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Abstract

In this paper we discuss and prove an analogy of the Carleson—Hunt theorem with
respect to Vilenkin systems. In particular, we use the theory of martingales and give
a new and shorter proof of the almost everywhere convergence of Vilenkin—Fourier
seriesof f € L,(Gy,) for p > 1incase the Vilenkin system is bounded. Moreover, we
also prove sharpness by stating an analogy of the Kolmogorov theorem for p = 1 and
construct a function f € L1(Gy,) such that the partial sums with respect to Vilenkin
systems diverge everywhere.

Keywords Fourier analysis - Vilenkin system - Vilenkin group - Vilenkin—Fourier
series - Almost everywhere convergence - Carleson—Hunt theorem - Kolmogorov

theorem
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1 Introduction

In 1947 Vilenkin [61-63] investigated a group G,,, which is a direct product of the
additive groups Z,, := {0,1,...,my — 1} of integers modulo my, where m :=
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(mo, m1, ...) are positive integers not less than 2, and introduced the Vilenkin systems
{y j}‘]’.‘;o. These systems include as a special case the Walsh system.

The classical theory of Hilbert spaces (for details see e.g the books [58, 60]) says
that if we consider the partial sums S, f := ZZ;& f(k) Yk, with respect to Vilenkin
systems, then

ISn fll2 < 1 f12-

In the same year Schipp [45], Simon [51] and Young [67] (see also the book [49])
generalized this inequality for 1 < p < oo: there exists an absolute constant ¢,
depending only on p, such that

ISnfll, < cpllfll,, when f € Lp(Gp).
From this it follows that for every f € L,(G,) with1 < p < oo,
1S f — fll, = 0, asn — oo.

The boundedness does not hold for p = 1, but Watari [64] (see also Gosselin
[23] and Young [67]) proved that there exists an absolute constant ¢ such that, for
n=1,2,..., the weak type estimate holds:

yullSafl >yt <clflly, fe€Li(Gn), y=>0.

The almost-everywhere convergence of Fourier series for L, functions was pos-
tulated by Luzin [39] in 1915 and the problem was known as Luzin’s conjecture.
Carleson’s theorem is a fundamental result in mathematical analysis establishing the
pointwise (Lebesgue) almost everywhere convergence of Fourier series of L func-
tions, proved by Carleson [10] in 1966. The name is also often used to refer to the
extension of the result by Hunt [26] which was given in 1968 to L, functions for
p € (1, 00) (also known as the Carleson—Hunt theorem).

Carleson’s original proof is exceptionally hard to read, and although several authors
have simplified the arguments there are still no easy proofs of his theorem. Expositions
of the original Carleson’s paper were published by Kahane [28], Mozzochi [40], Jors-
boe and Mejlbro [27] and Arias de Reyna [43]. Moreover, Fefferman [16] published
a new proof of Hunt’s extension, which was done by bounding a maximal operator of
partial sums

S*f ‘= sup |Snf| .
neN

This, in turn, inspired a much simplified proof of the L, result by Lacey and Thiele [35],
explained in more detail in Lacey [33]. The books Fremlin [17] and Grafakos [24] also
give proofs of Carleson’s theorem. An interesting extension of Carleson—Hunt result
much more closer to L space then L, for any p > 1 was done by Carleson’s student
Sjolin [56] and later on, by Antonov [2]. Already in 1923, Kolmogorov [31] showed
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that the analogue of Carleson’s result for L is false by finding such a function whose
Fourier series diverges almost everywhere (improved slightly in 1926 to diverging
everywhere). This result indeed inspired many authors after Carleson proved positive
results in 1966. In 2000, Kolmogorov’s result was improved by Konyagin [32], by
finding functions with everywhere-divergent Fourier series in a space smaller than L,
but the candidate for such a space that is consistent with the results of Antonov and
Konyagin is still an open problem.

The famous Carleson theorem was very important and surprising when it was
proved in 1966. Since then this interest has remained and a lot of related research has
been done. In fact, in recent years this interest has even been increased because of the
close connections to e.g. scattering theory [41], ergodic theory [14, 15], the theory of
directional singular integrals in the plane [4, 11, 13, 34] and the theory of operators
with quadratic modulations [36]. We refer to [33] for a more detailed description of
this fact. These connections have been discovered from various new arguments and
results related to Carleson’s theorem, which have been found and discussed in the
literature. We mean that these arguments share some similarities, but each of them has
also a distinct new idea behind, which can be further developed and applied. It is also
interesting to note that, for almost every specific application of Carleson’s theorem in
the aforementioned fields, mainly only one of these new arguments was used.

The analogue of Carleson’s theorem for Walsh system was proved by Billard [5]
for p = 2 and by Sjolin [55] for | < p < oo, while for bounded Vilenkin systems
by Gosselin [23]. Schipp [46, 47, 49] investigated the so called tree martingales,
i.e., martingales with respect to a stochastic basis indexed by a tree, and generalized
the results about maximal function, quadratic variation and martingale transforms to
these martingales (see also [48, 65]). Using these results, he gave a proof of Carleson’s
theorem for Walsh—Fourier series. A similar proof for bounded Vilenkin systems can
be found in Schipp and Weisz [48, 65]. In each proof, they show that the maximal
operator of the partial sums is bounded on L,(G), i.e., there exists an absolute
constant ¢, such that

|S* I, <ecplfllp. asfeLlpGm). 1<p<oo.

