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Abstract
We prove resolvent estimates in L p-spaces for time-harmonic Maxwell’s equations
in two spatial dimensions and in three dimensions in the partially anisotropic case.
In the two-dimensional case the estimates are sharp up to endpoints. We consider
anisotropic permittivity and permeability, which are both taken to be time-independent
and spatially homogeneous. For the proof we diagonalize time-harmonic Maxwell’s
equations to equations involving Half-Laplacians. We apply these estimates to infer a
LimitingAbsorptionPrinciple in intersections of L p-spaces and to localize eigenvalues
for perturbations by potentials.

Keywords Resolvent estimates ·Maxwell’s equations · Limiting Absorption
Principle
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1 Introduction andMain Results

Maxwell’s equations describe electromagnetic waves and consequently the propa-
gation of light. We refer to the physics’ literature for further query (cf. [9, 20]).
Time-dependent Maxwell’s equations in media in three spatial dimensions relate
electric and magnetic field (E,B) : R × R

3 → C
3 × C

3 with displacement
and magnetizing fields (D,H) : R × R

3 → C
3 × C

3, the electric and mag-
netic current (Je,Jm) : R × R

3 → C
3 × C

3, and electric and magnetic charges
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(ρe, ρm) : R× R
3 → C× C:

{
∂tD = ∇ ×H+ Je, ∇ ·D = ρe, ∇ · B = ρm,

∂tB = −∇ × E + Jm .
(1)

In physical contexts, fields, currents and charges are real-valued, and the magnetic
charge and current vanish. We consider possibly non-vanishing magnetic charge and
current to highlight symmetry between the electric and magnetic field. Moreover, Je

and Jm are typically taken with opposite signs.
In the following we consider the time-harmonic, monochromatic ansatz

D(t, x) = eiωt D(x), H(t, x) = eiωt H(x),

Je(t, x) = eiωt Je(x), Jm(t, x) = eiωt Jm(x)
(2)

with ω ∈ R. We supplement (1) with the material laws

D(t, x) = εE(t, x), B(t, x) = μH(t, x), (3)

where ε = diag(ε1, ε2, ε3) ∈ R
3×3, εi , μ ∈ R>0. Requiring ε andμ to be symmetric

and positive definite is a physically natural assumption. The fully anisotropic case

ε = diag(ε1, ε2, ε3), μ = diag(μ1, μ2, μ3) with
ε1

μ1
�= ε2

μ2
�= ε3

μ3
�= ε1

μ1

is analyzed in joint work with Mandel [22], where we argue in detail how the analysis
reduces in the general case to scalar μ (see also [21, p. 63]). Material laws with scalar
μ are frequently used in optics (cf. [23, Section 2]). Then (1) becomes under (2) and
(3) to relate E with D and H with B:

P(ω, D)

(
D
B

)
=

(
Je
Jm

)
, P(ω, D) =

(
iω −μ−1∇×

∇ × (ε−1·) iω

)
. (4)

(2) can be explained by considering (1) under Fourier transforms in time: Letting

D(t, x) = 1

2π

∫
R

eiωt D(ω, x)dω, H(t, x) = 1

2π

∫
R

eiωt H(ω, x)dω, . . . ,

we find a solution to (1) provided that D(ω, ·),... solve (4). We focus on solenoidal
currents, but shall also consider the effect of non-vanishing divergence. We deduce
from the continuity equation for electric charges ∂tρe(t, x) − ∇ · Je(t, x) = 0 the
following relation between Je(ω, ·) and the time-dependent charges:

∇ · Je(ω, x) = iω
∫
R

e−iωtρe(t, x)dt .
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Since ω will be fixed in the following analysis of the time-harmonic equation, we let

ρe(x) = ∇ · Je(x) and ρm(x) = ∇ · Jm(x). (5)

We consider Maxwell’s equations in two spatial dimensions and the partially
anisotropic case in three dimensions. The time-dependent form of Maxwell’s equa-
tions in two dimensions corresponds to electric and magnetic fields and currents of
the form

Ei (t, x) = Ei (t, x1, x2), i = 1, 2; E3 = 0;
Bi = 0, i = 1, 2; B3(t, x) = B3(t, x1, x2);

Jei (t, x) = Jei (t, x1, x2), i = 1, 2; Je3 = 0;
Jmi (t, x) = 0, i = 1, 2; Jm3(t, x) = Jm3(t, x1, x2).

(1) simplifies to (cf. [3]):

{
∂tD = ∇⊥H+ Je, ∇ ·D = ρe,

∂tB = −∇ × E + Jm,
(6)

whereD, E,Je : R×R
2 → C

2, B,H,Jm : R×R
2 → C, ∇⊥ = (∂2,−∂1)

t , and we
assume (3) with μ > 0, and (εi j )i, j ∈ R

2×2 denoting a symmetric, positive definite
matrix. We can rewrite (6) under (2) and (3) as

P(ω, D)

(
D
B

)
=

(
Je
Jm

)
, P(ω, D) =

⎛
⎝ iω 0 −μ−1∂2

0 iω μ−1∂1
∂1ε21 − ∂2ε11 ∂1ε22 − ∂2ε12 iω

⎞
⎠ ,(7)

denoting with εi j the components of the inverse of ε. In two dimensions, we let

ρe = ∂1 Je + ∂2 Je and ρm = 0. (8)

In the following let d ∈ {2, 3}, m(2) = 3, m(3) = 6, and

L p
0 (R2) = {( f1, f2, f3) ∈ L p(R2)3 : ∂1 f1 + ∂2 f2 = 0 in S ′(R2)},

L p
0 (R3) = {( f1, . . . , f6) ∈ L p(R3)6 : ∇ · ( f1, f2, f3) = ∇ · ( f4, f5, f6)

= 0 in S ′(R3)}.

In this paper we are concerned with the resolvent estimates

‖(D, B)‖Lq
0 (Rd ) = ‖P(ω, D)−1(Je, Jm)‖Lq

0 (Rd ) � κp,q(ω)‖(Je, Jm)‖L p
0 (Rd ). (9)

However, as will be clear from perceiving P(ω, D) as a Fourier multiplier,
P(ω, D)−1 cannot even be understood in the distributional sense for ω ∈ R. The
remedy will be to consider ω ∈ C\R and prove estimates independent of the distance
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to the real axis. Then we can consider limits 	(ω) ↓ 0 and 	(ω) ↑ 0. This is presently
referred to as Limiting Absorption Principle (LAP) in the L p-Lq -topology. Moreover,
the analysis yields explicit formulae for the resulting limits. It appears that this is the
first contribution to resolvent estimates for the Maxwell operator in anisotropic media
in the L p-Lq -topology.

Recently, Cossetti–Mandel analyzed the isotropic1, possibly spatially inhomoge-
neous case ε, μ ∈ W 1,∞(R3;R>0) in [5]. In the isotropic case, iterating (1) and
using the divergence conditions yields Helmholtz-like equations for D and H . This
approach was carried out in [5]. In the anisotropic case this strategy becomes less
straight-forward. Insteadwe choose to diagonalize the Fouriermultiplier to get into the
position to use resolvent estimates for the fractional Laplacian. Kwon–Lee–Seo [19]
previously used a diagonalization to prove resolvent estimates for the Lamé operator.
However, there are degenerate components in the diagonalization of time-harmonic
Maxwell’s operators, which do not occur for the Lamé operator.We use the divergence
condition to ameliorate the contribution of the degeneracies. In case the currents have
non-vanishing divergence, we can quantify this contribution with the charges.

We digress for a moment to elaborate on L p-Lq -estimates for the fractional Lapla-
cian and applications. Let s ∈ (0, d). For ω ∈ C\[0,∞) we consider the resolvents
as Fourier multiplier:

((−�)s/2 − ω)−1 f = 1

(2π)d

∫
Rd

f̂ (ξ)

‖ξ‖s − ω
eix .ξdξ (10)

for f : R
d → C in some suitable a priori class, e.g., f ∈ S(Rd). In the present

context, resolvent estimates for the Half-Laplacian ‖((−�)
1
2 − ω)−1‖p→q are most

important. There is a huge body of literature on resolvent estimates for the Laplacian
(−� − ω)−1 : L p(Rd) → Lq(Rd). This is due to versatile applications to uniform
Sobolev estimates and unique continuation (cf. [17]), the localization of eigenvalues
for Schrödinger operators with complex potential (cf. [6, 10, 11]), or LAPs in L p-
spaces (cf. [14]). Kenig–Ruiz–Sogge [17] showed that uniform resolvent estimates in
ω ∈ C\[0,∞) for d ≥ 3 hold if and only if

1

p
− 1

q
= 2

d
and

2d

d + 3
< p <

2d

d + 1
. (11)

By homogeneity and scaling, we find

‖(−�− ω)−1‖p→q = |ω|−1+
d
2

(
1
p− 1

q

)
‖(−�− ω

|ω|
)−1‖p→q ∀ω ∈ C\[0,∞).

(12)

Thus, it suffices to consider |ω| = 1 to discuss boundedness. Kwon–Lee [18] showed
the currently widest range of resolvent estimates for the fractional Laplacian outside
the uniform boundedness range (see [15] for a previous contribution). To state the

1 In the isotropic case we identify ε = λ13×3 with λ ∈ R>0 and do likewise for μ.
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range of admissible L p-Lq -estimates, we shall use notations from [18]. Let I 2 =
{(x, y) ∈ R

2 | 0 ≤ x, y ≤ 1}, and let (x, y)′ = (1 − x, 1 − y) for (x, y) ∈ I 2. For
R ⊆ I 2 we set R′ = {(x, y)′ | (x, y) ∈ R}.

The resolvent of the fractional Laplacian ((−�)
s
2 − z)−1 is bounded for fixed

z ∈ C\[0,∞) if and only if (1/p, 1/q) ∈ R
s
2
0 with

R
s
2
0 = R

s
2
0 (d) = {(x, y) ∈ I 2 | 0 ≤ x − y ≤ s

d
}\{(1, d − s

d
), (

s

d
, 0)};

see, e.g., [18, Proposition 6.1]. Gutiérrez showed in [14] that uniform estimates for
ω ∈ {z ∈ C : |z| = 1, z �= 1} hold if and only if (1/p, 1/q) lies in the set

R1 = R1(d) = {(x, y) ∈ R1
0(d) : 2

d + 1
≤ x − y ≤ 2

d
, x >

d + 1

2d
, y <

d − 1

2d
}.
(13)

Failure outside this range was known before (cf. [4, 17]) due to the connection to
Bochner-Riesz operators with negative index. Clearly, there are more estimates avail-
able outsideR1 if one allows for dependence on ω, e.g.,

‖(−�− ω)−1‖L2→L2 ∼ dist(ω, [0,∞))−1.

