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Abstract
We find growth estimates on functions and their Fourier transforms in the one-
parameter Gelfand–Shilov spaces Ss , Sσ , �s and �σ . We obtain characterizations
for these spaces and their duals in terms of estimates of short-time Fourier transforms.
We determine conditions on the symbols of Toeplitz operators under which the oper-
ators are continuous on the one-parameter spaces. Lastly, it is determined that �σ

s is
nontrivial if and only if s + σ > 1.

Keywords Gelfand-Shilov spaces · Ultradistributions · Short-time Fourier
transform · Toeplitz operators

1 Introduction

The Gelfand–Shilov spaces were first introduced as a useful set of functions for the
study of Cauchy problems in partial differential equations. These functions are con-
venient in this setting because of their smoothness, and because of the conditions of
regularity imposed on them. For instance, the initial value problem for some partial
differential equations is ill-posed in the Schwartz space S or its dual S ′, the space
of tempered distributions, but is well-posed in suitable Gelfand–Shilov spaces. One
such example is the “inverse heat equation” ∂t u = a∂2x u, a < 0, which among other
examplesmay be found in [2, 9]. This fact exemplifies the need to determine properties
of functions in those spaces. Gelfand–Shilov spaces can also be useful in the study

Communicated by Elena Cordero.

B Albin Petersson
albin.petersson@lnu.se

1 Department of Mathematics, Linnæus University, Växjö, Sweden

http://crossmark.crossref.org/dialog/?doi=10.1007/s00041-023-10009-3&domain=pdf
http://orcid.org/0000-0002-1249-2909


29 Page 2 of 24 Journal of Fourier Analysis and Applications (2023) 29 :29

of pseudo-differential operators [1], which in turn have uses in, for instance, quantum
theory [10] and signal processing [7].

The Gelfand–Shilov spaces Sσ
s , Ss and Sσ of Roumieu type (cf. [3, 5, 8]) and �σ

s ,
�s and�σ of Beurling type (cf. [15]) can be considered as refinements of the Schwartz
spaceS , where we impose analyticity-like smoothness and/or decay conditions. The
strength of these conditions depend on the parameters s and σ . The smaller s is the
faster the functions must vanish at infinity, and smaller σ impose stronger conditions
on the growth of the derivatives (meaning the Fourier transform vanishes faster). In the
one-parameter spaces, functions have exponential decay and their Fourier transforms
tend to zero faster than the reciprocal of any polynomial, or vice versa. In the two-
parameter spaces, both the functions and their Fourier transforms have exponential
decay. If s + σ is sufficiently small, the only function found in Sσ

s or �σ
s is f (x) ≡ 0,

and the spaces are trivial. There are more general Gelfand–Shilov spaces, such as the

S
Np
Mp

-spaces whose properties are explored in [3], for instance.
In this paper, we are mostly interested in discussing the properties of the one-

parameter spaces Ss and Sσ , their duals (Ss)′ and (Sσ )′, as well as the corresponding
spaces�s and�σ and their duals. More specifically, we establish growth estimates on
elements in these spaces and their Fourier transforms. Additionally, we find estimates
involving the short-time Fourier transform which provide an alternative characteriza-
tion of Gelfand–Shilov spaces. Such estimates exist for the two-parameter spaces (cf.
[12]) and for more general Gelfand–Shilov spaces as well (cf. [4]). Here we extend
characterizations of this type to one-parameter spaces. We find that the short-time
Fourier transform admits exponential decay in one parameter, and tends to zero faster
than reciprocals of polynomials in the other. Corresponding estimates are found for
the duals of one-parameter spaces as well. We also examine Toeplitz operators on
these one-parameter spaces, where the symbol a(x, ξ) of the operator lies in different
one-parameter spaces in each variable. Toeplitz operators are important in different
fields of mathematics and physics. For example, in [13], they are applied for obtain-
ing estimates of kinetic energy in quantum systems. We find conditions such that the
Toeplitz operator is continuous on Ss , Sσ and their respective duals.

We also determine when the two-parameter spaces are nontrivial. These results are
well-known for Sσ

s -spaces, but for the �σ
s -spaces, we find that the space is nontrivial

if and only if s +σ > 1, as opposed to the condition s +σ ≥ 1, (s, σ ) �= ( 12 ,
1
2 ) often

cited in other works (cf. [18]). This result, which was initially suggested by Andreas
Debrouwere, directly contradicts versions of this result in previous works.

The paper is structured as follows. In Sect. 2, we introduce notations, definitions
and preliminary propositions regarding Gelfand–Shilov spaces necessary to obtain
results in subsequent sections. These preliminary results can either be found in [3, 5,
8] or are simple enough to be left as an exercise for the reader. In Sect. 3, we obtain
growth estimates for the short-time Fourier transform of functions in Ss , Sσ and �s ,
�σ . In Sect. 4, we show how these results can be used to characterize the duals of
these one-parameter spaces via the short-time Fourier transform as well. In Sect. 5, we
find conditions on the symbol of Toeplitz operators so that the operator is continuous
on one-parameter spaces and their duals. Lastly, in Sect. 6, we determine for which s
and σ the space �σ

s is nontrivial.
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2 Preliminaries

We begin by defining the spaces we will deal with in this paper. These are the so-
called Gelfand–Shilov spaces. There is a clear and intuitive correspondence between
the spaces of Roumieu type and those of Beurling type and the order in which the def-
initions are listed is meant to highlight this correspondence. Here, Dα = Dα1

1 . . . Dαn
n

for α = (α1, . . . , αn) ∈ N
n , where Dj = 1

i
∂

∂x j
, j = 1, . . . , n.

Definition 2.1 Suppose s, σ > 0.

(i) Ss(Rn) consists of all f ∈ C∞(Rn) for which there is an h > 0 such that

sup
x∈Rn

|xαDβ f (x)| ≤ Cβh
|α|α!s, ∀α, β ∈ N

n, (2.1)

where Cβ is a constant depending only on β.
(ii) �s(R

n) consists of all f ∈ C∞(Rn) such that (2.1) holds for every h > 0, where
Cβ = Ch,β depends on h and β.

(iii) Sσ (Rn) consists of all f ∈ C∞(Rn) for which

sup
x∈Rn

|xαDβ f (x)| ≤ Cαh
|β|β!σ , ∀α, β ∈ N

n, (2.2)

holds for some h > 0, where Cα is a constant depending only on α.
(iv) �σ (Rn) consists of all f ∈ C∞(Rn) such that (2.2) holds for every h > 0, where

Cα = Ch,α depends on h and α.
(v) Sσ

s (Rn) consists of all f ∈ C∞(Rn) for which there are constants h > 0 and
C > 0 such that

sup
x∈Rn

|xαDβ f (x)| ≤ Ch|α+β|α!sβ!σ , ∀α, β ∈ N
n . (2.3)

(vi) �σ
s (Rn) consists of all f ∈ C∞(Rn) such that (2.3) holds for all h > 0, where

C = Ch depends only on h.

