The same argument in the proof of [13, Lemma 3.3] gives

|2 j 〈� j f , h j,ν〉| � M∗∗
j,A

(
2− j (� j f )

′)(x), x ∈ I j,ν .

Thus,

2 j
∑

ν∈Z
|2 j 〈� j f , h j,ν〉|1I j,ν (x) � M∗∗

j,A

(
(� j f )

′)(x), x ∈ R,

and taking a supremum over all j ≥ 0, and then L p-norms, we obtain

A0 �
∥∥ sup

j≥0
M∗∗

j,A

(
(� j f )

′)∥∥
p �

∥∥ sup
j≥0

|(� j f )
′|∥∥p, (6.1)

using (2.10) in the last stepwith A > 1/p. Now, themaximal function characterization
of the h p = F0

p,2 norms yields

∥∥ sup
j≥0

|(� j f )
′|∥∥p = ∥∥ sup

j≥0
|� j ( f

′)|∥∥p � ‖ f ′‖F0
p,2

� ‖ f ‖F1
p,2

. (6.2)

To estimate the remaining part involving �⊥
j f , we may quote the standard proof in

Proposition 4.14 above, which gives

A1 := ∥∥ sup
j≥−1

2 j
∑

ν∈Z
|2 j 〈�⊥

j f , h j,ν〉|1I j,ν (x)
∥∥
p � ‖ f ‖F1

p,∞ , (6.3)

4 That is, the part of the proof of Proposition 4.1 involving the indices 
 = k − j ≥ 0.
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provided that s > max{1/p, 1/q} − 1, with s = 1 and q = ∞. So, we obtain

A1 � ‖ f ‖F1
p,∞ � ‖ f ‖F1

p,2
,

under the assumption that p > 1/2. Finally, (6.1), (6.2), (6.3) yield the desired estimate
‖ f ‖

F1,dyad
p,∞

� ‖ f ‖F1
p,2
. ��

Corollary 6.3 Let 1/2 ≤ p < ∞ and q ≤ min{p, 2}. Then B1
p,q ↪→ B1,dyad

p,∞ is a
continuous embedding.

Proof For q ≤ p ≤ 1 this follows from Lemma 6.1. For 1/2 < p < ∞ it follows
from Proposition 6.2 together with the inequality

‖ f ‖
B1,dyad
p,∞

� ‖ f ‖
F1,dyad
p,∞

(6.4)

and the inequality

‖ f ‖F1
p,2

� ‖ f ‖B1
p,min{p,2}

;

the latter being a consequence of Minkowski’s inequalities.
Inequality (6.4) in turn follows by definition from the sequence space inequality

‖β‖bsp,∞ ≤ ‖β‖ f sp,∞ (in the case s = 1), i.e. from the elementary inequality

sup
j

( ∑

μ∈Z

∫

I j,μ
|2 jsβ j,μ1I j,μ(x)|pdx

)1/p

≤
( ∫ [

sup
j
2 js

∣∣∣
∑

μ∈Z
β j,μ1I j,μ(x)

∣∣∣
]p

dx
)1/p

. (6.5)

��
We now consider the other limiting case, where s = 1/p − 1.

Proposition 6.4 Let 1/2 < p ≤ 1 and 0 < q ≤ ∞. Then F
1
p −1
p,q ↪→ B

1
p −1,dyad
p,∞ is a

continuous embedding.

Proof Since F
1
p −1
p,q ↪→ F

1
p −1
p,∞ it suffices to prove this for q = ∞.

Let f ∈ F1/p−1
p,∞ , which as before we shall split as

f = � j f + �⊥
j f .

