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Abstract
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weights in a critical case. Our approach is based on identifying generalized gamma
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1 Introduction

The scale of generalized gamma spaceswith doubleweights (seeSect. 2 for definitions)
was introduced in [18] in order to characterize the following real interpolation spaces

(L p),α, L(q,β)θ,r

between grand Lebesgue spaces L p),α (with α = 1) and small Lebesgue spaces L(q,β

(with β = 1) in the critical case p = q. Later on, it turned out (see [2, 4]) that the
following real interpolation spaces (with appropriate conditions on α and β)

(L p), Lq)θ,r , (L p, L(q)θ,r , (L p),α, Lq),β)θ,r , (L(p,α, L(q,β)θ,r

also coincidedwith appropriateG�-spaces in the critical case p = q. Thus, it becomes
imperative to investigate the interpolation properties of G�-spaces themselves in the
critical case. The aim of the present paper is to pursue this goal. Themain finding of our
investigation is this: in our special critical case, the scale of G�-spaces remains stable
under real interpolation method. We emphasize that this is not the case in non-critical
cases as it is clear from the results in [3, 15–18].

Let us illustrate our special case critical. Consider the following real interpolation
spaces

(�p(w0),G�(q,m; v,w1))θ,r

between classical Lorentz spaces �p(w0) and G�-spaces G�(q,m; v,w1). We char-
acterize these interpolation spaces in the critical case p = q with an extra restriction
w0 = w1 (see Theorem 6.1 below).

The key feature of our approach is to identify G�-spaces as K -interpolation spaces
(with general weights) between the classical Lorentz and L∞ spaces. This is done in
Sect. 3. Then, in order to apply the reiteration technique, we formulate appropriate
reiteration theorems for K -interpolation spaces involving general weights (see Sect.
5). The proofs of these reiteration theorems are essentially based on certain Holmstedt-
type estimates (from [1]) and weighted Hardy-type inequalities (presented in Sect. 4).
The interpolation formulae for G�-spaces (our main results) are contained in Sect. 6.
Finally, in Sect. 7, we single out some special cases from Sect. 6 in order to illustrate
how our obtained results generalize/complement the existing results in previous papers
[2–4, 9, 25].

2 Preliminaries

2.1 Notation

Throughout the paper we will stick to the following notations. We write A � B or
B � A for two non-negative quantities A and B tomean that A ≤ cB for some positive
constant c which is independent of appropriate parameters involved in A and B. If
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both the estimates A � B and B � A hold, we simply put A ≈ B. We let ‖ · ‖q,(a,b)

denote the standard Lq -quasi-norm on an interval (a, b) ⊂ R. We write X ↪→ Y for
two quasi-normed spaces X and Y to mean that X is continuously embedded in Y .

By a weight w on (0, 1), we always mean a positive locally integrable function on
(0, 1).We let� denote a bounded Lebesguemeasurable domain inRn withmeasure 1.
Finally, the symbol f ∗ will denote the non-increasing rearrangement of a real-valued
Lebesgue measurable function f on � (see, for instance, [7]).

2.2 Slowly Varying Functions

Following [22], we say a weight b is slowly varying on (0, 1) if for every ε > 0, there
are positive functions gε and g−ε on (0, 1) such that gε is non-decreasing and g−ε is
non-increasing, and we have

tεb(t) ≈ gε(t) and t−εb(t) ≈ g−ε(t) for all t ∈ (0, 1).

We denote the class of all slowly varying functions by SV . The class SV contains,
for example, positive constant functions, and the functions t 
→ (1 − ln t) and t 
→
1+ ln(1− ln t). We collect in the next Proposition some properties of slowly varying
functions. The proofs of these assertions can be carried out as in [22, Lemma 2.1] or
[11, Proposition 3.4.33].

Proposition 2.1 Given b, b1, b2 ∈ SV , the following are true:

(i) b1b2 ∈ SV and br ∈ SV for each r ∈ R.

(ii) If 0 < k < 1, then b(kt) ≈ b(t), 0 < t < 1.
(iii) For α > 0, set b̃(t) = b(tα), 0 < t < 1. Then b̃ ∈ SV .
(iv) If α > 0, then

∫ t

0
uαb(u)

du

u
≈ tαb(t), 0 < t < 1.

(v) If α > 0, then

1 +
∫ 1

t
u−αb(u)

du

u
≈ t−αb(t), 0 < t < 1.

(vi) Set

b̃(t) = 1 +
∫ 1

t
b(u)

du

u
, 0 < t < 1.

Then b̃ ∈ SV , and b(t) � b̃(t), 0 < t < 1.
(vii) Set

b̃(t) = sup
0<u<t

b(u), 0 < t < 1.

Then b̃ ∈ SV .
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2.3 K-Interpolation Spaces

Let A0 and A1 be two quasi-normed spaces. We say (A0, A1) is a compatible couple
if A0 and A1 are continuously embedded in the same Hausdorff topological vector
space. For each f ∈ A0 + A1 and t > 0, the Peetre K -functional is defined by

K (t, f ) = K (t, f ; A0, A1)

= inf{‖ f0‖A0 + t‖ f1‖A1 : f0 ∈ A0, f1 ∈ A1, f = f0 + f1}.

Note that K (t, f ) is, as a function of t , non-decreasing on (0,∞). In the sequel, we
will refer to this fact simply as monotonicity of K -functional.

In what follows, we always assume that the couple (A0, A1) is ordered in the sense
that A1 ↪→ A0.