Kwon–Lee [18] analyzed estimates outside the uniform boundedness range in detail
and covered a wide range. Estimates with dependence on ω can be used to localize
eigenvalues for Schrödinger operators with complex potentials (cf. [6]), which is done
for Maxwell operators in Sect. 4.

Diagonalizing the symbol of (4) to operators involving the Half-Laplacian works
in the partially anisotropic case, i.e.,

#{ε1, ε2, ε3} ≤ 2. (14)

This includes the isotropic case ε1 = ε2 = ε3, for which the results of Cossetti–
Mandel [5] are recovered for constant coefficients, albeit via a different approach. It
turns out that in the fully anisotropic case

ε1 �= ε2 �= ε3 �= ε1,

diagonalizing the multiplier introduces singularities, and this case has to be treated
differently (cf. [22]). The estimates proved in [22] for the fully anisotropic case are
strictly weaker than in the partially anisotropic case. We connect resolvent bounds for
the Maxwell operator with resolvent estimates for the Half-Laplacian:

Theorem 1.1 Let 1 < p, q < ∞, d ∈ {2, 3}, and ω ∈ C\R. Let ε ∈ R
d×d denote a

symmetric positive definite matrix, and let P(ω, D) as in (7) for d = 2, and as in (4)
for d = 3. For d = 3, we assume that ε = diag(ε1, ε2, ε3) and satisfies (14).
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Then, P(ω, D)−1 : L p
0 (Rd) → Lq

0(R
d) is bounded if andonly if (1/p, 1/q) ∈ R

1
2
0 (d),

and we find the estimate

‖P(ω, D)−1‖L p
0→Lq

0
∼ ‖((−�)

1
2 − ω)−1‖L p→Lq + ‖((−�)

1
2 + ω)−1‖L p→Lq

(15)

to hold.
If 1 ≤ p ≤ ∞ and 1 < q <∞, then we find the estimate

‖P(ω, D)−1(Je, Jm)‖Lq

� (‖((−�)
1
2 − ω)−1‖L p→Lq + ‖((−�)

1
2 + ω)−1‖L p→Lq )‖(Je, Jm)‖L p

+ ‖(−�)−
1
2 ρe‖Lq + ‖(−�)−

1
2 ρm‖Lq

(16)

to hold with ρe and ρm defined as in (8) for d = 2 and (5) for d = 3. If ρe = ρm = 0,
1 < p <∞, and q ∈ {1,∞}, then (16) also holds.

We cannot allow for p ∈ {1,∞} or q ∈ {1,∞} in the proof of

‖P(ω, D)−1‖L p
0→Lq

0
� ‖((−�)

1
2 − ω)−1‖L p→Lq + ‖((−�)

1
2 + ω)−1‖L p→Lq

as multiplier bounds for Riesz transforms are involved. It is well-known that the Riesz
transforms are bounded on L p(Rd), 1 < p <∞, but neither on L1 nor on L∞. In the
proof of (16) for ρe = ρm = 0, which covers the reverse estimate of the above display,
we can overcome this possibly technical issue by arranging the Riesz transforms acting
on a reflexive L p-space. Hence, we can allow for either p ∈ {1,∞} or q ∈ {1,∞}.
For the sake of simplicity, in Corollary 1.2 we only consider 1 < p, q <∞ although
(16) partially extends to p ∈ {1,∞} or q ∈ {1,∞}.

Coming back to resolvent estimates for the Half-Laplacian, for d ∈ {2, 3} and
(1/p, 1/q) ∈ I 2, define

γp,q = γp,q(d) = max{0, 1− d + 1

2

( 1
p
− 1

q

)
,
d + 1

2
− d

p
,
d

q
− d − 1

2
}.

Set

κ
( 12 )
p,q (ω) = |ω|−1+d

(
1
p− 1

q

)
+γp,qdist(ω, [0,∞))−γp,q ,

κp,q(ω) = |ω|−1+d
(
1
p− 1

q

)
+γp,qdist(ω, R)−γp,q .

Kwon–Lee [18, Conjecture 3, p. 1462] conjectured for (1/p, 1/q) ∈ R1/2
0 (d)

κ
( 12 )
p,q (ω) ∼p,q,d ‖((−�)1/2 − ω)−1‖p→q . (17)
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They verified the conjecture for d = 2 and for d = 3 in the restricted range in R̃1/2
0 (3)

[18, Theorem 6.2, p. 1462]. We refer to [18] for the precise description. For notational
convenience, let R̃1/2

0 (2) = R1/2
0 (2). By invoking the results from [18], we find the

following:

Corollary 1.2 Let 1 < p, q < ∞, d ∈ {2, 3}, and ω ∈ C\R. Let ε ∈ R
d×d and

P(ω, D) be as in Theorem 1.1. Then we find the following:

1. If d = 2, then

‖P(ω, D)−1‖L p
0 (Rd )→Lq

0 (Rd ) ∼ κp,q(ω) (18)

is true for (1/p, 1/q) ∈ R
1
2
0 (2).

2. If d = 3 with ε satisfying (14), then (18) is true for (1/p, 1/q) ∈ R̃
1
2
0 (3).

Turning to LAPs, we work with the following notions:

Definition 1.3 Let d ∈ {2, 3}, 1 ≤ p, q ≤ ∞, ω ∈ R\0, and 0 < δ < 1/2. We say
that a global L p

0 -L
q
0-LAP holds if P(ω± iδ, D)−1 : L p

0 (Rd)→ Lq
0(R

d) are bounded
uniformly in δ > 0, and there are operators P±(ω) : L p

0 (Rd)→ Lq
0(R

d) such that

P(ω ± iδ, D)−1 f → P±(ω) f as δ → 0 in (S ′(Rd))m(d). (19)

We say that a local L p
0 -L

q
0-LAP holds if for any β ∈ C∞c (Rd), P(ω ±

iδ, D)−1β(D) : L p
0 (Rd) → Lq

0(R
d) are bounded uniformly in δ > 0, and there

are operators Ploc± (ω) : L p
0 (Rd)→ Lq

0(R
d) such that

P(ω ± iδ, D)−1β(D) f → Ploc± (ω) f in S ′(Rd)m(d). (20)

Remark 1.4 By the explicit formulae for P(ω, D)−1 for ω ∈ C\R we can also handle
currents with non-vanishing divergence as in Theorem 1.1. We omitted this discussion
for the sake of brevity.

We observe that γp,q > 0 for p and q as in Corollary 1.2:

Corollary 1.5 Let d ∈ {2, 3}. For 1 < p, q < ∞, (1/p, 1/q) ∈ R̃
1
2
0 (d), there is no

global L p
0 -L

q
0 -LAP for (7) or (4).

We show a local L p
0 -L

q
0-LAP for theMaxwell operator in Proposition 3.2. Roughly

speaking, for low frequencies the resolvent estimates are equivalent to resolvent
estimates for the Laplacian, and uniform estimates L p1 → Lq are possible for
(1/p1, 1/q) ∈ P(d) (see Sect. 3). For the high frequencies, away from the singular
set, the multiplier is smooth, but provides merely the smoothing of the Half-Laplacian.
We use different L p2 → Lq -estimates for this region. This gives L p1 ∩ L p2 → Lq -
estimates, which are uniform in ω in a compact set away from the origin, and an LAP
in the same spaces. The necessity of considering currents in intersections of L p-spaces
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is shown in Corollary 1.5. Below for s ≥ 0 and 1 < q < ∞, Ws,q(Rd) denotes the
Lq -based Sobolev space:

Ws,q(Rd) = { f ∈ Lq(Rd) : (1−�)s/2 f ∈ Lq} and ‖ f ‖Ws,q := ‖(1−�)s/2 f ‖Lq .

Theorem 1.6 (LAP for Time-Harmonic Maxwell’s equations) Let 1 ≤ p1, p2, q ≤
∞, and let d ∈ {2, 3}. If (1/p1, 1/q) ∈ P(d), (1/p2, 1/q) ∈ R

1
2
0 (d), then

P(ω, D)−1 : L p1
0 (Rd) ∩ L p2

0 (Rd) → Lq
0(R

d) is bounded uniformly for ω ∈ C\R
in a compact set away from the origin. Furthermore, for ω ∈ R\0 there are limiting
operators P±(ω) : L p1

0 (Rd) ∩ L p2
0 (Rd) → Lq

0(R
d) with

P(ω ± iδ, D)−1(Je, Jm)→ P±(ω)(Je, Jm) in (S ′(Rd))m(d) as δ ↓ 0

such that (D, B) = P±(ω)(Je, Jm) satisfy

P(ω, D)(D, B) = (Je, Jm) in (S ′(Rd))m(d). (21)

Additionally, if q <∞, and s ∈ [1,∞), then

‖(D, B)‖(Ws,q (Rd ))m(d) � ‖(Je, Jm)‖
(Ws−1,q (Rd ))m(d)∩L p1

0 (Rd )
. (22)

Previously, Picard–Weck–Witsch [26] showed an LAP in weighted L2-spaces (cf.
[1]). Since the results in [26] are proved via Fredholm’s Alternative, the frequencies
ω ∈ R\0 are assumed not to belong to a discrete set of eigenvalues. In [26] ε and μ

are assumed to be positive-definite and isotropic, but allowed to depend on x as in [5].
Pauly [25] proved similar results as Picard–Weck–Witsch [26] in weighted L2-spaces
in the anisotropic case; see also [2, 24]. Much earlier, Eidus [8] already proved non-
existence of eigenvalues of theMaxwell operator provided that ε andμ are sufficiently
smooth short-range perturbations of the identity and satisfy a repulsivity condition.
Recently, D’Ancona–Schnaubelt [7] proved global-in-time Strichartz estimates from
resolvent estimates in weighted L2-spaces.

