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Abstract
We study commutators with the Riesz transforms on the Heisenberg group H

n . The
Schatten norm of these commutators is characterized in terms of Besov norms of the
symbol. This generalizes the classical Euclidean results of Peller, Janson–Wolff and
Rochberg–Semmes. The method in proof bypasses the use of Fourier analysis, allow-
ing us to address not just the Riesz transforms, but also the Cauchy–Szegő projection
and second order Riesz transforms on H

n among other settings.

Keywords Schatten class · Commutator · Riesz transform · Heisenberg group ·
Besov space

Mathematics Subject Classification 47B10 · 42B20 · 43A85

1 Introduction

The commutators with the Riesz transforms are bounded and compact on L p(Rn),
1 < p < ∞, if and only if the symbol b is in the BMO space and VMO space. This is
well known, see [10, 44]. A finer property of the commutators quantifies the Schatten
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norms, that is the �p norm of the singular values. This was studied by Peller, for the
Hilbert transform onR [33] (see also [34]), and in higher dimensions by Janson–Wolff
in Rn , n ≥ 2 [25], and later on by Rochberg–Semmes [38, 39]. The Schatten norm is
characterized by the symbol being in certain Besov spaces. We summarize the known
results as follows. Let H denote the Hilbert transform and let R� denote the �-th Riesz
transform on R

n .

• If n = 1 and 0 < p < ∞, then [b, H ] is in Schatten class S p if and only if the
symbol b is in the Besov space B1/p

p,p (R) [33, 34].
• Suppose n ≥ 2 and b ∈ L1

loc(R
n). When p > n, [b, R�] ∈ S p if and only if

b ∈ Bn/p
p,p (Rn); when 0 < p ≤ n, [b, R�] ∈ S p if and only if b is a constant [25,

39].

Notice that the cases of dimensions n = 1 and n > 2 differ somewhat. This is due to
the distinguished nature of the Hilbert transform, particularly its close connection to
analyticity. Similar results have been demonstrated in [15] for Szegő projection, big
and little Hankel operators on the unit ball and Heisenberg group, in [2] for the big
Hankel operator on Bergman space of the disk, and in [48] for Hankel operators on
the Bergman space of the unit ball.

The Janson–Wolff characterization has bearing on the quantised derivative of Alain
Connes introduced in [11, Chapter 4]. In this setting, the (weak) Schatten norm of the
commutator is relevant [30]. See also some recent progresses in various settings,
especially in non-commutative analysis [1, 14, 18, 24, 32, 36, 37].

In this paper we investigate Schatten class estimates for commutators of Riesz
transforms on Heisenberg groups, where the boundedness and compactness were
established in [12] and [8], respectively. This requires us to revisit the methods of
Janson–Wolff and Rochberg–Semmes, replacing Fourier analytic methods they used
with more robust real variable arguments. Our result not only recovers the result of
Janson–Wolff [25] and Rochberg–Semmes [39] on R

n , n ≥ 2, with the quantita-
tive estimate of the Schatten norm (which was not showed explicitly before), but
also opens the door to the study of Schatten classes for commutators with certain
Calderón–Zygmund operators in other important settings beyond R

n . Examples of
such Calderón–Zygmund operators include

(1) the Cauchy–Szegő projection from Siegel upper half space to its boundary (iden-
tified with the Heisenberg group), see [41, Chapter 12, Sect. 2.4] and [15];

(2) certain second order Riesz transforms, such as the well-known Beurling–Ahlfors
operator on the complex planeC and second order Riesz transforms onHn . Details
will be provided in the last section;

(3) Riesz transforms in the Bessel setting [4, 23] and Neumann Laplacian setting [29],
which will be addressed in subsequent papers.

To be more explicit on our result, we let Hn be the Heisenberg group. It is a nilpotent
Lie groupwith underlyingmanifoldCn×R = {[z, t] : z ∈ C

n×R}, themultiplication
law
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[z, t][z′, t ′] = [z1, . . . , zn, t]
[
z′1, . . . , z′n, t ′

]

:=
[
z1 + z′1, . . . , zn + z′n, t + t ′ + 2Im

( n∑

j=1

z j z j
)]

, (1.1)

and the homogeneous norm ρ(g) defined by ρ(g) = ρ([z, t]) = max{|z|Cn , |t |1/2},
where |z|2

Cn = ∑n
j=1 |z j |2. For any � = 1, 2, . . . , 2n, let R� be the Riesz transform

on Heisenberg groups Hn and the commutator with R� is defined as follows.

[b, R�]( f )(x) := b(x)R�( f )(x) − R�(b f )(x).

Recently, the theory of Besov space on space of homogeneous type (in particular,
Lie group [7, 16]) has attracted a lot of attentions (see [22, 46] and the references
therein). Several equivalent characterizations were obtained. For our purpose, we will
use the homogeneous Besov space via difference characterization defined as follows.

Definition 1.1 Suppose 1 < p, q < ∞ and 0 < α < 1. Let f ∈ L1
loc(H

n). Then we
say that f belongs to Besov space Bα

p,q(H
n) if

ˆ
Hn

‖ f (g·) − f (·)‖qL p(Hn)

ρ(g)2n+2+qα
dg < ∞.

We recall the definition of the Schatten class S p. Note that if T is any compact
operator on L2(Hn), then T ∗T is compact, symmetric and positive. It is diagonalizable.
For 0 < p < ∞, we say that T ∈ S p if {λn} ∈ �p, where {λn} is the sequence of
square roots of eigenvalues of T ∗T (counted according to multiplicity).

Our main theorem is the following.

Theorem 1.2 Suppose that 0 < p < ∞ and b ∈ L1
loc(H

n). Then for any � ∈
{1, 2, . . . , 2n}, one has [b, R�] ∈ S p if and only if

(1) b ∈ B
2n+2
p

p,p (Hn), if p > 2n + 2; in this case we have ‖b‖
B

2n+2
p

p,p (Hn)

≈ ‖[b, R�]‖S p .

(2) b is a constant, if 0 < p ≤ 2n + 2.

In the Euclidean setting, the Riesz transforms have an explicit form, �(x)
|x |n where n

is the dimension of the underlying space and�(x) is a smooth homogeneous function
of degree 0. This leads to arguments highly dependent on the form of the kernel.
However, the Riesz transform kernel on Heisenberg group has no such convenient
form.And, our argument depends upon recent developments. A pointwise lower bound
of the Riesz transform kernel on stratified Lie groups (which covers the Heisenberg
group) was established in [12] to characterize the boundedness of the commutator
with Riesz transform. We have to further develop this theme to prove the main result.
See Theorem 3.1 below. Indeed, Theorem 3.1 is key to our proof, a canonical ‘non-
degenerate’ condition. It depends upon the kernel of the Riesz transforms only being
zero on a set of zero measure, and being suitably large. In addition, the property aligns
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wellwith themartingale structure onHeisenberg groups.Verifying this property should
be central in settings beyond the Euclidean. We return to this point in Sect. 6.

Our proof uses a natural martingale structure on the Heisenberg group, and an
associated Haar basis, and crucially a notion of nearly weakly orthogonal due to
Rochberg–Semmes [39]. It is very well adapted to the analysis of Schatten norms
in harmonic analysis settings. See (2.2). As with other methods, the median of the
symbol on the atoms of the martingale is important.

The paper is organized as follows. In Sect. 2, we recall the tilings and Haar Basis on
Heisenberg group and characterization of Schatten class. In Sect. 3 we recall the basic
property for Riesz transform and then prove the pointwise lower bound for the Riesz
kernel (Theorem 3.1). In Sects. 4 and 5, we give the proof of Theorem 1.2 for the cases
p > 2n + 2 and 0 < p ≤ 2n + 2, respectively, which lies in Propositions 4.4, 4.5 and
5.5. In Sect. 6, we extend our approach to some other well-known Calderón–Zygmund
operators beyond the Euclidean setting.

Throughout the paper we denote the L p(Hn) norm of a function f by ‖ f ‖p, 1 ≤
p ≤ ∞. The indicator function of a subset E ⊆ X is denoted by χE . We use A � B
to denote the statement that A ≤ CB for some constant C > 0, and A ≈ B to denote
the statement that A � B and B � A.

2 Preliminaries onH
n

LetHn be aHeisenberg group,which is a nilpotent Lie groupwith underlyingmanifold
C
n × R = {[z, t] : z ∈ C

n × R} and multiplication law as in (1.1). Then the identity
of Hn is the origin and the inverse is given by [z, t]−1 = [−z,−t]. In addition to
the Heisenberg group multiplication law, for each positive number λ, non-isotropic
dilations δλ on H

n are given by

δλ(g) := δλ[z, t] := [λz, λ2t].

Besides, the norm structure ρ on H is defined by

ρ(g) = ρ([z, t]) = max

{
|z|Cn , |t |1/2

}
,

where |z|2
Cn =∑n

j=1 |z j |2. TheHaarmeasure onHn coincideswithLebesguemeasure

on R
2n+1. For any measurable set E ⊂ H

n , |E | denotes its Haar measure. It is direct
to see that ρ(g−1) = ρ(−g) = ρ(g) and ρ(δλ(g)) = λρ(g).