Let 0 < q ≤ ∞, and let w be a positive weight on (0, 1) satisfying the following
condition

‖t1−1/qw(t)‖q,(0,1) < ∞. (2.1)

Then the K -interpolation space Āw,q = (A0, A1)w,q is formed of those f ∈ A0 for
which the quasi-norm

‖ f ‖ Āw,q
= ‖t−1/qw(t)K (t, f )‖q,(0,1)

is finite; see, for instance, [1]. If 0 < q < ∞ and w(t) = t−θ with 0 < θ < 1, then
we recover the classical real interpolation spaces Āθ,q (see [7, 8, 24, 27]).

Note that, thanks to the condition (2.1), the spaces Āw,q are intermediate for the
couple (A0, A1), that is,

A1 ↪→ Āw,q ↪→ A0.

Next let f ∈ Āw,q . By monotonicity of K -functional and K (1, f ) ≈ ‖ f ‖A0 , we have

‖ f ‖ Āw,q
� ‖ f ‖A0‖t−1/qw(t)‖q,(0,1).

Thus we can conclude that we always have to work under the following condition on
w

‖t−1/qw(t)‖q,(0,1) = ∞, (2.2)

so that the trivial case Āw,q = A0 is excluded. If w ∈ SV , then the condition (2.1) is
met thanks to Proposition 2.1 (iv) (if 0 < q < ∞) or to the very definition of a slowly
varying function (if q = ∞).
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2.4 Classical Lorentz Spaces

Let 0 < q ≤ ∞ and let w be weight on (0, 1). Assume that

(c1) w(2t) � w(t), 0 < t < 1/2.
(c2) ‖t−1/qw(t)‖q,(0,1) < ∞.

The classical Lorentz spaces �q(w) = �q(w)(�) consists of those real-valued
Lebesgue measurable functions f on �, for which the quasi-norm

‖ f ‖�q (w) = ‖t−1/qw(t) f ∗(t)‖q,(0,1)

is finite; see [26]. Thanks to the condition (c2), we always have �q(w) �= {0};
more precisely, we have the embedding L∞ ↪→ �q(w). The classical Lorentz
spaces cover many well-known spaces: for instance, when w(t) = t1/pb(t) (with
0 < p ≤ ∞ and b ∈ SV ) the spaces �q(w) become the Lorentz–Karamata spaces
L p,q;b (see, for instance, [20]). In particular, when b(t) = (1 − ln t)α , α ∈ R, we
put L p,q(log L)α = L p,q;b. The space L p,q(log L)α is called the Lorent–Zygmund
space and it was introduced by Bennett and Rudnick [6]. If α = 0, the Lorentz–
Zygmund space L p,q(log L)α coincides with the Lorentz space L p,q which becomes
the Lebesgue space L p if p = q.

Remark 2.2 Let f ∈ �∞(w). Since f ∗ is non-increasing, we can verify easily that

sup
0<t<1

w(t) f ∗(t) = sup
0<t<1

[
sup

0<s<t
w(s)

]
f ∗(t).

Thus, in the case q = ∞ we can assume that w is non-decreasing.

2.5 Generalized Gamma Spaces

We first introduce a notation. For 0 < m, q ≤ ∞, we say a pair (w, v) of weights is
admissible if the following conditions are met:

(d1) For all 0 < t < 1/2, w(2t) � w(t) and v(2t) � v(t).
(d2) ‖t−1/qw(t)‖q,(0,1) < ∞.

(d3) ‖t−1/mv(t)‖m,(0,1) = ∞.

(d4)
∥∥t−1/mv(t)‖τ−1/qw(τ)‖q,(0,t)

∥∥
m,(0,1) < ∞.

Definition 2.3 [18] Let 0 < m, q ≤ ∞ and (w, v) be a pair of admissible weights.
The generalized gamma space G�(q,m; v,w) = G�(q,m; v,w)(�) consists of all
those real-valued Lebesgue measurable functions f on �, for which the quasi-norm

‖ f ‖G�(q,m;v,w) =
∥∥∥t−1/mv(t)‖τ−1/qw(τ) f ∗(τ )‖q,(0,t)

∥∥∥
m,(0,1)

is finite.
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Remark 2.4 Let f ∈ G�(q,m; v,w). Since t 
→ f ∗(t) is non-increasing, we can
check that the following function

t 
→ 1

‖τ−1/qw(τ)‖q,(0,t)
‖τ−1/qw(τ) f ∗(τ )‖q,(0,t)

is equivalent to a non-increasing function. Consequently (thanks to the Condition
(d4)), it follows that

G�(q,m; v,w) ↪→ �q(w).

Moreover, the Condition (d3) guarantees that the converse embedding

�q(w) ↪→ G�(q,m; v,w)

does not hold. Thus, the trivial case G�(q,m; v,w) = �q(w) is excluded. However,
note that for q = m the spaces G�(q,m; v,w) again coincide with �m(w̃) for an
appropriate weight w̃.

Remark 2.5 The scale ofG�(q,m; v,w) spaces is very general and covers manywell-
known scales of spaces. If we take q = 1 and w(t) = t , then we recover the classical
gamma spaces �m(ṽ) (see [26]) for an appropriate weight ṽ. Let 0 < m, p, q < ∞,
w(t) = t1/p and v ∈ SV , then the spaces G�(q,m; v,w) coincide with the small
Lorentz spaces L(p,q,m

v from [3]. As a still more special case, if α > 0, 1 < q < ∞,
v(t) = (1 − ln t)−

α
q +α−1, w(t) = t1/q , m = 1, the spaces G�(q,m; v,w) become

the small Lebesgue spaces L(q,α; see [18, 19]. Finally, since we also allow the case
m = ∞ in our definition in contrast to [18], we observe that the spaces Sp,α considered
in [12] are also a special case of the spaces G�(q,m; v,w).

