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Abstract

We study the behavior of Haar coefficients in Besov and Triebel-Lizorkin spaces on R,
for a parameter range in which the Haar system is not an unconditional basis. First, we
obtain a range of parameters, extending up to smoothness s < 1, in which the spaces
Fy , and By  are characterized in terms of doubly oversampled Haar coefficients
(Haar frames). Secondly, in the case that 1/p < s < 1l and f € B}Y% 4> We actually
prove that the usual Haar coefficient norm, ||{2/ (£, h I ||b-§,’q remains equivalent
to || £l B, i.e., the classical Besov space is a closed subset of its dyadic counterpart.
At the endpoint case s = 1 and ¢ = oo, we show that such an expression gives
an equivalent norm for the Sobolev space W; R), 1 < p < oo, which is related
to a classical result by Bockarev. Finally, in several endpoint cases we give optimal
inclusions between Bls,’ Pe F ;‘ PE and their dyadic counterparts.
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1 Introduction and Statement of Main Results

In this paper we investigate the validity of norm characterizations for elements f in
Besov and Triebel-Lizorkin spaces, (R) and F [§ (R), in terms of expressions
involving their Haar coefficients or sultable variations thereof. The novelty in the
current paper is that we obtain results for a range of the parameters (s, p, ¢) in which
the Haar system is not an unconditional basis of the above spaces (see Figs. 1 and 2); this
complements earlier work of the authors [11-14, 23] where a complete description was
given for the parameter range in which the unconditional or Schauder basis property

holds in each such space.
We denote the (inhomogeneous) Haar system in R by

H=hj, : j=-1, nel}, (1.1)
where we let h(x) = ]l[o,%)(x) — 11[%!1)(x) and
hju(x):=hQx —p), ifpeZ j=01,2,... (1.2)
Note that 4 ;, is supported in the closure of the dyadic interval
Liw=[271w277(u+1).
In the case j = —1, we just let
hovp =11, =L+, HEZL.

Let F IS,, q (R) and B;, q (R) denote the usual Triebel-Lizorkin and Besov spaces [27].
It has been shown in [23, 24, 30] that .# is an unconditional basis of F ;,’ q(]R) if and
only if s belongs to the range

max{l/p—l,l/q—l}<s<min{1/p, l/q,l}; (1.3)

moreover, in the range (1.3), F} , is characterized by the property
1/q
”(Zz!“f[quthm,M]) ” < 0, (14)
p
j=—1 WEL
and this expression defines an equivalent quasinorm in F, .

It was also shown in [12] that 57 is a Schauder basis of F s (R) (with respect to
natural enumerations) in the larger range

1/p—1<s<min{1/p,1}, forall 0 < ¢ < oo. (1.5)
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Fig. 1 Parameter domain for .7 to be an unconditional basis (left figure) or a Schauder basis (right figure)
in F§ (R)
Pq

At the endpoints, the Schauder basis property holds for F ;,’ ¢ if and only if
s=1/p—1 and 1/2<p<1 (1.6)
also for all 0 < g < oo; see [13]. These regions are depicted in Fig. 1.
For the spaces B ) (R) there is no such distinction, and .7 is an unconditional basis

under (1.5) (and also a Schauder basis under (1.6), if p = ¢); see [14]. Moreover, in
the range (1.5), Bj, , is characterized by the property

( i VI3 |2f<f,hj,u>|1’)q/p)l/q <, (1.7)
j=—1 WEZ

and this expression in an equivalent quasinorm in B, .

1.1 The Oversampled Haar Systems: Haar Frames
A main feature of this paper is to show that the above characterizations in terms of
Haar coefficients can be extended to the larger regions depicted in Fig.2, provided

that we doubly oversample with Haar type coefficients obtained by a shift.
More concretely, we now define

Rjv@):=h@Q/x =) ifj=0,1,2,... andv € Z. (1.8)

Observe that for even v = 21 we recover the original Haar functions, h jou =hj,
supported in /; ;,, but for odd v we obtain a shifted Haar function

g1 =hju(—2777h,
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which is supported in the interval [277 (i +1/2), 27/ (u+3/2)) = 1; , +277 71, As
before, for j = —1 we just let

hoyyi=h_1,= Ivt1)-
Then the extended Haar system is defined by
A — {Zj,v L >l ve Z}. (1.9)
In what follows we will need to work with appropriate spaces of distributions on

which the (generalized) Haar coefficients are well defined. Given a bounded interval
I C R, consider the linear functional (distribution)

r(f) = /1 F()dx, (L10)

which applied to f € Llloc satisfies the trivial inequality

()] < /I ()1, (L11)

Below, we shall also deal with distributions f, associated with certain negative
smoothness parameters, which may not belong to Llloc. To handle these we choose as
a reference space the set of distributions

% =B\ (R). (1.12)

By standard embeddings, see e.g. [27, 2.7.1], we have

1 1
B;q(R)L)%, ifs>——1,ors=——1land0 <qg <1, (1.13)

’ P p

and | :
F;q(R)f—n%’, ifs>——1,ors=——1and0 < p < 1. (1.14)

‘ p p

In particular, all the spaces that are used in Theorems 1.2—1.10 are embedded into 2.

Proposition 1.1 For a bounded interval I C R consider the distribution Ay in (1.10).
Then

(1) A extends to a bounded linear functional on 9B, with operator norm O (1+|1}).

(ii) For every h € % the linear functional f w— (f, h) is bounded on 9B with
uniformly bounded operator norm.

(i) If fe Band (f,h) =0, forallh € S, then f = 0.

Remark Clearly, using (1.11) one can also replace in (i) the space & with 8 + Llloc.
We note that L; is not embedded into 4, see Remark 11.4.
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In the rest of the paper, when f € 2, we use the following notation, combining
the standard Haar coefficients with the coefficients obtained from the shifted Haar
functions:

Gu(f) =2 [ f o)+ 21 ot (1.15)
when j =0,1,...,and

1. () =(Frhorp) = (F L)

_Our first main result provides a characterization where in (1.4) the Haar coefficients
27(f, hj .) arereplaced with the c; , (f). This covers as well the quasi-Banach range
of parameters; see Fig. 2.

Theorem 1.2 Let 1/2 < p < 00, 1/2 < g < 0o and
max{l/p—1,1/g —1} <s < 1. (1.16)
Then F,, ,(R) is the collection of all f € 98 such that

o]

H( Z 27 ch"“(f)]llj,u

j=—1 HEL

q)l/q Hp < 0. (1.17)

Moreover; the latter quantity represents an equivalent quasi-norm in F, p (R).

Using terminology introduced by Gréchenig [16], one may say that S is a
(quasi-)Banach frame' for F ».q(R). In signal processing language, this can be inter-
preted by saying that one may stably recover f from the sampled information
{(f, h):h e,

We remark that the condition s > + — 1 in (1.16) is necessary, in view of the
examples in [23]; see Remark 4.3. The analogous characterization for Besov spaces
is valid in a larger range:

Theorem 1.3 Let 1/2 < p < 00,0 < g < oo and
I/p—1<s<1.

Then B, q (R) is the collection of all functions [ € % such that

o]

2J(s=1/p)q |cj’#(f)|17 a/p\1a < 00.
> >

j=—1 WEL

Moreover, the latter quantity represents an equivalent quasi-norm in B; ¢ (R).

! In a Hilbert space H, a frame is a system of vectors {e_j} C H, which for some constants A, B > 0
satisfies Al fII3; < L1/, ep)* < BIfIF .V f € H.
J
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Fig.2 Parameter domain for 2% to be a characterizing frame for F ;,q (R) (left figure, Theorem 1.2) and
B;, g (R) (right figure, Theorem 1.3)

Figure 2 shows the regions of parameters where X! is a characterizing frame for
each of the spaces F;,q (R) and B;,q (R).

We remark that a related result, in the special case of the Holder spaces C* =
Bg‘o’oo(R), a € (0, 1), and using a 1/3-shifted Haar frame, has been recently obtained
by Jaffard and Krim; see [17, Theorem 1]. As pointed out by A. Cohen in [17, Remark
5], related characterizations of Besov spaces Bz’ q[O, 1], up to smoothness s < 1,
appeared in the spline community in the 70s (see e.g. [9, §12.2]), in that case in
terms of classes of best linear approximation by piecewise constant functions with
equally spaced (or sufficiently mixed) knots. In particular, compare the statements of
Theorems 1.3 and 1.4, with [9, Theorem 12.2.4] parts (iv) and (ii), respectively; see
also Remark 4.10.

1.2 Characterization of W; (R) Via Haar Frames

We now let s = 1, and consider in the Banach range 1 < p < oo the Sobolev space
Wll7 (R), endowed with the usual norm

I lwiwy = 171, + 1N p-
We also let BV (R) be the subspace of L (R) for which the distributional derivative

belongs to the space M of bounded Borel measures (with the norm given by the total
variation of the measure) and define

I flBvay = IF 1+ 1L e
Note that by our definition BV C L; which deviates from the definition in some other
places in the literature. We have the following result, that provides characterizations

in terms of the oversampled Haar system 77X,
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Theorem 1.4 For all f € A the following hold.
1) If1 < p < oo then

/p
Iy ~ sup 27 (S leunr)

NEL

(ii) In the case p = 1 we have instead

IfllBy ~ sup > lej u(f)l-

jz= HEZL

Clearly part (ii) implies the inequality

sup D 1¢ju (NS IS s (1.18)

jz- lueZ

for all f € B. However the converse of this inequality fails as one checks by testing
it with f = Ljo,1) € BV \ W/; we have sup; >, lej u(Lo, 1| < 0.

The fact that the Sobolev W]% (R) norm can be expressed in terms of a discrete
norm of b;,’oo type may seem surprising at first, but actually results of this sort can
be found in the literature since the 60s, see [1]. The theorem is also reminiscent of
characterizations via the uniform bounds for difference quotients h=1( fG+h -1,
see [26, Prop V.3] and more recently [4, 5].

1.3 Dyadic Besov Spaces

In this section we present stronger results involving the standard Haar system ¢, and

suitable dyadic variants B P, qydd of the Besov spaces.