Recent proof of almost everywhere convergence of Walsh—Fourier series was given
by Demeter [12] in 2015. By using some methods of martingale Hardy spaces, almost
everywhere convergence of subsequences of Vilenkin—Fourier series was considered in
[8]. Antonov [3] proved that for f € Li(log™ L)(log™ log* log™ L)(G,,) its Walsh—
Fourier series converges a.e. Similar result for the bounded Vilenkin systems was
proved by Oniani [42]. However, there exists a function from L (log™ log™ L)(G )
whose Vilenkin—Fourier series diverges everywhere, where in this result G, is a
general (not necessary “bounded”) Vilenkin group (see Tarkaev [59]).

Stein [57] constructed an integrable function whose Walsh—Fourier series diverges
almost everywhere. Later Schipp [44, 49] proved that there exists an integrable function
whose Walsh—Fourier series diverges everywhere. Kheladze [29, 30] proved that for
any set of measure zero there exists a function in f € L,(Gy,) (1 < p < 00)
whose Vilenkin—Fourier series diverges on the set, while the result for continuous
or bounded function was proved by Harris [25] or Bitsadze [6]. Moreover, Simon
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[53] constructed an integrable function such that its Vilenkin—Fourier series diverges
everywhere. Bochkarev [9] considered rearrangements of Vilenkin—Fourier series of
bounded type.

It is not known whether Carleson’s theorem holds for unbounded Vilenkin systems.
However, some theorems were proved for unbounded Vilenkin systems by Gat [18—
21], Simon [52, 53] and Tarkaev [59].

In this paper, we use the theory of martingales and give a new an shorter proof
of the almost everywhere convergence of Vilenkin—Fourier series of f € L,(Gp)
for p > 1 in the case the Vilenkin system is bounded. The positive results of this
paper are derived in Sect. 3. In Theorem 2 we prove the boundedness of the maximal
operator on L, (1 < p < 00) spaces. By using this result, we derive the L, norm
convergence of the partial sums of Vilenkin—Fourier series (Theorem 3) as well as the
analogue of the Carleson—Hunt theorem, i.e., the almost everywhere convergence of
the partial sums of f € L, (Theorem 4), when 1 < p < oo. The proof is built up
by proving some new lemmas of independent interest. The corresponding sharpness
and almost everywhere divergence are stated and proved in Sect. 4, see Theorems 5
and 6. Especially Theorem 6 is the Kolmogorov type result and also here the proof is
built up by proving some lemmas of independent interest. In order not to disturb our
discussion later, some necessary preliminaries are presented in Sect. 2.

2 Preliminaries

Denote by N the set of the positive integers, N := N U {0}. Letm := (mgo, my, ...)
be a sequence of the positive integers not less than 2. Denote by

Zp, =10, 1,...,m — 1}
the additive group of integers modulo m.

Define the group G,, as the complete direct product of the groups Z,,, with the
product of the discrete topologies of Z,, ;’s. The direct product 4 of the measures

wi () = 1/mp (j € Zmy)
is the Haar measure on G,, with i (G,,) = 1. In this paper we discuss bounded
Vilenkin groups, i.e. the case when sup,, m, < oo.
The elements of G, are represented by sequences
X = (xo,xl,...,xj, ) (xj S ij).
It is easy to give a base for the neighborhood of G, :
Io(x) :=Gp, Iy(x):={y € G | Yo =%X0,--+, Yn—1 = Xn—1},

where x € G,,, n € N. Denote [, := I, (0) forn € N, and I, := G, \ I.
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If we define the so-called generalized number system based on m by
My :=1, Mgy :=mM; (keN),

then every n € N can be uniquely expressed as n = Z?io njMj, wherenj € Zy;
(j € Ny) and only a finite number of n; ‘s differ from zero. For two natural numbers
n=3 2 njMjandk =Y 72, k;jM;, we define that

00
n@k::Z((nj—i—kj) (modml-))Mj, nj,kjeij.
i=0

Next, we introduce on G, an orthonormal system which is called the Vilenkin sys-
tem. First, we define the complex-valued function r¢ (x) : G,, — C, the generalized
Rademacher functions, by

rr (x) ;= exp Qmixg/my), <12 =—1, xe Gy, ke N) .

Now, define the Vilenkin system 1 := (i, : n € N) on G, as:
o0
Yn@)=[[r* ). (neN).
k=0

Specifically, we call this system the Walsh-Paley system when m = 2. The norms (or
quasi-norms) of the spaces L, (G,,) (0 < p < 00) is defined by

IF1p = / |f17dp.
G

The Vilenkin system is orthonormal and complete in L, (G,,) (for details see e.g. the
books [1, 49]).