It appears that in the present work the role of the Half-Laplacian is explicitly
identified for the analysis of the Maxwell operator the first time. We note that in [27,
28], in joint work with R. Schnaubelt, we apply a similar diagonalization to show
Strichartz estimates for time-dependent Maxwell’s equations with rough coefficients.
In these works, due to variable permittivity and permeability, the diagonalization
is carried out with pseudo-differential operators, and the present role of the Half-
Laplacian is played by the Half-Wave operator. Provided that suitable estimates for
the Half-Laplacian with variable coefficients were at disposal, of which the author is
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not aware, it seems possible that the present approach extends to variable permittivity
and permeability as well.

Outline of the Paper In Sect. 2 we diagonalize time-harmonic Maxwell’s equations
in Fourier space to reduce the resolvent estimates to estimates for the Half-Laplacian.
We also give examples for lower resolvent bounds in terms of the Half-Laplacian.
In Sect. 3 we argue how an LAP fails in L p-spaces, but can be salvaged in intersec-
tions of L p-spaces. In Sect. 4 we show how the ω-dependent resolvent estimates lead
to localization of eigenvalues in the presence of potentials. We postpone technical
computations to the Appendix, where we also give explicit solution formulae.

2 Reduction to Resolvent Estimates for the Half-Laplacian

Let ω ∈ C\R. We diagonalize P(ω, D) defined in (7) or in (4) in the partially
anisotropic case. We shall see that the transformation matrices are essentially Riesz
transforms. This allows to bound the resolvents with estimates for the Half-Laplacian.
We will make repeated use of the Mikhlin–Hörmander multiplier theorem (cf. [12,
Theorem 6.2.7, p. 446]):

Theorem 2.1 (Mikhlin–Hörmander) Let 1 < p < ∞ and m : R
n\0 → C be a

bounded function that satisfies

|∂αm(ξ)| ≤ Dα|ξ |−|α| (ξ ∈ R
n\0) (23)

for |α| ≤ � n2 � + 1. Then, mp : L p(Rn) → L p(Rn) given by f �→ (m f̂ )ˇ defines a
bounded mapping with

‖mp‖L p→L p ≤ Cn max(p, (p − 1)−1)(A + ‖m‖L∞), (24)

where

A = max(Dα, |α| ≤ �n
2
� + 1).

As pointed out in [12], m ∈ Ck(Rn\0), k ≥ � n2 � + 1 is an L p-multiplier for
1 < p < ∞, if it is zero-homogeneous, i.e., there is τ ∈ R such that for any λ > 0
and ξ �= 0, we have

m(λξ) = λiτm(ξ). (25)

Differentiating the above display with respect to ξ , we obtain for λ > 0

λ|α|(∂α
ξ m)(λξ) = λiτ ∂α

ξ m(ξ)

and (23) is satisfied with Dα = sup|θ |=1 |∂αm(θ)|.
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2.1 Proof of Theorem 1.1 for d = 2

Let u = (D1, D2, B). We denote (ε−1)i j = (εi j )i, j . To reduce to estimates for the
Half-Laplacian, we diagonalize the symbol associated with the operator defined in (7).
We write ξ = (ξ1, ξ2) ∈ R

2:

(P(ω, D)u)̂(ξ ) = p(ω, ξ)û(ξ) = i

⎛
⎝ ω 0 −ξ2μ

−1
0 ω ξ1μ

−1
ξ1ε12 − ξ2ε11 ξ1ε22 − ξ2ε12 ω

⎞
⎠ û(ξ).

(26)

Let ‖ξ‖2
ε′ = 〈ξ, μ−1 det(ε)−1εξ 〉, ξ ′ = ξ/‖ξ‖ε′ , and define

e±(ω, D) : L p(R2)→ Lq(R2), (e± f )̂(ξ ) = 1

ω ± ‖ξ‖ε′ f̂ (ξ). (27)

We have the following lemma on diagonalization:

Lemma 2.2 For almost all ξ ∈ R
2 there is a matrix m(ξ) ∈ C

3×3 such that

p(ω, ξ) = m(ξ)d(ω, ξ)m−1(ξ)

with

d(ω, ξ) = idiag(ω, ω − ‖ξ‖ε′ , ω + ‖ξ‖ε′). (28)

Furthermore, the operators mi j (D) and m−1i j (D) are L p-bounded for 1 < p <∞.

Proof It is straight-forward to check that the eigenvalues are as in (28) with the eigen-
vectors at hand. We align the corresponding eigenvectors as columns to

m(ξ) =
⎛
⎝ε22ξ

′
1 − ε12ξ

′
2 −ξ ′2μ−1 ξ ′2μ−1

ε11ξ
′
2 − ε12ξ

′
1 ξ ′1μ−1 −ξ ′1μ−1

0 −1 −1

⎞
⎠ (29)

and note that detm(ξ) = −1 for ξ �= 0. For the inverse matrix we compute

m−1(ξ) =
⎛
⎜⎝

μ−1ξ ′1 μ−1ξ ′2 0
ξ ′1ε21−ξ ′2ε11

2
ε22ξ

′
1−ε21ξ

′
2

2 − 1
2

ξ ′2ε11−ξ ′1ε12
2

ξ ′2ε12−ξ ′1ε22
2 − 1

2

⎞
⎟⎠ . (30)

L p-boundedness is immediate from Theorem 2.1 because the components of m and
m−1 are zero-homogeneous and smooth away from the origin. ��
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In Proposition 5.2we compute p−1(ω, ξ) via this diagonalization. The diagonalization
allows us to separate

p−1(ω, ξ) = M2(A, B)+ M2
c (31)

with M2
c v = 0 for ξ1v1 + ξ2v2 = 0 and

A = 1

i(ω − ‖ξ‖ε′) , B = 1

i(ω + ‖ξ‖ε′) . (32)

We can finish the proof of Theorem 1.1 for d = 2:

Proof of Theorem 1.1, d=2 We begin with the lower bound in (15). For u with ∂1u1 +
∂2u2 = 0, we have

p−1(ω, ξ)û(ξ) = M2(A, B)û(ξ).

The entries of M2(A, B) are linear combinations of e±(ω, ξ) and ξ ′i . The operators

(Rε′
i f )̂(ξ ) = ξ ′i f̂ (ξ)

are L p-bounded for 1 < p < ∞ with a constant only depending on p, ε, μ as the
symbols are linear combinations of Riesz symbols after changes of variables. We find
(see (27) for notations)

‖P(ω, D)−1‖L p
0→Lq

0
� ‖e+(ω, D)‖L p→Lq + ‖e−(ω, D)‖L p→Lq (33)

for 1 ≤ p, q ≤ ∞ with (1 < p <∞ or 1 < q <∞). The reason we are not required
to take 1 < p < ∞ and 1 < q < ∞ is that, if there is one reflexive L p-space, then
we can commute the Fourier multipliers after multiplying out the matrices such that
the Riesz transforms act on a reflexive L p-space.2 This shows the lower bound in (15)
for d = 2.

We turn to show the upper bound in (15), which is

‖P(ω, D)−1‖L p
0→Lq

0
� ‖e+(ω, D)‖L p→Lq + ‖e−(ω, D)‖L p→Lq (34)

for 1 < p, q <∞.
The operators Rε′

j satisfy for 1 < p <∞

‖ f ‖L p(R2) ∼p,ε,μ ‖Rε′
1 f ‖L p(R2) + ‖Rε′

2 f ‖L p(R2). (35)

In fact, as already used above, ‖Rε′
j f ‖L p �p,ε,μ ‖ f ‖L p for 1 < p < ∞ as a

consequence of Theorem 2.1. Let χ1, χ2 : R/(2πZ) → [0, 1] be a smooth partition

2 I thank the referee for pointing this out.
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of unity of the unit circle such that

{
χ1(θ) = 1 for θ ∈ [−π

8 , π
8 ] ∪ [ 7π8 , 9π

8 ],
χ2(θ) = 1 for θ ∈ [ 3π8 , 5π

8 ] ∪ [ 11π8 , 13π
8 ].

We extend χi to R
2\0 by zero-homogeneity.

For the reverse bound in (35), we decompose f = f1 + f2 as fi = χi (D) f . Set
((Rε′

i )−1 f )̂(ξ ) = ‖ξ‖ε′
ξi

f̂ (ξ). Note that |ξi | � ‖ξ‖ε′ for ξ ∈ supp( f̂i ). ByTheorem2.1,
we find the estimate

‖(Rε′
i

)−1
fi‖L p �p,ε,μ ‖ fi‖L p .

Consequently,

‖ f ‖L p ≤ ‖ f1‖L p + ‖ f2‖L p ≤
2∑

i=1
‖(Rε′

i

)−1Rε′
i fi‖L p �p,ε,μ

2∑
i=1
‖Rε′

i fi‖p.

With (35) in mind, we show (34) by considering the data

v =
(
−2Rε′

2 f 2Rε′
1 f 0

)t
. (36)

Clearly, ∂1v1 + ∂2v2 = 0. We compute

m−1(D)v = μ
(
0 1 −1)t f .

We further compute

P(ω, D)−1v =
(
−Rε′

2 (e− + e+) Rε′
1 (e− + e+) μ(−e− + e+)

)t
f ,

and it follows by (35)

‖P(ω, D)−1v‖Lq ∼ ‖(e−(ω, D)+ e+(ω, D)) f ‖Lq + μ‖(e−(ω, D)

− e+(ω, D)) f ‖Lq ∼ ‖e−(ω, D) f ‖Lq + ‖e+(ω, D) f ‖Lq

as claimed. Since ‖v‖L p ∼ ‖ f ‖L p , by choosing f suitably, we find

‖P(ω, D)−1‖L p
0→Lq

0
� max(‖e−‖L p→Lq , ‖e+‖L p→Lq ) ∼ ‖e−‖L p→Lq + ‖e+‖L p→Lq .

Finally, we turn to (16), which reads for d = 2

‖P(ω, D)−1(Je, Jm)‖Lq � (‖e−(ω, D)‖L p→Lq + ‖e+(ω, D)‖L p→Lq )‖(Je, Jm)‖L p

+ ‖(−�)− 1
2 ρe‖Lq .