With s, σ > 0, s < s1 and σ < σ1, we see that

�σ
s ⊆ Sσ

s ⊆ �σ1
s1 , (2.4)

Sσ
s ⊆ Ss ∩ Sσ and �σ

s ⊆ �s ∩ �σ . In fact, we have Sσ
s = Ss ∩ Sσ (cf. [5]) and

�σ
s = �s ∩ �σ (this is a well-known result that follows by analogous arguments, but

an explicit proof can be found in [14] for instance).
We now list some basic properties of Gelfand–Shilov spaces in the form of two

propositions. The first proposition establishes exponential decay of derivatives in
Gelfand–Shilov spaces, and the second establishes how Fourier transforms work in
Gelfand–Shilov spaces. We shall denote byF the Fourier transform given by

(F f )(ξ) = f̂ (ξ) = 1

(2π)n/2

∫
Rn

f (x)e−i〈x,ξ〉 dx
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for f ∈ S (Rn), and similarly, we denote by F−1 the corresponding inverse Fourier
transform

(F−1 f )(x) = 1

(2π)n/2

∫
Rn

f (ξ)ei〈x,ξ〉 dξ

for f ∈ S (Rn). For both of the following two propositions, (a) can be found in [3, 5,
8], and (b) follows by analogous arguments.

Proposition 2.2 Suppose s > 0 and f ∈ C∞(Rn). Then

(a) f ∈ Ss(Rn) if and only if there are constants Cβ, r > 0 such that

|Dβ f (x)| ≤ Cβe
−r |x |1/s (2.5)

for all multi-indices β;
(b) f ∈ �s(R

n) if and only if for every r > 0

|Dβ f (x)| ≤ Cr ,βe
−r |x |1/s (2.6)

holds for all multi-indices β, where Cr ,β > 0 depends only on r and β.

Proposition 2.3 Suppose s, σ > 0.

(a) If s + σ ≥ 1, then f ∈ Sσ
s (Rn) if and only if f̂ ∈ Ssσ (Rn). Moreover, f ∈ Ss(Rn)

if and only if f̂ ∈ Ss(Rn).
(b) If s+σ > 1, then f ∈ �σ

s (Rn) if and only if f̂ ∈ �s
σ (Rn). Moreover, f ∈ �s(R

n)

if and only if f̂ ∈ �s(Rn).

Wewill now discuss the topology of Gelfand–Shilov spaces. Since spaces involving
inductive and projective limits are frequent, we recall their definitions, see [17].

Definition 2.4 Suppose Vj , j = 0, 1, 2, . . . , are Banach spaces,

V =
⋂
j≥0

Vj

and

W =
⋃
j≥0

Vj .

(a) Let i j : V → Vj be inclusion maps.We say that the projective limit is the space V
with the smallest possible topology such that i j is continuous for all j . We write
this as

V = proj lim
j≥0

Vj .
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(b) Suppose further that Vj ↪→ Vj+1, meaning that Vj is continuously embedded in
Vj+1, and let ĩ j : Vj → Vj+1 be inclusion maps. We say that the inductive limit
is the space W with the greatest possible topology such that ĩ j is continuous for
all j . We write this as

W = ind lim
j≥0

Vj .

With these definitions and propositions in mind, we can construct topologies on
Ss , Sσ , �s and �σ and define their duals. For more information on topological vector
spaces, see for instance [17].

Definition 2.5 (1) Let Vs,r ,N (Rn) consist of all f ∈ C∞(Rn) such that

|| f ||s,r ,N = sup
x∈Rn ,|α|≤N

∣∣∣Dα f (x)er |x |1/s
∣∣∣ < ∞.

(2) Let V σ
r ,M (Rn) consist of all f ∈ C∞(Rn) such that

|| f ||σr ,M = sup
ξ∈Rn ,|β|≤M

∣∣∣Dβ f̂ (ξ)er |ξ |1/σ
∣∣∣ < ∞.

We see that Vs,r ,N (Rn) and V σ
r ,M (Rn) are Banach spaces, that

Ss(R
n) = ind lim

r>0

(
proj lim

N≥0
Vs,r ,N (Rn)

)

and that

Sσ (Rn) = ind lim
r>0

(
proj lim

M≥0
V σ
r ,M (Rn)

)
,

which implies

Ss(R
n) =

⋃
r>0

⎛
⎝ ⋂

N≥0

Vs,r ,N (Rn)

⎞
⎠ , Sσ (Rn) =

⋃
r>0

⎛
⎝ ⋂

M≥0

V σ
r ,M (Rn)

⎞
⎠ .

For the �s- and �σ -spaces, we obtain

�s(R
n) = proj lim

r>0

(
proj lim

N≥0
Vs,r ,N (Rn)

)
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and

�σ (Rn) = proj lim
r>0

(
proj lim

M≥0
V σ
r ,M (Rn)

)

which implies

�s(R
n) =

⋂
r>0

⎛
⎝ ⋂

N≥0

Vs,r ,N (Rn)

⎞
⎠ , �σ (Rn) =

⋂
r>0

⎛
⎝ ⋂

M≥0

V σ
r ,M (Rn)

⎞
⎠ .

Remark 2.6 While �s and �σ are Fréchet spaces for all s, σ > 0, the same is not
known to be true for Ss and Sσ in current literature.

This leads us to define the dual spaces of Ss and Sσ in the following way. Here we
denote a functional u of such a dual space being applied to a test function f in the
appropriate corresponding space by u( f ) = 〈u, f 〉.
Definition 2.7 (i) We say that u ∈ (Ss)′(Rn) if for every r > 0 there exist N ≥ 0

and C > 0 such that

|〈u, f 〉| ≤ C
∑

|α|≤N

||Dα f er |·|1/s ||∞,

for any f ∈ Ss(Rn).
(ii) We say that u ∈ (Sσ )′(Rn) if for every r > 0 there exist N ≥ 0 and C > 0 such

that

|〈u, f 〉| ≤ C
∑

|α|≤N

||Dα f̂ er |·|1/σ ||∞,

for any f ∈ Sσ (Rn).

Similarly, we define the dual spaces of �s and �σ as follows.

Definition 2.8 (i) We say that u ∈ (�s)
′(Rn) if there exist r0 > 0, N ≥ 0 and C > 0

such that

|〈u, f 〉| ≤ C
∑

|α|≤N

||Dα f er0|·|1/s ||∞,

for any f ∈ �s(R
n).