3 Generalized Gamma Spaces as K -Interpolation Spaces

In this sectionwe characterize the generalized gamma spaces as K -interpolation spaces
with general weights. To this end, we first need the following computation of K -
functional for the couple (�q(w), L∞). While this computation is a special case of
a far more general formula in [13, p. 84], we present a simple proof for reader’s
convenience.

Lemma 3.1 Let 0 < q ≤ ∞. Then, for all f ∈ �q(w), we have

K (w̃(t), f ;�q(w), L∞) ≈ ‖τ−1/qw(τ) f ∗(τ )‖q,(0,t), 0 < t < 1, (3.1)

where

w̃(t) = ‖τ−1/qw(τ)‖q,(0,t), 0 < t < 1.
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Proof Let f = f0 + f1 be an arbitrary decomposition of f with f0 ∈ �q(w) and
f1 ∈ L∞. Using the elementary inequality

f ∗(τ ) ≤ f ∗
0 (τ ) + f ∗

1 (0), 0 < τ < 1,

we get

‖τ−1/qw(τ) f ∗(τ )‖q,(0,t) � ‖ f0‖�q (w) + w̃(t)‖ f1‖L∞ ,

whence we get the estimate “� ” in (3.1), by taking the infimum over all decompo-
sitions of f . To prove the converse estimate “ � ”, we fix 0 < t < 1 and take the
following particular decomposition of f :

g = ( f − f ∗(t)sgn f )χE , h = f − g,

where E = {x ∈ � : | f (x)| > f ∗(t)}. Then g∗ = ( f ∗ − f ∗(t))χ(0,t) and h∗ =
f ∗(t)χ(0,t) + f ∗χ(t,1). Therefore, we can check easily that

‖g‖�q (w) ≤ ‖τ−1/qw(τ) f ∗(τ )‖q,(0,t),

and

‖h‖L∞ ≤ 2 f ∗(t) ≤ 2

w̃(t)
‖τ−1/qw(τ) f ∗(τ )‖q,(0,t).

Thus, we arrive at

‖g‖�q (w) + w̃(t)‖h‖L∞ � ‖τ−1/qw(τ) f ∗(τ )‖q,(0,t), 0 < t < 1,

from which follows the estimate “�”. The proof is complete. �
The next two results describe the characterization of G�(q,m; v,w) spaces as

K -interpolation spaces.

Theorem 3.2 Let 0 < m ≤ ∞, 0 < q < ∞ and (w, v) be a pair of admissible
weights. Let φ be the inverse of the following function

ψ(t) = c

(∫ t

0
wq(τ )

dτ

τ

)1/q

, 0 < t < 1,

where

1/c =
(∫ 1

0
wq(τ )

dτ

τ

)1/q

.

Moreover, define

ρ(t) = v(φ(t))

[
t

w(φ(t))

]q/m

, 0 < t < 1.
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Then

G�(q,m; v,w) =
{

(�q(w), L∞)ρ,m, m < ∞,

(�q(w), L∞)v(φ),m, m = ∞.

Proof We give the argument only in the case m < ∞ since the other case m = ∞ is
analogous. Set temporarily X = (�q(w), L∞)ρ,m , and let f ∈ �q(w). In view of the
simple fact that

K (cψ, f ;�q(w), L∞) ≈ K (ψ, f ;�q(w), L∞),

an application of Lemma 3.1 yields

‖ f ‖X ≈
⎛
⎝

∫ 1

0
ρm(t)

(∫ φ(t)

0

[
w(τ) f ∗(τ )

]q dτ

τ

)m/q
dt

t

⎞
⎠

1/m

,

now making a change of variable t = ψ(s), it turns out that

‖ f ‖X ≈
(∫ 1

0
ρm(ψ(s))

(∫ s

0

[
w(τ) f ∗(τ )

]q dτ

τ

)m/q
ψ ′(s)
ψ(s)

ds

)1/m

,

finally, the following simple computation

ρm(ψ(s))
ψ ′(s)
ψ(s)

≈ s−1vm(s), 0 < s < 1,

completes the proof. �
We omit the proof of the next result since it can be carried out by using the same

argument as in the proof of the previous theorem.

Theorem 3.3 Let 0 < m ≤ ∞. Suppose that (w, v) is a pair of admissible weights
such that w is strictly increasing on (0, 1) with lim

t→0+ w(t) = 0 and lim
t→1− w(t) = 1.

Then

G�(∞,∞; v,w) = (�∞(w), L∞)v(w−1),∞.

If we assume additionally that w is differentiable on (0, 1), then

G�(∞,m; v,w) = (�∞(w), L∞)ρ,m, m �= ∞,

where

ρ(t) = v(w−1(t))

[
t

w−1(t)w′ (w−1(t)
)
]1/m

, 0 < t < 1.
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4 Weighted Hardy-Type Inequalities

The weighted Hardy-type inequalities presented in this section will be the key ingre-
dients in the proofs of our reiteration theorems in the next section.

Theorem 4.1 [1, Lemma 3.2] Let 1 < α < ∞, and assume that g and φ are non-
negative functions on (0,∞). Put

v1(t) = (g(t))1−α

(
φ(t)

∫ ∞

t
g(u)du

)α

.

Then

∫ ∞

0

(∫ t

0
φ(u)h(u)du

)α

g(t)dt �
∫ ∞

0
hα(t)v1(t)dt

holds for all non-negative functions h on (0,∞).

We also have the following variant of the previous result; see [3, Theorem 3.3].