Now, we introduce analogues of the usual definitions in Fourier-analysis. If f €
L1 (G,,), we can define the Fourier coefficients, the partial sums of the Fourier series,
the Dirichlet kernels with respect to the Vilenkin system in the usual manner:

foy = f fUadp, (n €N)
G
n—1 n—1

Suf =Y FU)yrand Dy =Y Yy, (neNy)

k=0 k=0
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respectively. Recall that (see e.g. Simon [50, 54] and Golubov et al. [22])

el my, if x =0,

; i) = {o, if ¢ # 0. )
and

My, if x ey,
DMH(X)—{O, ifx g I, @

It is known that (for the details see e.g. [1, 7, 37, 38]) there exist absolute constants
Cy and C; such that

Cin < ”an‘

, < Can,  forg, = Moy + May—2 + Mz + M. 3

A function P is called Vilenkin polynomial if P = Y "}_ cx k. The spectra of the
Vilenkin polynomial P is defined by

sp(P)={neN:P@n) #0.}

3 Martingale Inequalities

We will also need some martingale inequalities. The o -algebra generated by the inter-
vals {I, (x) : x € G,,} will be denoted by JF,, (n € N). If F denotes the set of Haar
measurable subsets of G,,, then obviously &, C &F. By a Vilenkin interval we mean
one of the form I,(x), n € N, x € G,,. The conditional expectation operators
relative to F), are denoted by E,,. An integrable sequence f = (f),c is said to be a
martingale if f;, is F,,-measurable foralln € Nand E,, f,, = f, inthecasen < m. We
can see thatif f € L1(Gy,), then (E, f),cN is a martingale. Martingales with respect
to (I, n € N) are called Vilenkin martingales. It is easy to show (see e.g. Weisz [65,
p. 11]) that the sequence (¥, n € N) is regular, i.e.,

o < Rfp1 (neN) “

for all non-negative Vilenkin martingales ( f;,), where R := max,cN my,.
Using (2), we can show that E,, f = Sy, f forall f € L,(Gy) with1 < p < o0
(see e.g. [65, Sect. 1.2]). By the well known martingale theorems, this implies that

|Sa, £, < epllfll,. forall feLy(Gn)whenl < p < oo
and
|Su, f = £, — 0. as n— oo forall feLy(Gm)when p=1. (5
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For a Vilenkin martingale f = (f,),cn, the maximal function is defined by

fr= sup | ful .

neN

For a martingale f = (f;,),>0 let

dnf = fn - fn—l (n>0)

denote the martingale differences, where f_; := 0. The square function and the
conditional square function of f are defined by

00 172 00 1/2
S(f) = (DMF) . s(f) = <|dof|2 +ZEn|dn+1f|2> :
n=0 n=0

We have shown the following theorem in [65].

Theorem1 If0 < p < o0, then
||f*||p ~ SO, ~ Is(HI, -
If in addition 1 < p < oo, then

||f*||p ~ AL, -
We will use the following convexity, concavity theorem proved in [65].

Proposition 1 Ler T be a countable index set and (A;,t € T) be an arbitrary (not
necessarily monotone) sequence of sub-o-algebras of F. Suppose that for all h €
Ly(Gy) and all 1 < p < 00 Doob’s inequality

sup |E:h|
teT

= Cpllnlip
P

holds where E; denotes the conditional expectation operator relative to A;. If (fz, t €
T) is a sequence of non-negative measurable functions, then for all 1 < p < oo,

p p
/(Zaﬁ) an=c, [ (Zﬁ) d
Gom teT Gnm teT

and forall 0 < g <1,

/ (Z ﬁ)q dp < cq/ (Z Etft>q du.

Gom teT Gom teT

Birkhauser



48  Page 8o0f29 Journal of Fourier Analysis and Applications (2022) 28:48

4 A.E. Convergence of Vilenkin-Fourier Series
We introduce some notations. For j, k € N we define the following subsets of N :
Iy, = M. jMi + M) NN
and
J.= {I}‘Mk 1 j, k€ N}.
We introduce also the partial sums taken in these intervals:

s fi= Y Flv.

J My
ielk
JMy

For simplicity, we suppose that f(O) = 0. The last author has proved in [66] that, for
an arbitrary n € ]k M

Sity S = VnEi (F ). ©)

For
o0
n:anMj O =<n; <mj),
=0

we introduce

o0
nk) = anMj, I,/f(k) = [n(k), n(k) + Mk) (n e N). @)
=k
For I = Irl:(k)’ let
T!f = Tho f .= S wuf ®)
[n(k+1),n(k))DJeI
[J =M}

Since Ir]l‘(k) = I;]l‘(k) implies n(k 4+ 1) = 7i(k + 1), the operators T (I € J) are well
defined. Note that there are n; summands in (8).

Lemma 1 Foralln € N, we have

00 ‘ oo ng—1 B
$uf = Do) = 3 ST (de (7)),
k=0 k=0 =0
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where I”;(k) is defined in (7).
Proof We sketch the proof, only. It is proved in [66] that
k ~
rhof= Y F(v

jeln(k+1),n(k))

np—1

= LT "Ex (et (£9,) 7). ©)

Moreover, n is contained in / r]l‘(k) and / ,'l‘(k) c Ikt n(k + 1) Since

o
[0,n) = [ J[n(k + 1), n(k)),

k=0

we get that
el
Suf =y Thof.
k=0

This finishes the proof of Lemma 1. O

Lemma?2 Forallk,n € N, we have

o f| = RE s )
T nk) < RE —
‘ | = RE[sin, /=i, 1)
where R := max(m,,n € N).
Proof Equalities (9) and (6) imply
k —
T £ < myEx (|disr (£7,)]) (10)
< REi (|[YnExs1 (FV0) — YnEx (F¥,)])
= REx <‘S1ﬁ(tl+l> n<k>f‘>
which shows the lemma. O