(ii) We say that u ∈ (�σ )′(Rn) if there exist r0 > 0, N ≥ 0 and C > 0 such that

|〈u, f 〉| ≤ C
∑

|α|≤N

||Dα f̂ er0|·|1/σ ||∞,

for any f ∈ �σ (Rn).
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Remark 2.9 Since S0(Rn) = C∞
c (Rn), the space of compactly supported smooth

functions, (cf. [8, p. 170]) we have (S0)′(Rn) = D ′(Rn). Since Ss(Rn) is continuously
embedded and dense in Ss′(Rn) for s ≤ s′, we thus have

(Ss)
′(Rn) ⊆ D ′(Rn)

for all positive s. By Proposition 2.3, we therefore have

(Sσ )′(Rn) ⊆ FD ′(Rn)

for all positive σ , where FD ′(Rn) is the space of continuous linear forms on
FC∞

c (Rn) = { f̂ : f ∈ C∞
c (Rn)}.

In Definitions 2.7 and 2.8, we can replace the L∞(Rn)-normwith the L2(Rn)-norm
by the arguments of [5, p. 134]. We can extend this further with Hölder’s inequality
to obtain the following equivalent definitions of the dual spaces.

Proposition 2.10 Suppose 1 ≤ p ≤ ∞.

(i) u ∈ (Ss)′(Rn) if and only if for every r > 0 there exist N ≥ 0 and C > 0 such
that

|〈u, f 〉| ≤ C
∑

|α|≤N

||Dα f er |·|1/s ||p,

for any f ∈ Ss(Rn).
(ii) u ∈ (Sσ )′(Rn) if and only if for every r > 0 there exist N ≥ 0 and C > 0 such

that

|〈u, f 〉| ≤ C
∑

|α|≤N

||Dα f̂ er |·|1/σ ||p,

for any f ∈ Sσ (Rn).

Replacing the L∞-norm with L p-norms, 1 ≤ p < ∞, is possible for the �s and
�σ duals by similar arguments.

For u ∈ (Ss)′, f ∈ Ss we will also consider (u, f ), which we denote to mean the
continuous extension of the regular inner product of L2(Rn) given by

(u, f )2 =
∫
Rn

u(y) f (y) dy.

The fact that the L2(Rn) inner product can be extended continuously in this way
follows from the analysis of [8]. (This is essentially because (Ss, L2, (Ss)′) forms a
Gelfand triple, cf. [6].) The same is true with Sσ , �s or �σ in place of Ss at each
occurrence.

We also recall the following definition of the short-time Fourier transform, which
serves a pivotal role in several of the characterizations in this paper.
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Definition 2.11 The short-time Fourier transform of u ∈ (Ss)′(Rn) with window
function φ ∈ Ss(Rn) is given by

Vφu(x, ξ) = (2π)−n/2(u, φ(· − x)ei〈·,ξ〉).

For u belonging to (Sσ )′(Rn), (�s)
′(Rn) or (�σ )′(Rn), we define the short-time

Fourier transform by replacing each occurrence of Ss above with Sσ , �s and �σ ,
respectively.

3 Characterizations by Short-Time Fourier Transform

In this section, we characterize Ss- and Sσ -spaces in terms of their short-time Fourier
transforms. This characterization is detailed in the following theorem, which is the
main result of this section.

Theorem 3.1 Suppose s, σ > 0.

(i) Let φ ∈ Ss(Rn) \ {0}. Then f ∈ Ss(Rn) if and only if there is an r > 0 such that

|Vφ f (x, ξ)| ≤ CN (1 + |ξ |2)−Ne−r |x |1/s (3.1)

for every N ≥ 0.
(ii) Let φ ∈ Sσ (Rn)\{0}. Then f ∈ Sσ (Rn) if and only if there is an r > 0 such that

|Vφ f (x, ξ)| ≤ CN (1 + |x |2)−Ne−r |ξ |1/σ (3.2)

for every N ≥ 0.

For the proof, we will need the following three lemmas. These follow by basic
computations1 and are left for the reader to prove.

Lemma 3.2 For f ∈ Ss(Rn) ( f ∈ �s(R
n)) and φ1, φ2, φ3 ∈ Ss(Rn) (φ1, φ2, φ3 ∈

�s(R
n)), we have

(φ3, φ1)Vφ2 f (x, ξ) = 1

(2π)n/2

∫∫
Vφ1 f (x − y, ξ − η)Vφ2φ3(y, η)e−i〈x−y,η〉 dy dη.

Lemma 3.3 If s > 0 then there is a constant C ≥ 1 such that

C−1(|x |1/s + |y|1/s) ≤ |y|1/s + |y − x |1/s ≤ C(|x |1/s + |y|1/s). (3.3)

for every x, y ∈ R
n.

1 For Lemma 3.2, see the computations leading to (11.29) in [11].
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Lemma 3.4 For any ξ, η ∈ R
n and any N ≥ 0, there is a constant2 C > 0 such that

(1 + |ξ − η|2)−N ≤ C(1 + |ξ |2)−N (1 + |η|2)N .

Proof of Theorem 3.1 Suppose that f ∈ Ss . For every N ≥ 0, we have

|(1 + |ξ |2)N Vφ f (x, ξ)| = 1

(2π)n/2

∣∣∣∣
∫
Rn

f (y)φ(y − x)(1 + |ξ |2)Ne−i〈y,ξ 〉 dy
∣∣∣∣

= 1

(2π)n/2

∣∣∣∣
∫
Rn

f (y)φ(y − x)(1 − �)Ne−i〈y,ξ 〉 dy
∣∣∣∣

= 1

(2π)n/2

∣∣∣∣∣∣
∑

γ0+|γ |=N

N !
γ0!γ !

∫
Rn

f (y)φ(y − x)D2γ e−i〈y,ξ 〉 dy,

∣∣∣∣∣∣

where γ ′ = (γ0, γ ) ∈ N
1+n and the derivatives are taken with respect to y. Integration

by parts together with Leibniz formula yields

|(1 + |ξ |2)NVφ f (x, ξ)|

= 1

(2π)n/2

∣∣∣∣∣∣
∑

γ0+|γ |=N

N !
γ0!γ !

∫
Rn

D2γ
[
f (y)φ(y − x)

]
e−i〈y,ξ〉 dy

∣∣∣∣∣∣

= 1

(2π)n/2

∣∣∣∣∣∣
∑

γ0+|γ |=N

N !
γ0!γ !

∑
α≤2γ

(
2γ

α

) ∫
Dα f (y)D2γ−αφ(y − x)e−i〈y,ξ〉dy

∣∣∣∣∣∣
≤ 1

(2π)n/2

∑
γ0+|γ |=N

N !
γ0!γ !

∑
α≤2γ

(
2γ

α

) ∫ ∣∣∣Dα f (y)D2γ−αφ(y − x)
∣∣∣ dy.

By Proposition 2.2 there are Cγ,α, a > 0 such that

∫ ∣∣∣Dα f (y)D2γ−αφ(y − x)
∣∣∣ dy ≤ Cγ,α

∫
e−a(|y|1/s+|y−x |1/s ) dy,

and by Lemma 3.3 there is a c > 0 such that

∫ ∣∣∣Dα f (y)D2γ−αφ(y − x)
∣∣∣ dy ≤ C ′

γ,αe
−ac|x |1/s .