The 2n + 1 vector fields

X� := ∂

∂x�

− 2y�
∂

∂t
, Y� := ∂

∂ y�
+ 2x�

∂

∂t
, T := ∂

∂t
, � = 1, 2, . . . , n,

form a natural basis for the Lie algebra of left-invariant vector field on H
n . For con-

venience, we set Xn+� := Y�, � = 1, 2, . . . , n and set X2n+1 := T . The standard
sub-Laplacian 
H on the Heisenberg group is defined by 
H := ∑2n

�=1 X
2
� . For any
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multi-index I = (i1, . . . , i2n+1) ∈ N
2n+1, we set X I := Xi1

1 Xi2
2 · · · Xi2n+1

2n+1 and further
set

|I | := i1 + · · · + i2n+1 and ϑ(I ) := i1 + · · · + i2n + 2i2n+1. (2.1)

The integers |I | and ϑ(I ) are said to be the topological degree and homogeneous
degree of the differential X I , respectively.

2.1 Tiles onHn

We recall the metrics and tilings in H
n summarized in [9]. We shall use the gauge

distance d , which is defined by setting

d(g, g′) :=
∥∥∥g′−1 · g

∥∥∥ =
∥∥∥g−1 · g′

∥∥∥ , ∀g, g′ ∈ H
n,

where ‖ · ‖ is given by ‖(z, t)‖ := max
{|x1|, |y1|, . . . , |xn|, |yn|, |t |1/2

}
,∀(z, t) ∈

H
n . It is easy to see that d is equivalent to the homogeneous norm ρ. See [43, Sect.

2.2] for a discussion. We write B(g, r) for the ball in H
n with center g and radius r

constructed using the distance d. We also use balls in the (algebraic) center of Hn ,
which may be identified with R: we define B∗(t, s) := {t ′ ∈ R : |t − t ′| < s}. Tubes
are sets of the form g · B(o, r) · B∗(0, s), which are images of products of balls in
H

n × R under the multiplication in (1.1). Here we used the notation o to denote the
zero point (z, t) = (0, 0) of Hn and we shall explain the notation B(o, r) · B∗(0, s)
in more details: for any (z, t) ∈ B(o, r) and any t ′ ∈ B∗(0, s), we interpret t ′ as
(0, t ′) ∈ H

n , and hence by (1.1),

(z, t) · (0, t ′) = (z, t + t ′).

We now recall that T (g, r , s) is defined as

T (g, r , s) := g · B(o, r) · B∗(0, s) = B(g, r) · B∗(0, s).

We use the work of [42, 43] on self-similar tilings to find a “nice” decomposition
of Hn , analogous to the decomposition of Rn into dyadic cubes in classical harmonic
analysis, and describe an analogue of a lemma of Journé [27]. We identify C

n with
R
2n , |z|∞ denotes max{|x1|, |y1|, . . . |xn|, |yn|}, Q0 denotes the cube [−1/2, 1/2)2n ,

and H
n
Z
denotes the subgroup {(z, t) ∈ H

n : z ∈ Z
2n, t ∈ (2n)−1

Z}.

Theorem 2.1 ([42, 43]) There is a measurable function f : Q0 → R such that
f (0) = 1

2(n+1) and

1

4n(n + 1)
≤ f (z) ≤ 2n + 1

4n(n + 1)
∀z ∈ Q0,
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such that the set To, defined by

To :=
{
(z, t) : z ∈ Q0, f (z) − 1

2n
≤ t < f (z)

}
,

has the property that

δ2n+1(To) =
⋃

g∈


g · To,

where 
 := {(z, t) ∈ H
n
Z

: |z|∞ ≤ n : |t | ≤ n + 1}.
The definitions of To and the metrics that we use show that

To ⊂ {(z, t) ∈ H
n : |z|∞ ≤ 1/2, |t | ≤ 3/8

} ⊆ B̄(o, 1/2) · B̄∗(o, 1/8)
= T̄ (o, 1/2, 1/8),

where the barred symbols indicate closures. We note that |To| = 1/2n while
|T (o, 1/2, 1/8)| = 3/4.

Definition 2.2 We define

T0 := {g · To : g ∈ H
n
Z
}, T j := δ(2n+1) jT0 and T :=

⋃

j∈Z
T j .

We call the sets T ∈ T tiles. If j ∈ Z and g ∈ H
n
Z
and T = δ(2n+1) j (g · To), then

T = δ(2n+1) j (g) · δ(2n+1) j (To), and we further define

cent(T ) := δ(2n+1) j (g), width(T ) := (2n + 1) j and height(T ) := (2n + 1)2 j

2n
.

And we define I j be the j-th center set consisting of all the centers of T ∈ T j . That
is,

I j = {cent(T ) : T ∈ T j }.

Lemma 2.3 ([42, 43]) Let T j and T be defined as above. Then the following hold:

(1) for each j ∈ Z, T j is a partition of Hn, that is, Hn =⋃T∈T j
T ;

(2) T is nested, that is, if T , T ′ ∈ T, then either T and T ′ are disjoint or one is a
subset of the other;

(3) for each j ∈ Z and T ∈ T j , T is a union of (2n + 1)2n+2 disjoint congruent
subtitles in T j−1;

(4) B(g,C1q) ⊆ T ⊆ B(g,C2q), where g = cent(T ) and q = width(T ) for each
T ∈ T; the constants C1 and C2 depend only on n;

(5) if T ∈ T j , then g · T ∈ T j for all g ∈ δ(2n+1) jH
n
Z
, and δ(2n+1)k T ∈ T j+k for all

k ∈ Z.
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Every tile is a dilate and translate of the basic tile To, so all have similar geometry.
Hence each tile in T j is a fractal set—its boundary is a set of Lebesgue measure 0
and (Euclidean Hausdorff) dimension 2n—and is “approximately” a Heisenberg ball
of radius (2n + 1) j . The decompositions are product-like in the sense that the tiles
project onto cubes in the factor Cn , and their centers form a product set. If two tiles in
T j are “horizontal neighbors”, then the distance between their centers is (2n + 1) j ,
while if they are “vertical neighbors”, then the distance is (2n + 1)2 j/2n.

2.2 An Explicit Haar Basis on Heisenberg Group

Next we recall the explicit construction in [28] of a Haar basis. Note that in [28], the
Haar basis was constructed on a system of dyadic cubes for general metric space with
a positive Borel measure. Here we apply it to the specific setting of Heisenberg group
H

n on the system of tiles.
There exists a Haar basis on H

n : {hε
T : T ∈ T, ε = 1, . . . , Mn − 1} for L p(Hn),

1 < p < ∞, where Mn := #H(T ) = (2n + 1)2n+2 denotes the number of sub-tiles
of T and H(T ) denotes the collection of sub-tiles of T .

Lemma 2.4 ([28]) For each f ∈ L p, we have

f (x) =
∑

T∈T

Mn−1∑

ε=1

〈 f , hε
T 〉hε

T (x),

where the sum converges (unconditionally) both in the L p-norm and pointwise almost
everywhere.

The following theorem collects several basic properties of the functions hε
T .

Lemma 2.5 ([28]) The Haar functions hε
T , T ∈ T, ε = 1, . . . , Mn − 1, have the

following properties:

(i) hε
T is a simple Borel-measurable real function on H

n;
(ii) hε

T is supported on T ;
(iii) hε

T is constant on each R ∈ H(T );
(iv)

´
T hε

T (g) dg = 0 (cancellation);

(v) 〈hε
T , hε′

T 〉 = 0 for ε �= ε′, ε, ε′ ∈ {1, . . . , Mn − 1};
(vi) the collection

{|T |−1/2χT
}∪ {hε

T : ε = 1, . . . , Mn − 1} is an orthogonal basis
for the vector space V (T ) of all functions on T that is a constant on each
sub-cube R ∈ H(T );

(vii) if hε
T �≡ 0 then ‖hε

T ‖p ≈ |T | 1p − 1
2 for 1 ≤ p ≤ ∞;

(viii) ‖hε
T ‖1 · ‖hε

T ‖∞ ≈ 1.

2.3 Characterization of Schatten Class

The Schatten norm is defined in a non-linear fashion. Estimating it above, and below, is
not necessarily straight forward. Operators with kernels, such as commutators, admit
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general upper bounds in terms of norms on the kernels. These general facts are recalled,
and used, in Sect. 4.2.

Characterizations of Schatten norms for general operators are well-known, and fre-
quently expressed in terms of supremums, or infimums, over all choices of orthonormal
bases for the Hilbert space in question.

Rochberg and Semmes [39] proposed a notion of nearly weakly orthogonal (NWO)
sequences of functions. This notion is closely connected to Carleson measures. For
our purposes, we do not need to recall the full definition of NWO sequences. With
the development of tiles in Sect. 2.1, we have the inequality below, for any bounded
compact operator A on L2(Hn) and 1 < p < ∞:

[
∑

T∈T
|〈AeT , fT 〉|p

]1/p
� ‖A‖S p , (2.2)

where {eT }T and { fT }T are function sequences satisfying |eT |, | fT | ≤ |T |−1/2χT .
This inequality can be found in [39, (1.10), Sect. 3].

3 Lower Bound of the Riesz Transform Kernel onH
n

For any � = 1, 2, . . . , 2n, the Riesz transform on Heisenberg groups Hn is given by
R� = X�(−
H)−1/2. It is well known that the heat kernel ph onHn has this form (cf.
[19]): for g = [z, t] ∈ H

n ,

ph(g) = 1

2(4πh)n+1

ˆ
R

exp
( λ

4h
(t ı − |z|2

Cn coth λ)
)( λ

sinh λ

)n
dλ, ı2 = −1.