— k
Lemma3 Foralln € N, (wnTI"(“f)k N is a martingale difference sequence with
€

respect to (Fy4+1)keN-

J— k
Proof First, i, ) fis Fr+1 measurable because of (9) and the fact that ry is Fr4 |
measurable. Since Ek(r,‘() =0fori=1,...,m, — 1, we can see that

Ex (E”Tlf(k)f) (""2:1 T E (dk+1(f1/fn)V"k l)) =0,
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hence
ng—1
_ng—I — —l
(E:;{k Ek(dbﬂ(f¢ﬁﬁfk ))
=0 keN
is a martingale difference sequence. O

Before proving our main theorem, we need some further notations and lemmas. In
what follows, I, J, K denote some elements of J. Let

Fx :=F, and Eg :=E, if|[K|=M,.

Assume that € = (eg, K € J) is a sequence of functions such that ex is Fx measur-
able. Set

Te.1gf = Z 6KTKf

ICKCJ

and
TZ f =sup|Teq s fl,  T)f :=sup|TS, fl.
IcJ 1€d

If ex(t) = 1forall K € Jand t € G, then we omit the notation € and we write
simply 77 7 f, T/ f and T* f.

ForI € Jwith |I| = M,,,letI* € Jsuchthat C I* and || = M, . Moreover,
let I~ € J denote one of the sets I~ C I with |[I~| = M, _;. Note that F;- = F,,_;
and E;- = E,_; are well defined. We introduce the maximal functions

s7f = sup Eg-|sk f|
Kcl

and

s*f :=supsj f.
I1€]

Since |s;+ f| is I+ measurable, by the regularity condition (4),
ls;+ f1 < RE[|s;+ f| < Rs}y f. (11)
Lemma4 For any real number x > 0 and K € J, let
€K = X{teGm:x<s*I‘<+f(t)§2x}
and
OK ‘= XG5 f(O)>x.s7 f()<x,]CK}-
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Then

Te*f <2 sup ag T:Kf + 4R2XX{tEG,,,:s*f(t)>x}-
Kel

Proof Letus fix I C JinJandtin G,,. Set
TK = X{teGpish f>x) (K €7J).
Therefore ey = tx+€ek. Consequently, if the set

{(Kel:ICKCJ,tx+(t) =1}

12)

isempty then T,.; 7 f (t) = Oorelse let K be its minimum element. Moreover, denote

by K/ one of the minimum elements of the set
(KeJ:KCK, x(t)=1}.
This means that if L C Ko, then 77, (#) = 0. Thus ak, () = 1 and

Ter g f() = Teky g f() = e, T f(@O) + T, £ (D)

= e, T8 £ + axy () (Tekous SO = Ty k1 FO)) -

By Lemma 2 and (11),

ek T f1 < Rex, Ex, (Isgs £ = sk, /1)

< 2R2€K1 Ek, (€K15,*(1+ f) < 4R2XX{teGm:s*f(t)>x}~

On the other hand,

Teokos O = Ty i FO] <270, £ O,

Taking the supremum over all I C J, we get (12).

Now we introduce the quasi-norm || - || ,.4 (0 < p, g < 0o0) by
1
r/q '
1/ 1lp.q = supx / (Zaz) du| .
x>0 1T

m

where «; is defined in Lemma 4. Observe that «; can be rewritten as

O i= X(1€Gm:E —|si fO)|>x,E |5y f(0)|<x,J CI}-

(13)
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Denote by PP:4 the set of functions f € L; which satisfy || f|l,,, < oo. For
q = 00, define

l/p
b4
I fllp,0o :=supx / (supa;) du O < p < o).

x>0 I1€d

m

It is easy to see that

[fllpoo = 1fllpg (0 <g <00

and

1f 1l poo = supxpu(s*f > x)'/P.
x>0
Lemma5 Let max(l, p) < g <oo, f € PP9and x,z > 0. Then

—q - p
n (iugalT:;[f > Z.X) = Cp,qZ 9x P”f”p,qy
€

where o is defined in Lemma 4.

Proof Equality (9) implies that
§TR () =TH(f9)

for any Fx measurable function £. By Lemma 3, for a suitable n € I, (v, T f)
is a martingale difference sequence relative to (Fg+);cx. We have

ICK

15 f=sw| S e T f| =swp| 3 K (fe)]

I/ lickcy Iy lickcy

Using Burkholder—-Gundy’s inequality (see Theorem 1) together with (10), we obtain

Po/2
E; (IT f17°) < CpoEy (Z %TK(feK)F)

ICK

Po/2
< CpEr (Z EK|dK+<feK%>|2) :

ICK
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where po > 1. Applying again Theorem 1, one can establish that

Po
Er (1T f17°) < CpoEr | Y dig+ (fex )

ICK

Po
=CpEr | ) exdg+(fVr,)

ICK

For fixed I and t € G, let us denote by Ko(t) € J (resp. K1(t) € J) the smallest
(resp. largest) interval K D I for which eg ) = 1 (resp. €g, () = 1). Then

Yn(t) Y ex (Ddg+ (f,)(0)
ICK

=Yu(t) Y ex®dg+(f,)(0)

Ko(t)CKCK /(1)
= ek, (0 @) (Vn O Eg, 0+ (F V) @) — Yn () Ekoey (fY,) (1))
€k () (SKl(t)‘*'f(t) - Sko(z>f(t)) .