Theorem 4.2 Let 1 < α < ∞, and assume that g and φ are non-negative functions
on (0,∞). Put

v2(t) = (g(t))1−α

(
φ(t)

∫ t

0
g(u)du

)α

.

Then

∫ ∞

0

(∫ ∞

t
φ(u)h(u)du

)α

g(t)dt �
∫ ∞

0
hα(t)v2(t)dt

holds for all non-negative functions h on (0,∞).

The next result is a simple consequence of [1, Lemma 3.3].

Theorem 4.3 Let 0 < α < 1, and assume that g and φ are non-negative functions on
(0,∞). Put

v3(t) = φ(t)

(∫ ∞

t
φ(u)du

)α−1 ∫ t

0
g(u)du.

Then

∫ ∞

0

(∫ ∞

t
φ(u)h(u)du

)α

g(t)dt �
∫ ∞

0
hα(t)v3(t)dt

holds for all non-negative and non-decreasing functions h on (0,∞).
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Theorem 4.4 [23, Theorem 3.3 (b)] Let 0 < α < 1. Assume that g and v are non-
negative functions on (0, 1), and ψ is a non-negative function on (0, 1) × (0, 1).
Then

∫ 1

0

(∫ 1

0
ψ(t, u)h(u)du

)α

g(t)dt �
∫ ∞

0
hα(t)v(t)dt (4.1)

holds for all non-negative and non-decreasing functions h on (0, 1) if and only if

∫ 1

0

(∫ 1

x
ψ(t, u)du

)α

g(t)dt �
∫ 1

x
v(t)dt (4.2)

holds for all 0 < x < 1.

5 Reiteration

First of all, we recall (from Sect. 2.3) that a weightw appearing in the K -interpolation
space Āw,q has to satisfy the conditions (2.1) and (2.2) so that both the trivial cases
Āw,q = {0} and Āw,q = A0 are excluded.

For convenience we introduce a further notation: for 0 < m < ∞, we say a weight
w satisfies the condition (Hm) if the following estimate holds:

t−1
(∫ t

0
umwm(u)

du

u

)1/m

�
(
1 +

∫ 1

t
wm(u)

du

u

)1/m

, 0 < t < 1.

Moreover, we say a weight w satisfies the condition (H∞) if the following estimate
holds:

t−1 sup
0<u<t

uw(u) � w(t), 0 < t < 1.

Remark 5.1 Letw ∈ SV . Then, by Proposition 2.1 (iv)–(vi),w satisfies (Hm). Clearly,
by the very definition of a slowly varying function, w also satisfies (H∞).

Theorem 5.2 Let 0 < m, r < ∞ , 0 < θ < 1, and let w satisfy (Hm). Then

(A0, Āw,m)θ,r = Āw̃,r ,

where

w̃(t) =
(
1 +

∫ 1

t
wm(u)

du

u

)θ/m−1/r

wm/r (t), 0 < t < 1.



Journal of Fourier Analysis and Applications (2022) 28 :54 Page 11 of 23 54

Proof Set X = (A0, Āw,m)θ,r , Y = Āw̃,r and

ρ(t) =
(
1 +

∫ 1

t
wm(u)

du

u

)−1/m

, 0 < t < 1.

Note that ρ is increasing with lim
t→0+ ρ(t) = 0 (thanks to (2.2)) and lim

t→1− ρ(t) = 1.

Next define

W (t) =
⎧⎨
⎩

w(t), 0 < t < 1,

t−1, t ≥ 1,

and note that

(∫ ∞

t
Wm(u)

du

u

)1/m

≈
(
1 +

∫ 1

t
wm(u)

du

u

)1/m

, 0 < t < 1.

Let f ∈ A0. Since w satisfies (Hm), we can apply the estimate (2.19) in [1] to obtain

K (ρ(t), f ; A0, Āw,m) ≈ ρ(t)

(∫ ∞

t
Wm(u)Km(u, f )

du

u

)1/m

, 0 < t < 1,

whence, by an appropriate change of variable, we get

‖ f ‖rX ≈
∫ 1

0
ρ(1−θ)r (t)

(∫ ∞

t
Wm(u)Km(u, f )

du

u

)r/m
ρ′(t)
ρ(t)

dt . (5.1)

In view of monotonicity of K -functional, it follows immediately from (5.1) that

‖ f ‖rX �
∫ 1

0
ρ(1−θ)r (t)Kr (t, f )

(∫ ∞

t
Wm(u)

du

u

)r/m
ρ′(t)
ρ(t)

dt,

from which it follows that ‖ f ‖X � ‖ f ‖Y since

ρ′(t) ≈ t−1wm(t)ρ1+m(t), 0 < t < 1/2.

Next we establish the converse estimate ‖ f ‖X � ‖ f ‖Y . To this end, we note that,
from (5.1), we have

‖ f ‖rX ≈ I1 + I2,

where

I1 =
∫ 1

0
ρ(1−θ)r (t)

(∫ 1

t
wm(u)Km(u, f )

du

u

)r/m
ρ′(t)
ρ(t)

dt,
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and

I2 =
∫ 1

0
ρ(1−θ)r (t)

(∫ ∞

1
u−mKm(u, f )

du

u

)r/m
ρ′(t)
ρ(t)

dt .

