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Abstract
It is still unclear whether the density of analytic polynomials in an H -admissible
space is sufficient to the minimality of the space? This question has a purely foun-
dational background, relating fundamental concepts from the theory of H p spaces.
We hypothesize that there is no general relationship between the density of analytic
polynomials and the R-admissibility of an H -admissible space. We solve this prob-
lem by finding suitable counterexamples of Hardy spaces built upon some weighted
Lebesgue spaces. In particular, we provide a direct construction of weights from Szegő
class, which guarantees the existence of isomorphic copies of the space of bounded
sequences in weighted Hardy spaces on the unit disc.
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1 Introduction

Let H(D) denote the space of all analytic functions on the unit disc D = {z ∈ C :
|z| < 1}. Let f be a complex-valued function on D and 0 ≤ r < 1. We write fr for
the function fr (z) := f (r z), z ∈ T = ∂D and f∗ for its radial limit. The class H(D)

consists of functions which are analytic in a neighbourhood of the closed disc D. Let
un : D → C denote the monomials un(z) = zn , n ∈ N0 := {0, 1, 2, . . . }. The set P
of all analytic polynomials, is defined to be the linear span of {un}n∈N0 .

Following Pavlović [10, 2nd rev.] let us recall that a quasinormed vector space
X ⊂ H(D) (i.e., equipped with a q-norm for some 0 < q ≤ 1), is called H -admissible
if it is complete, H(D) ⊂ X , and the inclusion X ⊂ H(D) is continuous. If an H -
admissible space X satisfies

sup
0≤r<1

‖ fr‖X ≤ CX ‖ f ‖X , f ∈ X ,

then we call it an R-admissible space. An H -admissible space is said to be minimal if

lim
r→1− ‖ fr − f ‖X = 0.

The analytic polynomials always form a dense subset in a minimal space. The R-
admissibility of a minimal space follows from the Banach–Steinhaus principle (see,
e.g., [10, 11] for its more general variants). Moreover, if X is an R-admissible space,
then the closure XP of P in X equals

{
f : lim

r→1− ‖ f − fr‖X = 0
}

(see, e.g., [10, Lemma1.21]). However, it is still unclearwhether the density of analytic
polynomials in an H -admissible space is related to the R-admissibility of this space?

We hypothesize that there is no general relationship between the density of analytic
polynomials and the R-admissibility of an H -admissible space. We shall prove that
neither the R-admissibility nor the density of analytic polynomials alone is sufficient
for minimality to hold. Let us note here, that in the second revision of his book [10,
p. 15], Pavlović posed a closely related problem whether the density of harmonic
polynomials in an h-admissible space is sufficient to the minimality of the space?

The purpose of this paper is to study the weighted Hardy spaces H p
φ (D) and H p

φ (T)

for Szegő’s weights. Here 0 < p < ∞ and B is the σ -algebra consisting of Borel
sets of T and � is the normalized Haar measure on T. By a weight function we shall
always mean a non-negative function φ on the unit circle T. The Szegő class of
weights, denoted by W , is the collection of all weights on T satisfying φ ∈ L1(T)

and logφ ∈ L1(T). We adopt the convention that (a class of �-a.e. equal measurable
functions) f belongs to L p

φ(T), for 0 < p < ∞, exactly when

‖ f ‖L p
φ(T) =

( 1

2π

∫

T

| f (ξ)|p φ(ξ) |dξ |
)1/p

< ∞,
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and f ∈ L∞(T) whenever its essential supremum satisfies

‖ f ‖L∞(T) = ess sup
(T,B,�)

| f | < ∞.

Here, every contour integral along T will be taken counter-clockwise. For L p(T) we
take φ ≡ 1. Moreover, the following functionals from H(D) give rise to the quasi-
norms of the weighted Hardy spaces H p

φ (D), H∞(D) and H p
φ (T), namely

f 
→ sup
0≤r<1

‖ fr‖L p
φ(T) , f 
→ sup

0≤r<1
‖ fr‖L∞(T) and f 
→ ‖ f∗‖L p

φ(T) .