By (11) and by the definition of ek,
ek @ |k, () = sk [ D]

< Rexy O (5§, £ O + 5y ) (14)
< 2Re,<1(t)(t)s}‘<1(t)+f(t) < 4Rx.

Hence
Er (IT} f17°) < Cpox™.

By Tsebisev’s inequality and the concavity theorem (see Proposition 1), for py >
g > 1, one can see that

q
I (SUPazT:fzf > ZX> < (zx)™1 / (SupazT;‘fzf) dp
1€d ’ 1€d ’

m

q/po
< (zx)fq/ (ZalTLf”“> du

Gom 1€J

q/po
< Cpyen ™ [ (ZazEz (T;tffm)) i

Gom 1€l

q/po
Ecpo)qz_q/ (Za]) d/./l,

Gm 1€]
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Set po :=¢>/p > q > 1 and observe that

r/q
W (supouTe*;If > zx) < Cp,qz_q/ (Zaz) dp
G

I1€J Icd
—q .- p
< Cpgz x| fllp.gs
which shows the lemma. O

Lemma6 Let max(l, p) <q <ooand f € PP9. Then

sup v/ (T*f > 2 +8R)Y) = Cpll flpg-
y>0

Proof First we define a decomposition generated by the sequences e* = (e’l‘(, K €7),
where

ek = KueGuat<st, =ity (k € ).
Notice that (10) and (14) imply
XireGs fi=0y TX f = X{teG,,,:s*f(t:O}X{teG,,l:s*I‘(+f(t)=0}TKf =0.
Henceforth

TXf = xucGusra=0 T F =) exT*f
keZ

and

T*f <Y Tif.

keZ

Let us apply Lemma 4 to €X and x = 2% to write

k k+2 p2
Taf = 2k ok 2R e p =2
€

where
k.
Ak = X(1eGpsy f)=20sirm<2kicky (K €7).
Choosing j € Z such that 2/ < y < 2/%1 we get that

XiteGus* fiyen T f <2 Z sup Thxf+ Z2k+2R2X{teGm:s*f(t)>2k}

k<j K€ k<j
< 22 sup a’,‘(Tj(_Kf + 8R?%y.
k< KeJ ’
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By Lemma 5, for any k € Z and z; > 0, we have

m <su1; a’,‘(T:,‘(;Kf > zk2k> < Cpazt 127PRIFID 4 (15)
Ke

Consequently,
yp,u(T*f Q24+ 8R2)y) < VP u(s*f> y)—i—pr(T*f >~ (2+8RYy, s f Sy)

k
<Moo+ Y7 | D supak T o f > ¥
k<j KeJ

<Ufpg+ 3P | D supakTh  f > 2/

To use (15), observe that cg Yy ; 2P*~) = 1if > Oand ¢y = 1 —27F. Set
2eg2Ph=D) — yB=DG=gk . ok,

Then for 8 = (¢ — p)/(2q), we get

Z,:qZ_”k < Cp’qz—pjzp(j—k)+q(ﬂ—l)(j—k) < Cp,qy—pz(q—p)(k—j)ﬂ,

Thus, by (15),

m Z sup oz';{Té*k;Kf >2/ | < Zu <sup oe';{T:‘k;Kf > zk2k>
k<j eJ k<j Kel

—q~—pk
<Cpg Y 271l
k<j

< Cp’qy*P”f”Z’q Z 2(q=p)k=j)/2
k<j

- p
<Cpgqy p”f”p,qa
so the lemma is proved. O

Let A denote the closure of the triangle in R? with vertices (0, 0), (1/2, 1/2) and
(1, 0) except the points (x, 1 —x), 1/2 <x < 1.

Lemma7 Supposethat1 < p,q < oo satisfy (1/p, 1/q) € A. Then, forall f € L,
1 fllpg = Cpgll fllp-
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Proof For an arbitrary x > 0, let us use the definition of «; given in (13). Then «; is
F ;- measurable and, obviously,

[X[(XJZO if Ig] or Jg[.

For all 1 € J, introduce the projections Fj := ays; and observe that s; o s; = 0 for
every incomparable / and J. Therefore, we get for every g € Ly and I, J € J that

Fi(Fjg)=oaysi(sy(ayg)) = si(ajoysyg) =985 5Fg,

where &7 s is the Kronecker symbol. Thus the projections F; are orthogonal and
Bessel’s inequality implies for any g € L, that

I(Frg. 1 € DI,y = Y IF1gl5 < lgll3-
I€d

Let us introduce the operators
Gig:=E-(niFrg) (g€Li, 1€,

where (n;, I € J) is a fixed sequence of functions satisfying [|7;]lcc < 1 for each
I € 7. Then

1Grg. T € DI < / S B IFiglP du
G

- I1€]
=/ZIF1gI2d/LS lgl3-
Gom I1€]
Furthermore, by Doob’s inequality,
1(Grg, I €Dl a.) = ||sup E-1gl]| =< Csliglls
I€]

N
forany 1 <s < ooand g € L. It follows by interpolation that
1Grg.1 €DllL,a, < Crgllglly, (g €Ly

where 1 /p=(1—1)/24+¢t/sand 1/q = (1 —t)/2forany 0 < ¢ < I. Setting g := f
and n; := sign s; f, we have

1/p

r/q
/(Z(azEz—ls/fl)q> du| < Cpgllflp.