In view of

K (t, f ) ≈ ‖ f ‖A0 , t ≥ 1,

and

∫ 1

0
ρ(1−θ)r (t)

ρ′(t)
ρ(t)

dt < ∞,

we get that I2 ≈ ‖ f ‖rA0
. Since Y ↪→ A0, it follows that I2 � ‖ f ‖rY . Thus, it remains

to establish that I1 � ‖ f ‖rY . The case r = m immediately follows from Fubini’s
theorem. For the case r �= m, we take α = r/m, h(t) = Km(t, f ), φ(t) = t−1Wm(t)
and g = ρ(1−θ)r−1ρ′χ(0,1), and apply Theorem 4.2 (if r > m) or Theorem 4.3 (if
r < m). It is not hard to verify that

v2(t) ≈ v3(t) ≈ t−1[w̃(t)]r , 0 < t < 1,

and consequently, the estimate I1 � ‖ f ‖rY holds. The proof is complete. �
Remark 5.3 If we take w(t) = t−θ1 , 0 < θ1 < 1, then we get back the classical result
from [24]. If we take w ≡ 1 and m = 1, then we recover the first assertion in [21,
Theorem 3.21]. The case when w ∈ SV also follows from [5, Theorem 11]. The
particular case when w is a logarithmic function has earlier been considered in [10,
Theorem 4 (a)].

Next we treat the case m = ∞. In this regard, an elementary but important obser-
vation is made in the next remark.

Remark 5.4 Let (A0, A1) be a compatible couple of quasi-normed spaces. Using
monotonicity of K -functional, we observe that the following identity

sup
0<t<1

w(t)K (t, f ) = sup
0<t<1

[
sup

t<s<1
w(s)

]
K (t, f ),

holds for every f ∈ A0. Therefore, while working with Āw,∞,we can always assume,
without loss of generality, that w is non-increasing.

Theorem 5.5 Let 0 < r < ∞ , 0 < θ < 1, and suppose w is strictly decreasing and
differentiable on (0, 1) and satisfies (H∞).Putρ = 1/w, and assume that lim

t→1− ρ(t) =
1. Then we have

(A0, Āw,∞)θ,r = Āw̃,r ,
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where

w̃(t) = wθ(t)
[
tw(t)ρ′(t)

]1/r
, 0 < t < 1.

Proof Put X = (A0, Āw,∞)θ,r and Y = Āw̃,r . Next, in view of (2.2), we observe that
lim
t→0+ ρ(t) = 0. Let f ∈ A0. Since w satisfies (H∞), we can apply the estimate (2.19)

in [1] to obtain

K (ρ(t), f ; A0, Āw,∞) ≈ ρ(t) sup
t≤u<1

w(u)K (u, f ), 0 < t < 1,

whence we arrive at

‖ f ‖rX ≈
∫ 1

0
ρ(1−θ)r (t)

[
sup

t≤u<1
wr (u)Kr (u, f )

]
ρ′(t)
ρ(t)

dt . (5.2)

Now the estimate ‖ f ‖X � ‖ f ‖Y follows immediately from (5.2). Next we establish
the converse estimate ‖ f ‖X � ‖ f ‖Y . Put

I =
∫ 1

0
ρ(1−θ)r (t)

[
sup

t≤u<1
wr (u)Kr (u, f )

]
ρ′(t)
ρ(t)

dt,

and noting

∫ 1

t
wr (u)

ρ′(u)

ρ(u)
du = 1

r

(
wr (t) − 1

)
, 0 < t < 1,

we can write

I � I1 + I2

where

I1 =
∫ 1

0
ρ(1−θ)r (t) sup

t≤u<1
Kr (u, f )

[∫ 1

u
wr (τ )

ρ′(τ )

ρ(τ)
dτ

]
ρ′(t)
ρ(t)

dt,

and

I2 =
∫ 1

0
ρ(1−θ)r (t) sup

t≤u<1
Kr (u, f )

ρ′(t)
ρ(t)

dt .

Now by monotonicity of K -functional, we obtain

I1 ≤
∫ 1

0
ρ(1−θ)r (t)

[
sup

t≤u<1

∫ 1

u
wr (τ )

ρ′(τ )

ρ(τ)
Kr (τ, f )dτ

]
ρ′(t)
ρ(t)

dt,
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and

I2 =
∫ 1

0
ρ(1−θ)r (t)Kr (1, f )

ρ′(t)
ρ(t)

dt,

whence we get

I1 ≤
∫ 1

0
ρ(1−θ)r (t)

[∫ 1

t
wr (τ )

ρ′(τ )

ρ(τ)
Kr (τ, f )dτ

]
ρ′(t)
ρ(t)

dt,

and

I2 ≈ ‖ f ‖rA0
.

Now an application of Fubini’s theorem gives

I1 �
∫ 1

0
wr (τ )

ρ′(τ )

ρ(τ)
Kr (τ, f )ρ(1−θ)r (τ )dτ,

which shows that I1 � ‖ f ‖rY . Since Y ↪→ A0, we also have I2 � ‖ f ‖rY . Altogether,
we arrive at ‖ f ‖rX ≈ I � ‖ f ‖rY which completes the proof. �
Remark 5.6 To the best of our knowledge, the assertion of Theorem 5.5 is new. We
note that the particular case when w is a general slowly varying function is entirely
missing from [1, 5, 20], and also not covered by [14, Theorem 5.5].

Remark 5.7 Let 0 < m < ∞. Suppose that w0 and w1 are two weights such that
w0/w1 is non-decreasing. Then it is not hard to check that Āw1,m ↪→ Āw0,m . If we
assume, additionally, that

w0(t)

w1(t)
≤ 1, 0 < t < 1,

then we also have

w0(t)

w1(t)
≤

(
1 + ∫ 1

t wm
0 (u) duu

1 + ∫ 1
t wm

1 (u) duu

)1/m

, 0 < t < 1.