Moreover, ph on H
n satisfies (c.f. for example [17, Eq. (1.73)])

ph(g) = h−n−1 p(δ 1√
h
(g)), ∀h > 0, g ∈ H

n . (3.2)

The kernel of the �th Riesz transform R� (1 ≤ � ≤ 2n) is written simply as K�(g).
It is well-known that K� ∈ C∞(Hn \ {o}), and it satisfies the scaling condition

K�(δr (g)) = r−2n−2K�(g), ∀g �= o, r > 0, 1 ≤ � ≤ 2n. (3.3)

Indeed, this follows from the relationship between the Riesz transform and heat
kernel (3.2) given by

K�(g) = 1√
π

ˆ +∞

0
h− 1

2 X� ph(g) dh = 1√
π

ˆ +∞

0
h−n−2 (X� p) (δ 1√

h
(g)) dh.

We recall that by the classical estimates for heat kernel and its derivations on
stratified groups (see for example [45]), it is well-known that (e.g. [17]) for any multi-
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index I = (i1, . . . , i2n) ∈ N
2n , ∀1 ≤ � ≤ 2n, the Riesz transform kernel satisfies the

following smoothness inequality:

∣∣
∣∣X

I K�(g)

∣∣
∣∣ � ρ(g)−2n−2−|I |.

We now establish the following fundamental result for the pointwise lower bound
of the Riesz transform kernel, which is one of the key property for proving our main
theorem. It is of independent interest, in that this property can be seen to hold for other
Calderón–Zygmund operators.

Theorem 3.1 There exists a positive integer A0 such that:

• for any T ∈ T j , there is a unique TA0 ∈ T j+A0 such that T ⊂ TA0 .
• furthermore, for each � ∈ {1, 2, · · · , 2n}, there exist positive constants 3 ≤ A1 ≤

A2 and C > 0 such that for any tile T ∈ T j , there exists a tile T̂ ∈ T j satisfying:

(1) T̂ ⊂ TA0 ;
(2) A1(2n + 1) j ≤ d(cent (T ), cent(T̂ )) ≤ A2(2n + 1) j ;
(3) for all (g, ĝ) ∈ T × T̂ , K�((ĝ)−1g) does not change sign;
(4) for all (g, ĝ) ∈ T × T̂ , |K�((ĝ)−1g)| ≥ C(2n + 1)−(2n+2) j .

Proof Begin with this fundamental fact of the Riesz transform kernel from [13, The-
orem 1.5]:

K�(g) �= 0 a.e. g ∈ H
n, foreachfixed� ∈ {1, 2, . . . , 2n}.

From the scaling property of K� (c.f. (3.3)) and the property above, we obtain that

K�(g) �= 0 a.e. g ∈ S
n,

where S
n = {g ∈ H

n : ρ(g) = 1} is the unit sphere in H
n . Let E� := {g ∈ S

n :
K�(g) = 0}. Then σ(E�) = 0, where σ represents the surface measure, and for every
small positive number ε, there exists an open set E� covering E� such that σ(E�) < ε.
Since K� is a C∞ function in Hn\{o}, there exists g� in Hn with ρ(g�) = 1 such that

|K�(g�)| = min
g∈F�

|K�(g)| > 0,

where F� := S
n\E�.

Hence, there exists 0 < εo � 1 such that

|K�(g)| >
1

2
|K�(g�)|, (3.4)

for all g ∈ B(F�, 4εo) = {g ∈ H
n : ∃g̃ ∈ F� such that d(g, g̃) < 4εo}.

We now turn to the tiles. Based on the construction of tiles, for every T ∈ T j , there
exists a unique TA0 ∈ T j+A0 such that T ⊂ TA0 . Here A0 is a positive integer to be
determined later. We now choose an arbitrary T ∈ T j .
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We first claim that for the chosen T ∈ T j and the unique tile TA0 ∈ T j+A0

with T ⊂ TA0 , there must be some ĝ ∈ TA0 with d(h, ĝ) = C(2n + 1) j+A0 and
d(ĝ, T c

A0
) > 10C2(2n + 1) j such that

(δC−1(2n+1)− j−A0 (h
−1ĝ))−1 ∈ F�, (3.5)

where h = cent (T ), C is a positive constant such that C1
2 < C < 3C1

4 , C1 and C2 are
the constants in Lemma 2.3.

We now prove this claim. Suppose that for all ĝ ∈ TA0 with d(h, ĝ) =
C(2n + 1) j+A0 and d(ĝ, T c

A0
) > 10C2(2n + 1) j , (3.5) does not hold. Then since

ρ((δC−1(2n+1)− j−A0 (h
−1ĝ))−1) = 1, we obtain that (δC−1(2n+1)− j−A0 (h

−1ĝ))−1 ∈ E�.

However, due to the construction of the system of tiles, we obtain that

σ({ĝ ∈ TA0 : d(h, ĝ) = C(2n + 1) j+A0 , d(ĝ, T c
A0

) > 10C2(2n + 1) j })
σ ({ĝ ∈ Hn : d(h, ĝ) = C(2n + 1) j+A0}) > D > 0,

whereD ∈ (0, 1) is a constant depending on n and A0 only, but independent of j and
T . This contradicts to the fact that σ(E�) < ε for any small positive ε given at the
beginning. Thus, the claim holds.

Now based on the claim, we choose ĥ ∈ TA0 with d(h, ĥ) = C(2n + 1) j+A0

and d(ĥ, T c
A0

) > 10C2(2n + 1) j such that (δC−1(2n+1)− j−A0 (h
−1ĥ))−1 ∈ F�. Let

g̃� := (δC−1(2n+1)− j−A0 (h
−1ĥ))−1. Without lost of generality, we assume that K�(g̃�)

is positive.
From the definition of g̃� we see that

ĥ = h · δC(2n+1) j+A0

(
g̃−1
�

)
. (3.6)

Next, we choose the integer A0 so that (2n + 1)A0 > 5C2C
−1ε−1

0 . Then fix some
η ∈ (0, 2εo) such that the two balls B(h, ηr) and B(ĥ, ηr) with r = C(2n + 1) j+A0

satisfy the following condition:

5C2(2n + 1) j < ηr < 10C2(2n + 1) j .

Then we can deduce that T ⊂ B(h, ηr) and B(ĥ, ηr) ⊂ TA0 .
It is direct that for every g ∈ B(h, ηr), we can write

g = h · δr (g
′
1),

where g′
1 ∈ B(o, η). Similarly, for every ĝ ∈ B(ĥ, ηr), we can write

ĝ = ĥ · δr (g
′
2),

where g′
2 ∈ B(o, η).
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As a consequence, we have

K�(g, ĝ) = K�

(
h · δr (g

′
1), ĥ · δr (g

′
2)
)

= K�

(
h · δr (g

′
1), h · δr (g̃

−1
� ) · δr (g

′
2)
)

= K�

(
δr (g

′
1), δr (g̃

−1
� ) · δr (g

′
2)
)

= K�

(
δr (g

′
1), δr (g̃

−1
� · g′

2)
)

= r−2n−2K�

(
g′
1, g̃

−1
� · g′

2

)

= r−2n−2K�

(
(g′

2)
−1 · g̃� · g′

1

)
, (3.7)

where the second equality comes from (3.6), the third comes from the property of the
left-invariance and the fifth comes from (3.3).

Next, we note that

d
(
(g′

2)
−1 · g̃� · g′

1, g̃�

) = d
(
g̃� · g′

1, g
′
2 · g̃�

)

≤ [
d
(
g̃� · g′

1, g̃�

)+ d
(
g̃�, g

′
2 · g̃�

)]

= [
d
(
g′
1, o
)+ d

(
o, g′

2

)]

≤ 2η

< 4εo,

which shows that (g′
2)

−1 · g̃� ·g′
1 is contained in the ball B(g̃�, 4εo) for all g′

1 ∈ B(o, η)

and for all g′
2 ∈ B(o, η).

Thus, from (3.4), we obtain that

|K�

(
(g′

2)
−1 · g̃� · g′

1

)| >
1

2
|K�(g̃�)| (3.8)

and for all g′
1 ∈ B(o, η) and for all g′

2 ∈ B(o, η), K�

(
(g′

2)
−1 · g̃� · g′

1

)
and K�(g̃�)

have the same sign.
Now combining the equality (3.7) and (3.8) above, we obtain that

|K�(g, ĝ)| >
1

2
r−2n−2|K�(g̃�)|, (3.9)

for every g ∈ B(h, ηr) and for every ĝ ∈ B(ĥ, ηr), where K�(g, ĝ) and K�(g̃�) have
the same sign. Here K�(g̃�) is a fixed constant independent of η, r , h, g1 and g2. We
denote

C(�, n) = 1

2
|K�(g̃�)|.

From the lower bound (3.9) above,we further obtain that for the suitable η ∈ (0, εo),

|K�(g, ĝ)| > C(�, n)r−2n−2,
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for every g ∈ B(h, ηr) and for every ĝ ∈ B(ĥ, ηr). Moreover, the sign of K�(g, ĝ) is
invariant for every g ∈ B(h, ηr) and for every ĝ ∈ B(ĥ, ηr).

Based on the fact that B(ĥ, ηr) ⊂ TA0 and ηr > 5C2(2n+1) j , there must be some
tile T̂ ∈ T j such that T̂ ⊂ B(ĥ, ηr). Also note that T ⊂ B(h, ηr). Hence we obtain
that A1(2n + 1) j ≤ d(cent (T ), cent(T̂ )) ≤ A2(2n + 1) j , where A1 and A2 depends
only on A0 and C. Moreover, we see that for all (g, ĝ) ∈ T × T̂ , K�((ĝ)−1g) does not
change sign and that for all (g, ĝ) ∈ T × T̂ , |K�((ĝ)−1g)| � (2n+1)−(2n+2) j , where
the implicit constant depends on C(�, n) and A0.