If φ ≡ 1, then we recover the classical case H p(D) ∼= H p(T).
Recall that by Beurling’s theorem (see, e.g., [5, Theorem 7.4]), the analytic poly-

nomials P are always dense in H p
φ (T) for every φ ∈ W . Specifically, we plan to solve

the aforementioned problem by addressing somewhat simpler claims:

∗ There exists a weight φ ∈ W such that H p
φ (D) �= H p

φ (T) for every 0 < p < ∞.
∗∗ There exists a weight φ ∈ W such that the set of analytic polynomials P is not

dense in H p
φ (D) for every 0 < p < ∞.

In contrast to the case of the Hardy spaces H p
φ (T), the subspace structure of the cor-

responding disc spaces H p
φ (D) is still not satisfactorily understood. Nonetheless, we

also show that for the weighted Hardy spaces on the disc:

∗∗∗ There exists a weight φ ∈ W such that H p
φ (D) contains an isomorphic copy of

�∞.

Finally, let us recall that the question of how to construct copies of �p in H p for
1 ≤ p ≤ ∞ was already considered in the literature (see, e.g. the survey [1]).

2 Notation, Definitions and Auxiliary Results

Note that H(D) is a Fréchet space equipped with the F-norm generated by the family
of seminorms {‖ · ‖n : n ∈ N} given by

sup
{
| f (z)| : |z| ≤ 1 − 1

n

}
, f ∈ H(D).

In the case where f ∈ H(D) has non-tangential limits �-a.e. on T (which gives
rise to boundary function �-a.e. on T), we write f∗ for the �-a.e. defined radial limit
f∗ = limr→1− fr .
A function f ∈ H(D) is said to be of the Nevanlinna class N if the integrals

∫

T

log+ | fr | d�
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are bounded for 0 ≤ r < 1. Since log+ f is subharmonic, it follows that these
integrals increase with r . The theorem due to F. and R. Nevanlinna says that a function
belongs to N if and only if it is the quotient of two bounded analytic functions (see,
e.g., [5, Theorem 2.1]). Therefore, for each non-zero function f ∈ N , there exists
non-tangential limit f∗ and log | f∗| is integrable (see, e.g., [5, Theorem 2.2]).

Let us recall that an outer function for the class N is a function F of the form eic Fφ

for some real constant c, where

Fφ(z) = exp

(
1

2π

∫

T

ξ + z

ξ − z
logφ(ξ) |dξ |

)
, z ∈ D

and the weight φ satisfies logφ ∈ L1(T). If φ is additionally assumed to satisfy
φ ∈ L p(T) then F = eicFφ , c ∈ R is an outer function for the class H p(T). The outer
function satisfies the equality |F∗| = φ. A function f ∈ H(D) satisfying

(i) | f | ≤ 1 on D, and
(ii) | f∗| = 1 a.e. on T,

is called an inner function. In the case where an inner function has no zeros, it is called
a singular inner function. It is well known that S ∈ H(D) is a singular inner function
if and only if there exists a non-negative singular measure σ on T satisfying

S(z) = eic exp

(
− 1

2π

∫

T

ξ + z

ξ − z
dσ(ξ)

)
, z ∈ D,

where c is a real constant. Let us remark that both functions S and F do not vanish in
D.

The zeros of a non-zero function f from H(D) cannot cluster inside its domain of
analyticity D. In the case where the set of zeros is empty, we have f ∈ N by Jensen’s
formula and we set B ≡ 1 (the auxiliary function B will be defined below for the other
cases). If this is not the case, we arrange the zeros {an} in an order of non-decreasing
absolute values, where each zero is counted according to its algebraic multiplicity. If f
has infinitely many zeros {an}, then limn→∞ |an| = 1. In the case where the function
satisfies a growth condition, the zeros must tend more rapidly to the boundary. Let
us recall the theorem due to Blaschke (see, e.g., [5, Theorem 2.3 and 2.4] or [10]).
The zeros {an} of a non-zero function f ∈ H(D) satisfy the Blaschke condition

∑
n

(
1 − |an|

)
< ∞

if and only if f ∈ N . If a sequence {an} ⊂ D satisfies the Blaschke condition, then
the product

B(z) =
∏
n

|an|
an

an − z

1 − anz

converges in H(D) (i.e., uniformly on each disc
{
z ∈ C : |z| ≤ R < 1

}
). By

convention, we set |an|/an = −1 if an = 0.
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(i) Each an is a zero of B, with multiplicity equal to the number of times it occurs
in the sequence, and B has no other zeros in D.