Theorem 5.8 Let 0 < m, r < ∞ and 0 < θ < 1. Suppose that w0 and w1 are two
weights such that ρ = w0/w1 is strictly increasing on (0, 1) with lim

t→0+ ρ(t) = 0 and

lim
t→1− ρ(t) = 1. Assume further thatw1 satisfies (Hm) and that there exists c1 ∈ (1,∞)

and c2 ∈ (0, 1) such that

(
1 + ∫ 1

t wm
0 (u) duu

1 + ∫ 1
t wm

1 (u) duu

)1/m

< c1ρ(t), 0 < t < 1, (5.3)
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and

ρ(t) < c2

(
1 + ∫ 1

t wm
0 (u) duu

1 + ∫ 1
t wm

1 (u) duu

)1/m

, 0 < t < 1/2. (5.4)

Then we have

(
Āw0,m, Āw1,m

)
θ,r = Āw̃,r ,

where

w̃(t) = [ρ(t)](1−θ)w
m/r
1 (t)

(
1 +

∫ 1

t
wm
1 (u)

du

u

)1/m−1/r

, 0 < t < 1.

Proof Set X = (
Āw0,m, Āw1,m

)
θ,r , Y = Āw̃,r and

W1(t) =
⎧⎨
⎩

w1(t), 0 < t < 1,

t−1, t ≥ 1.

Let f ∈ A0, and put

σ(t) =
(
1 + ∫ 1

t wm
0 (u) duu

1 + ∫ 1
t wm

1 (u) duu

)1/m

, 0 < t < 1.

In view of Remark 5.7 and (5.3), we have ρ ≈ σ on (0, 1).Moreover, since ρ is strictly
increasing, we have in fact ρ < σ on (0, 1). As a consequence, we obtain σ ′ > 0 on
(0, 1), that is, σ is also strictly increasing on (0, 1). Now, according to the estimates
(2.30) and (2.35) in [1], for all 0 < t < 1 we have

K
(
σ(t), f , Āw0,m, Āw1,m

)
� I (t, f ) + σ(t)J (t, f )

+ σ(t)

σ1(t)
K (t, f ) + ρ0(t)

t
K (t, f ),

(5.5)

and

K
(
σ(t), f , Āw0,m, Āw1,m

)
� I (t, f ) + σ(t)J (t, f ), (5.6)

where

I (t, f ) =
(∫ t

0
wm
0 (u)Km(u, f )

du

u

) 1
m

,

J (t, f ) =
(∫ ∞

t
Wm

1 (u)Km(u, f )
du

u

) 1
m

,
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σ1(t) = t

(∫ t

0
umwm

1 (u)
du

u

)−1/m

,

and

ρ0(t) = t

(
1 +

∫ 1

t
wm
0 (u)

du

u

)1/m

.

By monotonicity of K -functional, we get

J (t, f ) ≥ K (t, f )

(
1 +

∫ 1

t
wm
1 (u)

du

u

)1/m

,

from which it follows that

σ(t)J (t, f ) � ρ0(t)

t
K (t, f ).

Since w1 satisfies (Hm), we also have

J (t, f ) � 1

σ1(t)
K (t, f ).

Altogether, (5.5) reduces to

K
(
σ(t), f , Āw0,m, Āw1,m

)
� I (t, f ) + σ(t)J (t, f ). (5.7)

Thus, from (5.6) and (5.7), we have the following two-sided Holmstedt-type estimate

K
(
σ(t), f , Āw0,m, Āw1,m

) ≈ I (t, f ) + σ(t)J (t, f ), 0 < t < 1,

whence it turns out that

‖ f ‖rX ≈ I1 + I2,

where

I1 =
∫ 1

0
[ρ(t)]−θr

(∫ t

0
wm
0 (u)Km(u, f )

du

u

)r/m
σ ′(t)
ρ(t)

dt,

and

I2 =
∫ 1

0
[ρ(t)](1−θ)r

(∫ ∞

t
Wm

1 (u)Km(u, f )
du

u

) r
m σ ′(t)

ρ(t)
dt .

Next, using (5.4), we can compute that

σ ′(t)
σ (t)

≈ t−1 wm
1 (t)

1 + ∫ 1
t wm

1 (u) duu

, 0 < t < 1/2. (5.8)
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Now following the same line of argument which we used while estimating the quan-
tity on right hand side of (5.1), we can show that ‖ f ‖rY ≈ I2. Thus it remains to
establish the estimate I1 � ‖ f ‖rY . In the case when r ≥ m, this desired estimate
follows from Fubini’s theorem (if r = m) or from Theorem 4.1 (if r > m). For the
remaining case r < m, we apply Theorem 4.4 with α = r/m, h(t) = Km(t, f ),
g = ρ−θr−1σ ′, ψ(t, u) = u−1wm

0 (u)χ(0,t)(u) and v(t) = t−1[w̃(t)]r . Observe that
(4.2) holds trivially for 1/2 < x < 1, and for 0 < x < 1/2 we have

∫ 1

0

(∫ 1

x
ψ(t, u)du

)α

g(t)dt =
∫ 1

x

(∫ t

x
wm
0 (u)

du

u

)r/m

g(t)dt

≤
(∫ 1

x
wm
0 (u)

du

u

)r/m ∫ 1

x
g(t)dt

�
(∫ 1

x
wm
0 (u)

du

u

)r/m

[ρ(x)]−θr ,

and

∫ 1

x
v(t)dt � [ρ(x)]r(1−θ)

∫ 1

x
[w1(t)]m

(∫ 1

t
wm
1 (u)

du

u

)r/m−1
dt

t

≈
(∫ 1

x
wm
0 (u)

du

u

)r/m

[ρ(x)]−θr .