This time, the standard proof in Proposition 4.1 (that is, the part of the proof involving
the indices 
 = k − j ≤ 0) gives

∥∥∥
(∑

j≥0

2 jsq
∑

ν∈Z
|2 j 〈� j f , h j,ν〉|q 1I j,ν

)1/q∥∥∥
L p(R)

� ‖ f ‖Fs
p,q
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provided that s < 1. So in particular, letting s = 1/p− 1 and q = ∞ we obtain (after
trivial embeddings)

sup
j≥0

2 j(1/p−1)
∥∥∥

∑

ν∈Z
2 j 〈� j f , h j,ν〉1I j,ν

∥∥∥
L p(R)

� ‖ f ‖
F

1
p −1
p,∞

, (6.6)

whenever p > 1/2.
So, it remains to establish a similar estimate with�⊥

j f instead of� j f . We borrow

some notation from [13]. Let D j denote the dyadic intervals of length 2− j . If I ∈ D j

is fixed and k ≥ j we let

(a) Dk(∂ I ) = {
J ∈ Dk : J̄ ∩ ∂ I �= ∅}

(b) ω(J ) = {x ∈ J : dist(x, ∂ I ) ≥ 2−k−1}, when J ∈ Dk(∂ I ).

We will use the maximal function M∗
k g (cf. (2.11)) and note that, as in [13, (42)],

when J ∈ Dk(∂ I ), k > j , it holds

sup
x∈J

|g(x)| ≤
[
−
∫

ω(J )

|M∗
k g|p

] 1
p
, 0 < p < ∞. (6.7)

Now, let I = I j,ν ∈ D j be fixed, and let I± be its dyadic sons. For each k > j , the
function Lk(h j,ν) has support contained in the union of the intervals J belonging to
Dk(∂ I±), and |Lk(h j,ν)| � 1. Thus, since we are assuming p ≤ 1, we have

∣∣〈2 j h j,ν,�
⊥
j f 〉∣∣p ≤

∑

k> j

∣∣〈Lk(2
j h j,ν), fk〉

∣∣p

�
∑

k> j

2−(k− j)p
∑

J∈Dk (∂ I±)

‖ fk‖p
L∞(J )

which, by (6.7), is bounded by

∑

k> j

2−(k− j)p
∑

J∈Dk (∂ I±)

−
∫

ω(J )

|M∗
k fk(x)|p � 2 j p

∫

I ∗
sup
k> j

∣∣2( 1
p −1)k

M∗
k fk

∣∣p dx,

where I ∗ is the 2-fold dilation of the interval I . Summing up in all intervals I = I j,ν ∈
D j we obtain

∑

ν∈Z

∣∣〈2 j h j,ν,�
⊥
j f 〉∣∣p � 2 j p

∫

R

sup
k> j

∣∣2( 1
p −1)k

M∗
k fk

∣∣p.

This implies

sup
j
2− j

(∑

ν∈Z

∣∣〈2 j h j,ν,�
⊥
j f 〉∣∣p

)1/p
�

( ∫

R

sup
k> j

∣∣2( 1
p −1)k

M∗
k fk

∣∣p
)1/p

. (6.8)
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Now,M∗
k g � M∗∗

k,Ag for any A > 0, so choosing A > 1/p and using (2.10) we have

∥∥ sup
k≥0

2( 1
p −1)k

M∗
k fk

∥∥
p �

∥∥ sup
k≥0

2( 1
p −1)k | fk |

∥∥
p � ‖ f ‖

F
1
p −1
p,∞

. (6.9)

Finally, the inequality

‖ f ‖
B

1
p −1,dyad
p,∞

� ‖ f ‖
F

1
p −1
p,∞

follows by combining (6.6), (6.8) and (6.9). ��
Wenowconsider the remaining endpoint casewhere the two limiting cases coincide,

that is, we have both s = 1 and s = 1/p − 1, and thus p = 1/2 (the corresponding
Besov embedding is already covered in Lemma 6.1).

Proposition 6.5 For p = 1/2 we have the continuous embedding

F1
1/2,2 ↪→ B1,dyad

1/2,∞ .

Proof We examine the proof of Propositions 6.4 and 6.2 and note that (6.8) and (6.9)
remain valid for p = 1/2, that is

sup
j≥−1

2− j
(∑

ν∈Z

∣∣〈2 j h j,ν,�
⊥
j f 〉∣∣ 12

)2
� ‖ f ‖F1

1/2,∞
.

Similarly, the arguments in (6.1) and (6.2) do not require a restriction on p, so we also
have

∥∥ sup
j≥0

2 j
∑

ν∈Z
|2 j 〈� j f , h j,ν〉|h j,ν

∥∥
1/2 � ‖ f ‖F1

1/2,2
.