Hence, with r = ac > 0 and CN ,γ ′,α = N !
γ0!γ !

(2γ
α

)
C ′

γ,α > 0 we obtain

2 The best such constant is given by C =
(

2√
3

)N
, according to [16].
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|(1 + |ξ |2)NVφ f (x, ξ)| ≤ 1

(2π)n/2

∑
γ0+|γ |=N

∑
α≤2γ

CN ,γ ′,αe
−r |x |1/s

≤ CNe
−r |x |1/s ,

where CN = 1
(2π)n/2

∑
γ0+|γ |=N

∑
α≤2γ CN ,γ ′,α . Thus (3.1) holds for every N ≥ 0.

Now suppose that (3.1) holds for every N ≥ 0. This condition implies that f ∈ S
(cf. [12]). In particular f ∈ C∞, hence by Proposition 2.2, the result follows if there
is an r > 0 such that (2.5) holds for every multi-index β.

Consider Vφ[Dβ f ](x, ξ). Integrating by parts and applying Leibniz formula gives

Vφ[Dβ f ](x, ξ) = (−1)|β|

(2π)n/2

∫
f (y)Dβ

(
φ(y − x)e−i〈y,ξ〉) dy

=
∑
α≤β

Cα,β

(2π)n/2

∫
f (y)Dαφ(y − x)ξβ−αe−i〈y,ξ〉 dy

=
∑
α≤β

Cα,βξβ−αVDαφ f (x, ξ),

where Cα,β = (−1)|α|(β
α

)
. By Lemma 3.2 we therefore have

Vφ[Dβ f ](x, ξ)

=
∑
α≤β

C ′
α,βξβ−α

∫∫
Vφ f (x − y, ξ − η)VDβφφ(y, η)e−i〈x−y,η〉dy dη, (3.4)

where C ′
α,β = (2π)−n/2(φ, φ)−1Cα,β .

For now, we consider only the double integral

I =
∫∫

Vφ f (x − y, ξ − η)VDβφφ(y, η)e−i〈x−y,η〉dy dη

from the right-hand side of the previous equation. Note that

VDβφφ(x, ξ) = e−i〈x,ξ〉Vφ[Dβφ](−x, ξ),

and since Dβφ, φ ∈ Ss\{0} the first part of this theorem now implies that there is an
r1 > 0 such that

|VDβφφ(x, ξ)| ≤ Cβ,N1(1 + |ξ |2)−N1e−r1|x |1/s
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for every N1 ≥ 0 and every β. (Note that all the derivatives of φ fulfill Proposition 2.2
with the same exponent, hencewe canuse the same r1 > 0 for everyβ.) By assumption,
(3.1) holds for all N ≥ 0. For any given N , pick N1 > N + n. We now obtain

|I | ≤ Aβ,N

∫∫
(1 + |ξ − η|2)−Ne−r |x−y|1/s (1 + |η|2)−N1e−r1|y|1/s dydη = Aβ,N I1 · I2

where Aβ,N = CNCβ,N1 ,

I1 =
∫

e−r |x−y|1/s e−r1|y|1/s dy

and

I2 =
∫

(1 + |ξ − η|2)−N (1 + |η|2)−N1dη.

In order to estimate I1, we let r2 = min{r , r1} and apply Lemma 3.3 to obtain c > 0
such that

I1 ≤
∫

e−r2(|y−x |1/s+|y|1/s )dy

≤ e−r2c|x |1/s
∫

e−r2c|y|1/s dy

= Be−r2c|x |1/s ,

where B = ∫
e−r2c|y|1/s dy < ∞. Since N − N1 < −n, Lemma 3.4 gives

I2 =
∫

(1 + |ξ − η|2)−N (1 + |η|2)−N1dη

≤ C(1 + |ξ |2)−N
∫

(1 + |η|2)N−N1dη

= BN (1 + |ξ |2)−N ,

where BN = C
∫
(1 + |η|2)N−N1dη < ∞. Combining these estimates, we get

I ≤ Bβ,N (1 + |ξ |2)−Ne−r2c|x |1/s

for every N ≥ 0, where Bβ,N = Aβ,N BBN . Combining this with (3.4), we obtain

|Vφ[Dβ f ](x, ξ)| ≤
∑
α≤β

Bα,β,N |ξβ−α|(1 + |ξ |2)−Ne−cr |x |1/s (3.5)

for every N ≥ 0, where Bα,β,N = C ′
α,βBβ,N .
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We now integrate both sides of (3.5) with respect to ξ . Note that

|Vφ f (x, ξ)| = (2π)−n/2
∣∣∣
(
f̂−x ∗ ψ

)
(ξ)

∣∣∣ ,

where ψ = F
[
φ

]
, and sinceF [ fa](η) = e−i〈a,η〉 f̂ (η),

(2π)−n/2
∫
Rn

∣∣∣
(
f̂−x ∗ ψ

)
(ξ)

∣∣∣ dξ ≥ (2π)−n/2
∣∣∣∣
∫
Rn

(
f̂−x ∗ ψ

)
(ξ) dξ

∣∣∣∣
= (2π)−n/2

∣∣∣∣
∫∫

f̂−x (η)ψ(ξ − η) dη dξ

∣∣∣∣
= (2π)−n/2

∣∣∣∣
∫

ei〈x,η〉 f̂ (η) dη

∫
ψ(ξ − η) dξ

∣∣∣∣
= | f (x)|

∣∣∣∣
∫

ψ(ξ − η) dξ

∣∣∣∣ .

Since
∫

ψ(ξ − η) dξ < ∞, we therefore obtain

|Dβ f (x)| ≤ Cφ

∫
|Vφ[Dβ f ](x, ξ)|dξ, (3.6)

for some constant Cφ > 0. Moreover, if we fix N > |β| + n, then

∫
|ξβ−α|(1 + |ξ |2)−Ndξ = Dα,β < ∞

for each α ≤ β and thus, with r ′ = r2c,

∫
|Vφ[Dβ f ](x, ξ)|dξ ≤

∑
α≤β

Bα,β,N Dα,βe
−r ′|x |1/s . (3.7)

Finally letCβ = C−1
φ

∑
α≤β Bα,β,N Dα,β . Then combining (3.6) with (3.7) now yields

|Dβ f (x)| ≤ Cβe
−r ′|x |1/s

for every multi-index β. This completes the proof of (i).
To prove (ii), we first note that by Proposition 2.3, f ∈ Sσ and φ ∈ Sσ \ {0} if and

only if f̂ ∈ Sσ and φ̂ ∈ Sσ \{0}. By (i), we therefore have f ∈ Sσ if and only if

|V
φ̂
f̂ (x, ξ)| ≤ CN (1 + |ξ |2)−Ne−r |x |1/σ

for every N ≥ 0. Since V
φ̂
f̂ (x, ξ) = e−i〈x,ξ〉Vφ f (−ξ, x), this condition can be

rewritten as

|Vφ f (−ξ, x)| ≤ CN (1 + |ξ |2)−Ne−r |x |1/σ .
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Performing a change of variables now yields (3.2). This completes the proof. ��
Utilizing Proposition 2.2(b) instead of Proposition 2.2(a), we obtain the follow-

ing characterizations of short-time Fourier transforms in �s and �σ by analogous
arguments.