(37)
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We decompose writing J = (Je, Jm)

P(ω, D)−1 J = (M2(A, B) Ĵ )∨ + (Mc Ĵ )∨

as in (31). The arguments from above estimate the contribution of (M2(A, B) Ĵ )∨. A
computation yields

(Mc Ĵ )(ξ) =
⎛
⎝ε12ξ

′
2 − ε22ξ

′
1

ε12ξ
′
1 − ε11ξ

′
2

0

⎞
⎠ ρ̂e(ξ)

μω‖ξ‖ε′

with ρe = ∂1 Je1 + ∂2 Je2. From this follows

‖(Mc Ĵ )∨‖Lq � ‖(−�)1/2ρe‖Lq

by Lq -boundedness of Rε′
i for 1 < q < ∞ and ‖ξ‖/‖ξ‖ε′ zero-homogeneous and

smooth away from the origin. The proof is complete. ��

2.2 Proof of Theorem 1.1 for d = 3

We consider P(ω, D) as in (4) with ε = diag(ε1, ε2, ε3) andμ > 0. Here we consider
the partially anisotropic case a−1 = ε1; ε2 = ε3 = b−1 and suppose that μ = 1
without loss of generality, to which we can reduce by linear substitution. The compu-
tation also covers the isotropic case a = b, which was considered in [5]. For ξ ∈ R

3

we denote

‖ξ‖2 = ξ21 + ξ22 + ξ23 , ‖ξ‖2ε = bξ21 + aξ22 + aξ23 ,

ξ ′ = ξ/‖ξ‖, ξ̃ = ξ/‖ξ‖ε.

We write further

(∇ × u)̂ (ξ ) = −iB(ξ)û(ξ), B(ξ) =
⎛
⎝ 0 ξ3 −ξ2
−ξ3 0 ξ1
ξ2 −ξ1 0

⎞
⎠ .

We have the following lemma on diagonalization:

Lemma 2.3 For almost all ξ ∈ R
3 there is a matrix m̃(ξ) ∈ C

6×6 such that

p(ω, ξ) = m̃(ξ)d(ω, ξ)m̃−1(ξ)

with

d(ω, ξ) = i diag(ω, ω, ω −√b‖ξ‖, ω +√b‖ξ‖, ω − ‖ξ‖ε, ω + ‖ξ‖ε).

Furthermore, the components of m̃ and m̃−1 are L p-bounded Fourier multipliers for
1 < p <∞.
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Proof To verify that the diagonal entries of d are truly the eigenvalues of p, we record
eigenvectors, which are normalized to zero-homogeneous entries. Eigenvectors to iω
are

vt1 =
(
0, 0, 0, ξ ′1, ξ ′2, ξ ′3

)
,

vt2 =
( ξ̃1

a
,
ξ̃2

b
,
ξ̃3

b
, 0, 0, 0

)
.

Eigenvectors to iω ∓ i
√
b‖ξ‖ are given by

vt3 =
(
0,− ξ ′3√

b
,

ξ ′2√
b
,−((ξ ′2)2 + (ξ ′3)2), ξ ′1ξ ′2, ξ ′1ξ ′3

)
,

vt4 =
(
0,

ξ ′3√
b
,− ξ ′2√

b
,−((ξ ′2)2 + (ξ ′3)2), ξ ′1ξ ′2, ξ ′1ξ ′3

)
.

Eigenvectors to iω ∓ i‖ξ‖ε are given by

vt5 =
(
ξ̃22 + ξ̃23 ,−ξ̃1ξ̃2,−ξ̃1ξ̃3, 0,−ξ̃3, ξ̃2

)
,

vt6 =
(− (ξ̃22 + ξ̃23 ), ξ̃1ξ̃2, ξ̃1ξ̃3, 0,−ξ̃3, ξ̃2

)
.

Set

m(ξ) = (v1, . . . , v6) (38)

and

α(ξ) = (ξ22 + ξ23 )1/2

(‖ξ‖‖ξ‖ε) 1
2

and δ = ‖ξ‖
‖ξ‖ε . (39)

The determinant of m(ξ) is computed in Lemma 5.1 in the Appendix. We have

| detm(ξ)| ∼ α4(ξ).

Furthermore, we find for α �= 0:

m−1(ξ) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ξ ′1 ξ ′2 ξ ′3
abξ̃1 abξ̃2 abξ̃3 0 0 0

0 −
√
b‖ξ‖

2‖ξ‖ε
ξ̃3

ξ̃22+ξ̃23

√
b‖ξ‖

2‖ξ‖ε
ξ̃2

ξ̃22+ξ̃23
−1/2 ξ ′1ξ ′2

2(ξ ′22 +ξ ′23 )

ξ ′1ξ ′3
2(ξ ′22 +ξ ′23 )

0
√
b‖ξ‖

2‖ξ‖ε
ξ̃3

ξ̃22+ξ̃23
−
√
b‖ξ‖

2‖ξ‖ε
ξ̃2

ξ̃22+ξ̃23
−1/2 ξ ′1ξ ′2

2(ξ ′22 +ξ ′23 )

ξ ′1ξ ′3
2(ξ ′22 +ξ ′23 )

a/2 − bξ̃1 ξ̃2
2(ξ̃22+ξ̃23 )

− bξ̃1 ξ̃3
2(ξ̃22+ξ̃23 )

0 − ξ ′3‖ξ‖ε
2‖ξ‖(ξ ′22 +ξ ′23 )

‖ξ‖εξ ′2
2‖ξ‖(ξ ′22 +ξ ′23 )

−a/2 bξ̃1 ξ̃2
2(ξ̃22+ξ̃23 )

bξ̃1 ξ̃3
2(ξ̃22+ξ̃23 )

0 − |ξ |ε
2‖ξ‖

ξ ′3
(ξ ′22 +ξ ′23 )

‖ξ‖εξ ′2
2‖ξ‖(ξ ′22 +ξ ′23 )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Since α(ξ) → 0 as |ξ2| + |ξ3| → 0, m becomes singular along the ξ1-axis, and the
entries of m−1(ξ) are no L p-bounded Fourier multipliers anymore. This suggests to
renormalize v3, . . . , v6 with 1/α(ξ). We let

m̃(ξ) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 ξ̃1
a 0 0 (δ(ξ̃22 + ξ̃23 ))

1
2 −(δ(ξ̃22 + ξ̃23 ))

1
2

0 ξ̃2
b −

ξ ′3√
b(δ(ξ ′22 +ξ ′23 ))

1
2

ξ ′3√
b(δ(ξ ′22 +ξ ′23 ))

1
2

− δ
1
2 ξ̃1 ξ̃2

(ξ̃22+ξ̃23 )1/2
δ
1
2 ξ̃1 ξ̃2

(ξ̃22+ξ̃23 )
1
2

0 ξ̃3
b

ξ ′2√
b(δ(ξ ′22 +ξ ′23 ))

1
2
− ξ ′2√

b(δ(ξ ′22 +ξ ′23 ))
1
2

− δ
1
2 ξ̃1 ξ̃3

(ξ̃22+ξ̃23 )
1
2

δ
1
2 ξ̃1 ξ̃3

(ξ̃22+ξ̃23 )
1
2

ξ ′1 0 − (ξ ′22 +ξ ′23 )
1
2

δ
1
2

− (ξ ′22 +ξ ′23 )
1
2

δ
1
2

0 0

ξ ′2 0
ξ ′1ξ ′2

(δ(ξ ′22 +ξ ′23 ))
1
2

ξ ′1ξ ′2
(δ(ξ ′22 +ξ ′23 ))

1
2

− δ
1
2 ξ̃3

(ξ̃22+ξ̃23 )
1
2

− δ
1
2 ξ̃3

(ξ̃22+ξ̃23 )
1
2

ξ ′3 0
ξ ′1ξ ′3

(δ(ξ ′22 +ξ ′23 ))
1
2

ξ ′1ξ ′3
(δ(ξ ′22 +ξ ′23 ))

1
2

ξ̃2δ
1
2

(ξ̃22+ξ̃23 )
1
2

ξ̃2δ
1
2

(ξ̃22+ξ̃23 )
1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By Lemma 5.1, we have det(m̃) ∼ 1 if and only if ξ �= (ν, 0, 0) for some ν ∈ R.
Hence, m̃ and m̃−1 are well-defined away from the ξ1-axis. By Cramer’s rule, we
obtain m̃(ξ)−1 from m−1(ξ) by modifying the rows 3-6:

m̃−1(ξ) =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 ξ ′1 ξ ′2 ξ ′3
abξ̃1 abξ̃2 abξ̃3 0 0 0

0 −
√
bδ

1
2 ξ̃3

2(ξ̃22+ξ̃23 )
1
2

√
bδ

1
2 ξ̃2

2(ξ̃22+ξ̃23 )
1
2

− (ξ̃22+ξ̃23 )
1
2

2δ
1
2

ξ ′1ξ ′2δ
1
2

2(ξ ′22 +ξ ′23 )
1
2

ξ ′1ξ ′3δ
1
2

2(ξ ′22 +ξ ′23 )
1
2

0
√
bδ

1
2 ξ̃3

2(ξ̃22+ξ̃23 )
1
2

−
√
bδ

1
2 ξ̃2

2(ξ̃22+ξ̃23 )1/2
− (ξ̃22+ξ̃23 )

1
2

2δ
1
2

δ
1
2 ξ ′1ξ ′2

2(ξ ′22 +ξ ′23 )
1
2

δ
1
2 ξ ′1ξ ′3

2(ξ ′22 +ξ ′23 )
1
2

a(ξ̃2+ξ̃23 )
1
2

2δ
1
2

− bξ̃1 ξ̃2

2(δ(ξ̃22+ξ̃23 ))
1
2
− bξ̃1 ξ̃3

2(δ(ξ̃22+ξ̃23 ))
1
2

0 − ξ ′3
2(δ(ξ ′22 +ξ ′23 ))

1
2

ξ ′2
2(δ(ξ ′22 +ξ ′23 ))

1
2

− a(ξ̃2+ξ̃23 )
1
2

2δ
1
2

bξ̃1 ξ̃2

2(δ(ξ̃22+ξ̃23 ))
1
2

bξ̃1 ξ̃3

2(δ(ξ̃22+ξ̃23 ))
1
2

0 − ξ ′3
2(δ(ξ ′22 +ξ ′23 ))

1
2

ξ ′2
2(δ(ξ ′22 +ξ ′23 ))

1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Also by Cramer’s rule, it is enough to check that the Fourier multipliers associated
with the entries in m̃ are L p-bounded, for which we use Theorem 2.1.