Now the proposition follows from the trivial embeddings F1
1/2,2 ↪→ F1

1/2,∞ and

f 11/2,∞ ↪→ b11/2,∞ (cf. (6.5)). ��

7 Norm Equivalences on Suitable Subspaces: The Proofs of Theorems
1.6 and 1.8

7.1 A Bootstrapping Lemma

Consider a sequence a = {a j,μ} indexed by j ∈ N ∪ {0} and μ ∈ Z. As in (1.19) let
bsp,q be the set of all a for which

‖a‖bsp,q =
( ∞∑

j=0

2 j(s− 1
p )q

[ ∑

μ∈Z
|a j,μ|p

] q
p
)1/q

< ∞. (7.1)
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We split each sequence as a = aeven + aodd, where

aevenj,μ =
{
a j,μ if μ is even

0 if μ is odd,
and aoddj,μ =

{
0 if μ is even

a j,μ if μ is odd.

Then

∥∥aeven
∥∥
bsp,q

=
( ∞∑

j=0

2 j(s− 1
p )q

[∑

ν∈Z
|a j,2ν |p

] q
p
)1/q

∥∥aodd
∥∥
bsp,q

=
( ∞∑

j=0

2 j(s− 1
p )q

[∑

ν∈Z
|a j,2ν+1|p

] q
p
)1/q

The key result is the following lemma, which, under suitable conditions, allows us to
control ‖a‖bsp,q in terms of ‖aeven‖bsp,q . The general hypothesis in (7.3) will be linked
later to a refinement condition which will appear in (7.6).

Lemma 7.1 Let 0 < p, q ≤ ∞, s ∈ R and �λ = (λ0, λ1, λ2) ∈ C
3 such that

|λ1| < 2s−
1
p . (7.2)

Then, there exists C = C(p, q, s, �λ) > 0 such that for every sequence a ∈ bsp,q
satisfying the condition

|a j,2ν+1| ≤
2∑


=0

|λ
| |a j+1,4ν+2+
|, for all j ≥ 0, ν ∈ Z. (7.3)

we have

∥∥a
∥∥
bsp,q

≤ C
∥∥aeven

∥∥
bsp,q

. (7.4)

Proof Let ρ = min{1, p, q}, and for simplicity write σ = s − 1/p. Condition (7.3)
together with the ρ-triangle inequality gives

∥∥aodd
∥∥ρ

bsp,q
≤

∑


=0,1,2

|λ
|ρ
( ∞∑

j=0

2 jσq
[∑

ν∈Z
|a j+1,4ν+2+
|p

]q/p)ρ/q

= (|λ1|2−σ )ρ
( ∞∑

j=0

2( j+1)σq
[∑

ν∈Z
|a j+1,4ν+3|p

]q/p)ρ/q

+
∑


=0,2

(|λ
|2−σ )ρ
( ∞∑

j=0

2( j+1)σq
[∑

ν∈Z
|a j+1,4ν+2+
|p

]q/p)ρ/q
.
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Using the assumptions |λ1| < 2σ and a ∈ bsp,q , the previous display implies

(
1 − |λ1|ρ

2σρ

) ∥∥aodd
∥∥ρ

bsp,q
≤ (|λ0|ρ + |λ2|ρ)2−σρ‖aeven‖ρ

bsp,q
.

This gives

‖a‖bsp,q ≤
(
‖aodd‖ρ

bsp,q
+ ‖aeven‖ρ

bsp,q

)1/ρ

≤
( |λ0|ρ + |λ2|ρ
2σρ − |λ1|ρ + 1

)1/ρ‖aeven‖bsp,q ,

which finishes the proof. ��

7.2 Proof of Theorem 1.6

We must show (1.24), that is

‖ f ‖Bs
p,q

� ‖ f ‖
Bs,dyad
p,q

, provided f ∈ Bs
p,q , (7.5)

which, as we shall see, holds actually in the larger range

1

p
< s < 1 + 1

p
.

By part (ii) of Proposition 4.9, we know that

‖ f ‖Bs
p,q

�
∥∥{c j,μ( f )} j≥0,μ∈Z

∥∥
bsp,q

+ ∥∥{〈 f , h−1,μ〉}
μ∈Z

∥∥

p

= A + B.