Gm 1€]
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Using the fact that
arEj-|s; f| > xay,

we can see that

1/p

rla
* /(Za;) du| = Coglflp

Gom Ie€d

which finishes the proof.
Now we are ready to formulate our first main result.

Theorem 2 Let f € L,(Gy), where 1 < p < oo. Then
IS* 1, < epll £l
where

S*f :=sup|S,fl.
neN

Proof 1t is easy to see that Lemma 1 implies S* f < T* f. It follows from Lemmas 6

and 7 that

su%yl’u (S*f > ) <Cplflp
y>

for I < p < oo. Now the proof of the theorem follows by the Marcinkiewicz inter-

polation theorem.

The next norm convergence result in L, spaces for 1 < p < oo follow from the

density of the Vilenkin polynomials in L ,(G,,) and from Theorem 2.

Theorem 3 Let f € L,(Gy), where 1 < p < oo. Then
I1S.f — fllp = 0, asn — oo.

Our announced Carleson—Hunt type theorem reads:

Theorem4 Let f € L,(Gy), where p > 1. Then

Spf — f, a.e,asn — oo.

The proof follows directly by using Theorem 2 and the fact that the Vilinkin poly-

nomials are dense in L .
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5 Almost Everywhere Divergence of Vilenkin-Fourier Series

A set E C Gy, is called a set of divergence for L,(G,) if there exists a function
f € Ly(G,,) whose Vilenkin—Fourier series diverges on E.

Lemma 8 IfE is a set of divergence for L1(G,), then there is a function f € L1(G,)
such that S* f = oo on E.

Proof We claim that given any g € L1(G,,), there is an unbounded monotone increas-
ing sequence A = (A i J € N) of positive real numbers and a function f € L1(Gp,)
such that

fGh=r8() (jeN). (16)

To prove this claim use (5) for p = 1 to choose a strictly increasing sequence of
positive integer n1, na, ... such that

1Sm,, 8 — gl < M{' (ke Ny). (17)

Consider the function f defined by

fr=g+i<g—SMnkg)~
k=1

By (17), the series converges in the norm of L;(G,,). In particular, f belongs to
L1(G,,) and

=80+ 3 [ (&= Sw,8) ¥yan
k:le

for j € N. Therefore, the claim follows from orthogonality if we set

=14+ > 1 (jeN).
keNJr:Mnkfj

To prove the theorem, suppose that g € L1(G,) is a function whose Vilenkin—Fourier
series diverges on E. Use the claim to choose a monotone increasing, unbounded
sequence A which satisfies (16). By Abel’s transformation,

n—1
1
Sng = Smg =Y (Sj11f = 8;f) =
j=m /
Sof  Swf Lo/ 1
n m
An—1 Am j:;&-l )‘jfl )‘j !
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for any integers n, m € N with n > m. Since X is increasing, it follows that

2
|Spg — Smgl < )\—S*f (n,m e N,n > m).
m

Since A is unbounded, it follows that S, g converge at x when S* f(x) is finite. In
particular, (S* f)(x) = oo forall x € E. O

Lemma9 A set E C Gy, is a set of divergence for L1(G,,) if and only if there exist
Vilenkin polynomials Py, P, ... such that

o0
> IPjI < o0 (18)
j=1
and
sup S*Pj(x) =00 (x € E). (19)

jeN4

Proof Suppose first that E is a set of divergence for L1(G,,). Let g € L1(G,,) be a
function whose Vilenkin—Fourier series diverges on E. By repeating the proof of
Lemma 8, we can choose an unbounded, monotone increasing positive sequence
(Aj, j € N) and a function f € L1(G,,) such that

S, S -l 1 1
Sug— Smg = L Sml > (———)ij

An—1 Am j=mtl )‘j—l )‘j

for all integers n,m € N, m < n.
Let (w;, j € N) be an unbounded sequence of positive, increasing numbers which
satisty

o0

1 1
(L) <o
PRV
For example, let
1
(,()J = 1 + 1 .
NZTERRN/A
Indeed, then
o0 o0
1 1 1 1 1
Z(T_/\-_>wj 52(,/» Y )= S
j=1 J J+l1 =1 J J+1 1
Fixx € E. If

1S f(0)] = O(wj), as j — oo,
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then
|S,g(x) — Spg(x)] — 0, as n, m — oo

and we get that S, g(x) is a convergent series for any x € E, which is contradiction.
Consequently, the inequality

[Sn f(xX)] > @y (20)

holds for infinitely many integers n € N.
Use (5) for p = 1 to choose strictly increasing sequences of positive integers
(nj,j € N)and (o, j € N) which satisfy n; < o + 1,

If = S, fll < M e2))

and

w,
15" Su,, Nlloo < =+ (G €N (22)
Consider the functions defined by
P =S, (f = Sw, /) ( €Ny).