For the first and second column this is evident since these are Riesz transforms up to
change of variables. We turn to the proof that the entries of vi/α(ξ), i = 3, . . . , 6, are
multipliers bounded in L p for 1 < p <∞. This follows by writing them as products
of zero-homogeneous functions, which are smooth away from the origin, and Riesz
transforms in two variables. We give the details for the entries of v3/α(ξ):

• (v3)2/α(ξ): We have to show that

ξ3(‖ξ‖‖ξ‖ε̃)1/2
‖ξ‖(ξ22 + ξ23 )1/2

= ξ3

(ξ22 + ξ23 )1/2

(‖ξ‖ε
‖ξ‖

)1/2
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is a multiplier. This is the case because iξ3
(ξ22+ξ23 )1/2

is a Riesz transform in (x2, x3)

and the second factor
( ‖ξ‖ε
‖ξ‖

)1/2 is zero-homogeneous and smooth away from the
origin, hence, in the scope of Theorem 2.1.

• (v3)3/α(ξ) is a multiplier by symmetry in ξ2 and ξ3 and the previous considera-
tions.

• (v3)4/α(ξ): We find

(ξ22 + ξ23 )

‖ξ‖2(ξ22 + ξ23 )1/2
· (‖ξ‖‖ξ‖ε)1/2 = (ξ22 + ξ23 )1/2

‖ξ‖ ·
(‖ξ‖ε
‖ξ‖

)1/2

to be a Fourier multiplier as it is zero-homogeneous and smooth away from the
origin.

• (v3)5/α(ξ): Consider

ξ1ξ2

‖ξ‖2(ξ22 + ξ23 )1/2
(‖ξ‖‖ξ‖ε)1/2 = ξ1

‖ξ‖ ·
ξ2

(ξ22 + ξ23 )1/2
·
(‖ξ‖ε
‖ξ‖

)1/2
,

which is again a Fourier multiplier because the first and third expression are zero-
homogeneous and smooth in R

n\0, the second is again a Riesz transform in two
variables.

• (v3)6/α(ξ) can be handled like the previous case.

The remaining entries of m̃ are treated similarly, which completes the proof.
��

Remark 2.4 To compute the eigenvalues from scratch, it is perhaps easiest to use the
block structure of p(ω, ξ) to find

det(p(ω, ξ)) = det(−ω213×3 − B2(ξ)ε−1).

Next, we can use the identity B2(ξ) = −‖ξ‖213×3 + ξ ⊗ ξ , after which there seems
to be no further simplification but to compute the determinant brutely. Note that
det(iλ16×6 − p(ω, ξ)) = det(p(λ − ω, ξ)), which allows to find the eigenvalues
from the zero locus of det(p(ω, ξ)).

We prove Theorem 1.1 for d = 3 following along the argument for d = 2. Propo-
sition 5.3 in the Appendix provides a decomposition

p−1(ω, ξ) = M3(A, B,C, D)+ M3
c (40)

with M3
c v = 0 for ξ1v1 + ξ2v2 + ξ3v3 = ξ1v4 + ξ2v5 + ξ3v6 = 0 and

A = 1

i(ω − ‖ξ‖ε) , B = 1

i(ω + ‖ξ‖ε) , C = 1

i(ω − ‖ξ‖) , D = 1

i(ω + ‖ξ‖) .
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Proof of Theorem 1.1, d=3 The estimate

‖P(ω, D)−1‖L p
0 (R3)→Lq

0 (R3)
� ‖((−�)

1
2 − ω)−1‖L p→Lq + ‖((−�)

1
2 − ω)−1‖L p→Lq

for 1 ≤ p, q ≤ ∞ with (1 < p < ∞ or 1 < q < ∞) follows from the same
argument as in the two-dimensional case: The entries of M3(A, B,C, D) are linear
combinations of A,B,C ,D multiplied with components of m̃ and m̃−1, which yield
Fourier multipliers by Lemma 2.3.

Below let (Ri f )̂(ξ ) = ξi‖ξ‖ f̂ (ξ). To show the lower bound for 1 < p, q < ∞, we
consider the following initial data:

Je =
⎛
⎝ 0
−R3 f
R2 f

⎞
⎠ , Jm = 0.

Note that ∇ · Je = 0 and again, the initial data is also physically meaningful as the
magnetic current vanishes.

Let (e± f )̂(ξ ) = (ω ±√b|ξ |)−1 f̂ (ξ). We compute with m as in (38):

(dm−1)(ξ)

(
Ĵe
Ĵm

)
=
√
b

2

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

ê− f

−ê+ f
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(
D
B

)
= i

⎛
⎜⎜⎜⎜⎜⎜⎝

0
−R3(e− f + e+ f )
R2(e− f + e+ f )

−((R2
2 +R2

3)(e− f − e+ f )
R1R2(e− f − e+ f )
R1R3(e− f − e+ f ).

⎞
⎟⎟⎟⎟⎟⎟⎠

(41)

We shall see that

‖(D, B)‖Lq
0

� ‖e− f + e+ f ‖Lq + ‖e− f − e+ f ‖Lq � ‖e− f ‖Lq + ‖e+ f ‖Lq (42)

either, if f has frequency support in a conic neighbourhood of the ξ3-axis, or, if f is
spherically symmetric.
Assume that g ∈ S(R3) and

supp(ĝ) ⊆ {ξ ∈ R
3 : |ξ/|ξ | − e3| ≤ c " 1 and

1

2
≤ |ξ | ≤ 2} =: E .

By Theorem 2.1, we have for 1 < p <∞

‖g‖L p � ‖R3g‖L p and ‖R2g‖L p ≤ C(c)‖g‖L p (43)
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withC(c) → 0 as c→ 0. If supp( f̂ ) ⊆ E , then also the Fourier support of e− f ±e+ f
is contained in E , and an application of (43) to D2 and B1 yields

‖(D, B)‖Lq
0

� ‖R3(e− f + e+ f )‖Lq + ‖(R2
2 +R2

3)(e− f − e+ f )‖Lq

� ‖e− f + e+ f ‖Lq + ‖e− f − e+ f ‖Lq

� ‖e− f ‖Lq + ‖e+ f ‖Lq ,

(44)

which is (42).
Next, suppose that f ∈ L p(R3), 1 < p < ∞ is spherically symmetric. Since R2

1 +
R2

2+R2
3 = I d and ‖R2

i f ‖L p = ‖R2
j f ‖L p for i, j ∈ {1, 2, 3} by change of variables

and rotation symmetry, we find ‖R2
i f ‖L p � ‖ f ‖L p . By L p-boundedness, we have

‖ f ‖L p � ‖R2
i f ‖L p � ‖Ri f ‖L p � ‖ f ‖L p . (45)

Similarly,

(R2
1 +R2

2)+ (R2
2 +R2

3)+ (R2
1 +R2

3) = 2I d,

and ‖(R2
i +R2

j ) f ‖L p = ‖(R2
k +R2

l ) f ‖L p again by change of variables and rotation
symmetry. Hence, we also find

‖(R2
i +R2

j ) f ‖L p � ‖ f ‖L p . (46)

(45) and (46) together allow to argue as well in case of spherical symmetry as in (44).
If we can choose f such that the operator norms of e± are approximated, we find

‖(D, H)‖Lq
0

� (‖e−‖L p→Lq + ‖e+‖L p→Lq )‖ f ‖L p .

Lastly, if supp( f̂ ) ⊆ E , i.e., the frequency support is in a conic neighbourhood of
the ξ3-axis, or is spherically symmetric, we find ‖(Je, Jm)‖L p

0
∼ ‖ f ‖L p . To see that

it suffices to consider the frequency support of f as such, we recall the examples
from [18, Section 5.2], giving the claimed lower bound for the operator norm of the
resolvent of the fractional Laplacian: a Knapp type example, which can be realized
with frequency support in a conic neighbourhood of the ξ3-axis [18, p. 1458], and a
spherically symmetric example related with the surface measure on the sphere [18,
p. 1459].

We turn to the proof of (16) for d = 3:

‖P(ω, D)−1(Je, Jm)‖Lq

� (‖((−�)
1
2 − ω)−1‖L p→Lq + ‖((−�)

1
2 + ω)−1‖L p→Lq )‖(Je, Jm)‖L p

+ ‖(−�)−
1
2 ρe‖Lq + ‖(−�)−

1
2 ρm‖Lq .

(47)
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This hinges again on the decomposition

(P−1(ω, D)(Je, Jm))∧(ξ) = M3(A, B,C, D)( Ĵe, Ĵm)(ξ)+ M3
c ( Ĵe, Ĵm)(ξ).

The contribution of M3(A, B,C, D) is estimated like in the first part of the proof. We
compute

M3
c ( Ĵe, Ĵm)(ξ)

= −
(
bξ̃1ρ̂e(ξ)

ω‖ξ‖ε ,
aξ̃2ρ̂e(ξ)

ω‖ξ‖ε ,
aξ̃3ρ̂e(ξ)

ω‖ξ‖ε ,
ξ ′1ρ̂m(ξ)

ω‖ξ‖ ,
ξ ′2ρ̂m(ξ)

ω‖ξ‖ ,
ξ ′3ρ̂m(ξ)

ω‖ξ‖

)t

.

The claim follows by Theorem 2.1 because ‖ξ‖/‖ξ‖ε and ξ ′i and ξ̃i are zero-homo-
geneous and smooth away from the origin. The proof of Theorem 1.1 is complete.

��

3 Local and Global LAP

Let P(ω, D) be as in the previous section. In the following we want to investigate the
limit of

P(ω ± iδ, D)−1 f as δ → 0, ω ∈ R\0,

by which we construct solutions to time-harmonic Maxwell’s equations. By scaling
we see that the following estimates are uniform in ω, provided it varies in a compact
set away from the origin.We further suppose thatω > 0; the caseω < 0 can be treated
with the obvious modifications.

In the following let 0 < |δ| < 1/2. By the above diagonalization, it is equivalent
to consider uniform boundedness of

eε′±(ω + iδ) : L p(Rd)→ Lq(Rd), (eε′±(ω + iδ) f )̂(ξ ) = f̂ (ξ)

‖ξ‖ε′ ± (ω + iδ)
.