(ii) |B| ≤ 1 on D.
(iii) |B∗| = 1 a.e. on T.

The function B is called a Blaschke product. A function f ∈ N is said to be of
the Smirnov class N+ if

lim
r→1−

∫

T

log+ | fr | d� =
∫

T

log+ | f∗| d�.

Every non-zero function of the class N+ can be expressed in the form f = BSF ,
where B is a Blaschke product, S is a singular inner function, and F is an outer function
for the class N (see, e.g., [5, Theorem 2.10]). The Smirnov class N+ is the natural
limit space of H p(D) as p → 0 and the inclusions H p(D) ⊂ N+ ⊂ N are proper for
every p > 0.

If φ is a weight and 0 < p < ∞, then the weighted Hardy space H p
φ (D), consists

of all functions f which are analytic in D and satisfy fr ∈ L p
φ(T) for all 0 ≤ r < 1,

where the corresponding L p
φ(T) bounds are uniform with

‖ f ‖H p
φ (D) = sup

0≤r<1
‖ fr‖L p

φ(T) < ∞.

The classical Hardy space H p(D) is obtained by taking φ ≡ 1. At the other endpoint,
the Hardy space H∞(D) is the collection of all analytic functions f ∈ H(D) that
satisfy

‖ f ‖H∞(D) = sup
0≤r<1

‖ fr‖L∞(T) < ∞.

ByA(D)wedenote the disc algebra, that is the set of all functions from H(D)which are
continuous on D. We also have H(D) ⊂ A(D) ⊂ H∞(D). Moreover, the assumption
that φ ∈ L1(T) is equivalent to the inclusion A(D) ⊂ H p

φ (D). The Poisson integral

of a function f ∈ L1(T) is the harmonic function P[ f ] defined by

P[ f ](z) = −
∫

T

P(zξ−1) f (ξ) |dξ | , z ∈ D,

where P is the Poisson kernel, given by

P(z) = 1 − |z|2
|1 − z|2 = Re

1 + z

1 − z
, z ∈ D.

It is a well-known fact that if f ∈ H1(D), then f∗ ∈ L1(T) and f = P[ f∗]. For more
details concerning classical Hardy spaces on the unit disc we refer the reader to [5,
10].
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Assuming logφ ∈ L1(T) and 0 < p < ∞, let H p
φ (T) denote the space of all

analytic functions f ∈ H(D) that satisfy f F1/p
φ ∈ H p(D) with

‖ f ‖H p
φ (T) = ∥∥ f F1/p

φ

∥∥
H p(D)

.

Let us remark here that we always have H p
φ (T) ⊂ N+. Indeed, taking any non-

zero f ∈ H p
φ (T) we have f F1/p

φ = BSFψ for some ψ satisfying logψ ∈ L1(T).

Since both logψ and logφ are members of L1(T), it follows that logϕ ∈ L1(T) for
ϕ = ψ/φ1/p, and the function

f = BSFψ

Fφ1/p
= BSFϕ

belongs to N+. Therefore, each f ∈ H p
φ (T) has a boundary function f∗ (�-a.e. on T)

and

‖ f ‖H p
φ (T) = ∥∥ f∗φ1/p

∥∥
L p(T)

= ‖ f∗‖L p
φ(T) . (2.1)

We make the following provisional definition. If for logψ ∈ L1(T) we have that
ψ ∈ L p

φ(T), then we say that F = eicFψ , c ∈ R, is an outer function for the class

H p
φ (T).
Thus, we have proved the canonical factorization theorem for weighted Hardy

spaces on the torus.

Theorem 2.1 If logφ ∈ L1(T) and 0 < p < ∞, then every non-zero function f from
H p

φ (T) admits a unique factorization of the form f = BSF, where B is a Blaschke
product, S is a singular inner function, and F is an outer function for the class
H p

φ (T). Conversely, every product BSF for the outer function F for the class H p
φ (T)

is a member of H p
φ (T).