We first recall the definition of the sequence spaces b;’ g and f, 1; gisee[10]. Ifs e R
and 0 < p, g < oo, we define, for B = (B 1} j>—1, ez,

81, = (3 [P (i) )", (1.19)
j=—1 WEZ
and if p < oo we let
85z, = [( 3 P X At o) (120)
j=—1 WEL

These expressions have the obvious interpretations if max{p, g} =
We additionally define for every f € % the quantity

11 gyams = | {27 F 2R},

b3,

Birkhauser
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and the vector spaces

s dydd

® ={fe® : Iflgum <o

Observe that span 5# C BS dyad, so the spaces are not null. Also, the quan-

tity || f || s.dyad 1S @ quasi-norm (not just a semi-norm), by Proposition 1.1. Since
1741

27| (f,hj ) < ¢ju(f) we note the following immediate consequence of Theorem
1.4.

Corollary 1.5 If1 < p < oo then

whes By, (1.21)
To avoid pathological cases, below we shall typically consider the range
1
——l<s<l, (1.22)
p
and some end-point cases of these. We remark that when s > 1 (or s = 1 and

0 < g < 00), the spaces B},:Zyad contain no nontrivial C' functions (see Proposition
11.1), while for s < 1/p — 1 the spaces are not complete (see Proposition 11.2). Recall

also that in the range 1/p — 1 < s < min{l/p, 1} we have Bf,, BS dyad cf. (1.7).

Assume now that (1.22) holds. By Theorem 1.3 we have B;’ Bs dyad , and the
inclusion is proper provided that

I/p<s<l1, ors=1/p and g <o (1.23)

(since in that range Haar functions do notbelong to B}, ). Our goal is to prove converse
inequalities of the form

I fllgs < 1fll wsasaa, provided that f € B (R). (1.24)
P4 By g 120

Such inequalities will imply that || - || , s dyad is an equivalent norm in Bp ¢» @ result

which may seem surprising outside the usual unconditionality region. Our first result
in this direction is the following.

Theorem 1.6 Let1 < p < 00,0 < g < 00, andl/p < s < 1. Then (1.24) holds. In

yad

particular, B[S,’ is a proper closed subspace of B , and we have

1£18y, 1/ | gpams. forall f € By 4(®). (1.25)

There are also some precedent results of this nature in the literature. When p =
q = 00, anorm equivalence as in (1.25) (for continuous functions in the interval [0,1])
was proved by Golubov [15, Corollary 6]; see also [19, Corollary 3.2], [20, Theorem
7.c.3] and references therein.
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1.4 Inclusions for the Limiting Cases = 1

In what follows the notation X; < X, will indicate a continuous embedding of the
space X in the space X;. As already remarked above we may focus on the cases s < 1
ors =1, g = oo, cf. Proposition 11.1.

We now state inclusions into the spaces B';,’f,'}yad, in the case that s = 1 and ¢ = oo.
Note that in one of the inclusions we use the smaller space

F;:ggad = {f cRB : {2j(f’hj‘u>}j2_zl € f;’oo}.
JLE

Theorem 1.7 Let 1/2 < p < o0. Then the following hold.
@) If1/2 < p < oo then

B, = By — ¢ <min{p,2}, (1.26)
F),— B = gq=<2. (1.27)
For p = oo we have
Bl , = BX! &= q=<1. (1.28)
(i) For 1/2 < p < o0
Fpo > Fpad, (1.29)

The next result gives a converse inequality to the embedding (1.21), which in
particular implies that

. . 1/p
1/ e = sup 2707P (N7 I (f, by 17)
e jz=1 WEZ

is an equivalent norm in W}, (R). Earlier bounds of this type, for absolutely continuous
functions in the interval [0, 1], can be found in the work of BocCkarev, see [1, The-
orem 7], [2, Theorem 1.3.4], or [20, Corollary 7.b.2] and references therein. Below

we establish, by different methods, the following result, which is complementary to
Theorem 1.4.

Theorem 1.8 Let 1 < p < co. Then
1wy < 1flgrana. provided f € Wy(R). (1.30)

In particular, W; (R) is a proper closed subspace of B},;iﬁ““, and it holds

1£lwy 2 1f D gras = Uf gama. for f € Wy®), 1< p<oo.  (131)

Birkhauser
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Remark The inequality in (1.30) (and hence, the first equivalence in (1.31)) is also
true when p = 1, due to the result of Bockarev [1]. The proof we give here, however,
is only valid for p > 1.

1.5 Inclusions for the Limiting Cases = 1/p — 1

We state inclusions into the spaces Bf,’f;yad, in the case thats = 1/p — l and g = o0

Theorem 1.9 (i) For 0 < p, u < oo the embedding B},{Lf—l > B},{gil’dyad

hold when g = oo
(i) If p > 1/2 then

can only

l/p 1,dyad

3117{5 Pes B, < ¢ <min{l, p} (1.32)
(i) If 1/2 < p < 1 then
Fpl e B0t (1.33)

Remark When p = 1, we also have the straightforward inequality

sup > f hju) SIfIh. feL',

jz= IMGZ

which leads to the inclusion L1 N %4 C B0 dyad.

1.6 TheCases = 1/p

When 1 < p < oo, the standard Haar characterization of Besov spaces implies that

1 1
B, (R) =By ®), ——1<s5<—.
’ P p

On the other hand, Theorem 1.6 implies the norm equivalence

1
108, = 1 gyass S € By — <5 <1

These two results might suggest that the norm equivalence could hold also at the
dividing line s = 1/p. Here we show that this is not the case, at least when g = co

Theorem 1.10 Let 1 < p < o0. Then
(i) there exists a sequence { fN}37_, of functions in B, / & such that

I/l girpasas = Land || fnll gn Z N,
p,oo p,00

(i) By LY\ BYZ £ 0.

Birkhduser
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Remarks (i) The previous result shows that, if 1 < p < oo, then Theorem 1.6 cannot
hold at the dividing line s = 1/p (at least if ¢ = 00). Namely, the embedding of
Bll,{ P into Bll,,/ podyad hich is established by Theorem 1.3, is proper, that is, B ;1,/ L C
B,l,/ g’o’dy"‘d, and moreover, on the smaller space Bll,/ é’o, the norms are not equivalent,
ie.,

1
sup {1f 11 < f € Byl& and ILf | yypasa = 1} = o0. (1.34)

Both statements are an immediate consequence of Theorem 1.10.
(ii) Observe that BV (R) «— B 11 oo (R) and that for p = 1 we have the embedding
BV(R) — Bldad 4 a consequence of Theorem 1.4. Theorem 1.10 shows that this

1,00
Ldyad\ By (R) £ 0.

embedding is also proper, i.e. By
1.7 Further Directions

We mention a few problems left open in this paper.

1.7.1 Besov-Type Spaces

Concerning (1.34) in Theorem 1.10, we do not know whether the inequality

1l = C S gpasaa (1.35)

couldbe true for 1 < p < oo whenrestricted to f € S(R). Itis also open to determine

whether such inequality could hold if the B 11,/ %, norm s replaced by B)/2 withg < oo.

s s,dyad
1.7.2 Fp,q Versus Fy o

It would be interesting to establish an optimal analogue of Theorem 1.6 for Triebel—
Lizorkin spaces.

1.7.3 Wavelet Frames

The sharp results on the failure of unconditional convergence of Haar expansions in
[23] (described above) have been extended by R. Srivastava [25] to classes of spline
wavelets with more restrictive smoothness assumptions. It is then natural to investigate
extensions of our results on Haar frames to suitable classes of oversampled systems
of spline wavelets.

1.7.4 Higher Dimensions

In this paper we have found it appropriate to present our results for function spaces in
R (rather than R¥). It seems likely that many arguments in the paper could be adapted,
with only standard modifications, to the higher dimensional context (such as those in
§4 or §6). On the other hand, the arguments in which the 1-dimensional setting is more

Birkhauser



39 Page12of51 Journal of Fourier Analysis and Applications (2023) 29:39

present (such as the bootstrapping in §7) may require more elaborate changes. We do
not pursue these questions here.

1.8 Structure of the Paper

In §2 we compile notation and known results about maximal operators in function
spaces. We also review some properties about the Chui-Wang wavelet basis, that will
be used later in our proofs.

In §3 we clarify the role of the space # and prove Proposition 1.1.

In §4 we consider the characterization of function spaces via Haar frames, giving
the proofs of Theorems 1.2 and 1.3 (as a combination of four Propositions 4.1, 4.4,
4.5 and 4.9).

In §5 we establish Haar frame characterizations of Sobolev and bounded variation
spaces and give a proof of Theorem 1.4.

In §6 we prove the sufficiency of the conditions for the embeddings into B},;iﬁ"‘d

or F ;:ggad in Theorem 1.7, and the sufficiency for the conditions of embedding into
B ]17/ g{hdyad in Theorem 1.9.

In §7 we prove Theorems 1.6 and 1.8.

In §8 we prove necessary conditions for the embeddings into B ,‘,fiﬁad. Specifically,
in Theorem 1.7 the necessary conditions ¢ < p in (1.26), g < 2in (1.27), (1.26), and
g < lin (1.28) correspond to Lemmas 8.1, 8.2, and 8.3, respectively.

In §9 we obtain necessary conditions in part (ii) of Theorem 1.9 for the embeddings
. 1/p—1,dyad
into B oo .

In §10 we prove Theorem 1.10.

al

In §11 we give a simple proof for the fact that C! functions in B ,l,:‘;y d, withg < oo,

are constant (Proposition 11.1); moreover show that B;,’f,’}yad is not complete when s <

1/p — 1 (Proposition 11.2) and finally prove part (i) of Theorem 1.9 (see Proposition
11.3).

2 Preliminaries on Function Spaces and Wavelet Bases
2.1 Definition of Spaces

Lets € Rand 0 < p, g < oo be given. We shall use both definitions and character-
izations of B), , and F), , in terms of dyadic frequency decompositions and in terms
of sequences of compactly supported kernels with cancellation (see e.g. [28, 2.5.3,
2.4.6] or [29, §1.3,1.4] where the terminology local means is used).