Clearly, B is bounded by the right hand side of (7.5), so we focus on A. Define a
sequence a = a( f ) = {a j,ν} by

a j,ν = 2 j |〈 f , h̃ j,ν〉|, j ∈ N0, ν ∈ Z.

Observe from the definition of the coefficients c j,μ( f ) in (1.15) that

A � ‖a‖bsp,q .

Note also from (1.8) that a j,2μ = 2 j |〈 f , h j,μ〉|, so in particular

‖aeven‖bsp,q = ∥∥{
2 j 〈 f , h j,μ〉} j≥0,μ∈Z

∥∥
bsp,q

≤ ‖ f ‖
Bs,dyad
p,q

.

Therefore, we have reduced matters to prove that

∥∥a
∥∥
bsp,q

�
∥∥aeven

∥∥
bsp,q

.



Journal of Fourier Analysis and Applications (2023) 29 :39 Page 41 of 51 39

Fig. 6 Refinement equation for
N j,ν (x); see (7.6)

x

1

1/2

ν
2j

ν+1
2j

ν+2
2j

Nj,ν

1
2Nj+1,2ν

1
2Nj+1,2ν+2

Nj+1,2ν+1

We shall do so using Lemma 7.1, so we need to verify the hypothesis (7.3), for
suitable scalars (λ0, λ1, λ2). This will follow from an elementary property of the
spline functions

N j,μ(x) := N2; j,μ(x) = N2(2
j x − μ),

defined in §2.3. Recall that these are piecewise linear functions supported in the
intervals [2− jμ, 2− j (μ + 2)]. It is then straightforward to verify that

N j,μ(x) = 1
2 N j+1,2μ(x) + N j+1,2μ+1(x) + 1

2 N j+1,2μ+2(x); (7.6)

see Fig. 6. We refer to (7.6) as the refinement identity.
Now, if μ = 2ν + 1 is an odd integer, then the integration by parts formula and the

refinement identity give

a j,μ = 2 j |〈 f , h̃ j,μ〉| = 1
2 |〈 f ′,N j+1,μ〉|

by (7.6) ≤ 1
4 |〈 f ′,N j+2,2μ〉| + 1

2 |〈 f ′,N j+2,2μ+1〉| + 1
4 |〈 f ′,N j+2,2μ+2〉|

by (2.15) = 1
2 a j+1,2μ + a j+1,2μ+1 + 1

2 a j+1,2μ+2,

which implies (7.3) with (λ0, λ1, λ2) = (1/2, 1, 1/2). So we can apply Lemma 7.1,
under the assumption

|λ1| = 1 < 2s−
1
p ,

which holds precisely when s > 1
p . This completes the proof. ��

7.3 Proof of Theorem 1.8

We first show that, if 1 < p ≤ ∞ and f ∈ W 1
p(R), then

‖ f ‖W 1
p

≈ sup
j≥−1

2 j(1−1/p)
( ∑

μ∈Z
|2 j 〈 f , h j,μ〉|p

)1/p
.
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In view of Theorem 1.4, this reduces to prove

A := sup
j≥−1

2 j(1−1/p)
( ∑

μ∈Z
|c j,μ( f )|p

)1/p

� sup
j≥−1

2 j(1−1/p)
( ∑

μ∈Z
|2 j 〈 f , h j,μ〉|p

)1/p
,

(7.7)

whenever A is finite. The argument is completely analogous to that for proving The-
orem 1.6 , this time using the spaces b1p,∞. Note, that this argument only needs that
1 = s > 1/p.

Finally, the assertion in (1.31), for f ∈ W 1
p , follows now easily from

‖ f ‖W 1
p

� ‖ f ‖
B1,dyad
p,∞

� ‖ f ‖
F1,dyad
p,∞

� ‖ f ‖F1
p,2

≡ ‖ f ‖W 1
p
,

where the third inequality was shown in part (ii) of Theorem 1.7 and for the last three
steps we assume p < ∞. ��

8 Necessary Condition for the Embeddings for s = 1

Weprove the necessary conditions inTheorem1.7 for various embeddings into B1,dyad
p,∞ .