Clearly, these functions are Vilenkin polynomials. We will show that they satisfy (18)
and (19). Since || Sy, hll1 < ||h]l1, for n € N and h € Li(G,,), (18) is a direct
consequence of (21). To verify (19), fix x € E and choose an n € N satisfying (20)
which is large enough so that ; < n < 11 for some j € N,. Since the definition

of P; implies
SnPj = Suf = Su(Sm, f),

we have by (20) and (22) that

Wy 1
[(Sa PH(O)] = [(Su fH(x)| = == = 7@

Hence (19) follows from the fact that w,, — o0 as n — oo.
Conversely, suppose that

M,

Pii= > v (@ €N, jeNy)
k=0

is a sequence of Vilenkin polynomials which satisfies (18) and (19). Let n| := o and
for j > Isetn; := 1+ max{n;_1,«;}. Then (n;, j € N) is a strictly increasing
sequence of integers and it is easy to see that
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Mnj+1 Dk > M,,j ® ko (23)

for any choice of integers ko and k; which satisfy 0 < kg < My i 0<k <M,
and j € N. Let

J+l

f= Z ¥m,, Pj
=1

and observe by (18) that f € L1(Gy,). Itis clear that the series defining f converges in
L1(G,;) norm. Consequently, this series is the Vilenkin—Fourier series of f. Moreover,
(23) can be used to see that

SMy+kf = Sm, [ = VYm, SkP;

for0 <k < M,,j g M, I j € N4. In particular, (19) implies the Vilenkin—Fourier
series of f diverges at each x € E. O

Corollary 1 If Ey, E», ... are sets of divergence for L1(G,,), then

is also a set of divergence for L1(Gy,).

Proof Apply Lemma 9 to choose Vilenkin polynomials Pl(n), Pz("), ... such that
oo
Y IPMI < 00
j=1

and

sup (S*P")(x) =00 (x € Ep.n € Ny). 24)
JENL

Thus there exist integers o] < a» < ... such that

X |o

J=0n

1
1<E (I’ZEN+).

Let (Q;, j € N) be any enumeration of the polynomials

{Pj("):jzoz,,,n=1,2,...}.

e.g.,
Q1= Py,

1
Q=P Q=P

. pM ._ p®? ._ p@
Qs4:=P, ), 0s:=Pg), Q¢:=PY,
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._ p ._ p® . p®@ . pW
Q7:=P, Q=P Qo:=Py\, 0u:="r;

_ p) _ p®? _ p® — p@ ._ p(Gs
On =Py Ly Q=P 13, Q13:=PF, 1, Qu:=PF, " Qi15:= POES) e

Each Q) is a Vilenkin polynomial and

o o0 l
Z 10l < ZE < o0.
j=1 n=1

In particular, by Lemma 9 it suffices to show that

sup (S*Qj)(x) = o0, for x € E.
JENL

But this follows from the construction and from (24) since every x € E necessarily
belongs to some E;,. O

Theorem5 If1 < p < ocoand E C G, is a set of Haar measure zero, then E is a set
of divergence for L ,(G,).

Proof We begin with a general remark. If A € G, is a finite union of intervals
I, I, ..., I, forsome n € N and if N is any non-negative integer, then there exists
a Vilenkin polynomial P such that, for some i > N,

M;—1

P= Y a

k=My

which satisfies

IP(x)| =1, (x € A)  and /|P|”d,u=,u(A).
G

Indeed, if i := max{My,1/u(I;) : 1 < j < n}, then, in view of (2), we find that
P := x(A)y; is such a polynomial.

To prove the theorem, suppose E € G, satisfies u(E) = 0. Cover E with intervals
(Ix, k € N) such that

D onh) <1
k=0

and each x € E belongs to infinitely many of the sets /. Set ng := 0 and choose
integers ng < ny < nj --- such that

Do <Myt (eN).

k=n/-
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Apply the general remark above successively to the sets

njp1—1
Aj=J k GeN
k:nj
to generate integers «g := 0 < o] < ap < --- and Vilenkin polynomials Py, Py, ...
such that sp(P;) C [Maj, Maj+1) :
Muj+1_1
Pi= 2. avi
k=M, .
J
1Py = n(A)) < M} (25)
and
|Pj(x)|=1 x€Aj, for jeN. (26)
Setting
[e )
=2 P
j=1

we observe by (25) that this series converges in L ,(G,,) norm. Hence f € L,(G,)
and this series is the Vilenkin—Fourier series of f. Moreover, since the spectra of the
polynomials P; are pairwise disjoint, we have

SMo;ir f = Smo, f = Pj (G €Ny).

Since every x € E belongs to infinitely many of the sets A, it follows from (26) that
the Vilenkin—Fourier series of f diverges at every point x € E. O

This theorem cannot be improved for 1 < p < 0o and measurable sets with non-
zero measure. Indeed, in this case the Vilenkin—Fourier series of an f € L,(Gp)
converges a.e. (see Theorem 4). However, it can be improved considerably for p = 1.

Theorem 6 There is a function f € L{(G,,) whose Vilenkin—Fourier series diverges
everywhere.