Consider two functions By, 8 € S(R) such that |E)(E)| > 0 when |§|] < 1 and
|E(§)| > 0 when 1/4 < |&€| < 1. Assume further that 8(-) has vanishing moments up

to a sufficiently large order M € N, that is,

/,B(x)xmdxzo when m < M. 2.1
R

Birkhduser



Journal of Fourier Analysis and Applications (2023) 29:39 Page 130of 51 39

The precise value of M is not relevant, but for the properties used in the paper it will
suffice with
M>1/p+|s|+2. 2.2)

We let B (x) := 2k ﬂ(ka), k > 1, and define for k € Ny the convolution operators
Lif=pBexf,

acting on distributions f € S'(R).
The Besov space B;,, q (R) is the set of all distributions f € S’(R) such that

/18, = (i (24 1Lir1,)") " < co. 2.3)
k=0

If p < oo, the Triebel-Lizorkin space F' ;, R isthe setof all f € S'(R) such that

171sy, = | (251 reom) |, <o 24)
k=0

Different choices of By, B give rise to the same spaces and equivalent quasi-norms;
see e.g. [29, Theorem 1.7]. From now on we will assume that

supp Bo C (—=1/2,1/2) and supp B C (—1/2,1/2).

We shall often use the following decomposition of distributions in &’ (R). Let g €
C°(R) be supported on {|§| < 3/4} and such that n9(§) = 1 when |£| < 1/2. Define
the convolution operators Ag, and Ay for k > 1, by

= no(§) ~
A = =
0f () ﬂo(é‘)f(g)
— n0(27*6) —no@ Mg ~
A = —~ , k>1.
kf (&) 52 %) f&)
Then, for all f € S’(R) we have
f= E Ly Ay f (2.5)
k=0

with convergence in S’ (R). Also, it holds

(3 (= 1aernn)") 71,

k=0

and likewise for the F-norms.
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2.2 Maximal Functions

We follow Triebel [27, 28]. Given f € Lll"c(R), consider the Hardy-Littlewood
maximal function, defined by

Mf(x) —Sup—/lf(X)ldx (2.6)

xel |I|

where the sup is taken over all intervals 7 that contain x. A classical result of Fefferman
and Stein asserts that, if | < p < coand 1 < g < oo then

(2 ws) ], = ()], )

for all sequences of measurable functions { f;} with finite right hand side.
Let us further define the Peetre maximal functions [21]. Given j € Nand A > 0
we let

lf(x + )l

Pl (0 = Sop A

Let &; be the set of distributions f* € S'(R) such that supp fis supported in an
interval of diameter < 2/+2. Then for all f € &; it holds

) 1/s
L) Sea [MAFH@]Y, 2.8)
provided that s > 1/A; see [21] or [27, Theorem 1.3.1]. In particular, if 0 < p < co

and A > 1/p then
194 fllp < Cpall fllp, £ €E). 2.9)

Also, from (2.7) and (2.8),if0 < p < 00,0 < g < ooand A > max{1l/p, 1/q}, then
1/q

)] 2l (Si) ], e
(Sms), =6raal(S )

for all sequences of functions (f;) such that f; € £;.
Below we shall also use the (smaller) maximal functions

M;fx)= sup [f(x+h)] and M;f(x)= sup [f(x+h)] (2.11)
|h|<2-i |h|<2-i+2

Note that for all A > 0 it holds
M f(x) < M3 f(x) M f (),
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so in particular, for all 0 < p < oo we have
12 £l S WSl f €€ (2.12)
We shall also make use of the following elementary inequality: if 0 < p < oo then

190 1, S 27 1M e £, €= 0. 2.13)

To prove this assertion, if we let x,, = v2~Ut0  then we have

1
ML) < sup [ Myref@+x)l = () 1Mo @+ x)l?)

[v|<26+2 [v|<2t+2
Then, taking L, quasi-norms one easily obtains (2.13).

2.3 Chui-Wang Wavelets

The proofs of Theorems 1.2 and 1.3 will require a characterization in terms of a
wavelet basis generated by the Chui-Wang polygon and its dual.

Define the m-fold convolution N, of characteristic functions of [0, 1), i.e. N| =
Ljo,1), and, for m > 2, N, = N1 * Ljo,1). In particular we get for m = 2 the hat
function

X, x €0, 1],
MN@x)=12—x, xe]ll,2], (2.14)
0, x € R\ [0, 2].

Let
Najow(x) == Na(@/x —v), j=0,veZ,

which is a hat function adapted to supp Nz;j,v =27, 277 (v +2)].
The next elementary observation will be crucial in what follows.

Lemma 2.1 If f is locally absolutely continuous in R, then forall j > 1 andv € Z it
holds ' y
<f/,N2;j,v) = _2J (fvhj—l,l))s (215)

while for j = 0 it holds
(' Nawow) = —=(foho1v) +(f hoivg1), v ELZL

Proof Integrating by parts one has
(fly N2;j,v> = _<f’ (N2;j,v)/)‘
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Now, a simple computation gives
Najw) =2 La-iv -ty = 2 Lamiwn,2-iw+2)

= 2]'11/.,1) — 2j11j_v+1 = 2j ﬁj—l,l)v

where the last equality follows from the definition of the shifted Haar system in (1.8)
@if j > 1). Combining the two expressions one obtains (2.15). The case j = 0 is
similar. O

The Chui-Wang polygon [7, Theorem 1], [6, 6.2.5, 6.2.6] is the compactly supported
wavelet given by

2
1 "
V) =3 > (DN + DA, 2x = 0),

=0
1 2 2 )
= Y DN+ D) Z(—l)/( ,)Nzax _j-p @19
£=0 j=0 J
= b Na@2x —k)
keZ

where (by) is a finite sequence supported in {0, . .., 4}. The wavelet ¢ is compactly
supported and has two vanishing moments, i.e., [ ¥ (x)dx = [ xy¥(x)dx = 0. For
jeNpand u € Z let

Vi) =vQ2x — ),
while for j = —1 we let
V_1,,(x) = Nayo (x) = Na(x — ).

Then we have the orthogonality relations with respect to different scales

Wi ¥jpw)=0 . j#j.

In contrast to that it only forms a Riesz basis within one and the same scale with
respect to different translations. The dual basis can be computed precisely [8] and does
not provide compact support. However, the coefficients ay in

YR =) @y (x — k) 2.17)

keZ

are exponentially decaying; see the paper [8] for explicit formulas for ax, and Fig.
3 below for a graphical representation. Observe from (2.17) that also ¥* has two
vanishing moments.
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Fig.3 The Chui-Wang wavelet W, of order 2 and its dual ll/;

Using this construction, Derevianko and Ullrich provided the following character-
ization for the Fls,,q and B;’q spaces; see [8, Theorem 5.1].

Theorem 2.2 [8] Let0 < p < 00,0 < g < .
@) If p < oo and

max{1/p,1/q} —2 <r <14+ min{l/p, 1/q, 1} (2.18)

then we have for all f € Bo:fl (R)

1A, ~ (X 27 S v, )] . @19
j=—1 LET P
(i) If
1/p—2<r<max{l+1/p,2) (2.20)

then we have for all f € B;o%l (R)

1lay, ~ (3 20 ] ) an

j=—1 WEZ

Remark 2.3 Concerning part (i), we remark that the result stated in [8, Theorem 5.1],
requires the additional restriction » < 1, which comes from a similar restriction in
[8, Proposition 5.4]. This restriction, however, can be lifted and replaced by r <
1 4+ max{1l/p, 1/q}, using a complex interpolation argument which involves part (ii)
(case p = q), as we discuss in Step 3 of Proposition 4.5 below.

3 Haar Functions as Linear Functionals on %: Proof of Proposition 1.1
3.1 Proof of (i) and (ii)

Since every h € 7 is a difference of two characteristic functions of intervals of length
< 1 part (ii) is an immediate consequence of part (i). It suffices to analyze A; on %,
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for each bounded interval /. Let f € & = BO_O{I(R). Using the decomposition in

(2.5) we can write f = 332, Ly fi where the Fourier transform f is supported in
{£ : &] <2} and the f; satisfy

D 27 filloo S 1 f Nl 3.0)

k=0

here, Ly f = Br * f where By, B are even functions in C°(—1/2,1/2), and B =
2kg(2k.), for k > 1. Also, [ B(x)dx = 0.
Welet A;(f) := thio (fx, Lx 1), which we sometimes denote by (f, 1;). Note
that
ILoLsllt S 111 (3.2)

By (3.1) one needs to show that || Ly 1|1 < 2K fork > 1; one actually gets the better
estimate
1Lk g0l S minf|7], 275}, k> 1. (33)

Hence [A;(f)| S max{|/], 1}) ;.¢ 2_]‘||fk||OO and we deduce that A; extends to a
bounded linear functional on %, with ||A7 ]|z« < max{1, |I1}.

It remains to verify (3.3). Fix I, with center y;, and assume first that 27k > |1].
Then the function Ly1; = B *x 1; is supported in an interval centered at y; with
length O(27%) and satisfies |Bx * 17(x)| < |Bxlloo 117111 < 2%|1|. Thus we obtain
1B * 17]l1 < || which is in (3.3) in this case.

Now assume 2% < |I|. Let y; and y_ be the endpoints of . Let U4 be the union
of the two closed intervals of length 27¥*2 centered at y, and y_. Then g * 1;
is supported in Uy, which has size || = O(27%). This assertion, combined with
1Bk * Lilloo < lIBkll1 = O(1), also implies (3.3) in this case.

3.2 Proof of (iii)

For the argument below we shall use the dyadic averaging operators, defined for N > 0
by

Exf() =Y 2V (f 11y,) Ly, (). (3.4)

NEL

In view of (i), these operators can be defined acting on distributions f € £ such that
En :  — L has operator norm oM.

Let now f € % such that (f, h) = 0, for all h € 5. Since each ]11N’M belongs to
span .77, this implies that Ey f = 0, for all N > 0. We then must show that f = 0,
which is a direct consequence of part (b) in the following lemma.