Theorem 3.5 Suppose s, σ > 0.

(i) Let φ ∈ �s(R
n)\{0}. Then f ∈ �s(R

n) if and only if for every r > 0 and every
N ≥ 0,

|Vφ f (x, ξ)| ≤ Cr ,N (1 + |ξ |2)−Ne−r |x |1/s .

(ii) Let φ ∈ �σ (Rn)\{0}. Then f ∈ �σ (Rn) if and only if for every r > 0 and every
N ≥ 0,

|Vφ f (x, ξ)| ≤ Cr ,N (1 + |x |2)−Ne−r |ξ |1/σ .

Using these short-time Fourier transform characterizations, we can obtain charac-
terizations for the one-parameter spaces similar to those of [3] for the two-parameter
spaces.

Theorem 3.6 Suppose s, σ > 0 and f ∈ C∞(Rn).

(a) f ∈ Ss(Rn) if and only if there is an r > 0 such that

| f (x)| ≤ Ce−r |x |1/s , | f̂ (ξ)| ≤ CN (1 + |ξ |2)−N (3.8)

for every N ≥ 0.
(b) f ∈ Sσ (Rn) if and only if there is an r > 0 such that

| f (x)| ≤ CN (1 + |x |2)−N , | f̂ (ξ)| ≤ Ce−r |ξ |1/σ (3.9)

for every N ≥ 0.

Proof Suppose first that f ∈ Ss . Then the first inequality of (3.8) holds by (2.5). For
the second inequality, we apply Fubini’s theorem and integrate both sides of (3.1) with
respect to x to obtain

| f̂ (ξ)| ≤ C ′
φ

∣∣∣∣(2π)−n/2
∫

f (y)e−i〈y,ξ〉
∫

φ(y − x) dx dy

∣∣∣∣
≤ C ′

φ

∫
|Vφ f (x, ξ)| dx

≤ C ′′
N (1 + |ξ |2)−N ,

where C ′
φ = (2π)n/2

∣∣∣∫ φ(x) dx
∣∣∣−1

and C ′′
N = C ′

φCN
∫
e−r |x |1/s dx . Hence

| f̂ (ξ)| ≤ C ′′
N (1 + |ξ |2)−N
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holds for every N ≥ 0.
Suppose instead that f fulfills (3.8) for some r > 0 and every N ≥ 0. We have

|Vφ(x, ξ)| ≤ (2π)−n/2
∫

| f (y)||φ(y − x)| dy.

By assumption, there are C0, r1, r2 > 0 such that

∫
| f (y)||φ(y − x)| dy ≤ C0

∫
e−r1|y|1/s e−r2|y−x |1/s dy ≤ C1e

−r |x |1/s

for some r > 0, where we use Lemma 3.3 for the last inequality. Hence

|Vφ f (x, ξ)| ≤ Ce−r |x |1/s .

Using the same strategy once more but starting from the fact that

|Vφ f (x, ξ)| ≤ (2π)−n/2
∫

| f̂ (η)||φ̂(η − ξ)| dη,

and this time utilizing Lemma 3.4, we obtain

|Vφ f (x, ξ)| ≤ CN (1 + |ξ |2)−N

for every N ≥ 0. Combining both these inequalities we see that for every N ≥ 0,

|Vφ f (x, ξ)|2 ≤ CN (1 + |ξ |2)−Ne−r |x |1/s ,

and in particular for N = 2k, k ≥ 0,

|Vφ f (x, ξ)|2 ≤ C2k(1 + |ξ |2)−2ke−r |x |1/s ,

thus

|Vφ f (x, ξ)| ≤ C ′
k(1 + |ξ |2)−ke−r ′|x |1/s

for all k ≥ 0, where C ′
k = √

C2k and r ′ = r/2. This completes the proof of (a).
To prove (b), simply perform Fourier transforms in light of Proposition 2.3 and

apply (a). ��
As for the other results, we state the corresponding theorem for the �s- and �σ -

spaces but omit its proof as it follows by analogous arguments.

Theorem 3.7 Suppose s, σ > 0 and f ∈ C∞(Rn).

(a) f ∈ �s(R
n) if and only if for every r > 0 and N ≥ 0,

| f (x)| ≤ Cre
−r |x |1/s , | f̂ (ξ)| ≤ CN (1 + |ξ |2)−N . (3.10)
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(b) f ∈ �σ (Rn) if and only if for every r > 0 and every N ≥ 0,

| f (x)| ≤ CN (1 + |x |2)−N , | f̂ (ξ)| ≤ Cre
−r |ξ |1/σ . (3.11)

4 Characterizations of Dual Spaces

We now move on to the characterization of duals to one-parameter spaces Ss and
Sσ . Note here that when u is a generalized function, F (u) = û denotes the adjoint
operator of the Fourier transform described in Sect. 2. The duals of one-parameter
spaces were defined in Sect. 2 via the topologies detailed in Definition 2.5 and using
the results of Sect. 3, we now arrive at the following equivalent topologies.

Proposition 4.1 Suppose s, σ > 0.

(i) Let φ ∈ Ss(Rn) \ {0}, let

pφ
s,r ,N ( f ) = sup

x,ξ∈Rn

∣∣∣Vφ f (x, ξ)(1 + |ξ |2)Ner |x |1/s
∣∣∣

and let Bs,r ,N (Rn) be the Banach space consisting of all f ∈ C∞(Rn) such that
pφ
s,r ,N ( f ) is finite. Then

Ss(R
n) = ind lim

r>0

(
proj lim

N≥0
Bs,r ,N (Rn)

)

where the equality holds in a topological sense as well.
(ii) Let φ ∈ Sσ (Rn)\{0}, let

qφ,σ
r ,M ( f ) = sup

x,ξ∈Rn

∣∣∣Vφ f (x, ξ)(1 + |x |2)Mer |ξ |1/σ
∣∣∣

and let Bσ
r ,M (Rn) be the Banach space consisting of all f ∈ C∞(Rn) such that

qφ,σ
r ,M ( f ) is finite. Then

Sσ (Rn) = ind lim
r>0

(
proj lim

M≥0
Bσ
r ,M (Rn)

)

where the equality holds in a topological sense as well.