In fact, (2.1) allows us to treat H p
φ (T) as a subspace of L p

φ(T). If also we have

φ ∈ L1(T), then A(D) ⊂ H p
φ (T), and moreover, H p

φ (T) is isometrically isomorphic

to the closure ofP in L p
φ(T) by Beurling’s theorem (see, e.g., [5, Theorem 7.4] or [4]).

In the case where φ ≡ 1, we have H p(D) ∼= H p(T).
The Szegő class of weights, denoted by W , is the collection of all weights on T

satisfying φ ∈ L1(T) and logφ ∈ L1(T).

W = {
φ ∈ L1(T) : logφ ∈ L1(T)

}

McCarthy showed in [9] (see also [8]) that N+, can be realized as a union of weighted
Hardy spaces, namely

N+ =
⋃
φ∈W

H2
φ (T).
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Let us note that since a non-zero function f ∈ N+ has a factorization f = BSF and
g = F p/2 ∈ N+ for all p > 0, it follows that

N+ =
⋃
φ∈W

H p
φ (T). (2.2)

Let us first discuss the relation between the weighted Hardy spaces H p
φ (D) and

H p
φ (T) for φ ∈ W . We state the following technical result, which is a more general

version of Stoll’s lemma given in [3]. The proof that f F1/p
φ ∈ H p(D) whenever

f ∈ H p
φ (D) appeared first in [3, Lemma 2.3] and [7, Theorem 3]. Here is a simple

direct proof.

Lemma 2.2 Let 0 < p < ∞. Assume that φ ∈ W and f ∈ H p
φ (D). Then

‖ f ‖H p
φ (T) ≤ ‖ f ‖H p

φ (D) . (2.3)

Moreover if f ∈ H p
φ (T) with lim supr→1− ‖ fr‖L p

φ(T) < ∞, then f ∈ H p
φ (D).

Proof In the proof below, we shall use the mean convergence theorem and Hardy’s
convexity theorem (see, e.g., [5, Theorems 1.5 and 2.6]). Fix f ∈ H p

φ (D). Since

sup
0≤r<1

∥∥(
fρF

1/p
φ

)
r

∥∥
L p(T)

= ∥∥ fρφ
1/p∥∥

L p(T)
< ∞, 0 ≤ ρ < 1

where fρφ
1/p = ( fρF

1/p
φ )∗, it follows that

∥∥ f F1/p
φ

∥∥
H p(D)

= sup
0≤r<1

∥∥(
f F1/p

φ

)
r

∥∥
L p(T)

= sup
0≤r<1

∥∥∥lim inf
ρ→1− frρ

(
F1/p

φ

)
r

∥∥∥
L p(T)

≤ sup
0≤r<1

lim inf
ρ→1−

∥∥ frρ
(
F1/p

φ

)
r

∥∥
L p(T)

≤ lim inf
ρ→1−

∥∥ fρφ
1/p∥∥

L p(T)

≤ ‖ f ‖H p
φ (D)

by Fatou’s lemma.
We now prove the remaining inequality (cf. [3, Remark 2.4]). By assumption, φ ∈

L1(T) and logφ ∈ L1(T), andmoreover F1/p
φ is an outer function for the class H p(D).

Let f ∈ H p
φ (T). Then f ∈ H(D) with f F1/p

φ ∈ H p(D). Since f∗φ
1/p ∈ L p(T) and

lim sup
r→1−

‖ frφ
1/p‖L p(T) < ∞,

and since moreover

sup
0≤r≤R

‖ fr‖L p
φ(T) ≤ ‖ fR‖H∞(D)‖φ‖L1(T) < ∞
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for every 0 < R < 1, it follows that f ∈ H p
φ (D). �

Lemma 2.3 If 0 < p < ∞ and φ ∈ W , then both H p
φ (D) and H p

φ (T) are H-
admissible.