Lemma 3.1 (a) The operators Ey satisfy the uniform bound

sup [l a, < 00

(b)If f € B then ”]ENf_f”Bo_oloo — 0as N — oo.
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Proof Part (a) is implicit in [14]. Indeed, it follows by combining the estimates stated
in the four propositions in [14, §4], for the cases s = —1 and p = oc.

We now show part (b). Let f € 2 and write f = Y ¢- L fi as at the beginning
of §3.1. The above series converges in S” and also in the Z-norm. Then, given ¢ > 0
one can find g = ZI{:O Ly fi such that

If —gllz <e.

Observe that g is bounded, since

J J
Igloo <D MLk filloo S D M fklloo S 2711 f 1.
k=0

k=0

A similar reasoning shows that || g’||oo < 00, so in particular g is uniformly continuous.
Thus there exists an integer Ng € N such that

lg —Engllc <&, forall N > Ny.
Combining these assertions, and using the trivial embeddings

Log <> B <> B!

00,007
we obtain, for all N > Ny,

If —EnFllgo, < If —glla + g — Englloo + IEn (g — Nl
S24+Cllg— fllz Ses

where in the second inequality we have used part (a).

Remark 3.2 As H. Triebel pointed out to us, it is possible to give a different proof of
Proposition 1.1 based on duality identities as in [27, Remark 2, p.180]. To do so, one
can regard (f, 1;) as a duality pairing using the facts 1; € Bll’oo = (B;ol’l)*, and

fe éo_oll whenever f € % with compact support.

4 Characterizations by Haar Frames: Proofs of Theorems 1.2 and 1.3

The proofs of Theorems 1.2 and 1.3 will follow from the four Propositions 4.1, 4.4,
4.5 and 4.9 stated below.

The first proposition is a strengthening of [30, Proposition 2.8]. It gives one of the
inclusions asserted in Theorems 1.2 and 1.3. The region of indices is the same as in

Fig.2. We set ¢(f) = {c; u(f)}j=—1,uez With ¢; ;, (f) asin (1.15).

Proposition4.1 Let0 < p,g <ocoands € R.
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D) Ifp <ooandmax{l/p —1,1/q — 1} <s <1, thenforall f € F} ,

leHlsy, S 1FEy, - @.1)

() If1/p—1<s <1, then forall f € By, ,

(e, S IS 1y, -

rq ™~

Proof To avoid dealing separately with h j,v with v even or odd, we prove a slightly
more general result. For a fixed § € [0, 1] and for j > 0 and u € Z, consider the
shifted Haar function

him(x) = hj(x— 8277 = h(2/x — (u+9)),

whose support is the interval Ij,,i—i—82_j.Whenj = —1, wejustlet h‘s_l’u =h_1, =
L[, u+1)- Part (i) will then be a consequence of the following estimate

(3 2| S o1,

j=—1 neZ

a\1/q
)7 20, (42)

where the constants are independent of § € [0, 1]. Indeed, (4.1) follows from (4.2)
appliedto§ =0and § = 1/2.

We now prove (4.2) for a fixed § € [0, 1]. In the proof below we denote by A; ,

the set of discontinuity points of hi w that is

Aju={u+s+i277 : i=011}

Lemma4.2 Let g € LY(R), k € Ngand j > —1. Then
a)Ifk > j then

127(g. Lih% )] 275 3" (o) () (4.3)

ZEA]"M
moreover, for every A > 0,

27(g, Lk’ )| 11, (0) S 275D 9t () (x)

L
. . 4.4
< 270D () ().
b) If j > k then, for every A > 0,
127 (g, Lk )| 1, (0 S 27970 (@) () ws)

< 27U (9 ().
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Proof a)Ifk > j then the function Lkh‘j.’ﬂ = Bk *h(j.,ﬂ issupportedin A, + 0(2”‘)
and has size

1Bk %k’ lloo < 1Bkl = O(D).

This immediately gives (4.3). Now, if z € A; ;, and x € I}, we have

Mig(zx) = sup Igz+h)| < sup [glx +u)| =) (x)

|h| <2k lu|<2-7+2

S 28D () (x),

which together with (4.3) proves (4.4).
b)If k < j and x € I, then the function Lkh‘;# = B * h‘;’ﬂ is supported in

x + 0(27%), and we can bound its size by
Lk’ )] S 22¢7), (4.6)

This last assertion follows from the property [ h% =0, by writing

Jn
Lat} 001 = | [ (B =) = Bt =) 1, ]

1
| [ [ = =nx=n)arc=ni o]

< 92=2j

using in the last step that |x — y| < 27/*! when x € Ij, and y € supp h‘j. u
Combining the above support and size estimates, one easily obtains (4.5). O

We continue the proof of Proposition 4.1.i. Let f € F ;, g» and write it as f =
> g0 L fx with fi = Ar f asin (2.5). Note that, since Fp, C A, we have

Z (fir LehS )

Now, the estimates in Lemma 4.2, suitably applied to each fi, can be grouped into

DRI 1,0 S Y2 KIRA =D M (fi) (x)
nw
(E=k=7) S 3 alt. AML LSl = G, (@7

where we set f;,;, = 0 form < 0 and

2t ¢ <0,
at, A) = {2(/,_1),3 =0, (4.8)
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At this point one takes L ,({,) quasi-norms of the above expressions. Letting u :=
min{p, g, 1}, and using the u-triangle inequality we obtain

(X [raif )",
< (Z [a(e, Ayt

LeZ

‘(ZlZ(’H)Yfmﬁz A fj+€]|q)1/q Hp]u)l/u (4.9)

<flr, (X e, A)z—“)”)” "<,

LeZ

where in the last line we use Peetre’s maximal inequality (2.10) and A >
max{1/p, 1/q}, and in the last step we additionally need that A — 1 < s < 1. This
can always be achieved for an appropriate choice of A because of our assumption
max{1, L} —1<s<1.

As be%ore part (ii) in Proposition 4.1 will be a consequence of the more general
estimate

(> 2 pivrat o)) S il @10

j:—l MEZ
for § € [0, 1]. Notice that

1
By =270 (Y s 0[7) _szzf Wl
m

4.11)

We shall argue a bit differently to refine the pointwise estimate in (4.7). Observe from
Lemma 4.2 that we can also write

|t
%

5 e j‘”mmln{jk (fk)”p

. k=i
272 (o,
atk = j. ) [Mfo ] -

w (2.13)

A

using in the last step the definition of a(¢, A) in (4.8). So, letting as before u :=
min{p, g, 1}, and using the u-triangle inequality we obtain

(Lerny)

Jj=—1
< (Z[““’ 1yp-st (Z|2<j+e>x||sm,,~+e[f,~+e]||‘,’,)1/q]u)l/u (4.12)
LeZ JEZL
<171y, (X (ae. H279) " < i,

LeZ
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Observe that this time we apply the simpler estimate |0 [ filll, S Il fxllp, see (2.12),
while the very last step requires 1/p — 1 < s < 1. O

Remark 4.3 In view of the examples in [23], the condition s > 1/g — 1 is necessary
in Proposition 4.1.1, even for the validity of the weaker inequality

o0
g = (30 27
Jj=-1

j a\1/q
St )| Sy, @13)
WEL P

Indeed, arguing as in [23, §6], for each N > 2 one constructs a (smooth) function
f=fnc€ F;{g_l(R) and a finite set,” E = Ey C ¢ such thatif 0 < g < p < 00
then

1/q 1+1
1ty S NY9 and IPECHN i1y = N9, (.14)
where Pg(f) denotes the projection onto span{/},cg. Now observe that
IIfIIF;:(;yad > IIPE(f)IIF;ﬁyad 2 WPE(HIIF, .

using in the last step the inequality in (4.20) (which holds for s = 1/g — 1). Thus, we
conclude from (4.14) that

- > N 1.
1AW prra=rava Z N ALFI g1/

We turn to the converse inequalities in Theorems 1.2 and 1.3, which will be proved in
Proposition 4.9. Before doing so we shall need some results concerning the inclusions
F ;:Syad — F 1§ ¢ (and likewise for B-spaces) for the usual Haar system. Results of
this nature can be found in [30, Proposition 2.6], but we give here direct proofs which
are valid in a larger range of indices. These may have an independent interest.

The first result is obtained by duality from Proposition 4.1, but the range of indices
isrestricted to 1 < p, ¢ < oo. Recall the definitions of the sequence spaces b*

p.q’ ;:‘1
in (1.19) and (1.20).

Proposition4.4 Let 1 < p,q < oo.
()If =1 <s <min{l/p, 1/q} and B = (B} .} € f;’q then

f=_ Biuhju (4.15)
j=—1pez

converges in F 1; q (R) and

If ey, S 1By, (4.16)

Pq

2 1In the notation of [23, §6] one should consider sets A of consecutive Haar frequencies, so that the
associated “density” number in [23, (43)] takes the value Z = N.
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(@) If -1 <s < 1/pand B = {Bj .} € b;‘,’q then (4.15) converges in B;’q(R)
and

If U8y, < IBlss,, 4.17)

Pq ~

Proof Consider the following duality pairing for sequences

22 ]Z“Juﬂ/u
—Z/ Zam ,,L(x>)(Zﬂmlm(x>)dx<||a||fr 181

We define the so-called analysis (or sampling) operator </ by

o F;,q(R) — f;,q

) . (4.18)
[ [, w) =2 hju).
Its dual operator <7’ (the synthesis operator) is given by
JZ{,,B(X) = Z,Bj,uhj,u(x)~ (4.19)
L

Indeed, if f € Fls,,q and 8 = {B; .} is a finite sequence, then
(o f.B) = Zz JZZJ Fohin) - B

= / FEY D B ) dx = / fo0) /' B(x) dx.
j oM

By Proposition 4.1, the operator &/ : F), (R) — f, . is bounded when max{1/p —
1,1/g — 1} < s < 1. Hence, if we assume that 1 < p,q < oo, then &’ will be
bounded from f[;xq, to F[fq,(R), where

—1 < —s <min{l/p’, 1/4'}.