Thus, (4.2) is valid. Hence, the estimate I1 � ‖ f ‖rY follows from Theorem 4.4 in the
case r < m. This completes the proof. �
Remark 5.9 The particular case, when w j (t) = (1 − ln t)−α j ( j = 0, 1) with α1 <

α0 < 0, has earlier been considered in [10, Corollary 1].

6 Interpolation Formulae

Finally, we are in a position to describe the interpolation properties of generalized
gamma spaces. In view of well-known reiteration technique, our interpolation formu-
lae are rather straightforward consequences of reiteration theorems (from previous
section) and characterization of generalized gamma spaces as K -interpolation spaces
(Theorems 3.2 and 3.3). Thus, we illustrate how the reiteration technique works only
in a single case, and omit the proofs of the remaining assertions.

Throughout this section, ψ and φ are same as defined in Theorem 3.2.

Theorem 6.1 Let 0 < m, q ≤ ∞, 0 < r < ∞ , 0 < θ < 1, and let (w, v) be a pair
of admissible weights.

(a) Let 0 < q,m < ∞, and put

η1(t) = v(φ(t))

[
t

w(φ(t))

]q/m

, 0 < t < 1.
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Assume that η1 satisfies (Hm). Then

(�q(w),G�(q,m; v,w))θ,r = G�(q, r; V1, w),

where

V1(t) =
(
1 +

∫ 1

ψ(t)
ηm1 (u)

du

u

)θ/m−1/r

vm/r (t), 0 < t < 1.

(b) Let 0 < m < ∞ and q = ∞. Assume that w is strictly increasing and
differentiable on (0, 1) with lim

t→0+ w(t) = 0 and lim
t→1− w(t) = 1. Put

η2(t) = v(w−1(t))

[
t

w−1(t)w′ (w−1(t)
)
]1/m

, 0 < t < 1,

and assume that η2 satisfies (Hm). Then

(�∞(w),G�(∞,m; v,w))θ,r = G�(∞, r; V2, w),

where

V2(t) =
(
1 +

∫ 1

w(t)
ηm2 (u)

du

u

)θ/m−1/r

vm/r (t), 0 < t < 1.

(c) Let m = ∞ and 0 < q < ∞. Assume that ρ = 1/v is strictly increasing and
differentiable on (0, 1) with lim

t→0+ ρ(φ(t)) = 0 and lim
t→1− ρ(φ(t)) = 1. Assume further

that v(φ) satisfies (H∞). Then

(�q(w),G�(q,∞; v,w))θ,r = G�(q, r; V3, w),

where

V3(t) = vθ (t)
[
twq(t)ψ−q(t)v(t)ρ′(t)

]1/r
, 0 < t < 1.

(d)Letm = q = ∞. Assume thatw is strictly increasing and differentiable on (0, 1)
with lim

t→0+ w(t) = 0 and lim
t→1− w(t) = 1. Assume further that v(w−1) satisfies (H∞)

and that ρ = 1/v is strictly increasing and differentiable on (0, 1)with lim
t→0+ ρ(t) = 0

and lim
t→1− ρ(t) = 1. Then

(�∞(w),G�(∞,∞; v,w))θ,r = G�(∞, r; V4, w),

where

V4(t) = vθ (t)
[
t2v(t)(w(t))−1w′(t)ρ′(t)

]1/r
, 0 < t < 1.
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Proof We give the argument only in the first case. Using Theorem 3.2, we can write

(�q(w),G�(q,m; v,w))θ,r = (�q(w), (�q(w), L∞)η1,m)θ,r ,

now an application of Theorem 5.2 yields

(�q(w),G�(q,m; v,w))θ,r = (�q(w), L∞)η̃1,r ,

where

η̃1(t) = V1(φ(t))

[
t

w(φ(t))

]q/r

, 0 < t < 1.

Temporarily set X = (�q(w), L∞)η̃1,r and take f ∈ �q(w). Then

‖ f ‖rX =
∫ 1

0
η̃r1(t)K

r (t, f ;�q(w), L∞)
dt

t
,

now a change of variable t = ψ(s) gives

‖ f ‖rX =
∫ 1

0
η̃r1(ψ(s))Kr (ψ(s), f ;�q(w), L∞)

ψ ′(s)
ψ(s)

ds,

next using Lemma 3.1, we arrive at

‖ f ‖rX ≈
∫ 1

0
η̃r1(ψ(s))

(∫ s

0
[w(τ) f ∗(τ )]q dτ

τ

)r/q
ψ ′(s)
ψ(s)

ds,

or,

‖ f ‖rX ≈
∫ 1

0
Vr
1 (s)

(∫ s

0
[w(τ) f ∗(τ )]q dτ

τ

)r/q ds

s
,

whence we get X = G�(q, r; V1, w) as desired. �
Theorem 6.2 Let 0 < m, r < ∞ and 0 < q ≤ ∞ , 0 < θ < 1, and let (w, v0) and
(w, v1) be two pairs of admissible weights.