The proof of Theorem 3.1 is complete. ��

4 Theorem 1.2: 2n + 2 < p < ∞
4.1 Proof of the Necessary Condition

In this subsection, we assume that [b, R�] ∈ S p for some 2n + 2 < p < ∞ and then

prove that b ∈ B
2n+2
p

p,p (Hn).
We need these preliminary observations. Let Tk be the decomposition of Hn into

tiles T as in Sect. 2.1. We define the conditional expectation of a locally integrable
function f on H

n with respect to the increasing family of σ -algebras σ(T−k) by the
expression:

Ek( f )(g) =
∑

T∈T−k

( f )TχT (g), g ∈ H
n,

where we denote ( f )T be the average of f over T , that is, ( f )T := ffl
T f (g)dg :=

1
|T |

´
T f (g)dg.

For T ∈ Tk , we let h1T , h2T , . . . , hMn−1
T be a family of Haar functions

defined in Lemma 2.5. Next, we choose hT among these Haar functions such that∣∣´
T b(g)hε

T (g) dg
∣∣ is maximal.

Note that the function (Ek+1(b)(g) − Ek(b)(g))χT (g) is a sum of Mn Haar func-
tions. That is, we are in a finite dimensional setting and all L p-spaces have comparable
norms. So we have that

( 
T

|Ek+1(b)(g) − Ek(b)(g)|p dg
)1/p

≤ C |T |−1/2
∣∣∣∣

ˆ
T
b(g)hT (g) dg

∣∣∣∣ , (4.1)

where C is a constant only depending on p and n.
This is the main Lemma.

Lemma 4.1 Let 1 < p < ∞ and suppose that b ∈ L1
loc(H

n) satisfying ‖[b, R�]‖S p <

∞ for some � ∈ {1, 2, . . . , 2n}, then there exists a constant C > 0 such that

∑

k

(2n + 1)(2n+2)k‖Ek+1(b) − Ek(b)‖p
p ≤ C‖[b, R�]‖p

S p .
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Proof We will ultimately apply the Rochberg–Semmes [39] notion of NWO
sequences, namely the inequality (2.2). By (4.1), we have

(2n + 1)(2n+2)k
ˆ
Hn

|Ek+1(b)(g) − Ek(b)(g)|pdg

=
∑

T∈T−k

 
T

|Ek+1(b)(g) − Ek(b)(g)|pdg

≤ C
∑

T∈T−k

|T |−p/2
∣∣
∣∣

ˆ
T
b(g)hT (g)dg

∣∣
∣∣

p

. (4.2)

To continue, for any T ∈ T−k , let T̂ be the tile chosen in Theorem 3.1, then
K�(ĝ−1g) does not change sign for all (g, ĝ) ∈ T × T̂ and

|K�(ĝ
−1g)| ≥ C

|T | ,

for some constant C > 0. Also, let αT̂ (b) be a median value of b over T̂ . This means
αT̂ (b) is a real number such that defining for a tile S,

ES
1 := {g ∈ S : b(g) < αT̂ (b)

}
and ES

2 := {g ∈ S : b(g) > αT̂ (b)
}
, (4.3)

we have, with S = T̂ , the upper bound |ET̂
j | ≤ 1

2 |T̂ | for j = 1, 2. A median value
always exists, but may not be unique (see for example [26]).

Next we decompose T into a union of sub-tiles by writing T = ⋃Mn
i=1 Pi , where

Pi ∈ T−k−1 and Pi ⊆ T satisfying Pi �= Pj if i �= j . By the cancellation property of
hT , we see that

|T |−1/2
∣∣∣∣

ˆ
T
b(g)hT (g)dg

∣∣∣∣ = |T |−1/2
∣∣∣∣

ˆ
T
(b(g) − αT̂ (b))hT (g) dg

∣∣∣∣

≤ 1

|T |
ˆ
T

∣∣b(g) − αT̂ (b)
∣∣ dg

≤ 1

|T |
Mn∑

i=1

ˆ
Pi

∣∣b(g) − αT̂ (b)
∣∣ dg

≤ 1

|T |
Mn∑

i=1

ˆ
Pi∩ET

1

∣∣b(g) − αT̂ (b)
∣∣ dg + 1

|T |
Mn∑

i=1

ˆ
Pi∩ET

2

∣∣b(g) − αT̂ (b)
∣∣ dg

=: IT1 + IT2 . (4.4)

Above, we are using the notation in (4.3).
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Now we denote

FT
1 :=

{
ĝ ∈ T̂ : b(ĝ) ≥ αT̂ (b)

}
and FT

2 :=
{
ĝ ∈ T̂ : b(ĝ) ≤ αT̂ (b)

}
.

Then by the definition of αT̂ (b), we have |FT
1 | = |FT

2 | ∼ |T̂ | and FT
1 ∪ FT

2 = T̂ .
Note that for s = 1, 2, if g ∈ ET

s and ĝ ∈ FT
s , then

∣
∣b(g) − αT̂ (b)

∣
∣ ≤ ∣∣b(g) − αT̂ (b)

∣
∣+ ∣∣αT̂ (b) − b(ĝ)

∣
∣

= ∣∣b(g) − αT̂ (b) + αT̂ (b) − b(ĝ)
∣∣ = ∣∣b(ĝ) − b(g)

∣∣ .

Therefore, for s = 1, 2,

ITs � 1

|T |
Mn∑

i=1

ˆ
Pi∩ET

s

∣∣b(g) − αT̂ (b)
∣∣ dg

|FT
s |

|T |

� 1

|T |
Mn∑

i=1

ˆ
Pi∩ET

s

ˆ
FT
s

∣∣b(g) − αT̂ (b)
∣∣
∣∣∣K�(ĝ

−1g)
∣∣∣ dĝdg

� 1

|T |
Mn∑

i=1

ˆ
Pi∩ET

s

ˆ
FT
s

∣∣b(ĝ) − b(g)
∣∣
∣∣∣K�(ĝ

−1g)
∣∣∣ dĝdg

= 1

|T |
Mn∑

i=1

∣∣∣∣∣

ˆ
Pi∩ET

s

ˆ
FT
s

(b(ĝ) − b(g))K�(ĝ
−1ĝ)dĝdg

∣∣∣∣∣
,

where in the last equality we used the fact that K�(ĝ−1g) and b(ĝ) − b(g) do not
change sign for (g, ĝ) ∈ (Pi ∩ ET

s ) × FT
s , s = 1, 2. This, in combination with the

inequalities (4.2) and (4.4), implies that

(2n + 1)(2n+2)k
ˆ
Hn

|Ek+1(b)(g) − Ek(b)(g)|pdg

�
∑

T∈T−k

|T |−p/2
∣∣∣∣

ˆ
T
b(g)hT (g)dg

∣∣∣∣

p

�
2∑

s=1

∑

T∈T−k

∣∣∣ITs
∣∣∣
p

�
2∑

s=1

∑

T∈T−k

( Mn∑

i=1

∣∣∣∣
∣

〈

[b, R�]
|Pi |1/2χFT

s

|T | ,
χPi∩ET

s

|Pi |1/2
〉∣∣∣∣
∣

)p

.

Note that eT := |Pi |1/2χFTs|T | ⊂ T̂ and fT := χ
Pi∩ETs

|Pi |1/2 ⊂ T . Based on Theorem 3.1,

we see that for each T ∈ T−k , there is a unique TA0 ∈ T−k+A0 such that T , T̂ ⊂
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TA0 . Hence, |eT |, | fT | ≤ C |TA0 |−
1
2 χTA0

, where C is an absolute constant depending
only on n and A0. Note also that each TA0 ∈ T−k+A0 contains only a finite number
(depending on n, A0) of T ∈ T−k with T , T̂ ⊂ TA0 . Sum this last inequality over
k ∈ Z, and appeal to (2.2) to conclude the Lemma. ��
Corollary 4.2 Let 1 < p < ∞ and suppose that b ∈ L1

loc(H
n) satisfying

‖[b, R�]‖S p < ∞ for some � ∈ {1, 2, . . . , 2n}, then there exists a constant C > 0
such that for any k ∈ Z,

‖b − Ek(b)‖p ≤ C(2n + 1)−(2n+2)k/p
∥∥∥
∥[b, R�]

∥∥∥
∥
S p

.

Proof Note that Ek(b) → b a.e. as k → ∞. Besides, by Lemma 4.1, ‖Ek+1(b) −
Ek(b)‖p ≤ C(2n+1)−(2n+2)k/p‖[b, R�]‖S p . Combining these two facts and summing
the geometric series yield the conclusion. ��
Lemma 4.3 Let 1 < p < ∞ and suppose that b ∈ L1

loc(H
n) satisfying ‖[b, R�]‖S p <

∞ for some � ∈ {1, 2, . . . , 2n}, then
(
∑

k

(2n + 1)(2n+2)k‖b − Ek(b)‖p
p

)1/p

� ‖[b, R�]‖S p .