Proof The equivalence of the semi-norms pφ
s,r ,N and || · ||s,r ,N , as well as that of qφ,σ

r ,M
and || · ||σr ,M is established implicitly in the proof of Theorem 3.1. ��

Proposition 4.1 gives us the following equivalent definitions for the dual spaces
(Ss)′ and (Sσ )′.
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Corollary 4.2 Suppose s, σ > 0.

(i) Let φ ∈ Ss(Rn) \ {0} and let u ∈ D ′(Rn). Then u ∈ (Ss)′(Rn) if and only if for
every r > 0 there is an N ≥ 0 such that

|〈u, f 〉| ≤ CN pφ
s,r ,N ( f )

for all f ∈ Ss(Rn).
(ii) Let φ ∈ Sσ (Rn)\{0} and u ∈ FD ′(Rn). Then u ∈ (Sσ )′(Rn) if and only if for

every r > 0 there is an M ≥ 0 such that

|〈u, f 〉| ≤ CMqφ,σ
r ,M ( f )

for all f ∈ Sσ (Rn).

This brings us to the following characterization of the duals via short-time Fourier
transforms, which is the main result of this section.

Theorem 4.3 (i) Let φ ∈ Ss(Rn) \ {0} and u ∈ D ′(Rn). Then u ∈ (Ss)′(Rn) if and
only if for every r > 0 there is an N0 ≥ 0 such that

|Vφu(x, ξ)| ≤ Cr (1 + |ξ |2)N0er |x |1/s . (4.1)

(ii) Let φ ∈ Sσ (Rn)\{0} and u ∈ FD ′(Rn). Then u ∈ (Sσ )′(Rn) if and only if for
every r > 0 there is an N0 ≥ 0 such that

|Vφu(x, ξ)| ≤ Cr (1 + |x |2)N0er |ξ |1/σ . (4.2)

Proof Suppose u ∈ (Ss)′, φ ∈ Ss\{0}. Then by Proposition 2.10 and Leibniz formula,
for every r > 0 there are N0 > 0 and C > 0 such that

|Vφu(x, ξ)| = |(u, φ(· − x)ei〈·,ξ〉)|
≤ C

∑
|α|≤N0

||Dα
(
φ(· − x)ei〈·,ξ〉) er |·|1/s ||2

= C
∑

|α|≤N0

∑
γ≤α

(
α

γ

)
||(Dγ φ)(· − x)ξα−γ ei〈·,ξ〉er |·|1/s ||2

≤ C ′(1 + |ξ |2)N0
∑

|α|≤N0

∑
γ≤α

(
α

γ

)
||(Dγ φ)(· − x)er |·|1/s ||2,

where C ′ depends on r only.
By Theorem 2.2, there is an r0 > 0 such that |Dγ φ(y − x)| ≤ Cγ e−r0|y−x |1/s ,

hence

|Vφu(x, ξ)| ≤ C ′′(1 + |ξ |2)N0
∑

|α|≤N0

∑
γ≤α

(
α

γ

)
||e−r0|·−x |1/s er |·|1/s ||2.



Journal of Fourier Analysis and Applications (2023) 29 :29 Page 17 of 24 29

By Lemma 3.3, there is a c ≥ 1 such that

−r0|y − x |1/s ≤ r0|x |1/s − r0/c · |y|1/s .

Let r ∈ (0, r0/(2c)). Then

−r0|y − x |1/s ≤ −2cr |y − x |1/s ≤ 2cr |x |1/s − 2r |y|1/s,

and

|Vφu(x, ξ)| ≤ C ′′(1 + |ξ |2)N0
∑

|α|≤N0

∑
γ≤α

(
α

γ

)
||e2cr |x |1/s−2r |·|1/s+r |·|1/s ||2

= C ′′(1 + |ξ |2)N0e2cr |x |1/s
∑

|α|≤N0

∑
γ≤α

(
α

γ

)
||e−r |·|1/s ||2

≤ C ′′′(1 + |ξ |2)N0e2cr |x |1/s ,

where the constants C ′′ and C ′′′ depend on r only.
Clearly, the inequality still holds if we let r ≥ r0/(2c) (the right hand side only

becomes larger), hence we have shown that the inequality is valid for all r > 0, as
was to be shown.

Now suppose that for every r > 0 there is an N0 ≥ 0 such that (4.1) holds. Then
by Moyal’s identity, for every f ∈ Ss

|(u, f )| = ||φ||−2
2 |(Vφu, Vφ f )|,

hence

|(u, f )| ≤ ||φ||−2
2

∫ ∫
|Vφu(x, ξ)| · |Vφ f (x, ξ)| dx dξ.

By assumption combined with Theorem 3.1, for every r > 0 there is an N0 ≥ 0 such
that

|(u, f )| ≤ Cr ||φ||−2
2

∫ ∫
(1 + |ξ |2)N0er |x |1/s |Vφ f (x, ξ)| dx dξ.

Clearly, for any r1 > 0 and N1 ≥ 0, we therefore have

|(u, f )| ≤ Cr ||φ||−2
2

∫ ∫
(1 + |ξ |2)(N0−N1)e(r−r1)|x |1/s

·
∣∣∣Vφ f (x, ξ)(1 + |ξ |2)N1er1|x |1/s

∣∣∣ dx dξ

≤ Cr ||φ||−2
2 pφ,s

r1,N1
( f )

∫ ∫
(1 + |ξ |2)−(N1−N0)e−(r1−r)|x |1/s dx dξ.
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Now pick r such that r < r1, and pick N1 such that N1 > N0. We obtain

|(u, f )| ≤ CN1,r ||φ||−2
2 pφ,s

r1,N1
( f )

for all r1 > r . By picking r > 0 arbitrarily small, we thus obtain

|(u, f )| ≤ C ′
N1,r1 · pφ,s

r1,N1
( f )

for all r1 > 0. This completes the proof of (i). The proof of (ii) is very similar,
utilizing the fact that φ ∈ Sσ is equivalent to φ̂ ∈ Sσ , and the fact that Vφu(x, ξ) =
(û, φ̂(· − ξ)e−i〈·,x〉). ��

Lastly we include the corresponding result for the dual spaces of�s and�σ , which
follows by analogous arguments.

Theorem 4.4 (i) Let φ ∈ �s(R
n)\{0} and let u ∈ D ′(Rn). Then u ∈ (�s)

′(Rn) if
and only if there exist r0 > 0, C > 0 and N0 ≥ 0 such that

|Vφu(x, ξ)| ≤ C(1 + |ξ |2)N0er0|x |1/s .

(ii) Let φ ∈ �σ (Rn)\{0} and let u ∈ FD ′(Rn). Then u ∈ (�σ )′(Rn) if and only if
there exist r0 > 0, C > 0 and N0 ≥ 0 such that

|Vφu(x, ξ)| ≤ C(1 + |x |2)N0er0|ξ |1/σ .