Lemma 8.1 Suppose 1/2 ≤ p < ∞. Then

B1
p,q ↪→ B1,dyad

p,∞ �⇒ q ≤ p (8.1)

Proof We shall work with an example that has been used in [14, §6.2] to prove lower
bounds for the norms of EN on B1

p,q . Let u ∈ C∞
c be supported in (1/8, 7/8) so that

u(x) = 1 on [1/4, 3/4]. For N � 1 and N/4 ≤ j ≤ N/2 define

gN , j (x) = u
(
N (x − 2 j

N )
)
e2π i2

j x

and let fN (x) = ∑
N/4≤ j≤N/2 2

− j gN , j (x). Then by [14, Lemma 29] (Lemma 6.3

in arxiv:1901:09117) we have ‖ fN‖B1
p,q

� N−(1/p−1/q) for p ≤ q. We show that

‖ fN‖
B1,dyad
p,∞

� 1 for large N , which will imply that B1
p,q is not continuously embedded

into B1,dyad
p,∞ when q > p.

To see this we prove lower bounds for many of the Haar coefficients of fN at Haar
frequency 2N . Let J N , j = (

2 j
N + 1

4N ,
2 j
N + 3

4N ); we observe that for fixed N the

intervals J N , j are disjoint and that fN (x) = e2
j2π i x for x ∈ J N , j . We get by a Taylor

expansion

〈 fN , hN ,μ〉 = 2−2N−2 f ′
N

(
2−N (μ + 1

2 )
) + RN ,μ (8.2)

http://arxiv.org/abs/1901:09117
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with |RN ,μ| ≤ 2−3N supI j,μ | f ′′
N |. LetZN , j be the set of all integersμ such that 2−Nμ

and 2−N (μ + 1) belong to J N , j ; then for μ ∈ ZN , j

|〈 fN , h j,μ〉| = |〈2− j gN , j , h j,μ〉| = 2π 2−2N−2 + O(2 j−3N )

and hence

‖ fN‖
B1,dyad
p,∞

≥ 2N (1−1/p)
( ∑

N
4 < j< N

2

∑

μ∈ZN , j

∣∣2N 〈 fN , h j,μ〉∣∣p
)1/p

.

Since #(ZN , j ) ≈ 2N N−1 for large N and N/4 < j < N/2 we obtain ‖ fN‖
B1,dyad
p,∞

�
1. ��
Lemma 8.2 Suppose 1/2 ≤ p < ∞. Then

F1
p,q ↪→ B1,dyad

p,∞ �⇒ q ≤ 2, (8.3)

B1
p,q ↪→ B1,dyad

p,∞ �⇒ q ≤ 2. (8.4)

Proof We consider the same example that was used in [13, §7.2.1]. Namely, let ψ ∈
C∞
c (0, 1) with ψ ≡ 1 in [1/4, 3/4], and for each large N � 1, let

ZN = { j ∈ N : N/4 < j < N/2} (8.5)

and

ft (x) :=
∑

j∈ZN

r j (t)

2 j
e2π i2

j x ψ(x), t ∈ [0, 1], (8.6)

where r j (t), t ∈ [0, 1], are the usual Rademacher functions. Using Lemma 7.3 from
[13] one can verify that

sup
t∈[0,1]

‖ ft‖F1
p,q

� N 1/q; (8.7)

a similar argument also gives

sup
t∈[0,1]

‖ ft‖B1
p,q

� N 1/q . (8.8)

Let ψ j (x) = 2− j e2π i2
j xψ(x), for j ∈ ZN , and let ZN be the set of all μ ∈ Z such

that IN ,μ ⊂ (1/4, 3/4). Using the Taylor expansion as in (8.2) one sees that

|〈ψ j , 2
NhN ,μ〉| = 2π2−N−2 + O(2 j−2N ), μ ∈ ZN . (8.9)
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Now observe that

‖ ft‖B1,dyad
p,∞

≥ 2N (1−1/p)
( ∑

μ∈ZN

|〈 ft , 2NhN ,μ〉|p
) 1

p
. (8.10)