Proof It suffices to show that

(
M∑

k=L

(2n + 1)(2n+2)k‖b − Ek(b)‖p
p

)1/p

≤ C‖[b, R�]‖S p ,

for some constant C > 0 independent of L < M ∈ N. To this end, we denote the term
in the left hand side above by J and then note that

J ≤
(

M∑

k=L

(2n + 2)(2n+1)k‖b − Ek+1(b)‖p
L p(Hn)

)1/p

+
(

M∑

k=L

(2n + 2)(2n+1)k‖Ek+1(b) − Ek(b)‖p
L p(Hn)

)1/p

=
(

M+1∑

k=L+1

(2n + 2)(2n+1)(k−1)‖b − Ek(b)‖p
L p(Hn)

)1/p

+
(

M∑

k=L

(2n + 2)(2n+1)k‖Ek+1(b) − Ek(b)‖p
L p(Hn)

)1/p

=: Term1 + Term2.
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To continue, we first note that Lemma 4.1 controls Term2. Besides, Term1 is dom-
inated by

(2n + 2)−(2n+1)/p

(
M∑

k=L

(2n + 2)(2n+1)k‖b − Ek(b)‖p
L p(Hn)

)1/p

+ (2n + 2)(2n+1)M/p‖b − EM+1(b)‖L p(Hn). (4.8)

By Corollary 4.2, we see that the first term of the right-hand side in (4.8) can be
absorbed into J, while the second term can be dominated by C‖[b, R�]‖S p .

This ends the proof of Lemma 4.3. ��
Proposition 4.4 Let 2n + 2 < p < ∞ and suppose that b ∈ L1

loc(H
n), then there

exists a constant C > 0 such that

‖b‖
B

2n+2
p

p,p (Hn)

≤ C‖[b, R�]‖S p .

Proof To begin with, we note that

ˆ
Hn

ˆ
Hn

|b(g) − b(ĝ)|p
d(g, ĝ)2(2n+2)

dgdĝ

�
∑

k∈Z
(2n + 1)2(2n+2)k

¨
d(g,ĝ)≤(2n+1)−k−1

|b(g) − b(ĝ)|pdgdĝ.

Hence, it suffices to show that

M∑

k=L

(2n + 1)2(2n+2)k
¨

d(g,ĝ)≤(2n+1)−k−1

∣∣∣
∣b(g) − b(ĝ)

∣∣∣
∣

p

dgdĝ ≤ C

∥∥∥
∥[b, R�]

∥∥∥
∥

p

S p
,

(4.9)

where C is a constant independent of L < M ∈ Z.
Recall that a tile T in T−k is approximately a Heisenberg ball of radius (2n+1)−k .

Fix a Heisenberg ball B centered at the origin with radius (2n + 1)−L+A for a large
fixed integer A, and then denote bg̃(g) := b(g̃g) for g̃ ∈ H

n . Then the left-hand side
of (4.9) is dominated by a constant times

1

|B|
ˆ
B

M∑

k=L

∑

T∈T−k

(2n + 1)2(2n+2)k
ˆ
T

ˆ
T

|bg̃(g) − bg̃(ĝ)|p dĝ dg dg̃

� 1

|B|
ˆ
B

M∑

k=L

∑

T∈T−k

(2n + 1)(2n+2)k
ˆ
T

|bg̃(g) − Ek(bg̃)(g)|p dg dg̃

� 1

|B|
ˆ
B
C‖[bg̃, R�]‖p

S p dg̃, (4.10)
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where in the first inequality we added and subtracted the term Ek(bg̃) by noting that
for g, ĝ ∈ T ∈ T−k , Ek(bg̃)(g) = Ek(bg̃)(ĝ), and in the second inequality we use
Lemma 4.3. Next, as the Riesz transform is convolution, ‖[bg̃, R�]‖S p = ‖[b, R�]‖S p ,
we obtain that the right-hand side of (4.10) is bounded by C‖[b, R�]‖p

S p . Hence, (4.9)
holds.

Therefore, the proof of Proposition 4.4 is complete. ��

4.2 Proof of the Sufficient Condition

Proposition 4.5 Suppose � ∈ {1, 2, . . . , 2n}, 2n + 2 < p < ∞ and b ∈ L1
loc(H

n). If

b ∈ B
2n+2
p

p,p (Hn), then [b, R�] ∈ S p.

Proof We follow the proof in [25], which relies upon general estimates for Schatten
norms of integral operators. For the convenience of the readers, we briefly sketch

the proof here. We first recall that [b, R�] is compact [8] when b ∈ B
2n+2
p

p,p (Hn) ⊂
VMO(Hn). Note that Russo [40] proved that for general measure space (X , μ), if
p > 2 and K (x, y) ∈ L2(X × X), then the integral operator T associated to the kernel
K (x, y) satisfies the following bound:

‖T ‖S p ≤ ‖K‖1/2
L p,L p′ ‖K ∗‖1/2

L p,L p′ ,

where p′ is the conjugate index of p, K ∗(x, y) = K (y, x), and ‖ · ‖L p,L p′ denotes the

mixed-norm: ‖K‖L p,L p′ := ∥∥‖K (x, y)‖L p(dx)
∥∥
L p′ (dy).Later onGoffeng [21] showed

that the condition K (x, y) ∈ L2(X × X) in the above statement can be removed.
Moreover, Janson–Wolff [25, Lemmas 1 and 2] extended the above statement to

the corresponding weak-type version general measure space (X , μ): if p > 2 and
1/p + 1/p′ = 1, then

‖T ‖S p,∞ ≤ ‖K‖1/2
L p,L p′,∞‖K ∗‖1/2

L p,L p′,∞ , (4.13)

where‖·‖L p,L p′,∞ denotes themixed-norm:‖K‖L p,L p′,∞:=∥∥‖K (x, y)‖L p(dx)
∥∥
L p′,∞(dy).

Next, back to our setting on Heisenberg group, we note that for 1/q = 1 − 2/p,

∥∥
∥∥

1

d(g, ĝ)(2n+2)(1−2/p)

∥∥
∥∥
L∞,Lq,∞

= sup
g∈Hn

sup
α>0

α

∣∣
∣∣

{
ĝ ∈ H

n : 1

d(g, ĝ)(2n+2)(1−2/p)
> α

}∣∣
∣∣

1/q

= sup
g∈Hn

sup
α>0

α

∣∣
∣B(g, α− 1

(2n+2)(1−2/p) )

∣∣
∣
1/q

≈ sup
g∈Hn

sup
α>0

α
(
α

− 1
(2n+2)(1−2/p)

) 2n+2
q

� 1.
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Then by weak-type Young’s inequality,

∥∥(b(g) − b(ĝ))K (g, ĝ)
∥∥
L p,L p′,∞

≤
∥∥
∥∥
b(g) − b(ĝ)

d(g, ĝ)2n+2

∥∥
∥∥
L p,L p′,∞

≤
∥∥
∥∥

b(g) − b(ĝ)

d(g, ĝ)2(2n+2)/p

∥∥
∥∥
L p,L p

∥∥
∥∥

1

d(g, ĝ)(2n+2)(1−2/p)

∥∥
∥∥
L∞,Lq,∞

≤ C‖b‖
B(2n+2)/p
p,p (Hn)

. (4.14)

Similarly,

∥∥∥(b(g) − b(ĝ))K (ĝ, g)
∥∥∥
L p,L p′,∞ ≤ C‖b‖

B(2n+2)/p
p,p (Hn)

. (4.15)

Combining the inequalities (4.14), (4.15) and then applying the weak-type Russo’s
inequality (4.13), we see that

‖[b, R�]‖S p,∞ ≤ C‖b‖
B(2n+2)/p
p,p (Hn)

.

Since this inequality holds for all 2n + 2 < p < ∞, we can apply the interpolation
(S p1,∞, S p2,∞)θp = S p and (B(2n+2)/p1

p1,p1 , B(2n+2)/p2
p2,p2 )θp = B(2n+2)/p

p,p (see for example

[31, Theorem 4.1] and [47, Theorem 3.1]), where 1−θp
p1

+ θp
p2

= 1
p , to obtain that

‖[b, R�]‖S p ≤ C‖b‖
B(2n+2)/p
p,p (Hn)

.

This finishes the proof of sufficient condition for the case 2n + 2 < p < ∞. ��

5 Theorem 1.2: 0 < p ≤ 2n + 2

In this section, we prove the second argument in Theorem 1.2. That is, for each
� ∈ {1, 2, . . . , 2n} and for 0 < p ≤ 2n + 2, the commutator [b, R�] is in S p if and
only if b is a constant. The sufficient condition is obvious, since [b, R�] = 0 when b
is a constant. Thus, it suffices to show the necessary condition. It suffices to consider
the critical case p = 2n + 2, by the inclusion S p ⊂ Sq for p < q.

To formulate our argument simply, we will usually identityCn withR2n in Lemmas
5.1–5.3 and use the following notation to denote the points of Cn ×R ≡ R

2n+1 : g =
[z, t] ≡ [x, y, t] = [x1, . . . , xn, y1, . . . , yn, t] with z = [z1, . . . , zn], z j = x j + iy j
and x j , y j , t ∈ R for j = 1, . . . , n. Then the multiplication law can be explicitly
expressed as

gg′ = [x, y, t][x ′, y′, t ′] =
[
x + x ′, y + y′, t + t ′ + 2〈y, x ′〉 − 2〈x, y′〉

]
,
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where 〈·, ·〉 denotes the standard inner product in Rn .