In other words, if —1 < s < min{l/p, 1/q}and 1 < p, g < oo then
| piuhinl,, <1815,
Jou ’

The proof of part (ii) is completely analogous. O
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Fig. 4 Parameter domain for the validity of Proposition 4.5, for F’ ]‘, q (R) (left figure) and Bl‘, q (R) (right
figure)

In the following proposition we extend the previous estimate to the quasi-Banach
range of parameters. The proof, which is now more involved, uses a non-trivial inter-
polation argument from [30, Proposition 2.6]. The range of indices we obtain is larger
than in [30]; see Fig. 4.

Proposition4.5 Let 0 < p,q < oo.

(i)If p < ccandmax{l/p,1/q,1}—2 < s < min{l/p, 1/q}, then forevery B € f;’q
the series in (4.15) converges to a distribution f in F;,q (R), and it holds

IflFs, S 1By, (4.20)

r.qg

Moreover if g < o0 the series in (4.15) converges unconditionally in F ;’q, and
otherwise in Fg}i (R), forall € > 0.

(ii) If max{1/p, 1} — 2 < s < 1/p, then for every € b;,q the series in (4.15)
converges to a distribution f in B‘;’ ¢ R), and it holds

111z, < 1B1s,- (421

P.qg ~

Moreover, if ¢ < o0 the series in (4.15) converges unconditionally in the norm of
By, ;. and otherwise in the quasi-norm of B}, (R), for all & > 0.

Proof 1t suffices to prove the results when f =3 .. > ez Bjuhju, with (Bj )
a finite sequence of scalars. The other assertions will then follow by completeness of
the spaces.

Step 1 Let L, k > 0, be the local convolution operators from Sect.2.1. If j > —1is
fixed, then we have

Le( X Bianhin) @] = 30 1Bl ILah )@ =2 Gia(x). (422)

WEZ WEZ
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Arguing as in Lemma 4.2, one sees that, in the case £ = j — k > 0, then
supp Lhj, C p277 +0@27%) and |(Lihj ) (x0)] S 27%, (4.23)
while in the case £ = j — k < 0 we have
supp Lxhj,, C n27/ +0@277) and |(Lihj )| S 1. (4.24)

The following lemma is a variation of a result by Kyriazis; see [18, Lem. 7.1]. For
r > 0 we denote

M, () (x) = [M(glH )],

where M is the usual Hardy-Littlewood maximal operator.

Lemma4.6 Let 0 < r < 1. Then, it holds

Giu(®) S aG =0 Mo (Y 1Bl 11y, ) (0. (4.25)
n

where a(€) = 272" if ¢ > 0, and a(t) = 1 if £ < 0.

Proof Assumethatf{ = j —k > 0.If x € 1; ,, for some fixed v € Z, then the size
and support estimates in (4.23) give

Gix)' S Y. B2

wilp—v| <27k

On the other hand, if x € [} ,,

M(%: Pl llj‘“)(x) R /Iy—Zjv§2.2k <; Bl llf”‘)(y) dy

> 3 Bl

wilp—v| <27k

These two estimates clearly give (4.25) in the case £ > 0. The case £ < 0 is proved
similarly using (4.24). O

We continue with the proof of Proposition 4.5.i. Below we shall agree that 8, , = 0
and G, x = 0 whenever m < —1. Then letting ¥ = min{p, g, 1}, we can apply the
u-triangle inequality and the above results to obtain

1, = (Rensm) ], = (R o),

LeZ

Birkhduser



Journal of Fourier Analysis and Applications (2023) 29:39 Page 27 of 51 39
< —es\* (k+-0)s 'NAGE
S[Z (@) 20w (Eperenitn,)]) ]
teZ k=0 ez P
q
(X X imaltnn,)’)

mez WEZ

Q=

where the last line is justified by the Fefferman-Stein inequality (2.7), provided r <
min{p, g, 1}, and the finite summation in £ € Z holds whenever 1/r —2 < s < 0.
Such an r can always be chosen under the assumption

max{l/p,1/q,1} =2 <s <0

(which in particular implies p, g > 1/2). We shall see in Step 3 below how to enlarge
this range to cover as well the cases s > 0.
Step 2 We now prove (4.21). The same notation as above gives

10y, = (3 (2"S||ka||p)")”q = (Xe¥ Zka,ka)‘f)l/q'

k>0 k>0 LeZ

At this point we distinguish two cases, £ > 0 and £ < 0. In the first case we use
literally the same arguments as above; since for the £, (L ,) quasi-norm we just use the
scalar Hardy-Littlewood maximal inequality we only need to impose » < min{1, p},
together with s > 1/r — 2. Such an r can always be chosen under the assumption

max{l/p, 1} =2 < s.

To control the sum over £ < 0 we must replace the crude bound in (4.24) by the
sharper estimate

supp Lhj C Ajx+0Q27%) and |(Lihj (0] S 1, (4.26)

where A , are the discontinuity points of 4 ,; see the proof of Lemma 4.2.a. So, if
£ =j—k <0 we have

1/
[ Gk+l,ka S 2_k/p(z |,3k+e,u|p) g
WEZL
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Using as before the u-triangle inequality, this yields

( 2(2’“ | % Grtt.k ”p)q> v

k>0
u_1
< [Zzu(%—s)e(z {2(k+l)(s—%)<z st M|p>1/p}f1)q]a
<0 k>0 WEZ
1 1
(22 (S (S ) T )
£<0 me7z WEZ

where the sum in ¢ < 0 is a finite constant due to the assumption s < 1/p. This
completes the proof of part (ii) in Proposition 4.5.

Step 3 In the Triebel-Lizorkin case, the direct argument in Step 1 only allows for
s < 0 (and p, g > 1/2), which is the desired region only when g = oo or p — oo.
By Step 2, the range of parameters can be extended to s < 1/p when p = ¢. Then,
a complex interpolation argument in the three indices (s, 1/p, 1/g), as proposed by
Triebel in [30, Prop. 2.6], gives the validity of the result for all max{1/p, 1/q, 1} -2 <
s < minf{l/p, 1/q}; see Fig.5. O

Remark 4.7 We remark that the decomposition of a distribution f € S’ as an infinite
series

£=Y" Y Biuhju (4.27)

Jj=—1pez

may not necessarily be unique. For instance, the Dirac delta satisfies

) 00
S = II-[O,I) + szhj,O = 1[—1,0) — szhj,—l in S/(R)
j=0 Jj=0

In this example, the coefficient sequences belong to b;) gifs < % —1l(ors = % —1
and g = 00), and the same happens for the property § € By, ,(R). For such cases of

Sl

Fig. 5 Parameter domain for F-spaces in Steps 1 and 2 (left figure), and after the interpolation argument
in Step 3 (right figure) of the proof of Proposition 4.5
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non-uniqueness, Proposition 4.5 should be interpreted as

1 £118y,, <inf {1CB)0 Ny, 427 holds |,

and likewise for the F IS,’ g-quasinorms.
The next result shows that uniqueness holds when s > 1/p — 1.

Corollary4.8 Let0 < p,qg <ocoands € R.
W) Ifp <ocoandmax{l/p—1,1/q—2} <s < min{l/p, 1/q} then forall f € B
it holds

115, < (X [ L2, ) | @28)

j=—1 HEL

G)If 1/p—1<s < 1/pthenforall f € A it holds

11y, < ( 3 2ie- s (S i) ) @)

j=—1 WEL

Proof Let f € 2 be such that the right hand side of (4.28) is finite. By Proposition
4.5 this implies the convergence of the series

= Z sz(fyhj,u)hj,w

j=—1pez

to some distribution g € F), , <> 2. Due to the range of parameters, and the con-

vergence in F’ qg (R) for e small enough, we also have convergence in Z. We deduce
that (g, h) = (f, h) for all h € 5%, and therefore, by Proposition 1.1, that f = g.
Finally, Proposition 4.5 gives (4.28). The proof for (4.29) works analogously. O

We finally turn to the remaining implications in Theorems 1.2 and 1.3, which are
also valid in a larger range.

Proposition4.9 Let 0 < p,g < oo ands € R be such that

1 1
——1l<s<1+-—.
p p

(1) If p < oo and additionally 1/q —2 < s <2+ 1/q, thenforall f € B

Il S IeHlls, (430)
(ii) For all f € A it holds
1£ 118y, < leCH)lby, @31)
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Proof Note that, for all f € S’(R), it holds
~ /
IfllFg, ~ ||f||p[s7qu +If ||F;;11, (4.32)

see e.g. [27, 2.3.8]. We shall bound each of the summands in (4.32) by the right hand
side of (4.30).
Clearly ||f||Fv 1 < ||f||B» for any s — 1 < r. We distinguish two cases. In case

s> 1/pwe choose ri= l/p — ¢, for a sufficiently small ¢ > 0 so that
l/p—1l<r<l1/p and s—1<r <s; (4.33)

this is possible by the assumption s < 1+ 1/p.Incases < 1/p weputr :=s — ¢,
for some ¢ > 0 so that (4.33) also holds (this time using the assumptions > 1/p —1).
Hence, from the embeddings Bj,, — F ;(;1 and f,, < bj,,, together with Corollary
4.8.1i, we obtain

1y S0 F gy, S 27y, S e (DYl 434)

We now take care of the second term in (4.32). Here we quote the analog of Corollary
4.8.i for the Chui-Wang system {1/; , }, which can be obtained from [8, Proposition
5.4] and Remark 2.3 above. Letting r = s — 1, this gives

. . qa\1/q
170, < | (3 27 2 v, o) @ss)
P
j>—1 WEZ
provided
max{l/p—1,1/g —2} -1 <r <1+ min{l/p, 1/q},
which holds when 1/p — 1 <s < 1/p+1landl/g -2 <s <2+ 1/q.
Now, recall that
Vi) =Y BiNa @I x — Qu + b)), (4.36)
keZ
for a sequence of coefficients by supported in {0, ..., 4}; see (2.16). In addition, we
know from Lemma 2.1 that
(f Na@F =) = =27H(f Ry L), =0, vel (4.37)
(and a similar expression for j = —1). So, combining (4.36) and (4.37), we obtain an

estimate for |2/ ( f/, ¥ )| in terms of the coefficients ¢ ,4¢(f), £ € {0, 1,2}, which
inserted into (4.35) gives

1/ ey, < Z [(X 2| S e, wf) ]

=0 j=—1 WEZ
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S jall g,

using in the last step a maximal function estimate as in Lemma 4.6. This, together
with (4.34) concludes the proof of part (i).