So, raising to the p-th power and taking the expectation in the t variable, we obtain
from Khintchine’s inequality

( ∫ 1

0
‖ ft‖p

B1,dyad
p,∞

dt
) 1

p ≥ 2N (1− 1
p )

( ∑

μ∈ZN

∫ 1

0

∣∣
∑

j∈ZN

r j (t)〈ψ j , 2
NhN ,μ〉∣∣pdt

) 1
p

� 2N (1− 1
p )

( ∑

μ∈ZN

[ ∑

j∈ZN

∣∣〈ψ j , 2
NhN ,μ〉∣∣2

] p
2
) 1

p
.

An application of (8.9), together with the cardinalities of ZN and ZN , then gives

( ∫ 1

0
‖ ft‖p

B1,dyad
p,∞

dt
) 1

p �
√
N .

This togetherwith (8.7), (8.8) implies that the inclusions B1
p,q ↪→ B1,dyad

p,∞ and F1
p,q ↪→

B1,dyad
p,∞ can only hold if q ≤ 2. ��

Lemma 8.3 For p = ∞ we have

B1∞,q ↪→ B1,dyad
∞,∞ �⇒ q ≤ 1. (8.11)

Proof We assume that B1∞,q ↪→ B1,dyad
∞,∞ , and we shall prove that necessarily q ≤ 1.

Let ZN be as in (8.5) and consider the function

f (x) :=
∑

j∈ZN

2− j e2π i2
j x ψ(x),

which is defined as in (8.6), but with all the r j (t) set equal to 1. This time we shall
assume that ψ ∈ C∞

c (−1/2, 1/2) with ψ = 1 in (−1/4, 1/4). As in (8.8) we have

‖ f ‖B1
p,q

� N 1/q . (8.12)

On the other hand, note that

‖ f ‖
B1,dyad∞,∞

≥ 2N |〈 f , 2NhN ,0〉|. (8.13)

Arguing as in (8.2) we see that

〈 f , 2NhN ,0〉 =
∑

j∈ZN

〈ψ j , 2
NhN ,0〉 =

∑

j∈ZN

[
2− j2−N−2ψ ′

j (0) + O(2 j−2N )
]
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= 2π i2−N−2 Card (ZN ) + O(2−3N/2),

which inserted into (8.13) gives

‖ f ‖
B1,dyad∞,∞

� N . (8.14)

The lemma is proved after combining (8.12), (8.14) and letting N → ∞. ��

9 Necessary Condition for Embedding into B1/p−1,dyad
p,∞

Proposition 9.1 Let 0 < p, q ≤ ∞. Then

B1/p−1
p,q ↪→ B1/p−1,dyad

p,∞ �⇒ q ≤ min{1, p}.

Proof We first assume 1 < p ≤ ∞. Suppose the embedding Bs
p,q ↪→ Bs,dyad

p,∞ holds,
with s = 1/p − 1. By definition of the latter space we have the inequality

|〈 f , h j,μ〉| � 2 j( 1
p −1−s)‖ f ‖

Bs,dyad
p,∞

, (9.1)

so the assumed embedding would then imply that h j,μ defines a bounded linear func-

tional on B−1+1/p
p,q (or in the subspace B̊−1+1/p

p,q defined by the closure of S in the

B−1+1/p
p,q norm, in case that p or q are ∞). By the duality identities of Besov spaces,

see [27, §2.11], this means that h j,μ ∈ B1/p′
p′,q ′ which cannot be the case if q ′ < ∞, i.e.

if 1 < q ≤ ∞.
Let p ≤ 1. We use an example from [14, §10.1]. We let ηl(x) = 2lη(2l x) where

η ∈ C∞
c (R) is an odd function supported in (−1/2, 1/2) such that

∫ 1/2
0 η(s)ds = 1

and such that
∫ 1/2
0 η(s)snds = 0 for n = 1, 2, . . . , M , for a sufficiently large integer

M . Let

fN (x) =
∞∑

m=1

amηN+m(x − 2−N+5m).

By [14, (85)] we have

‖ fN‖
B1/p−1
p,q

�
( ∞∑

m=1

|am |q
)1/q

.