Hence, by the results of the previous section, the uniform L p
0 -L

q
0-LAP fails due to

the lack of uniform resolvent estimates for the Half-Laplacian in L p-spaces. This is
recorded in Corollary 1.5.

Regarding the local L p
0 -L

q
0-LAP, we observe that the operator

(eε′+(ω ± iδ) f )̂(ξ ) = β(ξ) f̂ (ξ)

‖ξ‖ε′ + (ω ± iδ)
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for β ∈ C∞c , 0 < δ < 1/2 is bounded from L p → Lq for 1 ≤ p ≤ q ≤ ∞ by
Young’s inequality, with the obvious limit as δ → 0. Thus, we focus on

(eδ f )̂(ξ ) := (e−(ω ± iδ) f )̂(ξ ) = β(ξ) f̂ (ξ)

‖ξ‖ε′ − (ω ± iδ)
(48)

with 0 < δ < δ0 " 1, where β ∈ C∞c (Rn).
We can be more precise about the limiting operators: For t ∈ R recall Sokhotsky’s

formula, which hold in the sense of distributions:

lim
ε↓0

1

t ± iε
= v.p.

1

t
∓ iπδ0(t),

where δ0 denotes the delta-distribution at the origin.
Let

Rloc± f = lim
δ→±0 eδ f .

We find

Rloc± f = v.p.
∫

β(ξ)eixξ

‖ξ‖ε′ − ω
f̂ (ξ)dξ ± iπ

∫
eixξ β(ξ)δ(‖ξ‖ε′ − ω) f̂ (ξ)dξ,

and by the diagonalization formulae, we find that the limiting operators can be
expressed as linear combinations involving possibly generalized Riesz transforms,
Rloc± , and e+. We recall the L p-Lq -mapping properties of Rloc± .

We observe that

(Rloc+ −Rloc− ) f = 2π i
∫
{‖ξ‖ε′=1}

β(ξ)eixξ f̂ (ξ)dσ(ξ).

This operator, modulo the bounded operator given by convolution with F−1β and
linear change of variables ξ → ζ such that ‖ξ‖ε′ = ‖ζ‖, is known as restriction-
extension operator (cf. [16, 18]) and is a special case of the Bochner–Riesz operator
of negative index:

(Bα f )̂(ξ ) = 1

�(1− α)

f̂ (ξ)

(1− ‖ξ‖2)α+
, 0 < α ≤ d + 2

2
,

Bα is defined by analytic continuation for α ≥ 1. Hence, for α = 1, it matches the
restriction–extension operator. This operator is well-understood due to the works of
Börjeson [4], Sogge [29], and Gutiérrez [13, 14]. The most recent results for Bochner–
Riesz operators of negative index are due to Kwon–Lee [18]. Gutiérrez showed that
B1 : L p → Lq is bounded if and only if (1/p, 1/q) ∈ P(d) with

P(d) =
{
(x, y) ∈ [0, 1]2 : x − y ≥ 2

d + 1
, x >

d + 1

2d
, y <

d − 1

2d

}
.
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She used this to show uniform resolvent estimates for

(−�− z)−1 : L p → Lq , z ∈ S
1\{1} for (1/p, 1/q) ∈ R1(d).

We summarize the operator bounds for eδ and Rloc± .

Proposition 3.1 [18, Proposition 4.1] Let ω > 0, 0 < δ < 1/2, β ∈ C∞c (Rd) and dδ

as in (48). Then, we find the following estimates to hold for (1/p, 1/q) ∈ P(d):

‖eδ‖L p→Lq ≤ C(ω, p, q),

∥∥ ∫
Rd

eix .ξ δ(‖ξ‖ε′ − ω) f̂ (ξ)dξ
∥∥
Lq ≤ C(ω, p, q)‖ f ‖L p ,

∥∥v.p.
∫
Rd

eix .ξ
β(ξ)

‖ξ‖ε′ − ω
f̂ (ξ)dξ

∥∥
Lq ≤ C(ω, p, q)‖ f ‖L p .

(49)

We are ready for the proof of the local LAP:

Proposition 3.2 (Local LAP) We find a local L p
0 -L

q
0 -LAP to hold provided that

(1/p, 1/q) ∈ P(d). This means that for ω ∈ R\0 and β ∈ C∞c (Rd), we find uniform
(in 0 < δ < 1/2) resolvent bounds

‖P(ω ± iδ, D)−1β(D) f ‖Lq
0 (Rd ) �p,q,d,ω ‖ f ‖L p

0 (Rd ) (50)

and there are limiting operators Ploc± : L p
0 → Lq

0 such that

P(ω ± iδ, D)−1β(D) f → Ploc± (ω) f in (S ′(Rd))m(d).

Proof We assume that ω > 0 because ω < 0 can be treated mutatis mutandis. Recall
the bounds for eδ recorded in Proposition 3.1, easier bounds for eε′+, and the diagonal-
ization from Sect. 2, which decompose (cf. Lemmas 2.2, 2.3)

p(ω, ξ) = m(ξ)d(ω, ξ)m−1(ξ).

By these, (50) follows for (1/p, 1/q) ∈ P(d) provided that 1 < p, q < ∞ to bound
the generalized Riesz transforms.We extend this to all (1/p, 1/q) ∈ P(d) by Young’s
inequality: For (1/p, 0) ∈ P(d)we choose 1 < q̃ <∞ such that (1/p, 1/q̃) ∈ P(d).
By Young’s inequality and the previously established bounds for (1/p, 1/q̃) ∈ P(d)

follows

‖P(ω ± iδ, D)−1β(D) f ‖L∞0 � ‖P(ω ± iδ, D)−1β(D) f ‖
Lq̃
0

� ‖ f ‖L p
0
.

The case (1, 1/q) ∈ P(d) is treated by the dual argument.
By Sokhotsky’s formula and the diagonalization, we can consider the limiting

operators

P±(ω, D) = lim
δ→0

P(ω ± iδ, D)−1β(D) : L p
0 → Lq

0
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whose mapping properties follow again from Proposition 3.1 and the diagonalization
as argued above.We give explicit formulae in Propositions 5.2 and 5.3; however, these
are bulky and recorded in the Appendix. ��

We are ready for the proof of Theorem 1.6:

Proof of Theorem 1.6 Let 1 ≤ p1, p2, q ≤ ∞, and ω ∈ R\0. Choose C = C(ε, ω)

such that p(ω, ξ)−1 is regular for ‖ξ‖ ≥ C .Write J = (Je, Jm) for the sake of brevity.
Let β ∈ C∞c with β ≡ 1 on {‖ξ‖ ≤ C} and decompose

J = β(D)J + (1− β)(D)J =: Jlow + Jhigh .

By Proposition 3.2, we find uniform bounds for 0 < δ < 1/2

‖P(ω ± iδ, D)−1 Jlow‖Lq
0

� ‖Jlow‖L p1
0

provided that ( 1
p1

, 1
q ) ∈ P(d). The estimate

‖P(ω ± iδ, D)−1 Jhigh‖Lq
0

� ‖Jhigh‖L p2
0

follows for 0 ≤ 1
p2
− 1

q ≤ 1
d and ( 1

p2
, 1
q ) /∈ {( 1d , 0), (1, d−1

d )} by properties of the

Bessel kernel. The limiting operators Ploc± (ω) were described in Proposition 3.2: We
have

P(ω ± iδ, D)−1(Je, Jm) → Ploc± (ω)(Je, Jm) in S ′(Rd)m(d).

The high frequency is limit is easier to analyze because the multiplier remains regular
by construction. Let Md ∈ C

m(d)×m(d) be as in Propositions 5.2 and 5.3. For d = 2,
let

A = 1

i(ω − ‖ξ‖ε′) , B = 1

i(ω + ‖ξ‖ε′) ,

and we have

P(ω ± iδ, D)−1 Jhigh → 1

(2π)2

∫
R2

eix .ξ M2(A, B)(1− β(ξ)) Ĵ (ξ)dξ in (S ′(R2))3

=: Phigh(ω)J .

(51)

For d = 3, let

A = 1

i(ω −√b‖ξ‖) , B = 1

i(ω +√b‖ξ‖) , C = 1

i(ω − ‖ξ‖ε) , D = 1

i(ω + ‖ξ‖ε) ,
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and we have with convergence in (S ′(R3))6

P(ω ± iδ, D)−1(1− β(D))J → 1

(2π)3

∫
R3

eix .ξ M3(A, B,C, D)(1− β(ξ)) Ĵ (ξ)dξ

=: Phigh(ω)J .

(52)

Let P±(ω) = Ploc± (ω)+ Phigh(ω). By Proposition 3.2, and (51), (52), we have

P(ω ± iδ, D)−1 J → Ploc± (ω)J + Phigh(ω)J in (S ′(Rd))m(d).

Let (D, B)±δ = P(ω± iδ, D)−1 J and (D, B)± = P±(ω)J . At last, we show that

P(ω, D)(D, B)± = J . (53)

For this purpose, we show that for δ → 0 we have

P(ω, D)(D, B)±δ → J in S ′(Rd)m(d). (54)

As (D, B)±δ → (D, B)± in S ′(Rd)m(d), (54) concludes the proof.
To show (54), we return to the diagonalizations (cf. Lemmas 2.2 and 2.3):

p(ω̃, ξ) = im(ξ)d(ω̃, ξ)m−1(ξ) for ω̃ ∈ C.

We find for ω ∈ R:

p(ω, ξ)p−1(ω ± iδ, ξ) = m(ξ)d(ω, ξ)d(ω ± iδ, ξ)−1m−1(ξ)

= m(ξ)(1m(d)×m(d) ± δd(ω ± iδ, ξ)−1)m−1(ξ)

= 1m(d)×m(d) ± δ p(ω ± iδ, ξ)−1.

Hence,

P(ω, D)(D, B)±δ = J ± δP(ω ± iδ, D)−1 J ,

‖P(ω, D)(D, B)±δ − J‖Lq
0 (Rd ) � δ‖J‖L p1

0 ∩L
p2
0
→ 0.

In particular, (54) holds true in S ′(Rd)m(d).
Next, we suppose additionally that J ∈ (Ws−1,q(Rd))m(d) for s ≥ 1. By Young’s

inequality, we have

‖P(ω ± iδ, D)−1β(D)J‖(Ws,q (Rd ))m(d) � ‖P(ω ± iδ, D)−1β(D)J‖Lq
0 (Rd ).