5 Continuity of Toeplitz Operators

We will now look at Toeplitz operators on one-parameter Gelfand–Shilov spaces. To
analyze these, we will need to consider functions in 2n dimensions which belong to
different one-parameter Gelfand–Shilov spaces in different (n-dimensional) variables.
To give them a sense, we begin by examining the case when the functions belong to
different two-parameter Gelfand–Shilov spaces with respect to each variable. These
spaces are defined as follows.

Definition 5.1 Suppose s1, s2, σ1, σ2 > 0. Then Sσ1,s2
s1,σ2 (R

2n) consists of every f ∈
C∞(R2n) for which there is an h > 0 such that

sup

⎛
⎝

∣∣∣xα1ξα2Dβ1
x Dβ2

ξ f (x, ξ)

∣∣∣
h|α1+α2+β1+β2|(α1!)s1(α2!)σ2(β1!)σ1(β2!)s2

⎞
⎠ < ∞

for every α1, α2, β1, β2 ∈ N
n, where the supremum is taken over x, ξ ∈ R

n .

We can interpret this as a space where functions belong to Sσ1
s1 (Rn) in the x-variable

and Ss2σ2(R
n) in the ξ -variable. Note that Sσ,σ

s,s (R2n) = Sσ
s (R2n). With the notations
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S∞
s = Ss and Sσ∞ = Sσ , we can construct similar spaces where the functions belong

to the one-parameter spaces in single variables instead. These are the spaces we will
focus on in this section.

Definition 5.2 Suppose s, t > 0. Then S∞,t
s,∞(R2n) consists of every f ∈ C∞(R2n) for

which there is an h > 0 such that

sup

∣∣∣xα1ξα2Dβ1
x Dβ2

ξ f (x, ξ)

∣∣∣
h|α1+β2|(α1!)s(β2!)t ≤ Cβ1,α2 (5.1)

for every α1, α2, β1, β2 ∈ N
n,where the supremum is taken over x, ξ ∈ R

n and where
Cβ1,α2 is a constant depending only on β1 and α2.

In similar ways with σ, τ > 0, we let Sσ,∞∞,τ (R2n) consist of every f ∈ C∞(R2n)

for which there is an h > 0 such that

sup

∣∣∣xα1ξα2Dβ1
x Dβ2

ξ f (x, ξ)

∣∣∣
h|β1+α2|(β1!)σ (α2!)τ ≤ Cα1,β2 (5.2)

for every α1, α2, β1, β2 ∈ N
n . Here, the supremum is taken over x, ξ ∈ R

n andCα1,β2

is a constant depending only on α1 and β2. We also consider the duals of these spaces,
which we construct as follows.

Let || f ||ts,h,N ,M be the supremum in (5.1) taken over x, ξ ∈ R
n , α2, β1 ∈ N

n , but
only |α1| ≤ N and |β2| ≤ M . With

V t
s,h,N ,M (R2n) = { f ∈ C∞(R2n) : || f ||ts,h,N ,M < ∞},

we observe that

S∞,t
s,∞(R2n) = ind lim

h>0

(
proj lim
N ,M≥0

Vh,N ,M (R2n)

)
. (5.3)

It is therefore natural to set

(S∞,t
s,∞)′(R2n) = proj lim

h>0

(
ind lim
N ,M≥0

(Vh,N ,M )′(R2n)

)
. (5.4)

We construct the space (Sσ,∞∞,τ )′(R2n) analogously.
Similar to the characterizations of Ss and Sσ via Fourier transform in Theorem 3.6,

we can characterize the double spaces S∞,t
s,∞ and Sσ,∞∞,τ as follows.

Proposition 5.3 Suppose s, t, σ, τ > 0 and f ∈ C∞(R2n).

(a) f ∈ S∞,t
s,∞(R2n) if and only if there is an r > 0 such that

| f (x, ξ)| ≤ CN (1 + |ξ |2)−N e−r |x |1/s , | f̂ (η, y)| ≤ (1 + |η|2)−N e−r |y|1/t (5.5)

for every N ≥ 0.
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(b) f ∈ Sσ,∞∞,τ (R2n) if and only if there is an r > 0 such that

| f (x, ξ)| ≤ CN (1 + |x |2)−Ne−r |ξ |1/τ , | f̂ (η, y)| ≤ (1 + |y|2)−Ne−r |η|1/σ

(5.6)

for every N ≥ 0.

Proof This result follows directly from Theorem 3.6. ��
With this in mind we now consider Toeplitz operators on one-parameter Gelfand–

Shilov spaces.

Definition 5.4 Let s, σ > 0, φ1, φ2 ∈ Ss(Rn) and a ∈ S∞,s
s,∞(R2n). The Toeplitz

operator T pφ1,φ2(a) is given by

(T pφ1,φ2(a) f , u)L2(R2n) = (a, Vφ1 f · Vφ2u)L2(R2n) (5.7)

for every f ∈ Ss(Rn) and u ∈ (Ss)′(Rn).
If instead φ1, φ2 ∈ Sσ (Rn) and a ∈ Sσ,∞∞,σ (R2n), the Toeplitz operator is given by

(5.7) for every f ∈ Sσ (Rn) and u ∈ (Sσ )′(Rn).

We observe that the Toeplitz operator in (5.7) can be expressed as

T pφ1,φ2(a) f = V ∗
φ2

(a · Vφ1 f )

and that the estimates on a, Vφ1 f and Vφ2u imply that this is a continuous operator
from Ss(Rn) to Ss(Rn) when a ∈ S∞,s

s,∞(R2n), and from Sσ (Rn) to Sσ (Rn) when
a ∈ Sσ,∞∞,σ (R2n). We now want to show that we can loosen the restriction on a to
instead be in the duals of S∞,s

s,∞(R2n) and Sσ,∞∞,σ (R2n). To do this, we need the following
lemma.

Lemma 5.5 Let φ1, φ2, f ∈ Ss(Rn) and u ∈ (Ss)′(Rn). Then

F [Vφ1 f · Vφ2u](η, y) = ei〈y,η〉Vφ2φ1(y,−η) · V f u(−y, η).

Proof We prove this in the case that u ∈ Ss(Rn). The case that u ∈ (Ss)′(Rn) follows
by similar arguments. We have

F [Vφ1 f · Vφ2u](η, y)

= (2π)−2n
∫∫∫∫

f (z)φ1(z − x)u(w)φ2(w − x)ei〈z−w−y,ξ〉−i〈x,η〉 dzdwdxdξ

= (2π)−n
∫∫

f (w + y)φ1(w + y − x)u(w)φ2(w − x)e−i〈x,η〉 dw dx

= (2π)−n
∫∫

f (s)φ1(s − x)u(s − y)φ2(s − y − x)e−i〈x,η〉 ds dx

= (2π)−n
∫∫

f (s)φ1(t)u(s − y)φ2(t − y)e−i〈s−t,η〉 ds dt
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= (2π)−n
∫∫

f (z + y)φ1(t)u(z)φ2(t − y)e−i〈z+y−t,η〉 dz dt

= e−i〈y,η〉Vφ2φ1(y,−η) · V f u(−y, η),

where we apply the Fourier inversion theorem in the second step, apply the variable
substitution s = w + y in the third step, t = s − x in the fourth step and z = s − y in
the fifth step. ��

With this lemma in mind we move on to the main result of this section.