The result for B), , in part (i) goes similarly, using instead Corollary 4.8.ii, and the
corresponding version for the Chui-Wang system {v; ..} which can be obtained from
[8, Proposition 5.3]. O

Remark 4.10 As pointed out by one of the referees, in the specific case of Besov spaces

BfU’ q(R) with 1/p <s < 1(and 1 < p < 00), one could give a more direct proof of
the inequality

1118, S Ne(lny,. f € L@,

P.g ~
by estimating the modulus of continuity (f,27/)»(r) in terms of the errors of best
linear approximation by piecewise constants over the collections of intervals {/; ,, },.ez

and {/; +2’j’1}M€Z. Whens > 1 (ors = 1 and ¢ < 00) this argument also shows
that

(N, <00 = o(f, 27 r@ = 0Q7),
which in turn implies that f is constant (see e.g. [9, Ch 2, Prop 7.1]). This type of
reasoning is reminiscent of some works that appeared in the spline community in the
70s, see e.g. [22, Theorem 3] or the references quoted in [9, §12.2].

We are finally ready to give the

Proof of Theorems 1.2 and 1.3 Just combine Propositions 4.1 and 4.9. Note that the
smallest range of parameters corresponds to that in Proposition 4.1. O

5 W,} and BV: Proof of Theorem 1.4

The proof has three steps. We use the classical norm definition for W[l (R), when
1 < p < oo, namely

1wy = 11+ 1L M-

Step 1

We show that, for 1 < p < oo, it holds

. , ~ 1/p
sup 2/ VDY RN RI) T S W s £ EWA®, ()
jz= veZ
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moreover

sup YRR S I flsy, f € BV(R), (5.2)
Jz=len

In view of Lemma 2.1, for every j > 0 we have

. ~ . 1/
2 )] < / [ @Na: 1w @)l dx £ 27907 / Frax]’ 63

Iy

where I, = supp Na;j41.0 = [v/2/F!, (v +2)/2/%1]. Hence,

o L~ 1/p
sup2/1=1P (NI (£ i?) S

jz0 VEZ
Likewise, if j = —1 we simply have
~ » 1/p
= rwax| < (| 1reorax)
IO,V 1(),11

and hence

(S ur i) s,

VEZ

We have thus established (5.1). To handle (5.2) we work with an approximation of the
identity, {®,} where ®; = 2°®(2°.) with ® € C®® and [ ® = 1.Let f € BV (which
implies f € Ly). Then @, x [ € Wl1 with ||, * f”Wf S\ fllpy and @y * f(x) —
f(x) almost everywhere. By dominated convergence (®; * f, Ej,,)) - (f, h j,v)and
by a further application of Fatou’s lemma and (5.1)

D 127 (f R )| < liminf > (27 (f 5« @y, Ry )| S liminf [ g fllyr S N Fllsy,
veZ oo VEZ oo :

where the implicit constants are independent of j. This yields (5.2).
Step 2. We show that, for 1 < p < oo, we have

Lo ; ~ 1/p
Il < suplzf‘l ”’”(sz(f,h,-,vn”) = A(p) = A.
jz= VEZ

Recall from Lemma 3.1.b that Exy f — f in &’. Assuming (as we may) that
f € 2 has finite right hand side it suffices to show that Ey f converges in L,
and supy ¢ ||]ENf ||p < A. To see this, one expands

Exf=Eof+ Y D 2(f hjuhju

0<j<N pueZ
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and notes that

1 .
| 22 hpwhsl, =279 (o R4f Ry IP)" <27 A,

HEZ WEZ
hence |[En, f —En, fll, S 2Nt A, for all Ny > Ny, and thus

Ifllp = sup IEnfllp < A.

Step 3.
We finally show, for 1 < p < oo, that

i(1— P 1/p
150 S sup 2707UP (3Dt Ryi?) =i A,
1

jz= veZ

and when p = 1 then f’ is a finite Borel measure and || /|| »q < A. Consider the
multiresolution analysis in Ly (R) generated by the subspaces

VNz—span{NN,ﬂ = NV ) ,ueZ} . N=-1,0,1,2, ...

Thatis, Vi consists of continuous piecewise linear functions with nodesin2~V =17,
Let N*(-) be the (polygonal) function which generates the dual Riesz basis to
{NN,u : € Z}; see e.g. [7, §3]. Then, the operator

heLyr— Py(h) =Y 2N(h, N )NN.u
WEL

is the orthogonal projection onto Vy. Let

en(x) = 2N N )N, ().

HEL
Using Lemma 2.1,% we have the uniform bound

25 (RN Nar)”

WEZL

1
1 o
VR RN wI?) = 4 < oo
WEZ

3 Note that, in view of Proposition 1.1, one can give a meaning to the identity (f’, N Nou) =
—oN+1 (f, ﬁN,M,) in Lemma 2.1 also for distributions [ € Z.
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So, the exponential decay of N'*(-) guarantees that the series defining gy (x) converges,
and moreover

1/
lenllp S 2—N/P(Z |2N(f’,NN,u)I”) "za (5.4)

WEZ

Then, if p > 1 there exists ¢ € L, which is the weak *-limit of a subsequence of
{gn}. Now, if j, v are fixed, for all N > j we have

(oo i) = (12 30 2V W NG N = () (59)

WEL

because Py (;,v) = ¥;,v. Thus, taking limits as N — oo in (5.5) we obtain

(gv I/fj,v) = <f/’ Wj,v% forallj,v.

This implies that g = f" € L, and || f'], S A
When p = 1 the weak* sequential-compactness argument only provides that
ligllag < Aandthen || f'llag S A. o

s,dyad

6 Embeddingsinto B, ;" :TheCasess=1ands=1/p — 1

In this section we prove the sufficiency of the conditions for the embeddings into

B },;iz"‘d or F ; 934 i) Theorem 1.7 and the sufficiency for the conditions of embedding
into Bl/ p=1dvad S Theorem 1. 9.
Lemma6.1 Ler 1/2 < p <00, L —1 <s < L. Then BS 0 < By isa

continuous embedding.

Proof Using the notation in the proof of part (ii) of Proposition 4.1 we can write

171 gyiyes = Sup 2° B
—1

where B; is defined as in (4.11) with § = 0. Letting # = min{p, 1}, we obtain for
each j, arguing as in relation (4.12)

R T

LeZ

< (sup ae, 274 ) 1 £y .
LelZ

where a(¢, 1/p) = 2“/1’—1)‘Z for £ > 0 and a(¢,1/p) = 2¢ for £ < 0. Since
supycz a(l, 1/p)2_ < oo whenever 1/p — 1 < s < 1, we obtain the desired
inequality ||| gsast < 117118, 0
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Proposition 6.2 Let1/2 < p < oco. Then F;i,z — F[ljggad is a continuous embedding.

Proof Let f € F ;‘2. we must show that

I£1 ppams = | sup 2N RN f k) 1,

‘ VEZ

<
p SIFlp,.

J=—

With the notation from Sect. 2.1, we write f = Zkz() Ly fx, and for each j > —1 we
split f =11 f + I"Ij-f where

j
Mf = Lifi. and T7f:=Y Lifi.
k=0 k>j

If j = —1, we understand that I[T_; f = 0 and Hflf = f. We shall first bound

Ag = | sup2/ " 120(T1; £ k) 1,

Jj=0

»
VEZ

The same argument in the proof of [13, Lemma 3.3] gives
29T £, by o)l S OG5, 277 (T 1)) (), x € 1o
Thus,

27N 2N by ) Ly, () S O (T 1)) (), x €R,

VEZ

and taking a supremum over all j > 0, and then L ,-norms, we obtain

Ao < [ sup 2, (@ )], < [ sup 1t O], (6.1)
=0 j=0

using (2.10) in the last step with A > 1/ p. Now, the maximal function characterization
of the h? = F 2’2 norms yields

[sop i1, = [ sop MO, S 1 Mgy, S W/ 0gy, 62

To estimate the remaining part involving IT ]L f, we may quote the standard proof in

Proposition 4.1% above, which gives

A= sup 27 RIS foh ) L, @], S ley (6.3)
jz= veEZ Y

4 That is, the part of the proof of Proposition 4.1 involving the indices £ =k — j > 0.
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provided that s > max{1/p, 1/q} — 1, with s = 1 and g = oco. So, we obtain
< <
AL S W ey, SIF5,.
under the assumption that p > 1/2. Finally, (6.1), (6.2), (6.3) yield the desired estimate
a < . o
1/ praa S 1F N1
1,dyad
o

Corollary 6.3 Let 1/2 < p < oo and ¢ < min{p,2}. Then B, , <> By
continuous embedding.

is a

Proof For g < p < 1 this follows from Lemma 6.1. For 1/2 < p < oo it follows
from Proposition 6.2 together with the inequality

11 gt < 11 gt (64)
and the inequality

< .
10, S0l

the latter being a consequence of Minkowski’s inequalities.
Inequality (6.4) in turn follows by definition from the sequence space inequality
Bllps . < ”ﬂ”f,i,oo (in the case s = 1), i.e. from the elementary inequality

p.oo —
is » 1/p
sup (32 127y, (017 dx)
J joe

WEZL Ij.

<( / [s0p2| 3 81, 0[] ax) " (63)
J WeZ

We now consider the other limiting case, where s = 1/p — 1.

Lg 1 _1,dyad
Proposition 6.4 Let 1/2 < p < 1and0 < q < oo. Then Fy, — B} « isa

continuous embedding.

1 1
1 1
Proof Since F), <> F, it suffices to prove this for g = oo.

Let f € F ,1,/ 0%71, which as before we shall split as

f=T,f+T;f.