Proof For the sake of rigor, we first show that both H p
φ (D) and H p

φ (D) are com-

plete. Fix 0 < p < ∞. Let { fn} be a Cauchy sequence in H p
φ (T). Since { fn F1/p

φ }
is a Cauchy sequence in H p(T), it follows that there is g := limn→∞ fn F

1/p
φ

in H p(T). On the other hand, {( fn)∗φ1/p} is a Cauchy sequence in L p(T) with
g∗ = limn→∞( fn)∗φ1/p in L p(T). By Theorem 2.1,

f = g

Fφ1/p
= BSFg∗

Fφ1/p

is a limit limn→∞ fn in H p
φ (T) with f∗ ∈ L p

φ(T).

Take an absolutely convergent series
∑∞

n=1 fn in H p
φ (D). Lemma 2.2 shows that

this series converges in H p
φ (T) to some analytic function, say f = ∑∞

n=1 fn . Observe

that the series
∑∞

n=1( fn)r is absolutely convergent in L
p
φ(T) to fr for every 0 ≤ r < 1,

where

‖ fr‖L p
φ(T) ≤

∞∑
n=1

‖( fn)r‖L p
φ(T) ≤

∞∑
n=1

‖ fn‖H p
φ (D) < ∞.

That

A(D) ⊂ H p
φ (D) ⊂ H p

φ (T), (2.4)

where the inclusions are continuous, follows immediately from φ ∈ L1(T) and
Lemma 2.2.

We will make use of the classical inequality

| f (z)|p (1 − |z|2) ≤ ‖ f ‖p
H p(T)

, z ∈ D

(see, e.g., [10])whichwe apply to the case ofweightedHardy spaces. Take f ∈ H p
φ (T)

and 0 ≤ r < 1. Then

cr ,φ | f (z)|p (1 − |z|2) ≤ | f (z)|p ∣∣Fφ(z)
∣∣ (1 − |z|2)

≤ ∥∥ f F1/p
φ

∥∥p
H p(T)

= ‖ f ‖p
H p

φ (T)

(2.5)

is valid for |z| ≤ r , where cr ,φ = min|z|≤r
∣∣Fφ(z)

∣∣ is positive because of the fact that
an outer function cannot vanish in D. By (2.4) and (2.5), H p

φ (D) ⊂ H p
φ (T) ⊂ H(D),

where the last inclusion is continuous, too. �
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3 Main Results

Let us point out that the equality H p
φ (D) = H p

φ (T) as sets, first announced in [6] with-
out proof, was discussed in a series of papers [2, 3, 7] in the context of Muckenhoupt’s
weights.

While the Hardy spaces H p
φ (D) and H p

φ (T) resemble the classical Hardy spaces
H p(D) and H p(T), they in general need not be equal for weights from W .

Theorem 3.1 If 0 < p < ∞, then there exists a weight φ ∈ W such that H p
φ (D) �=

H p
φ (T).

Proof Fix 0 < p < ∞. We give a direct construction of both the weight φ ∈ W and
the function f ∈ H p

φ (T) that satisfy lim supr→1− ‖ fr‖L p
φ(T) = ∞. Let {In}n∈N0 be

a partition of T given by

I0 := {ξ ∈ T : 2 < arg ξ ≤ 2π}
I2n+1 :=

{
ξ ∈ T : 3/2n+1 < arg ξ ≤ 2/2n

}
and

I2n+2 :=
{
ξ ∈ T : 1/2n < arg ξ ≤ 3/2n+1

}
.

Consider 1 < c < 2. Then the following weight

φ := χI0 +
∞∑
n=0

(
e−cnχI2n+1 + χI2n+2

) ∈ W .

Indeed,

2π
∫

T

φ d� = (2π − 2) +
∞∑
n=0

e−cn + 1

2n+1 < ∞, and

2π
∫

T

|logφ| d� =
∞∑
n=0

cn

2n+1 < ∞.

By the above, we also have logφ−1 ∈ L1(T). Now f is defined by setting an appro-
priate outer function, where ψ := φ−1, namely

ψ = χI0 +
∞∑
n=0

(
ec

n
χI2n+1 + χI2n+2

)

and

f (z) := F1/p
ψ = exp

(
1

2pπ

∫

T

ξ + z

ξ − z
logψ(ξ) |dξ |

)
, z ∈ D.
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Since | f∗|p ≡ ψ �-a.e., it follows that f ∈ H p
φ (T). Let us also define a family {Jn}n∈N0

of subsets of T by

Jn :=
{
ξ ∈ T : −1/2n+1 ≤ arg ξ ≤ 0

}
.