Proof Fix «,, € [Mn_l, M,,) , where n € Ny is odd. By using the lower estimate for
the Lebesgue constant in (3), we can conclude that there exists an absolute constant
C > 0, which does not depend on n, such that

op—1

Z Yk
k=0

= ”D‘xn

1>Cn.

1
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Consider the function

Dy, (x) .
n f D
gn(x) = { [Pay ]’ if Dy, (x) # 0,
O, if Dan (_x) — O

Itis constant on any set of the form 7, (x) , x € G,,. Hence g, is a Vilenkin polynomial
of order at most M,,. Moreover, since

Yk(x — 1) = Y ()Y () = Y (t), 0<k <M,, x € I,0).

we get that
Dy, (x —1) = Ba,,(t)a x € I,(0).

Hence, by the choice of i, € [M,,,l, M,) we have

(S(xngn) (x) = f 8n(t)Da, (x — 1) = ||D0tn e Cn, (x € 1,(0)).

G

For k = Z?;& ksMs, (ks € Z,,,), letusdefine the points x,i") eGy, O<k <M,
by x := (ko, k1, - ., kn—1,0,0,...) and set

M,—1 Mpyk—1 7S
=1 k
Qn = | | (1 _ Txlgil)gns—w> s Where Txlgn)gn(x) = gn(x - x]gn))'

k=0 My+k — 1
By using (1) we find that
n -1 .
Z;”:-i—k r;fl+k(-x) _ l, if Xn+k = O,
=1 _=r if 0 (27)
Mk — 1 Mmyix—1° Xntk 7
and
n _1 S .
XS @ [0 n =0, (28)
Myt — 1 + =T if X, # 0.
It is easy to show that for any x € G, there exists x;") = (Jo, j1s-++s jn-1,0,0,...)
such that I, (x) = I, (xj.”)), that is
X0 = Jo, X1 = JjI, Xu—1 = Jn—1-
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Consider the j-th term of the expression of Q, and let x € In(xﬁn)). Since

T .&n (x](n)) = g£,(0) = 1, according to (28) we can conclude that
J

1 1

Mmpj—1 ¢ Mptj—1
Zs:] rn+j(x) —1— Zs:l rn+j(x)

P rman ) +j— 1 mas —1 0 if Xy =0.
Since x € In(x;")) forsome 0 <k <M, — 1,
M,—1 mptk—1
S A A €9 .
On(x) = l_[ (1 -7 <n>gn(X)?_”+lk =0 if x,44 =0.
k=0 n

On the other hand, (27) and |7 o) g, (x)| < 1 imply that if x,4¢ 7# 0, we get that
k

mn+k_l rs My f— 1 S
-7 (")gn_S:1 ik <1+ |t.mwgn o=l Inth
Xk Myt — 1 & mptk — 1
<14+ 1 _ My +k
N Mptf — 1 mppp—1
It follows that
Myt
2.l <[] —*"1 if x€l,(x) and xpx £ 0, forall0 <k < M, — 1.
Mp+k —
k=0

Hence, we can conclude that Q,, € L1(G,,). Indeed,

f |Qnldn
G

mo—1 my—1—1my,—1 My My —1— My, — Mtk
e e _Tnrk g
Z Z Z Z /+Mn ) ( ) g

= 1
m _

X0=0  xuo1=0 xy=0  xprag,1=1" 1 ntk

mo—1 my—1—1m,—1 Mty —1—1 M,—1
=D DI DRI BENSLEN () y QL
N M Mpik — 1

x0=0 Xp—1=0 x,=0 XMy —1=1 n+My k=0 ntk

M, —1 mo—1 mp—1—1m,—1 My My —1—1
- (11 )Y Y Z > !
B M, ]_[M”_l m Mptk — 1
nllg=0 Mntk \ k=0 x0=0  xy-1=0 x,= Xt My—1=1

1 M, —1 " M,—1
k
= (1"[ ”—*)Mn [T e =D =1.
k=0

- M, _
M, szno Mutk \ =g Mntk 1
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Clearly, Q,, is a Vilenkin polynomial. Moreover, since the terms of the expanded
product have pairwise disjoint spectra, by expanding the product used to define Q,,

itiseasy tosee fork =0, 1,..., M, — 1 that

+1

SMyiitan On — SMy On = ————
Mpytk — 1

where + sign is if M,, — 1 is even number and — sign is if M;, — 1 is odd.

Since

|(SMe @n) )| < [ Dag i [ 1Qnlly < 1,

choice of the integers «,, therefore, for sufficiently large n imply

| (SMy it @n) ()| > Cn = [(Sht, y On) (1)

c
>on. (xe Li(x™)).

Letn; < ny < --- be positive integers chosen so that

o

1 an .
Z— < oo andset ;:= (j e Ny).
1 /1 /N

It is evident that

o
> IPj i < oo.
j=1

rn+kSot,, (Tx(n)gn),
k

(29)

Moreover, for a fixed x € G, it is possible to choose integers 0 < k(;) < 2"/ such

that x € I, (x,ﬁuf))) (j € Ny). Hence, (29) implies

C
(s°P) ) 2 5

for j € Ny and x € G,,. Consequently, G, is a set of divergence for L1(G,,) by

Lemma 9. The proof is complete.
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