Hence, the low frequencies can be estimated like before. For the high frequencies,
we recall that the multipliers M2 and M3 yield smoothing of one derivative and by
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Theorem 2.1, we find

‖P(ω ± iδ, D)−1(1− β(D))J‖(Ws,q (Rd ))m(d)

� ‖ (1−�)s/2

(1−�)1/2
(1− β(D))J‖(Lq (Rd ))m(d)

� ‖(1−�)(s−1)/2(1− β(D))J‖(Lq (Rd ))m(d)

= ‖(1− β(D))J‖(Ws−1,q (Rd ))m(d) .

The proof of Theorem 1.6 is complete. ��

4 Localization of Eigenvalues

At last, we use the ω-dependent resolvent estimates to localize eigenvalues for oper-
ators P(ω, D) + V acting in Lq . For this purpose, we consider for � > 0 and

(1/p, 1/q) ∈ R̃
1
2
0 the region, where uniform resolvent estimates are possible:

Zp,q(�) = {ω ∈ C\R : κp,q(ω) ≤ �}
= {ω ∈ C\R : |ω|−αp,q |ω|γp,q |	ω|−γp,q ≤ �}, αp,q = 1− d

( 1
p
− 1

q

)
.

(55)

Describing the regions, we start with observing the symmetry in the real and imaginary
part. For αp,q = 0, � < 1, we find Zp,q(�) = ∅. For � ≥ 1, Zp,q(�) describes
a cone around the y-axis with aperture getting larger. For αp,q > 0 the boundaries
become slightly curved. Pictorial representations for &ω > 0 were provided in [18,
Figures 9(a)–(c)]. The region in the left half plane is obtained by reflection along the
imaginary axis. We shall see that eigenvalues of P(ω, D)+ V must lie in C\Zp,q(�).
Previously in [11], for non-self-adjoint Schrödinger operators analogous arguments
were used to show that in a range of (p, q), a sequence of eigenvalues λ j with&λ j →
∞ has to satisfy 	λ j → 0 as a consequence of the shape of Zp,q(�). This is not the
case presently and the shape ofZp,q(�) only yields a bound for the asymptotic growth
of |	λ j | as |&λ j | → ∞. This also raises the question for counterexamples, where the
behavior &λ j → ∞ and 	λ j → 0 fails. We also refer to Cuenin [6] for resolvent
estimates for the fractional Laplacian in this context.

Let C be the constant such that

‖P(ω, D)−1‖L p
0 (Rd )→Lq

0 (Rd ) ≤ Cκp,q(ω). (56)

Corollary 4.1 Let d ∈ {2, 3}, � > 0, and 1 < p, q <∞ such that (1/p, 1/q) ∈ R̃1/2
0 .

Suppose that there is t ∈ (0, 1) such that

‖V ‖ pq
q−p

≤ t(C�)−1.
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If E ∈ C\R is an eigenvalue of P + V acting in Lq
0 , then E must lie in C\Zp,q(�).

Proof The short argument is standard by now (cf. [18, 19]), but contained for the
sake of completeness. Let u ∈ Lq

0(R
d) be an eigenfunction of P + V with eigenvalue

E ∈ C\R and suppose that E ∈ Zp,q(�). ByHölder’s inequality,wefind−(P−E)u =
(V − (P − E + V ))u = Vu ∈ L p. By definition of Zp,q(�), we find

‖(P − E)−1‖p→q ≤ Cκp,q(E) ≤ C�.

By the triangle and Hölder’s inequality, we find

‖(P − E)−1(P − E)u‖q ≤ C�(‖(P − E + V )u‖p + ‖Vu‖p)
≤ C�‖V ‖ pq

q−p
‖u‖q ≤ t‖u‖q ,

which implies u = 0 as t < 1. Hence, E /∈ Zp,q(�). ��
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5 Appendix

Lemma 5.1 With the notations from Section 2.2, let m(ξ) be as in (38) and α(ξ) as in
(39). Then, we have

| detm(ξ)| ∼ α4(ξ).

http://creativecommons.org/licenses/by/4.0/
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Proof We compute the determinant by taking linear combinations of the third and
fourth column and fifth and sixth column, and aligning the columns as block matrices:

detm(ξ) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 ξ̃1/a 0 0 ξ̃22 + ξ̃23 −(ξ̃22 + ξ̃23 )

0 ξ̃2/b −ξ ′3/
√
b ξ ′3/

√
b −ξ̃1ξ̃2 ξ̃1ξ̃2

0 ξ̃3/b ξ ′2/
√
b −ξ ′2/

√
b −ξ̃1ξ̃3 ξ̃1ξ̃3

ξ ′1 0 −((ξ ′2)2 + (ξ ′3)2) −((ξ ′2)2 + (ξ ′3)2) 0 0
ξ ′2 0 ξ ′1ξ ′2 ξ ′1ξ ′2 −ξ̃3 −ξ̃3

ξ ′3 0 ξ ′1ξ ′3 ξ ′1ξ ′3 ξ̃2 ξ̃3

∣∣∣∣∣∣∣∣∣∣∣∣

∼

∣∣∣∣∣∣∣∣∣∣∣∣

0 ξ̃1/a 0 0 ξ̃22 + ξ̃23 0
0 ξ̃2/b 0 −ξ ′3/

√
b −ξ̃1ξ̃2 0

0 ξ̃3/b 0 −ξ ′2/
√
b −ξ̃1ξ̃3 0

ξ ′1 0 (ξ ′2)2 + (ξ ′3)2 0 0 0
ξ ′2 0 −ξ ′1ξ ′2 0 0 −ξ̃3

ξ ′3 0 −ξ ′1ξ ′3 0 0 ξ̃3

∣∣∣∣∣∣∣∣∣∣∣∣

∼

∣∣∣∣∣∣∣∣∣∣∣∣

ξ̃1/a 0 ξ̃22 + ξ̃23 0 0 0
ξ̃2/b −ξ ′3/

√
b −ξ̃1ξ̃2 0 0 0

ξ̃3/b ξ ′2/
√
b −ξ̃1ξ̃3 0 0 0

0 0 0 ξ ′1 (ξ ′2)2 + (ξ ′3)2 0
0 0 0 ξ ′2 −ξ ′1ξ ′2 −ξ̃3

0 0 0 ξ ′3 −ξ ′1ξ ′3 ξ̃2

∣∣∣∣∣∣∣∣∣∣∣∣
=: A2 · A1.

We find by noting that (ξ ′1)2 + (ξ ′2)2 + (ξ ′3)2 = 1

A1 ∼
∣∣∣∣∣∣
(ξ ′2)2 + (ξ ′3)2 −ξ ′1ξ ′2 −ξ ′1ξ ′3

ξ ′1 ξ ′2 ξ ′3
0 −ξ̃3 ξ̃2

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1− (ξ ′1)2 −ξ ′1ξ ′2 −ξ ′1ξ ′3

ξ ′1 ξ ′2 ξ ′3
0 −ξ̃3 ξ̃2

∣∣∣∣∣∣

=
∣∣∣∣∣∣
1 0 0
ξ ′1 ξ ′2 ξ ′3
0 −ξ̃3 ξ̃2

∣∣∣∣∣∣− ξ ′1

∣∣∣∣∣∣
ξ ′1 ξ ′2 ξ ′3
ξ ′1 ξ ′2 ξ ′3
0 −ξ̃3 ξ̃2

∣∣∣∣∣∣ = ξ ′2ξ̃2 + ξ ′3ξ̃3.

Next, by a similar argument,

A2 ∼
∣∣∣∣∣∣

ξ̃1/a ξ̃2/b ξ̃3/b
0 −ξ ′3/

√
b ξ ′2/

√
b

ξ̃22 + ξ̃23 −ξ̃1ξ̃2 −ξ̃1 ξ̃3

∣∣∣∣∣∣ =
1

a

∣∣∣∣∣∣
ξ̃1/a ξ̃2/b ξ̃3/b
0 −ξ ′3/

√
b ξ ′2/

√
b

a(ξ̃22 + ξ̃23 ) −aξ̃1ξ̃2 −aξ̃1ξ̃3

∣∣∣∣∣∣

= 1

a

∣∣∣∣∣∣
ξ̃1/a ξ̃2/b ξ̃3/b
0 −ξ ′3/

√
b ξ ′2/

√
b

bξ̃21 + a(ξ̃22 + ξ̃23 )− bξ̃21 −aξ̃1ξ̃2 −aξ̃1ξ̃3

∣∣∣∣∣∣ .
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We use multilinearity to write

A2 ∼ 1

a

⎛
⎝

∣∣∣∣∣∣
ξ̃1/a ξ̃2/b ξ̃3/b
0 −ξ ′3/

√
b ξ ′2/

√
b

1 0 0

∣∣∣∣∣∣−
∣∣∣∣∣∣
ξ̃1/a ξ̃2/b ξ̃3/b
0 −ξ ′3/

√
b ξ ′2/

√
b

−bξ̃21 −aξ̃1ξ̃2 −aξ̃1ξ̃3

∣∣∣∣∣∣
⎞
⎠

∼
∣∣∣∣∣∣

1 0 0
0 −ξ ′3/

√
b ξ ′2/

√
b

ξ̃1/a ξ̃2/b ξ̃3/b

∣∣∣∣∣∣ ∼ (ξ ′3ξ̃3 + ξ ′2ξ̃2).

��
In the following we give explicit formulae for the resolvents and for limiting operators
in two dimensions:

Proposition 5.2 Let d = 2 and

M2(A, B) =

⎛
⎜⎜⎝

A+B
2μ ((ξ ′2)2ε11 − (ξ ′1ξ ′2)ε12) A+B

2μ ((ξ ′2)2ε21 − ξ ′1ξ ′2ε22)
ξ ′2
2μ(A − B)

A+B
2μ ((ξ ′1)2ε21 − ξ ′1ξ ′2ε11) A+B

2μ ((ξ ′1)2ε22 − ε12(ξ
′
1)(ξ

′
2))

ξ ′1
2μ(B − A)

A−B
2 (ξ ′2ε11 − ξ ′1ε21) B−A

2 (ξ ′1ε22 − ξ ′2ε21) A+B
2

⎞
⎟⎟⎠ ,

furthermore,

M2
c =

1

iωμ

⎛
⎝ε22(ξ

′
1)

2 − ε12ξ
′
1ξ
′
2 ε22ξ

′
1ξ
′
2 − ε12(ξ

′
2)

2 0
ε11ξ

′
1ξ
′
2 − ε12(ξ

′
1)

2 ε11(ξ
′
2)

2 − ε12ξ
′
1ξ
′
2 0

0 0 0

⎞
⎠ .