Lemma 5.1 There exists a positive integer B0 such that for any tile T ∈ T−k and
a j = ±1 ( j = 1, 2, . . . , 2n), there are tiles T ′ ∈ T−k−B0 , T

′′ ∈ T−k−B0 such that
T ′ ⊂ T , T ′′ ⊂ T and if g = (g1, . . . , g2n, t) ∈ T ′′, h = (h1, . . . , h2n, t ′) ∈ T ′, then
a j (g j − h j ) � width(T ) ( j = 1, 2, . . . , 2n).

Proof Consider first T = δ(2n+1)k (To). Based on (4) in Lemma 2.3, we see that

B

(
o,C1(2n + 1)k

)
⊂ T . Then one can choose go,1 ∈ B

(
o,C1(2n + 1)k

)
such that

d(go,1, o) = 3C1
4 (2n + 1)k , and that all the first 2n components of go,1 is positive and

equals to 3C1
4 (2n+1)k . Thus, we have B(go,1,

C1
40 (2n+1)k) ⊂ B(o,C1(2n+1)k) and

that for every x = (x1, . . . , x2n, tx ) ∈ B(go,1,
C1
40 (2n + 1)k), we have xi > 0 and is

equivalent to 3C1
4 (2n+1)k . Then taking the inverse of the ball B

(
go,1,

C1
40 (2n+1)k

)
,

we get other ball B

(
go,2,

C1
40 (2n + 1)k

)
such that go,2 = g−1

o,1 and that for every

y = (y1, . . . , y2n, ty) ∈ B

(
go,2,

C1
20 (2n + 1)k

)
, we have yi < 0 and is equivalent

to − 3C1
4 (2n + 1)k . As a consequence, we see that there exist T ′ ∈ T−k−B0 such that

T ′ ⊂ B

(
go,1,

C1
40 (2n+1)k

)
and T ′′ ∈ T−k−B0 such that T

′′ ⊂ B

(
go,2,

C1
20 (2n+1)k

)
.

Then it is clear that if g ∈ T ′′, h ∈ T ′, then g j − h j � width(T ) ( j = 1, 2, . . . , 2n).
For general T ∈ T−k with u = cent(T ), we know that T = δ(2n+1)k (u) ·

δ(2n+1)k (To). Hence, the argument holds by using the translation and dilation. This
ends the proof of Lemma 5.1. ��

Recall the following first order Taylor’s inequality on Heisenberg group from [5].

Lemma 5.2 Let f ∈ C∞(Hn), then for every g = (x1, . . . , x2n, t), g0 =
(x10 , . . . , x

2n
0 , t0) ∈ H

n, we have

f (g) = f (g0) +
2n∑

j=1

X j f (g0)(x j − x j
0 ) + R(g, g0),

where the remainder R(g, g0) satisfies the following inequality:

|R(g, g0)| ≤ C

⎛

⎜⎜⎜
⎝

2∑

j=1

c j

j !
∑

i1,...,i j≤2n+1,
I=(i1,...,i j ), ϑ(I )≥2

ρ(g−1
0 g)ϑ(I ) sup

ρ(z)≤cρ(g−1
0 g)

|X I f (g0z)|

⎞

⎟⎟⎟
⎠

,

for some constant c > 0. Here ϑ(I ) is the homogeneous degree with respect to I given
in (2.1).
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Wedenote∇ be the horizontal gradient ofHn defined by∇ f := (X1 f , . . . , X2n f ).
Then we can show a lower bound for a local pseudo-oscillation of the symbol b in the
commutator.

Lemma 5.3 Let b ∈ C∞(Hn). Assume that there is a point g0 ∈ H
n such that

∇b(g0) �= 0. Then there exist C > 0, ε > 0 and N > 0 such that if k > N,
then for any tile T ∈ T−k satisfying d(cent(T ), g0) < ε, one has

∣∣∣
 
T ′
b −

 
T ′′

b
∣∣∣ ≥ C width(T )|∇b(g0)|. (5.4)

Above, T ′ and T ′′ are the tiles chosen in Lemma 5.1.

Proof Denote cT := cent(T ) := {c1T , . . . , c2nT , tT } and g = (g1, . . . , g2n, t), then by
Lemma 5.2,

b(g) = b(cT ) +
2n∑

j=1

X jb(cT )(g j − c jT ) + R(g, cT ), (5.5)

where the remainder term R(g, cT ) satisfies

|R(g, cT )| ≤ C

⎛

⎜⎜⎜
⎝

2∑

j=1

c j

j !
∑

i1,...,i j≤2n+1,
I=(i1,...,i j ), ϑ(I )≥2

ρ(c−1
T g)ϑ(I ) sup

ρ(z)≤cρ(c−1
T g)

|X I b(cT z)|

⎞

⎟⎟⎟
⎠

.

Note that the condition ρ(z) ≤ cρ(c−1
T g) implies that d(cT z, cT ) = ρ(z) ≤

cρ(c−1
T g) � width(T ) whenever g ∈ T . Hence, if g ∈ T , then

|R(g, cT )| � width(T )2
2∑

j=1

∑

i1,...,i j≤2n+1,
I=(i1,...,i j ), ϑ(I )≥2

‖X I b‖L∞(B(g0,1)).

For ε = εb > 0 sufficiently small, this last estimate is smaller than the right hand
side of (5.4). That is, in (5.5), we are only concerned with the first two terms on the
right.

Apply Lemma 5.1, with the choice of signs a j = sgn(X jb)(cT ). Let T ′, T ′′ be the
tiles that this Lemma provides to us. For g′ = (g′

j ) ∈ T ′ and g′′ = (g′′
j ) ∈ T ′′, we

have

sgn(X jb)(cT )(g′
j − g′′

j ) � width(T ), j = 1, . . . , 2n.

Therefore, we can estimate

∣
∣∣
 
T ′
b(g′) dg′ −

 
T ′′

b(g′′) dg′′
∣
∣∣
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≥ c
∣∣
∣
 
T ′

 
T ′′

2n∑

j=1

(X jb)(cT )

j ! (g′
j − g′′

j ) dg
′′dg′

∣∣
∣−

 
T ′

|R(g′, cT )| dg′ −
 
T ′′

|R(g′′, cT )| dg′′

≥ c
2n∑

j=1

|(X jb)(cT )|width(T ) − C width(T )2
2∑

j=1

∑

i1,...,i j≤2n+1,
I=(i1,...,i j ), ϑ(I )≥2

‖X I b‖L∞(B(g0,1))

� C width(T )|∇b(g0)|.

This inequality completes the Lemma. ��
Lemma 5.4 A function b ∈ L1

loc(H
n) is constant if

sup
h∈B(o,1)

∥∥
∥∥

{ 
T

 
T

∣∣
∣Ek+B0(τ

hb)(g′) − Ek+B0(τ
hb)(g′′)

∣∣
∣ dg′dg′′

}

T∈T

∥∥
∥∥

�2n+2
< +∞.

(5.7)

(In the display, T ∈ Tk , and both T and k vary. And τ h denotes translation by h).

Proof The assumption is that b ∈ L1
loc(H

n), but the previous Lemmas require b to be
smooth.Denoteψε(g) := ε−2n−2ψ(δε−1g), whereψ is a smooth compactly supported
bump function which integrates to one, and ε is a small positive constant. Then,
bε = b ∗ ψε is smooth. We argue that these are all constant. And, they converge to b
pointwise so this is sufficient.

The point is that bε is smooth and we observe that

∥∥
∥∥

{ 
T

 
T

∣
∣Ek+B0 (bε)(g

′) − Ek+B0 (bε)(g
′′)
∣
∣ dg′dg′′

}

T∈T

∥∥
∥∥

�2n+2

≤ sup
h∈B(o,1)

∥∥∥
∥

{ 
T

 
T

∣∣
∣Ek+B0 (τ

hb)(g′) − Ek+B0 (τ
hb)(g′′)

∣∣
∣ dg′dg′′

}

T∈T

∥∥∥
∥

�2n+2
< +∞.

(5.8)

If bε is not constant, we argue that the norm in the left hand side above is actually
infinite, which is a contradiction. It follows from [6, Proposition 1.5.6] that there exists
a point g0 ∈ H

n such that ∇b ∗ ψε(g0) �= 0. But then, Lemma 5.3 applies. There
exist ε > 0 and N > 0 such that if k > N , then for any tile T ∈ T−k satisfying
d(cent(T ), g0) < ε,

 
T

 
T

∣∣Ek+B0(bε)(g
′) − Ek+B0(bε)(g

′′)
∣∣ dg′dg′′ � width(T )|(∇bε)(g0)|.

Note that for k > N , the number of T ∈ T−k and d(cent(T ), g0) < ε is at least

c(2n + 1)k(2n+2) � width(T )−(2n+2).

But then, it is clear that the norm in (5.8) is infinite. ��
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Proposition 5.5 Suppose b ∈ L1
loc(H

n). Then for any � ∈ {1, 2, . . . , 2n}, the commu-
tator [b, R�] ∈ S2n+2 if and only if b is a constant.

Proof A constant function b is associated with the zero commutator. So, we only
consider the direction in which we assume [b, R�] ∈ S2n+2. And, then, we need to
verify that (5.7) holds. That inequality has the supremum over translations. The Riesz
transforms are themselves convolution operators, so that it suffices to verify (5.7)
without translations. That is,

∥∥
∥∥

{ 
T

 
T

∣
∣Ek+B0 (b)(g

′) − Ek+B0 (b)(g
′′)
∣
∣ dg′dg′′

}

T∈T

∥∥
∥∥

�2n+2
� ‖[b, R�]‖S2n+2 < ∞.