It is routine to verify that for rn := 1 − 1/2n+1 we have P(rnξ) ≥ 2n for all ξ ∈ Jn
for each n ∈ N, where P is the Poisson kernel. Thus,

∥∥ frn
∥∥p
L p

φ(T)
=

∫

T

∣∣ frn
∣∣p φ d�

= 1

2π

∫

T

exp

(
1

2π

∫

T

P(rnζ ξ−1) logψ(ξ) |dξ |
)

φ(ζ ) |dζ |

≥ 1

2π

∫

I2n+2

exp

(
1

2π

∫

ζ Jn
2n logψ(ξ) |dξ |

)
φ(ζ ) |dζ |

≥ 1

2π
exp

(
1

2π

cn

4

)
1

2n+1

= 1

4π
exp

(
cn

8π
− n log 2

)
→ ∞ as n → ∞,

(3.1)

and so H p
φ (D) �= H p

φ (T), as required. �
Actually, based on the ideas presented in Theorem 3.1 one can also find a pair

consisting of the weight and the function satisfying more refined estimates.

Theorem 3.2 If 0 < p < ∞, then there exists a weight φ ∈ W such that H p
φ (D)

contains an isomorphic copy of �∞.

Proof We use the notation from the proof of Theorem 3.1, and the definitions of
the intervals and functions given there (In, φ, . . .). The purpose of this proof is to give
the construction of a weight φ and a linear embedding T : �∞ → H p

φ (D). This will
give rise to the countable family F of analytic functions hn := T (en), n ∈ N0 on
the disc satisfying

∥∥∥∥
∑
n∈I

hn

∥∥∥∥
H p

φ (D)

� 1 and inf
I �=J
J⊂N0

∥∥∥∥
∑
n∈I

hn −
∑
n∈J

hn

∥∥∥∥
H p

φ (D)

� 1

for all ∅ �= I ⊂ N0. Our proof breaks into three parts.
As a first step we put

fn(z) := F1/p
ψn

= exp

(
1

2pπ

∫

T

ξ + z

ξ − z
logψn(ξ) |dξ |

)
, z ∈ D,

where

ψn := χT\I2n+1 + ec
n
χI2n+1 , n ∈ N0.
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It is also clear that |( fn)∗|p = ψn �-a.e. and logψn ∈ L1(T). Since ‖ f ‖L p
φ(T) ≤

‖ f ‖L p(T) for all f ∈ L p(T) and ‖g‖H p(D) ≤ ‖g‖H∞(D) for all g ∈ H∞(T), and
since moreover ψn ≤ ec

n
�-a.e., it follows that ‖ fn‖H p

φ (D) < ∞, n ∈ N. On the other

hand, the key estimate (3.1) in the proof of Theorem 3.1 also gives

lim
n→∞ ‖ fn‖H p

φ (D) = ∞. (3.2)

Indeed, a close inspection of the above proof reveals that

‖ fn‖p
H p

φ (D)
≥ 1

4π
exp

(
cn

8π
− n log 2

)
, n ∈ N0. (3.3)

By the mean convergence theorem for H p(D) (see, e.g., [5, Theorem 2.6]) one can
quickly check that

lim
r→1− ‖( fn)r − ( fn)∗‖L p

φ(T) = 0, n ∈ N0. (3.4)

A standard verification shows that for all 0 ≤ r < 1,

lim
n→∞ ‖( fn)r‖H∞(D) = lim

n→∞ sup
|z|≤r

| fn(z)| = 1, and sup
n∈N

‖( fn)∗‖p
L p

φ(T)
< 1. (3.5)

Indeed, this follows immediately from

| fn(r z)|p = exp

(
1

2π

∫

T

P(r zξ−1) logψn(ξ) |dξ |
)

≤ exp

(
1

2π

1

1 − r

∫

T

logψn(ξ) |dξ |
)

≤ exp

(
1

2π

1

1 − r

cn

2n+1

)
→ 1 as n → ∞, z ∈ D,

(3.6)

and

‖( fn)∗‖p
L p

φ(T)
=

∫

T

ψnφ d� = 1

2π

(
2π − 2 +

∞∑
k=0
k �=n

e−ck + 1

2k+1 + 2

2n+1

)

≤ 1

2π

(
2π − 2 +

∞∑
k=1

e−ck + 1

2k+1 + 1

)
< 1,

respectively.
In the second part, we define a new sequence of functions by setting

gn := fn
‖ fn‖H p

φ (D)

, n ∈ N0.