On the other hand a calculation shows 〈 fN , hN ,25m〉 = am and thus

‖ fN‖
B1/p−1,dyad
p,∞

≥
(∑

μ

|〈 fN , hN ,μ〉|p
)1/p

�
( ∞∑

m=1

|am |p
)1/p
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which forces q ≤ p. ��

10 B1/pp,q and B1/p,dyadp,q : The proof of Theorem 1.10

10.1 Proof of Part (i) of Theorem 1.10

Let

fN =
N−1∑

j=0

h j,0, for N = 1, 2, . . . (10.1)

Observe that

‖ fN‖
Bs,dyad
p,∞

= sup
j≥0

2 j(s− 1
p )[ ∑

μ∈Z
|2 j 〈 fN , h j,μ〉|p]1/p = 1, if s = 1/p. (10.2)

On the other hand, using the characterization with differences of order 2 for the Bs
p,q -

norm (since s ∈ (0, 1]), see [27, Theorem 2.5.12], we have

‖ fN‖
B1/p
p,∞

� 2N/p
∥∥�2

2−N ( fN )
∥∥
p

≥ 2N/p
[ ∫ −2−N

−21−N

∣∣∣
∑

0≤ j<N

�2
2−N h j,0(x)

∣∣∣
p
dx

] 1
p
. (10.3)

Now a simple computation shows that, if δ ∈ (0, 2− j−1], then
h j,0(· + δ) − h j,0(·) = 1[−δ,0) − 21[2− j−1−δ,2− j−1) + 1[2− j−δ,2− j )

and therefore,

�2
δh j,0(x) = 1, x ∈ [−2δ,−δ).

Setting δ = 2−N and inserting this expression into (10.3) we get

‖ fN‖
B1/p
p,∞

� 2N/p
∥∥�2

2−N fN
∥∥
p ≥ N , (10.4)

and hence part (i) of Theorem 1.10 follows. ��

10.2 Proof of Part (ii) of Theorem 1.10

Consider this time the function

f =
∞∑

j=0

h j,0,
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and as before fN = ∑N−1
j=0 h j,0, i.e. f = limN→∞ fN with convergence in L p.

Indeed

‖ f − fN‖p ≤
∑

j≥N

∥∥h j,0‖p =
∑

j≥N

2− j/p ≈ 2−N/p. (10.5)

As in (10.2), it is again easy to verify that

‖ f ‖
B1/p,dyad
p,∞

= 1. (10.6)

We claim that f /∈ B1/p
p,∞. Indeed, for large N we have

‖ f ‖
B1/p
p,∞

� 2N/p
∥∥�2

2−N ( f − fN ) + �2
2−N fN

∥∥
p

≥ 2N/p(∥∥�2
2−N fN

∥∥
p − 4‖ f − fN‖p

)
. (10.7)

Inserting the bounds (10.4) and (10.5) into (10.7) gives

‖ f ‖
B1/p
p,∞

� 2N/p
∥∥�2

2−N ( fN )
∥∥
p − O(1) � N ,

which letting N ↗ ∞ proves the assertion. ��

11 Some Pathologies of the Spaces Bs,dyadp,q

We include in this section some pathologies of the spaces Bs,dyad
p,q when s > 1, or

s = 1, q < ∞, or s < 1/p − 1, which were mentioned in the introduction.

11.1 Failure of Embedding into Bs,dyadp,q for s > 1 or s = 1, q < ∞

The following proposition is a simple result on the theme of Brezis’ paper [3] on how
to recognize constant functions.

Proposition 11.1 Let 0 < p, q ≤ ∞ and assume that either (i) s > 1, or (ii) s = 1
and q < ∞.

Then every f ∈ C1(R) ∩ Bs,dyad
p,q (R) is a constant function.

Remark Bočkarev’s results [1, Theorem 3] indicate that less restrictive assumptions
can be made but we will not pursue the problem of optimal hypotheses here.