(5.10)

(In the display, T ∈ Tk , and both T and k vary).
This is in fact a corollary to Lemma 4.1, and is seen by way of a general remark.

For a random variable Z , we have for 1 ≤ p < ∞,

‖Z − EZ‖p � ‖Z − Z ′‖p,

where Z ′ is an independent copy of Z . Indeed,

‖Z − EZ‖p = ‖Z − EZ ′‖p

≤ ‖Z − Z ′‖p ≤ 2‖Z − EZ‖p.

The first inequality is by convexity and the second by the triangle inequality.
Thus, Lemma 4.1 implies

∥∥∥∥

{ 
T

∣∣Ek+B0(b)(g) − Ek(b)(g)
∣∣ dg

}

T∈T

∥∥∥∥
�2n+2

� ‖[b, R�]‖S2n+2 ,

as B0 is a fixed integer. And then (5.10) follows. ��

6 Applications

As stated in the introduction, our approach depends upon a standard non-degeneracy
condition on the kernel of the singular integral operator, and then on robust real variable
techniques. (In particular, no Fourier analysis.) The approach applies to the following
non-Euclidean Calderón–Zygmund operators.

(1) The Cauchy–Szegő projection C [41, Chapter12, Sect. 2.4] is an important singu-
lar integral onHn . It recovers an analytic function in the Siegel upper half space
from its boundary value. Its restriction to the boundary is a convolution operator,
that is, C( f )(g) = ´

Hn f (g′)kCS((g′)−1g)dg′, and the convolution kernel kCS

is given by

kCS(g) = c

(|z|2 + ı t)n+1 , ı2 = −1, ∀g = (z, t) ∈ H
n .
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It is well-known that this kCS is a Calderón–Zygmund kernel. From the explicit
kernel, we see that the non-degeneracy condition in our Theorem 3.1 holds for C.
Hence, Theorem 1.2 holds for [b, C]. This recovers the Theorem A obtained by
Feldman–Rochberg [15] where they relied on the Cayley transform and Fourier
transform.

(2) Second order Riesz transforms appear naturally in the study of PDEs (see
for instance [20]) and have been extensively studied in literature. They are
mostly interpreted as iterations of Riesz transforms and their adjoints, or second
derivatives of the fundamental solution operator for the Laplacian: ∂i∂ j (−
)−1.
On Euclidean spaces, second order Riesz transforms are well understood as
Calderón–Zygmund singular integrals and have bounded L p norm for 1 < p <

∞.
(2a) A particular interesting example is the classical Beurling–Ahlfors operator B on

the complex plane defined by (see for example [3, 35])

B( f )(z) = p.v.
1

π

ˆ
C

f (w)
(
z − w

)2 dw.

Equivalently, we have

B = ∂2(−
)−1,

where ∂ = ∂
∂x1

− ı ∂
∂x2

is the Cauchy–Riemann operator and 
 is the Laplacian

on R
2. Note that the kernel of B is homogeneous and smooth away from the

diagonal. Hence, the Schatten class [b,B] was covered by Rochberg–Semmes
[39]. Our approach can also be applied to [b,B], to have the explicit quantitative
estimate for the Schatten norm.

(2b) Second order Riesz transform T (−
H)−1 onHn (recall that T = 1
4 (X j Xn+ j −

Xn+ j X j )). By using functional calculus for (−
H)−1, it is direct to see that

T (−
H)−1 =
ˆ ∞

0
T eh
H dh,

which gives that the kernel K of T (−
H)−1 is a convolution kernel. Together
with the size and smoothness estimates for the heat kernel [45], we obtain that
for g �= [0, 0],

|K (g)| � 1

ρ(g)2n+2 and |X�K (g)| � 1

ρ(g)2n+3 ,

for � = 1, 2, . . . , 2n. Hence, T (−
H)−1 is a Calderón–Zygmund operator
on H

n . We now verify the non-degeneracy condition in our Theorem 3.1.
We follow the idea in [13, Sect. 7]. Recall that ([19]) the explicit expression
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of heat kernel on the Heisenberg group H
n is as follows: for g = [z, t] ∈ H

n ,

ph(g) = 1

2(4πh)n+1

ˆ
R

exp
( λ

4h

(
ıt − |z|2

Cn coth λ
))( λ

sinh λ

)n
dλ, ı2 = −1.

(6.1)

For any g = [z, t] ∈ H
n , by using the explicit expression of the heat kernel above

and by Fubini’s theorem, we have that for g �= [0, 0],

K (g) = 1

2(4π)n+1

∂

∂t

ˆ +∞

0
h−n−1

ˆ
R

exp
( λ

4h

(
ıt − |z|2

Cn coth λ
))( λ

sinh λ

)n
dλ dh

= 1

2(4π)n+1

∂

∂t

ˆ
R

ˆ +∞

0
h−n−1 exp

( λ

4h

(
ıt − |z|2

Cn coth λ
))
dh
( λ

sinh λ

)n
dλ

= C1
∂

∂t

ˆ
R

(|z|2
Cnλ coth λ − ıλt

)−n
( λ

sinh λ

)n
dλ

= C2

ˆ
R

(|z|2
Cnλ coth λ − ıλt

)−n−1
( λ

sinh λ

)n
λ dλ,

where in the next to the last equality we applied Cauchy integral formula to
deform the ray on right-half complex plane C+ into the real axis. Here we also
note that

C2 = −n ıC1 = − n ı

8πn+1

ˆ ∞

0
s−n−1e−s−1

ds �= 0. (6.2)

Observe that

|z|2
Cnλ coth λ − ıλt = λ

sinh λ
d2K (g)

( |z|2
Cn

d2K (g)
cosh λ − ı

t

d2K (g)
sinh λ

)

= λ

sinh λ
d2K (g) cosh(λ − ıφ),

where dK is the Korányi metric given by dK (g) = (|z|4
Cn + t2)

1
4 for g = [z, t] ∈

H
n , and

−π

2
≤ φ = φ(|z|Cn , t) ≤ π

2
, eıφ = d−2

K (g)(|z|2
Cn + ı t). (6.3)

Thus, we have

K (g) = C2

ˆ
R

(
λ

sinh λ
d2K (g) cosh(λ − ıφ)

)−n−1( λ

sinh λ

)n
λ dλ

= C2d
−2n−2
K (g)

ˆ
R

(
cosh(λ − ıφ)

)−n−1
( λ

sinh λ

)−n−1( λ

sinh λ

)n
λ dλ

= C2d
−2n−2
K (g)

ˆ
R

(
cosh(λ − ıφ)

)−n−1 sinh λ dλ
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= C2d
−2n−2
K (g)

ˆ
R

(
cosh(λ)

)−n−1 sinh(λ + ıφ) dλ,

where the last equality follows from Cauchy integral formula again. We now
define

F(g) :=
ˆ
R

(
cosh(λ)

)−n−1 sinh(λ + ıφ) dλ.

Then we have K (g) = C2F(g)d−2n−2
K (g). We now investigate the function

F(w) :=
ˆ
R

(
cosh(λ)

)−n−1 sinh(λ + w) dλ, w ∈ C.

Then we have F(g) = F(ıφ) with g = [z, t] �= 0 and φ = φ

(
|z|Cn , t

)
such that

eıφ = d−2
K (g)

(
|z|2

Cn + ı t

)
. Note that F(w) is analytic in some domain in the

complex plane C, which contains the line segment

[
− π

2 ı,
π
2 ı

]
in the imaginary

axis, and that F(π
4 ı) �= 0. Thus, F(w) has at most a finite number of zero points

on

[
− π

2 ı,
π
2 ı

]
, i.e., there exist {φ�}N�=1 ⊂

[
− π

2 , π
2

]
such that F(ıφ�) = 0.

From the mapping in (6.3), we see that for each � = 1, . . . , N , φ� corresponds
to a hyperplane H� in Hn defined by

H� :=
{
(z, t) ∈ H

n : φ� = φ(|z|Cn , t)

}
.

Let

H =
N⋃

�=1

H�.

Then we see that {g ∈ H
n : F(g) = 0} ⊂ H, and that H has measure zero.

Consequently, the measure of the set {g ∈ H
n : F(g) = 0} is zero. Hence, we

see that the convolution kernel K (g) is homogeneous of degree −2n − 2 and
that

K (g) = C2F(g), g ∈ S
n,

which is non-zero almost everywhere on S
n (the unit sphere in H

n). Thus, non-
degeneracy condition in Theorem 3.1 holds.
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(2c) Second order Riesz transform X j Xk(−
H)−1 on H
n , j, k ∈ {1, 2, . . . , 2n}.

Again, by using functional calculus for (−
H)−1, it is direct to see that

X j Xk(−
H)−1 =
ˆ ∞

0
X j Xke

h
H dh,

which together with the size and smoothness estimates for the heat kernel [45],
shows that X j Xk(−
H)−1 is a Calderón–Zygmund operator on H

n . Denote
the kernel of X j Xk(−
H)−1 by K j,k(g). We now verify the non-degeneracy
condition in our Theorem 3.1. In fact, this follows from similar approach as we
used in (2b). Without lost of generality, we take

X j = ∂

∂x j
+ 2xn+ j

∂

∂t
, j < n and Xk = ∂

∂xk
+ 2xn−k

∂

∂t
, k > n.