26 Page 12 of 16 Journal of Fourier Analysis and Applications (2023) 29 :26

By (3.2), (3.4) and (3.5), ‖gn‖H p
φ (D) = 1 and

lim
r→1− ‖(gn)r − (gn)∗‖L p

φ(T) = 0, lim
n→∞ ‖(gn)∗‖L p

φ(T) = 0, lim
n→∞ ‖(gn)r‖H p

φ (D) = 0

for all n ∈ N0 and 0 ≤ r < 1. Fix 0 < ε < 1 and 0 < εn , n ∈ N0 satisfying

∞∑
n=0

εn < ε and
∞∑
n=0

ε
p
n < ε.

Now that we have the above claim, we can select a subsequence of {gn}n∈N0
of

appropriately separated functions (in the sense of H p
φ (D) norm). For the base step

of the induction, we take r0 := 0 and choose n0 ∈ N0 to satisfy

sup
0≤r≤r0

∥∥(gn0)r
∥∥
L p

φ(D)
< ε0 and

∥∥(gn0)∗
∥∥
L p

φ(T)
< ε0.

There exists r0 < r1 < 1 such that

sup
r1≤r<1

∥∥(gn0)r
∥∥
L p

φ(T)
< ε0.

The next step is to find n0 < n1 ∈ N satisfying

sup
0≤r≤r1

∥∥(gn1)r
∥∥
L p

φ(T)
< ε1 and

∥∥(gn1)∗
∥∥
L p

φ(T)
< ε1.

There is r1 < r2 < 1 that satisfy

sup
r2≤r<1

∥∥(gn1)r
∥∥
L p

φ(T)
< ε1.

Let us prove the induction step. Suppose that for all 0 ≤ k ≤ m − 1 the following
three statements hold

sup
0≤r≤rk

∥∥(gnk )r
∥∥
L p

φ(T)
< εk,

∥∥(gnk )∗
∥∥
L p

φ(T)
< εk and

sup
rk+1≤r<1

∥∥(gnk )r
∥∥
L p

φ(T)
< εk,

(3.7)

where 0 = r0 < r1 < . . . < rm−1 < rm < 1 and 0 ≤ n0 < n1 < . . . < nm−2 <

nm−1. Now nm−1 < nm ∈ N is chosen to satisfy

sup
0≤r≤rm

∥∥(gnm )r
∥∥
L p

φ(T)
< εm and

∥∥(gnm )∗
∥∥
L p

φ(T)
< εm .
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There exists rm < rm+1 < 1 that satisfy

sup
rm+1≤r<1

∥∥(gnm )r
∥∥
L p

φ(T)
< εm .

By the induction hypothesis, it follows that (3.7) holds for all 0 ≤ k ≤ m. We proceed
by induction.

Let us move to the final step of the proof. We check first that

gλ :=
∞∑
k=0

λkgnk

is a member of H p
φ (D) for every sequence λ := {λk}k∈N0 ∈ �∞.

That gλ ∈ H(D) follows from (3.1) and (3.6). Indeed, if 0 ≤ r < 1, then by (3.3)

∞∑
k=0

∥∥(gnk )r
∥∥∞ ≤

∞∑
n=0

‖( fn)r‖∞
‖ fn‖H p

φ (D)

<

Nr∑
n=0

‖( fn)r‖∞
‖ fn‖H p

φ (D)

+
∞∑

n=Nr+1

2

en
< ∞

for some Nr ∈ N0. We also have

‖gλ‖qH p
φ (D)

= sup
m∈N0

sup
rm≤r≤rm+1

‖(gλ)r‖qL p
φ(T)