This time, the standard proof in Proposition 4.1 (that is, the part of the proof involving
the indices £ = k — j < 0) gives

H ( D2y RN f ) Ilzj,v)l/q

j=0 VEZ

< Ifleg,

Lp[®R)
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provided that s < 1. So in particular, letting s = 1/p — 1 and ¢ = co we obtain (after
trivial embeddings)

sup2/ 17D S 20T, £ k) 1, SIAI 1o, (6.6)

whenever p > 1/2.

So, it remains to establish a similar estimate with Hj* f instead of IT; f. We borrow
some notation from [13]. Let D; denote the dyadic intervals of length 27/ Ifl €D 5
is fixed and k > j we let

(@ D) ={J €Dy : TNl # P}
(b) o(J)={x e J : dist(x,dI) > 27*"!} when J € Dr(d]).

We will use the maximal function Mg (cf. (2.11)) and note that, as in [13, (42)],
when J € Dy (d1), k > j, it holds

1
sup [g(x)] < [][ o) |§)Jtzg|17]”’ 0<p<oo. 6.7)
w

xel

Now, let I = I, € D; be fixed, and let / * be its dyadic sons. For each k > j, the
function Ly (h; ) has support contained in the union of the intervals J belonging to
Dk(ali), and |Li(hj )| < 1. Thus, since we are assuming p < 1, we have

@R 7 NI = 3 HE @R, SO
k> j
< sz(kfj)lﬂ Z ||fk||£oo(1)
k> j JeD(01%F)

which, by (6.7), is bounded by
Zz (k=)p Z ][ 19 fi () [P < 2P / sup |2<,, DR il dx,
k>j JeDy(BIE) I* k>J

where I* is the 2-fold dilation of the interval /. Summing upin allintervals I = I; , €
D; we obtain

. . 1_
L@y il 520 [ a2 ol
veZ R k>j
This implies
—j j L\ < A0k gy 4 1P\ P
sup2 (Z|(2 By TTE£)] ) N( sup [27 Dk oz £, | ) . (6.8)
j veZ Rk>j
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Now, Mg < M, g forany A > 0, so choosing A > 1/p and using (2.10) we have

1_ 1_
[sup2'7 omi i, < | sup 2™ Al S AN 6.9)
s s

p,00

Finally, the inequality

”f”Bj)o—ol,dyad S IIfIIF%_.

p.oo

follows by combining (6.6), (6.8) and (6.9). O

We now consider the remaining endpoint case where the two limiting cases coincide,
that is, we have both s = 1 and s = 1/p — 1, and thus p = 1/2 (the corresponding
Besov embedding is already covered in Lemma 6.1).

Proposition 6.5 For p = 1/2 we have the continuous embedding

1 1,dyad
Fipy,— Bl/2,oo'

Proof We examine the proof of Propositions 6.4 and 6.2 and note that (6.8) and (6.9)
remain valid for p = 1/2, that is

. , 1\2
sup 277 (D@7 ENN®) SIS gy, -
jz=1 veZ >

Similarly, the arguments in (6.1) and (6.2) do not require a restriction on p, so we also
have

['sup2/ Y 121, f bkl S 1N

1 .
120 ez 1/2,2

Now the proposition follows from the trivial embeddings F| 2 < F| 200 and
f11/2,oo — bi/z,oo (cf. (6.5)). O

7 Norm Equivalences on Suitable Subspaces: The Proofs of Theorems
1.6and 1.8
7.1 A Bootstrapping Lemma

Consider a sequence a = {a; ,} indexed by j € NU {0} and u € Z. As in (1.19) let
b;’ q be the set of all a for which

> L L\ 1/q
lalls,, = (327 Y lajulr]") " < oo 1)

j=0 WEZ
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We split each sequence as a = a®*" 4 a®¥, where

even _ | @j.u if piseven and qodd 0 if p is even
o if p is odd, P ag, if s odd.

Then

“ even

(sz(s ,,)q[Zm 2v|p] )/q

VEZ
o0 q 1/
dd i(s—1) AN
o b;f(ZZ’ M Xajaarr]’)
' j=0 veZ

The key result is the following lemma, which, under suitable conditions, allows us to
control | a]| b in terms of ||a®ve" ||bs . The general hypothesis in (7.3) will be linked
later to a refinement condition which will appear in (7.6).

Lemma7.1 Let0 < p,g <00, 5 € R and ) = (20, M1, 22) € C3 such that

1
Al <277, (7.2)

Then, there exists C = C(p,q,s, 5;) > 0 such that for every sequence a € b;,q
satisfying the condition

2

laj2vr1l <Y Ihel lajraviarel, forall j =0, v e Z. (73)
=0

we have

|

Proof Let p = min{l, p, ¢}, and for simplicity write 0 = s — 1/p. Condition (7.3)
together with the p-triangle inequality gives

< C || cleven

. 7.4
b, (1.4)

“ 0'odd

o0
. /p\P/q
o o Jjoq . ]!
b, = E [Ael (E 2 [E |aj4+1,4v42+¢] ] )

£=0,1,2 Jj=0 VEZ

q/p\r/q
= (ml2” )P(22<f“>“q[2|a]+l wial’]")

j=0 vEZ
00

. q/p\prlq
+ 3 (el (3029 [ Y g ananel?] )

0=0,2 j=0 ez
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Using the assumptions |A;] < 2% and a € b}

P.q° the previous display implies
2 lP
(1 | 1| ) ” odd

P _
< (120l” +1221")2 “”Ilaevenllf;q-

200 bp.q
This gives
latiy, < (125, + =g, )"
which finishes the proof. O

7.2 Proof of Theorem 1.6
We must show (1.24), that is

IflBy, < 1Nl g s, provided f € B, (1.5)

pg ~ r.q’

which, as we shall see, holds actually in the larger range

1
—<s<l1l+—.
4 P

By part (ii) of Proposition 4.9, we know that

I fllgs < ||{cjyu(f)},,zo,ﬂez||b7w + (s, h_l,ﬂ>}M€Z}yep =A+B.

p.qg ™

Clearly, B is bounded by the right hand side of (7.5), so we focus on A. Define a
sequence a = a(f) = {a; .} by

ajv=21(f hjl, jeNoy, veZ
Observe from the definition of the coefficients c¢; , (f) in (1.15) that
< 5
A S lalsy,-
Note also from (1.8) thata;j 5, = 20 |(f, hj )|, so in particular
1 by, = {27 F ) jzomezlyy < 11 g

Therefore, we have reduced matters to prove that

even

lafl, < el .
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Fig.6 Refinement equation for

N (x); see (7.6) 1

1/2

1
5Nj+1,20+42

We shall do so using Lemma 7.1, so we need to verify the hypothesis (7.3), for
suitable scalars (1g, A1, A2). This will follow from an elementary property of the
spline functions

Nj () i= Naju(x) = Na(2/x — ),

defined in §2.3. Recall that these are piecewise linear functions supported in the
intervals [277/u, 27/ (i 4 2)]. It is then straightforward to verify that

N () = SN 120 (0) + Nt 21 (0) + S N1 2 (1) (7.6)

see Fig. 6. We refer to (7.6) as the refinement identity.
Now, if & = 2v + 1 is an odd integer, then the integration by parts formula and the
refinement identity give

aju= 21 f ) =5 1 Nl
w (1.6) < 5 1 N2 + 5 1 Njwaaue ) + 1 1 Njau42)]
w (2.15)

1 1
5 @j41.2u T Qjr12u+1 + 5 Gj41,2u42,

which implies (7.3) with (Ao, A1, A2) = (1/2, 1, 1/2). So we can apply Lemma 7.1,
under the assumption

1
Al=1<2""7,

which holds precisely when s > %. This completes the proof. O

7.3 Proof of Theorem 1.8

We first show that,if | < p <ocoand f € WI% (R), then

s . 1/p
1wy~ sup 210°UP (527 s 17)
J=z=

WUEZ
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In view of Theorem 1.4, this reduces to prove

. 1/
A= sup 2/(1—1/17)(2 |Cj,u(f)|p> p

jz-1

Z
"e U 1.7)
< sup 21(171/17)<Z |2j<f’hj,M)|p) ,
jz-1 WEZL

whenever A is finite. The argument is completely analogous to that for proving The-
orem 1.6, this time using the spaces b},’ - Note, that this argument only needs that
1=s5s>1/p.

Finally, the assertion in (1.31), for f € Wll,, follows now easily from

< a < a < =
1£lwy S 1S D gras S 0F g S 1FF1, = 1wy,

where the third inequality was shown in part (ii) of Theorem 1.7 and for the last three
steps we assume p < 00. O

8 Necessary Condition for the Embeddings fors = 1

.. . . . . 1,dyad
We prove the necessary conditions in Theorem 1.7 for various embeddings into B, AN

Lemma 8.1 Suppose 1/2 < p < oo. Then

B, = By = g<p 8.1)

Proof We shall work with an example that has been used in [14, §6.2] to prove lower
bounds for the norms of Ey on B})’q. Let u € CZ° be supported in (1/8, 7/8) so that
u(x)=1on[1/4,3/4]. For N > l and N/4 < j < N/2 define

gn.j(x) = u(N(x — %))ezm.fx

and let fy(x) = ZN/4§j§N/2 2_/gN,j(x). Then by [14, Lemma 29] (Lemma 6.3

in arxiv:1901:09117) we have || fxllg) < N=U/P=1/D for p < g. We show that

Wadl pldvad 2 1forlarge N, which will imply that B 11, ¢ is not continuously embedded
p,00 ’

. 1,dyad
into Bp’cxyfl when g > p.

To see this we prove lower bounds for many of the Haar coefficients of f at Haar
frequency N Let JNJ = (%’ + ﬁ, %’ + %); we observe that for fixed N the

intervals JN-/ are disjoint and that fyy(x) = ¢* 27 for x € JN-/. We get by a Taylor
expansion

(nhn) =272 27N+ D) + Ry (8.2)
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with |Ry | <273V supy, | fyl-Let ZN-J be the set of all integers j such that 27V
and 27V (u + 1) belong to JV-/; then for u € ZN-J/

s hj) =127 gn johj )l =2 272N "2 4 0(2/73N)

and hence

1
”fN”B;,g%ad 2 2N(171/P)< Z Z >| ) /[7.