Then based on the formula (6.1) for heat kernel, we get that for g �= [0, 0],

K j,k(g) = d−2n−4
K (g)

(
F1(g) + ıF2(g) + F3(g) + ıF4(g)

)
,

where

F1(g) = C3x j xk

ˆ
R

(
cosh(λ)

)−n−2 cosh(λ + ıφ)2 dλ,

F2(g) = −C3xn+ j xk

ˆ
R

(
cosh(λ)

)−n−2 cosh(λ + ıφ) sinh(λ + ıφ)2 dλ,

F3(g) = C4xn−k x j

ˆ
R

(
cosh(λ)

)−n−2 cosh(λ + ıφ) sinh(λ + ıφ)2 dλ,

F4(g) = −C4xn−k xn+ j

ˆ
R

(
cosh(λ)

)−n−2 sinh(λ + ıφ)2 dλ,

with φ defined as in (6.3), C3 := 2n(2n + 2)C1, C4 := 2(2n + 2)C2 and C1,C2
are as in (6.2). By resorting to the analytic continuation as in (2b) and using the
isolated zero point, we get that K j,k(g) �= 0 a.e. g ∈ H

n . Thus, non-degeneracy
condition in Theorem 3.1 holds.
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3. Banũelos, R., Wang, G.: Sharp inequalities for martingales with applications to the Beurling–Ahlfors
and Riesz transforms. Duke Math. J. 80, 575–600 (1995)

4. Betancor, J., Castro, A., Curbelo, J.: Harmonic analysis operators associated with multidimensional
Bessel operators. Proc. R. Soc. Edinb. Sect. A 142, 945–974 (2012)

5. Bonfiglioli, A.: Taylor formula for homogeneous groups and applications. Math. Z. 262, 255–279
(2009)

6. Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie Group and Potential Theory for their Sub-
Laplacian. Springer, Berlin (2007)

7. Bruno, T., Peloso, M.M., Vallarino, M.: Besov and Triebel–Lizorkin spaces on Lie groups. Math. Ann.
377, 335–377 (2020)

8. Chen, P., Duong, X., Li, J., Wu, Q.: Compactness of Riesz transform commutator on stratified Lie
groups. J. Funct. Anal. 277(6), 1639–1676 (2019)

9. Chen, P., Cowling, M.G., Lee, M.-Y., Li, J., Ottazzi, A.: Flag Hardy space theory on Heisenberg groups
and applications. Preprint at http://arxiv.org/abs/2102.07371

10. Coifman, R., Rochberg, R., Weiss, G.: Factorization theorems for Hardy spaces in several variables.
Ann. Math. 103, 611–635 (1976)

11. Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego (1994)
12. Duong, X.T., Li, H.-Q., Li, J., Wick, B.D.: Lower bound of Riesz transform kernels and commutator

theorems on stratified nilpotent Lie groups. J. Math. Pures Appl. 124, 273–299 (2019)
13. Duong, X.T., Li, H.-Q., Li, J., Wick, B.D., Wu, Q.: Lower bound of Riesz transform kernels revisited

and commutators on stratified Lie groups. http://arxiv.org/abs/1803.01301
14. Fang, Q., Xia, J.: Schatten class membership of Hankel operators on the unit sphere. J. Funct. Anal.

257(10), 3082–3134 (2009)
15. Feldman, M., Rochberg, R.: Singular Value Estimates for Commutators and Hankel Operators on the

Unit Ball and the Heisenberg Group Analysis and Partial Differential Equations, 121–159, Lecture
Notes in Pure and Application Mathemathics, vol. 122. Dekker, New York (1990)

16. Feneuil, J.: Algebra properties for Besov spaces on unimodular Lie groups. Colloq. Math. 154(2),
205–240 (2018)

17. Folland, G.B., Stein, E.M.: Hardy Spaces on Homogeneous Groups. Princetion University Press,
Princeton (1982)

18. Frank, R.L., Sukochev, F., Zanin, D.: Asymptotics of singular values for quantum derivatives, To appear
in Trans. Am. Math. Soc

19. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur
certains groupes nilpotents. Acta Math. 139, 95–153 (1977)

20. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Classics in Math-
ematics. Springer, Berlin (2001)

21. Goffeng, M.: Analytic formulas for the topological degree of non-smooth mappings: the odd-
dimensional case. Adv. Math. 231, 357–377 (2012)

22. Han, Y., Yang, D.: Some new spaces of Besov and Triebel–Lizorkin type on homogeneous spaces.
Studia Math. 156, 67–97 (2003)

23. Huber, A.: On the uniqueness of generalized axially symmetric potentials. Ann. Math. 60, 351–358
(1954)

24. Isralowitz, J.: Schatten p class commutators on the weighted Bergman space L2a(Bn , dνγ ) for 2n/(n+
1 + γ ) < p < ∞. Indiana Univ. Math. J. 62, 201–233 (2013)

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/2102.07371
http://arxiv.org/abs/1803.01301


17 Page 28 of 28 Journal of Fourier Analysis and Applications (2023) 29 :17

25. Janson, S., Wolff, T.: Schatten classes and commutators of singular integral operators. Ark. Mater. 20,
301–310 (1982)

26. Journé, J.-L.: Calderón–Zygmund Operators, Pseudodifferential Operators and the Cauchy Integral of
Calderón. Lecture Notes in Mathematics, vol. 994. Springer, Berlin (1983)

27. Journé, J.-L.: Calderón–Zygmund operators on product space. Rev. Mater. Iberoam. 1, 55–92 (1985)
28. Kairema, A., Li, J., Pereyra, C., Ward, L.A.: Haar bases on quasi-metric measure spaces, and dyadic

structure theorems for function spaces on produce spaces of homogeneous type. J. Funct. Anal. 271,
1793–1843 (2016)

29. Li, J., Wick, B.D.: Characterizations of H1

N

(Rn) and BMO
N (Rn) via weak factorizations and
commutators. J. Funct. Anal. 272, 5384–5416 (2017)

30. Lord, S., McDonald, E., Sukochev, F., Zanin, D.: Quantum differentiability of essentially bounded
functions on Euclidean space. J. Funct. Anal. 273(7), 2353–2387 (2017)

31. Müller, D., Yang, D.: A difference characterization of Besov and Triebel–Lizorkin spaces on RD-
spaces. Forum Math. 21, 256–298 (2009)

32. Pau, J.: Characterization of Schatten-class Hankel operators on weighted Bergman spaces. DukeMath.
J. 165, 2771–2791 (2016)

33. Peller, V.V.: Nuclearity of Hankel operators. Mat. Sbornik. 113, 538–581 (1980)
34. Peller, V.V.:HankelOperators andTheirApplications. SpringerMonographs inMathematics, Springer,

New York (2003)
35. Petermichl, S., Volberg, A.: Heating of the Ahlfors–Beurling operator: weakly quasi-regular maps on

the plane are quasiregular. Duke Math. J. 112, 281–305 (2002)
36. Potapov, D., Sukochev, F.: Operator-Lipschitz functions in Schatten-von Neumann classes. ActaMath.

207, 375–389 (2011)
37. Pott, S., Smith, M.P.: Paraproducts and Hankel operators of Schatten class via p−John–Nirenberg

theorem. J. Funct. Anal. 217, 38–78 (2004)
38. Rochberg, R., Semmes, S.: A decomposition theorem for BMO and applications. J. Funct. Anal. 67,

228–263 (1986)
39. Rochberg, R., Semmes, S.: Nearly weakly orthonormal sequences, singular value estimates, and

Calderon–Zygmund operators. J. Funct. Anal. 86, 237–306 (1989)
40. Russo, B.: On the Hausdorff–Young theorem for integral operators. Pac. J. Math. 68, 241–253 (1977)
41. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals.

Princeton University Press, Princeton (1993)
42. Strichartz, R.S.: Self-similarity on Nilpotent Lie Groups: Generalized Convex Bodies and Generalized

Envelopes. Contemp. Math. 140, pp. 123–157. American Mathematical Society, Providence (1992)
43. Tyson, J.T.: Global conformal Assouad dimension in the Heisenberg group. Conf. Geom. Dynam. 12,

32–57 (2008)
44. Uchiyama, A.: On the compactness of operators of Hankel type. Tôhoku Math. J. 30, 163–171 (1978)
45. Varopoulos, N.T., Saloff-Coste, L., Coulhon, T.: Analysis and Geometry on Groups, Cambridge Tracts

in Mathematics, 100. Cambridge University, Cambridge (1992)
46. Wang, F., Han, Y., He, Z., Yang, D.: Besov and Triebel–Lizorkin spaces on spaces of homogeneous

type with applications to boundedness of Calderš®n-Zygmund operators. Dissertationes Math. 565,
1–113 (2021)

47. Yang, D.: Real interpolations for Besov and Triebel–Lizorkin spaces on spaces of homogeneous type.
Math. Nachr. 273, 96–113 (2004)

48. Zhu, K.: Schatten class Hankel operators on the Bergman space of the unit ball. Am. J. Math. 113,
147–167 (1991)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.


	Schatten Classes and Commutators of Riesz Transform  on Heisenberg Group and Applications
	Abstract
	1 Introduction
	2 Preliminaries on mathbbHn
	2.1 Tiles on mathbbHn
	2.2 An Explicit Haar Basis on Heisenberg Group
	2.3 Characterization of Schatten Class

	3 Lower Bound of the Riesz Transform Kernel on mathbbHn
	4 Theorem 1.2: 2n+2<p<infty
	4.1 Proof of the Necessary Condition
	4.2 Proof of the Sufficient Condition

	5 Theorem 1.2: 0<pleq2n+2
	6 Applications
	Acknowledgements
	References