≤ sup
m∈N0

(
|λm |q +

∞∑
m �=k∈N0

ε
q
k |λk |q

)
≤ (1 + ε)(‖λ‖∞)q ,

(3.8)

where q = min {1, p}. We define a mapping T : �∞ → H p
φ (D) by

T : λ 
→ gλ. (3.9)

By the above, T is well defined, linear and bounded with ‖T ‖ ≤ (1 + ε)1/q .
Moreover, T is bounded below. To see this, we shall bound ‖gλ‖H p

φ (D) from below by

‖λ‖∞ up to a constant. Indeed,

|λm |q = ∥∥λmgnm
∥∥q
H p

φ (D)
≤ ‖gλ‖qH p

φ (D)
+

∞∑
m �=k∈N0

ε
q
k |λk |q , m ∈ N0

and therefore

(1 − ε)(‖λ‖∞)q ≤ ‖gλ‖qH p
φ (D)

.

�
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A close inspection of the proof reveals that with the new weight

ϕ := χK +
∞∑
k=0

e−cnk χI2nk+1 + χI2nk+2 for K := T \
∞⋃
k=0

(I2nk+1 ∪ I2nk+2)

this procedure can be repeated with previously chosen family of functions
{
gnk

}
.

Since minimal spaces are separable, we actually proved that H p
φ (D) is not minimal.

Corollary 3.3 If 0 < p < ∞, then the set of analytic polynomials P is not dense in
H p

φ (D).

Proof This is a consequence of Theorem 3.2. �
We finish with the following result which follows directly from the proof of Theo-

rem 3.2.

Proposition 3.4 If 0 < p < ∞, then there exists a weight φ ∈ W such that the closure
of the set P of all analytic polynomials in H p

φ (D) contains an isomorphic copy of c0.

Proof The proof proceeds along the same lines as the proof of Theorem 3.2 and will
only be indicated briefly. Fix 0 < p < ∞ and 0 < η < 1/2. There is the weight
φ ∈ W and the mapping T : �∞ → H p

φ (D) satisfying

(1 − η)(‖λ‖∞)q ≤ ‖T (λ)‖q
H p

φ (D)
≤ (1 + η)(‖λ‖∞)q (3.10)

where q = min {1, p} and λ := {λk}k∈N0 ∈ �∞. Since T (en) ∈ H∞(D) for each
n ∈ N0, it follows that there are analytic polynomials pn ∈ P , n ∈ N0 satisfying

‖T (en) − pn‖qH p
φ (D)

< η/2n+1, n ∈ N0. (3.11)

By the above,

pλ :=
∞∑
n=0

λn pn ∈ H p
φ (D)

for every λ ∈ c0. In a similar fashion we define a mapping S : c0 → H p
φ (D) by

S : λ 
→ pλ. (3.12)

Then (3.10) combined with (3.11) gives

(1 − 2η)(‖λ‖∞)q ≤ ‖S(λ)‖q
H p

φ (D)
≤ (1 + 2η)(‖λ‖∞)q ,

which completes the proof. �



Journal of Fourier Analysis and Applications (2023) 29 :26 Page 15 of 16 26

4 Conclusions

Recall that by Beurling’s theorem (see, e.g., [5, Theorem 7.4]), the analytic polyno-
mials P are always dense in H p

φ (T) for every φ ∈ W . With Lemma 2.3 at hand,
Theorem 3.1 gives an example of an H -admissible space which is not R-admissible
but yet analytic polynomials are dense in it.

That the weighted Hardy space H p
φ (D) on the disc is R-admissible follows from

the definition and Lemma 2.3. Indeed,

∥∥ fρ
∥∥
H p

φ (D)
= sup

0≤r<1

∥∥ frρ
∥∥
L p

φ(D)
≤ sup

0≤r<1
‖ fr‖L p

φ(D) = ‖ f ‖H p
φ (D) , 0 ≤ ρ < 1.

On the other hand,Corollary 3.3 shows that there exists an H -admissible spacewhich is
R-admissible but not minimal. In conclusion, there is no general relationship between
the density of analytic polynomials and the R-admissibility of an H -admissible space.

We would like to thank both reviewers for their comments.
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