Proof We argue as in the proof of Lemma 8.1, now using Taylor’s formula in the form

sup
b∈K

sup
|b−y|≤ε

| f (y) − f (b) − f ′(b)(y − b)| = o(ε)
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for any compact K . Take b ≡ b j,μ = 2− j (μ + 1
2 ) to see that

〈 f , h j,μ〉 = f ′(2− j (μ + 1
2 ))2

−2 j−2 + o(2−2 j ) (11.1)

with uniformity in the remainder as b j,μ ranges over a compact set.
Now assume that f ∈ C1 and that f ′ is not identically zero. Then there is a dyadic

interval J = [ν2−
, (ν + 1)2−
) and c > 0 such that for j ≥ j0 > 


|〈 f , h j,μ〉| ≥ c2−2 j , if I j,μ ⊂ J .

Hence

‖ f ‖
Bs,dyad
p,q

≥
( ∞∑

j= j0

[
2 j(s− 1

p )
( ∑

μ:I j,μ⊂J

|2 j 〈 f , h j,μ〉|p
) 1

p
]q) 1

q

≥
( ∞∑

j= j0

[
2 j(s−1/p)2( j−
)/pc2− j

]q) 1
q ≥ c


( ∞∑

j= j0

2 j(s−1)q
)1/q

with c
 > 0. Hence ‖ f ‖
Bs,dyad
p,q

= ∞ when s > 1 or when s = 1 and q < ∞.

We conclude that for this range we have f ′ ≡ 0 for every f ∈ C1 ∩ Bs,dyad
p,q and

Proposition 11.1 follows. ��

11.2 The Dyadic Besov-Spaces for s < 1/p − 1: Failure of Completeness

Proposition 11.2 Let 0 < p, q ≤ ∞. If s < 1/p − 1 then the spaces Bs,dyad
p,q (R) are

not complete.

Proof Consider the functions

fN = 1[0,1) +
N−1∑

j=0

2 j h j,0 = 2N1[0,2−N ), N = 1, 2, . . . (11.2)

It is easily seen that, under the assumption s < 1/p − 1, then

‖ fM − fN‖
Bs,dyad
p,q

=
( ∑

N≤ j<M

[2 j(s+1− 1
p )]q

) 1
q → 0,

when M > N → ∞. So, { fN }N≥1 is a Cauchy sequence in Bs,dyad
p,q . However, the

distributional limit of fN is the Dirac measure δ, which does not belong to the space
B. ��
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11.3 Failure of an Embedding for s = 1/p − 1

A small variation of the last example shows also part (i) of Theorem 1.9 and at the
same time the optimality of the condition s > 1/p − 1 in part (ii) of Proposition 4.1
when q < ∞.

Proposition 11.3 Let 0 < p, u ≤ ∞. Then

B1/p−1
p,u �↪→ B1/p−1,dyad

p,q , 0 < q < ∞.

Proof Consider fN as in (11.2), and let gN = fN − fN (−·) be its odd extension. Then,
it was shown in [14, Proposition 52] (Proposition 13.3 in arxiv:1901.09117) that

‖gN‖
B1/p−1
p,u

� 1,

for all 0 < p, u ≤ ∞. However, it is easily seen that

‖gN‖
B1/p−1,dyad
p,q

≥ ‖ fN‖
B1/p−1,dyad
p,q

≥ N 1/q .

��
Remark 11.4 Note that the above proof also shows that L1 is not continuously embed-
ded into B = B−1

∞,1. Indeed, the functions fN = 2N1[0,2−N ) in (11.2) satisfy
‖ fN‖1 = 1 and ‖ fN‖B � N .

Acknowledgements The authors would like to thank two anonymous referees for valuable comments,
which have been taken into account in Remarks 4.10 and 1.7.4. The authors thank Hans Triebel for his
comments on duality, see Remark 3.2. In addition, T.U. would like to thank Dorothee Haroske andWinfried
Sickel for having the opportunity to present the material in a plenary talk at the conference “Function
spaces and applications” in Apolda 2022. G.G. was supported in part by grant PID2019-105599GB- I00
from Ministerio de Ciencia e Innovación (Spain), and grant 20906/PI/18 from Fundación Séneca (Región
de Murcia, Spain). A.S. was supported in part by National Science Foundation grant DMS 2054220. T.U.
was supported in part by Deutsche Forschungsgemeinschaft (DFG), grant 403/2-1.

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References
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