Then, we have for ω ∈ C\R and almost all ξ ∈ R
2:

(P(ω, D)−1u)̂(ξ ) = (M2(A, B)+ M2
c )û(ξ)

with

A = 1

i(ω − ‖ξ‖ε′) , B = 1

i(ω + ‖ξ‖ε′) .

For ω > 0, β ∈ C∞c (R2), and u ∈ S(R2)3, we find

P(ω ± iδ, D)−1β(D)u → Ploc± (ω)β(D)u

with

Ploc± (ω)β(D)u(x) = 1

(2π)2

∫
R2

eix .ξ (M2(A, B)+ M2
c )β(ξ)û(ξ),

where

A = 1

i

{
v.p.

1

ω − ‖ξ‖ε′ ∓ iπδ(ω − ‖ξ‖ε′)
}

, B = 1

i(ω + ‖ξ‖ε′) .
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Proof The first claim follows from computing p−1(ω, ξ) (cf. Lemma 2.2).We decom-
pose

m−1(ξ) = m1(ξ)+ m2(ξ)

=
⎛
⎜⎝

0 0 0
ξ ′1ε21−ξ ′2ε11

2
ε22ξ

′
1−ε21ξ

′
2

2 − 1
2

ξ ′2ε11−ξ ′1ε12
2

ξ ′2ε12−ξ ′1ε22
2 − 1

2

⎞
⎟⎠+

⎛
⎝μ−1ξ ′1 μ−1ξ ′2 0

0 0 0
0 0 0

⎞
⎠

based on the observation thatm2(ξ)v(ξ) = 0 for ξ1v1(ξ)+ ξ2v2(ξ) = 0. We compute
for A and B as in the first claim:

M2(A, B) = m(ξ)d(ω, ξ)−1m1(ξ).

The computation is simplified by noting that:

⎛
⎝0 0 0
0 A 0
0 0 B

⎞
⎠

⎛
⎜⎝

0 0 0
ξ ′1ε21−ξ ′2ε11

2
ε22ξ

′
1−ε21ξ

′
2

2 − 1
2

ξ ′2ε11−ε12ξ
′
1

2
ξ ′2ε12−ξ ′1ε22

2 − 1
2

⎞
⎟⎠ =

⎛
⎜⎝

0 0 0
A(ξ ′1ε21−ξ ′2ε11)

2
A(ε22ξ

′
1−ε21ξ

′
2

2 − A
2

B(ξ ′2ε11−ε12ξ
′
1)

2
B(ξ ′2ε12−ξ ′1ε22)

2 − B
2

⎞
⎟⎠ .

We find for m(ξ)d(ω, ξ)−1m1(ξ):

⎛
⎜⎜⎝

A+B
2μ ((ξ ′2)2ε11 − (ξ ′1ξ ′2)ε12)

A+B
2μ ((ξ ′2)2ε21 − ξ ′1ξ ′2ε22)

ξ ′2
2μ(A − B)

A+B
2μ ((ξ ′1)2ε21 − ξ ′1ξ ′2ε11)

A+B
2μ ((ξ ′1)2ε22 − ε12(ξ

′
1)(ξ

′
2))

ξ ′1
2μ(B − A)

A−B
2 (ξ ′2ε11 − ξ ′1ε21)

B−A
2 (ξ ′1ε22 − ξ ′2ε21)

A+B
2

⎞
⎟⎟⎠

In M2
c = m(ξ)d(ω, ξ)−1m2(ξ) we have separated the contribution of non-trivial

charges. The second claim follows with the same computation from Sokhotsky’s for-
mula. ��

For d = 3, we define M3(A, B,C, D) ∈ C
6×6:

M3
11 =

a(C + D)(ξ̃22 + ξ̃23 )

2
, M3

12 = −
b(C + D)ξ̃1ξ̃2

2
, M3

13 = −
b(C + D)ξ̃1ξ̃3

2
,

M3
14 = 0, M3

15 =
(D − C)ξ̃3

2
, M3

16 =
(C − D)ξ̃2

2
.

Furthermore,

M3
21 = −

a(C + D)ξ̃1ξ̃2

2
, M3

22 =
(A + B)ξ23

2(ξ22 + ξ23 )
+ b(C + D)ξ̃21 ξ22

2(ξ22 + ξ23 )
,

M3
23 = −

(A + B)ξ2ξ3

2(ξ22 + ξ23 )
+ b(C + D)ξ̃21 ξ2ξ3

2(ξ22 + ξ23 )
, M3

24 =
ξ ′3(A + B)

2
√
b

,
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M3
25 =

(B − A)ξ ′1ξ2ξ3
2
√
b(ξ22 + ξ23 )

+ (C − D)ξ̃1ξ2ξ3

2(ξ22 + ξ23 )
,

M3
26 =

(B − A)ξ ′1ξ23
2
√
b(ξ22 + ξ23 )

+ (D − C)ξ̃1ξ
2
2

2(ξ22 + ξ23 )
.

Next,

M3
31 = −

a(C + D)ξ̃1ξ̃3

2
, M3

32 = −
(A + B)ξ2ξ3

2(ξ22 + ξ23 )
+ b(C + D)ξ̃21 ξ2ξ3

2(ξ22 + ξ23 )
,

M3
33 =

(A + B)ξ22

2(ξ22 + ξ23 )
+ b(C + D)ξ̃21 ξ23

2(ξ22 + ξ23 )
, M3

34 =
(B − A)ξ ′2

2
√
b

,

M3
35 =

(A − B)ξ ′1ξ22
2
√
b(ξ22 + ξ23 )

+ (C − D)ξ̃1ξ
2
3

2(ξ22 + ξ23 )
, M3

36 =
(A − B)ξ ′1ξ2ξ3
2
√
b(ξ22 + ξ23 )

+ (D − C)ξ̃1ξ2ξ3

2(ξ22 + ξ23 )
.

M3
41 = 0, M3

42 =
√
b(A − B)ξ ′3

2
,

M3
43 =

√
b(B − A)ξ ′2

2
, M3

44 =
(A + B)(ξ ′22 + ξ ′23 )

2
,

M3
45 = −

(A + B)ξ ′1ξ ′2
2

, M3
46 = −

(A + B)ξ ′1ξ ′3
2

.

M3
51 =

a(D − C)

2
ξ̃3, M3

52 =
√
b(B − A)ξ ′1ξ2ξ3
2(ξ22 + ξ23 )

+ b(C − D)ξ̃1ξ2ξ3

2(ξ22 + ξ23 )
,

M3
53 =

√
b(A − B)ξ ′1ξ22
2(ξ22 + ξ23 )

+ b(C − D)ξ̃1ξ
2
3

2(ξ22 + ξ23 )
, M3

54 = −
(A + B)ξ ′1ξ ′2

2
,

M3
55 =

(A + B)ξ ′21 ξ22

2(ξ22 + ξ23 )
+ (C + D)ξ23

2(ξ22 + ξ23 )
, M3

56 =
(A + B)ξ ′21 ξ2ξ3

2(ξ22 + ξ23 )
− (C + D)ξ2ξ3

2(ξ22 + ξ23 )
.

Lastly,

M3
61 =

a(C − D)ξ̃2

2
, M3

62 =
√
b(B − A)ξ ′1ξ23
2(ξ22 + ξ23 )

+ b(D − C)ξ̃1ξ
2
2

2(ξ22 + ξ23 )
,

M3
63 =

√
b(A − B)ξ ′1ξ2ξ3
2(ξ22 + ξ23 )

+ b(D − C)ξ̃1ξ2ξ3

2(ξ22 + ξ23 )
, M3

64 = −
(A + B)ξ ′1ξ ′3

2
,

M3
65 =

(A + B)ξ ′21 ξ2ξ3

2(ξ22 + ξ23 )
− (C + D)ξ2ξ3

2(ξ22 + ξ23 )
, M3

66 =
(A + B)ξ ′21 ξ23

2(ξ22 + ξ23 )
+ (C + D)ξ22

2(ξ22 + ξ23 )
.
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We let moreover

M3
c =

1

iω

⎛
⎜⎜⎜⎜⎜⎜⎝

bξ̃21 bξ̃1ξ̃2 bξ̃1ξ̃3 0 0 0
aξ̃1ξ̃2 aξ̃22 aξ̃2ξ̃3 0 0 0
aξ̃1ξ̃3 aξ̃2ξ̃3 aξ̃23 0 0 0
0 0 0 ξ ′21 ξ ′1ξ ′2 ξ ′1ξ ′3
0 0 0 ξ ′1ξ ′2 ξ ′22 ξ ′2ξ ′3
0 0 0 ξ ′1ξ ′3 ξ ′2ξ ′3 ξ ′23

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We have the following analog of Proposition 5.2:

Proposition 5.3 Let d = 3. We find for ω ∈ C\R and almost all ξ ∈ R
3

(P(ω, D)−1u)̂(ξ ) = (M3(A, B,C, D)+ M3
c )û(ξ)

with

A = 1

i(ω −√b‖ξ‖) , B = 1

i(ω +√b‖ξ‖) , C = 1

i(ω − ‖ξ‖ε) , D = 1

i(ω + ‖ξ‖ε) .

For ω > 0, β ∈ C∞c (R3), and u ∈ S(R3)6, we find

P(ω ± iδ, D)−1β(D)u → Ploc± (ω)β(D)u in (S ′(R3))6

with

Ploc± (ω)β(D)u(x) = 1

(2π)3

∫
R3

eix .ξ (M3(A, B,C, D)+ M3
c )β(ξ)û(ξ),

where

A = 1

i

{
v.p.

1

ω −√b‖ξ‖ ∓ iπδ(ω −√b‖ξ‖)
}

, B = 1

i(ω +√b‖ξ‖) ,

C = 1

i

{
v.p.

1

ω − ‖ξ‖ε ∓ iπδ(ω − ‖ξ‖ε)
}

, D = 1

i(ω + ‖ξ‖ε) .
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