Theorem 5.6 Suppose φ1, φ2 ∈ Ss(Rn). Then the following is true.

(a) The definition of T pφ1,φ2(a) is uniquely extendable to any a ∈ (S∞,s
s,∞)′(R2n) and

is then continuous on Ss(Rn).
(b) If a ∈ (S∞,s

s,∞)′(R2n) then T pφ1,φ2(a) is uniquely extendable to a continuous
operator on (Ss)′(Rn).

Proof For (a), it is sufficient to show that H = Vφ1 f · Vφ2u ∈ S∞,s
s,∞(R2n) whenever

f ∈ Ss(Rn) and u ∈ (Ss)′(Rn) and for (b), the same statement is sufficient but with
f ∈ (Ss)′(Rn) and u ∈ Ss(Rn) instead.
We begin by proving (a). By Theorems 3.1 and 4.3, there exist r0 > 0 and N0 ≥ 0

such that

|H(x, ξ)| = (2π)−n|Vφ1 f (x, ξ)| · |Vφ2u(x, ξ)|
≤ CN ,r (1 + |ξ |2)−(N−N0)e−(r0−r)|x |1/s

for every r > 0 and N ≥ 0 and for some constant CN ,r > 0. Choosing r < r0 and
noting that N0 ≥ 0 gives the first inequality of Proposition 5.3.

By Lemma 5.5,

|Ĥ(η, y)| = (2π)−n|Vφ2φ1(y,−η) · V f u(−y, η)|.

ApplyingTheorems 3.1 and 4.3 exactly as before, we nowobtain the second inequality
of Proposition 5.3. This completes the proof of (a). To prove (b), simply reverse the
roles of f and u and the result follows. ��

We also state the corresponding result for a ∈ (Sσ,∞∞,σ )′(R2n), which follows by
similar arguments.

Theorem 5.7 Suppose φ1, φ2 ∈ Sσ (Rn). Then the following is true.

(a) The definition of T pφ1,φ2(a) is uniquely extendable to any a ∈ (Sσ,∞∞,σ )′(R2n) and
is then continuous on Sσ (Rn).

(b) If a ∈ (Sσ,∞∞,σ )′(R2n) then T pφ1,φ2(a) is uniquely extendable to a continuous
operator on (Sσ )′(Rn).
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We can define the spaces �
∞,t
s,∞(R2n) and �

σ,∞∞,τ (R2n) as the spaces consisting of
every f ∈ C∞(R2n) such that for every h > 0, (5.1) and (5.2) hold, respectively. We
define the dual spaces as before, but for (�

∞,t
s,∞)′(R2n) we replace proj limh>0 with

ind limh>0 in (5.4), and analogously for the construction of (�
σ,∞∞,τ )′(R2n). For these

spaces, we can state the following theorems, which follow by similar arguments to
those in the proof of Theorem 5.6.

Theorem 5.8 Suppose φ1, φ2 ∈ �s(R
n). Then the following is true.

(a) The definition of T pφ1,φ2(a) is uniquely extendable to any a ∈ (�
∞,s
s,∞)′(R2n) and

is then continuous on �s(R
n).

(b) If a ∈ (�
∞,s
s,∞)′(R2n) then T pφ1,φ2(a) is uniquely extendable to a continuous

operator on (�s)
′(Rn).

Theorem 5.9 Suppose φ1, φ2 ∈ �σ (Rn). Then the following is true.

(a) The definition of T pφ1,φ2(a) is uniquely extendable to any a ∈ (�
σ,∞∞,σ )′(R2n) and

is then continuous on �σ (Rn).
(b) If a ∈ (�

σ,∞∞,σ )′(R2n) then T pφ1,φ2(a) is uniquely extendable to a continuous
operator on (�σ )′(Rn).

6 Non-triviality of 6�
s -Spaces

In this final section, we divert our attention to the two-parameter spaces �σ
s , and

determine when they are nontrivial. Similar results have already been established for
Sσ
s -spaces (cf. [8]). By nontrivial we mean that the space contains a function which is

not constantly equal to zero. To establish non-triviality conditions, we will need two
propositions.

The following proposition follows by similar arguments to those in [8, p. 172–175].

Proposition 6.1 If s, σ > 0, σ < 1 and f ∈ �σ
s (Rn), then f can be continued

analytically as an entire function in the (n-dimensional) complex plane. Moreover, for
every a, b > 0,

| f (x + iy)| ≤ C exp
(
−a|x |1/s + b|y|1/(1−σ)

)
(6.1)

for some constant C = Ca,b.

Remark 6.2 The converse of the above proposition is also true: If s, σ > 0, σ < 1 and
an entire function f fulfills (6.1) for every a, b > 0, then f ∈ �σ

s . This follows by
analogous arguments to [8, p. 219–220]. Hence this is another characterization of �σ

s
in the case that σ < 1.

We also find the following result in [8, p. 228-233].

Proposition 6.3 For positive s and σ , the space Sσ
s (Rn) is nontrivial if and only if

s + σ ≥ 1.
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With these propositions inmind,we prove themain result of this section. In previous
works the condition “s+σ ≥ 1, (s, σ ) �= (1/2, 1/2)” is employed instead of “s+σ >

1”. Here, we prove that the correct condition is s + σ > 1.

Theorem 6.4 Suppose s, σ > 0. Then the space �σ
s (Rn) is nontrivial if and only if

s + σ > 1.

Proof Since �σ
s ⊆ Sσ

s , it follows by Proposition 6.3 that �σ
s is trivial whenever

s+σ < 1. Furthermore, Proposition 6.3 with (2.4) implies that�σ
s is nontrivial when

s + σ > 1. Thus we need only consider the case s + σ = 1. Since s and σ are both
assumed to be positive, we must have σ < 1. By Proposition 6.1, it is then true that

| f (z)| ≤ Ca,b exp
(
−a|x |1/s + b|y|1/s

)

for every a, b > 0, where z = x + iy. Moreover

| f (i z)| ≤ Ca,b exp
(
−a|y|1/s + b|x |1/s

)

and therefore

| f (z) · f (i z)| ≤ C2
a,b exp

(
(b − a)(|x |1/s + |y|1/s)

)
.

Since this inequality holds for all a, b > 0, then by picking a > b we see that
g(z) = f (z) · f (i z) is bounded and tends to zero as |x |, |y| → ∞. By Proposition 6.1,
f is an entire function, thus so is g. Hence Liouville’s theorem implies that g ≡ 0.
But this implies that f ≡ 0 as well, completing the proof. ��
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