Y<j<hnezhJ

Since #(ZVJ) ~ 2N N~! for large N and N/4 < j < N /2 we obtain I fvl g1dyaa pe
p,o0
1. O

Lemma 8.2 Suppose 1/2 < p < oo. Then

Fl, = B = g <2, (8.3)
B, — B = g<2. 8.4)

Proof We consider the same example that was used in [13, §7.2.1]. Namely, let ¢ €
C(0, 1) with » = 1in [1/4, 3/4], and for each large N > 1, let

3n={jeN: N/4d<j<N/2} (8.5)
and
fix) = 23 ’2(]) Ry (), e o, 1], (8.6)
JEIN

where (), t € [0, 1], are the usual Rademacher functions. Using Lemma 7.3 from
[13] one can verify that

sup | fillpy, S NV (8.7)
1€[0,1]
a similar argument also gives
sup [1fills}, S NV, (8.8)

tel0

Let ¢ (x) = 277 272X (x), for j € 3, and let Zy be the set of all & € Z such
that Iy, C (1/4,3/4). Using the Taylor expansion as in (8.2) one sees that

(W, 2V ) = 27272 4 027 72N), e Zy. (8.9)
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Now observe that

1
1 ill g = 28072 (37 1 frn 2V 1) (8.10)

neZy

So, raising to the p-th power and taking the expectation in the ¢ variable, we obtain
from Khintchine’s inequality

1 1 1 1
( /0 0 guadt)” 22X (5 [ 2 0. 200 )’

WEZN JEIN
1
N(=1 215\ %
22 (3 w2 P]) "
neZy JjE3N

An application of (8.9), together with the cardinalities of 3 and Zy, then gives

/ AR ]dyqddr NW-

This together with (8.7), (8.8) implies that the inclusions B 11) > B1 dyad and F [1 ¢
By %™ can only hold if g < 2. O
Lemma 8.3 For p = oo we have

Bl , = Bi% = g<1 (8.11)

Proof We assume that B1 00 Béodggd, and we shall prove that necessarily g < 1.

Let Zy be as in (8.5) and consider the function
F) =Y 27y ),
JE3N

which is defined as in (8.6), but with all the r;(¢) set equal to 1. This time we shall
assume that ¢ € C°(—1/2, 1/2) with = 1in (—1/4, 1/4). As in (8.8) we have

I£llgy, < N4 (8.12)
On the other hand, note that
11 grassa = 2V 1(f, 28Ry o). (8.13)

Arguing as in (8.2) we see that

(f. 2%y = Y W 2%y o) = D [27727V 250 + 027 )]

JE3N J€3N
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=27i2" V"2 Card 3y) + 0273N/?),

which inserted into (8.13) gives

I grayas Z N (8.14)
The lemma is proved after combining (8.12), (8.14) and letting N — oo. O
1 /p 1,dyad

9 Necessary Condition for Embedding into B,

Proposition 9.1 Let 0 < p,q < oco. Then

1/p—1 1/p—1,dyad .
BYP™V s LTI 0 < mingl, p).

Proof We first assume 1 < p < oo. Suppose the embedding By, , < Bf, C}%ad holds,
with s = 1/p — 1. By definition of the latter space we have the 1nequahty

TE
(F gl S 2TV f N g, .

so the assumed embedding would then imply that 4 ;, defines a bounded linear func-

tional on B, 11+ /P (or in the subspace é;}fl/ P defined by the closure of S in the

B;}]H/ P norm, in case that p or g are 00). By the duality identities of Besov spaces,

see [27, §2.11], this means that i ,, € B / 7 which cannot be the case if ¢’ < o0, i.e.
ifl <g <oo.

Let p < 1. We use an example from [14, §10.1]. We let n;(x) = 2'n(2lx) where
n € C°(R) is an odd function supported in (—1/2, 1/2) such that f01/2 ns)ds =1
and such that [/
M. Let

n(s)s"ds =0forn =1,2,..., M, for a sufficiently large integer

NG =) apnngmx =27V m),

m=1

By [14, (85)] we have

a9 < 4q
Ll S (D laml®) ™

m=1

On the other hand a calculation shows (fn, hy »s,,) = am and thus

1/p > 1/p
Il gugraa = (D2 1w ival?) 7 2 (3 laml?)
' w m=1
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which forces g < p. O

10 B}’? and B,’>*: The proof of Theorem 1.10
10.1 Proof of Part (i) of Theorem 1.10

Let

N-1

fv = Zhj,o, forN=1,2,... (10.1)
j=0

Observe that

i(s—1 i 1 .
I fiv gy = sugz’“ IS 120wy IP]P = 1 s = 1/p. (10.2)
P00 j=
WEL

On the other hand, using the characterization with differences of order 2 for the Bf,’ .
norm (since s € (0, 1]), see [27, Theorem 2.5.12], we have

Inlgye 2 2Y7 [ A3n (W],

_»—N

2
=] /
_D2I-N

Now a simple computation shows that, if § € (0, 2-J-1 ], then

2 g P 7
Y AJwhjo)| dx|”. (10.3)
0<j<N

hjo(-+8) —hjo()=1_s50 — 21[271'71_5,27171) + 1[271'_5,27./')
and therefore,
Adhjo(x) =1, x e[-28,-9).
Setting 8§ = 2~ and inserting this expression into (10.3) we get
N 2

Il 22V A5 w In ], = N, (104)
and hence part (i) of Theorem 1.10 follows. ]
10.2 Proof of Part (ii) of Theorem 1.10

Consider this time the function
o0
£=> hjo.
Jj=0
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and as before fy = ZI/V:_OI hjo,ie. f = limy_o fy with convergence in L.
Indeed '

Lf = fullp < Y [hjoll, = Y 27777 ~ 27N/, (10.5)

jzN j=N
As in (10.2), it is again easy to verify that

||f||3;)/égdyad =1. (10.6)
We claim that f ¢ B 11,/ L . Indeed, for large N we have

1 gyp 227 850 (F = f) + A3 S,
=2V (a3 v, = 4I1F = fwllp)- (10.7)

Inserting the bounds (10.4) and (10.5) into (10.7) gives
1l 2 2NIP | ATy (fN) |,—om z N,

which letting N ' oo proves the assertion. O

11 Some Pathologies of the Spaces B}, />

. L . . s,dyad
We include in this section some pathologies of the spaces B;,’,qyd when s > 1, or
s=1,q <oo,ors < 1/p — 1, which were mentioned in the introduction.

11.1 Failure of Embedding into B:,’f,',yad fors>1ors=1,g< o0

The following proposition is a simple result on the theme of Brezis’ paper [3] on how
to recognize constant functions.

Proposition 11.1 Let 0 < p,q < oo and assume that either (i) s > 1, or (ii) s = 1
and g < oo.
Then every f € CY(R) N B;’,Zyad (R) is a constant function.

Remark Bockarev’s results [1, Theorem 3] indicate that less restrictive assumptions
can be made but we will not pursue the problem of optimal hypotheses here.

Proof We argue as in the proof of Lemma 8.1, now using Taylor’s formula in the form

sup sup | f(y) = f(b) — f'(B)(y = b)| = o(e)

beK |b—y|<e
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for any compact K. Take b = b; ;, = 27 (u+ %) to see that

(fohjn) = (w+ 2772+ o27) (11.1)

with uniformity in the remainder as b; , ranges over a compact set.
Now assume that f € C! and that £’ is not identically zero. Then there is a dyadic
interval J = [v2~¢, (v 4+ 1)27%) and ¢ > 0 such that for j > jo > ¢

Wfohj)l =c272, ifl;, CJ.

Hence

PP X paar)])

e

171 gm0 = (

J=Jo wilj . CJ
00 1 00 1/
-~ ( 3 [zﬂs—1/p>2(j—e>/pcz—./]‘f)q -~ Ci( 3 2/<s—1>q) !
Jj=Jo J=Jo

with ¢y > 0. Hence ”f”Bx,dyad =oowhens > 1orwhens =1andg < oo.
p.q

We conclude that for this range we have f’ = 0 forevery f € C' N B;’f{yad and

Proposition 11.1 follows. O
11.2 The Dyadic Besov-Spaces for s < 1/p — 1: Failure of Completeness
s,dyad

Proposition11.2 Let 0 < p,q < o0. If s < 1/p — 1 then the spaces B, ;" (R) are
not complete.

Proof Consider the functions
N-1
=T+ Y 2hjo=21g, v, N=12... (11.2)
j=0
It is easily seen that, under the assumption s < 1/p — 1, then

1
. 1 =
_ v = 9 (s+1=3) q>q 0.
Ifar = Fnll s s ( > 1 R

N<j<M

when M > N — oo. So, {fn}n>1 is a Cauchy sequence in Bf,’gyad. However, the
distributional limit of fy is the Dirac measure &, which does not belong to the space
B. O
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11.3 Failure of an Embedding fors = 1/p — 1

A small variation of the last example shows also part (i) of Theorem 1.9 and at the
same time the optimality of the condition s > 1/p — 1 in part (ii) of Proposition 4.1
when g < oo.

Proposition 11.3 Let 0 < p,u < oo. Then

1/p—1 1/p—1,dyad
Byu > Bpyg , 0<g <oo0.

Proof Consider fy asin(11.2),andlet gy = fy — fn(—-) beits odd extension. Then,
it was shown in [14, Proposition 52] (Proposition 13.3 in arxiv:1901.09117) that

lgnll girp—1 S 1,
p.u
for all 0 < p, u < co. However, it is easily seen that
Ign Il g/p—tavaa = | fnll pisp-tasea > N9
Bl’vq Bl’vq

]

Remark 11.4 Note that the above proof also shows that L is not continuously embed-
ded into & = BO_O{I. Indeed, the functions fy = 2V Lip -~y in (11.2) satisfy
[fvlh=T1and | fyllz Z N.
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