(a) Let 0 < q < ∞. For j = 0, 1, put

σ j (t) = v j (φ(t))

[
t

w(φ(t))

]q/m

, 0 < t < 1,

and assume that ρ = σ0/σ1 is strictly increasing on (0, 1) with lim
t→0+ ρ(t) = 0 and

lim
t→1− ρ(t) = 1. Assume further that σ1 satisfies (Hm) and that there exists c1 ∈ (1,∞)
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and c2 ∈ (0, 1) such that

(
1 + ∫ 1

t σm
0 (u) duu

1 + ∫ 1
t σm

1 (u) duu

)1/m

< c1ρ(t), 0 < t < 1, (6.1)

and

ρ(t) < c2

(
1 + ∫ 1

t σm
0 (u) duu

1 + ∫ 1
t σm

1 (u) duu

)1/m

, 0 < t < 1/2. (6.2)

Then

(G�(q,m; v0, w),G�(q,m; v1, w))θ,r = G�(q, r; V1, w),

where

V1(t) =
[
v0(t)

v1(t)

](1−θ)

v
m/r
1 (t)

(
1 +

∫ 1

ψ(t)
σm
1 (u)

du

u

)1/m−1/r

, 0 < t < 1.

(b) Let q = ∞. Assume that w is strictly increasing and differentiable on (0, 1)
with lim

t→0+ w(t) = 0 and lim
t→1− w(t) = 1. For j = 0, 1, put

δ j (t) = v j (w
−1(t))

[
t

w−1(t)w′ (w−1(t)
)
]1/m

, 0 < t < 1

and assume that ρ = δ0/δ1 is strictly increasing on (0, 1) with lim
t→0+ ρ(t) = 0 and

lim
t→1− ρ(t) = 1. Assume further that δ1 satisfies (Hm) and that there exists c1 ∈ (1,∞)

and c2 ∈ (0, 1) such that

(
1 + ∫ 1

t δm0 (u) duu

1 + ∫ 1
t δm1 (u) duu

)1/m

< c1ρ(t), 0 < t < 1,

and

ρ(t) < c2

(
1 + ∫ 1

t δm0 (u) duu

1 + ∫ 1
t δm1 (u) duu

)1/m

, 0 < t < 1/2.

Then

(G�(∞,m; v0, w),G�(∞,m; v1, w))θ,r = G�(∞, r; V2, w),

where

V2(t) =
[
v0(t)

v1(t)

](1−θ)

v
m/r
1 (t)

(
1 +

∫ 1

w(t)
δm1 (u)

du

u

)1/m−1/r

, 0 < t < 1.



Journal of Fourier Analysis and Applications (2022) 28 :54 Page 21 of 23 54

7 Special Cases

Throughout this section, we let 0 < θ < 1 and 0 < r < ∞.
(i) Let 0 < p, q,m < ∞, and let v ∈ SV . Take w(t) = t1/p, then ψ(t) ≈ t1/p.

Now, in view of Proposition 2.1 (vi), we can see easily that η1 satisfies (Hm). Thus,
according to Theorem 6.1 (a), we have

(L p,q , L(p,q,m
v )θ,r = L(p,q,r

V , (7.1)

where

V (t) =
(
1 +

∫ 1

t
vm(u)

du

u

)θ/m−1/r

vm/r (t), 0 < t < 1.

Here L(p,q,m
v is the small Lorentz space considered in [3] (see Remark 2.5). Thus,

interpolation formula (7.1) provides a limiting version of the interpolation formula
contained in [3, Theorem 5.3]. In addition, if we take 1 < p = q < ∞, m = 1,
and v(t) = (1 − ln t)−1/p in (7.1), then we recover the interpolation formula in [2,
Corollary 3.2].

(ii) Let 0 < p, q < ∞ and let α, β ∈ R with α < β. Take w(t) = t1/p(1 − ln t)α ,
v(t) = (1− ln t)β−α−1/q and m = q. Now we have ψ(t) ≈ t1/p(1− ln t)α . Thus, we
can check easily that

[ψ(t)]−1
(∫ t

0
[ψ(u)]q vq(u)

du

u

)1/q

�
(
1 +

∫ 1

t
vq(u)

du

u

)1/q

, 0 < t < 1.

Consequently, η1 satisfies (Hq ). Thus, we can apply Theorem 6.1 (a) to obtain the
following description of interpolation spaces between Lorentz–Zygmund spaces (in a
limiting case):

(
L p,q(log L)α, L p,q(log L)β

)
θ,r = G�(q, r , V , w), (7.2)

where

V (t) = (1 − ln t)θ(β−α)−1/r , 0 < t < 1.

The interpolation spaces
(
L p,q(log L)α, L p,q(log L)β

)
θ,r have already been charac-

terized in [25, Theorem 6 (c)], but the description given there is theoretical and
complicated. On the other hand, the formula (7.2) provides a concrete description in
terms of generalized gamma spaces.

(iii) Assume that w0 is strictly increasing and differentiable on (0, 1) with
lim
t→0+ w0(t) = 0 and lim

t→1− w0(t) = 1.Letw1 be anotherweight such thatρ = w0/w1 is

strictly increasing and differentiable on (0, 1) with lim
t→0+ ρ(t) = 0 and lim

t→1− ρ(t) = 1.

We can check easily that v(w−1
0 ) satisfies (H∞). Thus, by Theorem 6.1 (d), we have

(�∞(w0),�
∞(w1))θ,r = G�(∞, r; V , w0), (7.3)
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where

V (t) =
[

w1(t)

w0(t)

]θ [
t2w1(t)(w0(t))

−2w′
0(t)ρ

′(t)
]1/r

, 0 < t < 1.

The interpolation formula (7.3) complements the diagonal case (r = ∞) considered
in [9, Theorem 4.4].

(iv) If we take 1 < q < ∞, m = 1, w(t) = t1/q and v j (t) = (1− ln t)−α j /q+α j−1

( j = 0, 1) with 0 < α0 < α1 < ∞ in Theorem 6.2 (a), then we recover the interpola-
tion formula in [4, Theorem 7]. Indeed, all the conditions necessary to apply Theorem
6.2 (a) are trivially met as σ j ≈ v j .
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