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Abstract

We study the asymptotics of Dirichlet eigenvalues and eigenfunctions of the fractional
Laplacian (—A)* in bounded open Lipschitz sets in the small order limit s — 0.
While it is easy to see that all eigenvalues converge to 1 as s — 0, we show that the
first order correction in these asymptotics is given by the eigenvalues of the logarithmic
Laplacian operator, i.e., the singular integral operator with Fourier symbol 2 log |&].
By this we generalize a result of Chen and the third author which was restricted to the
principal eigenvalue. Moreover, we show that L?-normalized Dirichlet eigenfunctions
of (—A)* corresponding to the k-th eigenvalue are uniformly bounded and converge to
the set of L2-normalized eigenfunctions of the logarithmic Laplacian. In order to derive
these spectral asymptotics, we establish new uniform regularity and boundary decay
estimates for Dirichlet eigenfunctions for the fractional Laplacian. As a byproduct, we
also obtain corresponding regularity properties of eigenfunctions of the logarithmic
Laplacian.
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1 Introduction

Fueled by various applications and important links to stochastic processes and partial
differential equations, the interest in nonlocal operators and associated Dirichlet prob-
lems has been growing rapidly in recent years. In this context, the fractional Laplacian
has received by far the most attention, see e.g. [2-8,25,29] and the references therein.
We recall that, for compactly supported functions u : RY — R of class C2 and
s € (0, 1), the fractional Laplacian (—A)* is well-defined by

‘ . u(x) —u(y)
(=A)’u(x) = Cns lim ———dy,
Y0t RM\B,(x) |X — yINF2S
. T Yo
where Cl g :W#. (1.1
72(1 —s)

The normalization constant C ¢ is chosen such that (—A)® is equivalently given by
F((=A)'u) = |- |* Fu, (1.2)

where, here and in the following, F denotes the usual Fourier transform. We emphasize
that the fractional Laplacian is an operator of order 2s and many related regularity
properties—in particular of associated eigenfunctions—rely on this fact.

The present paper is concerned with the small order asymptotics s — 0% of the
Dirichlet eigenvalue problem

—A)Y¥op, = A in €,
(—A) s Ps : ; (13)
Qs = 0 in Q B
where Q C R is a bounded open set with Lipschitz boundary and Q¢ := R \ Q. Itis

well known (see [30, Proposition 9] or [4, Proposition 3.1]) that, for every s € (0, 1),
(1.3) admits an ordered sequence of eigenvalues

AMys <MAsg <Az =<... (1.4)

with Aty — 00 as k — oo and a corresponding L2-orthonormal basis of eigenfunc-
tions ¢ s, k € N. Moreover, ¢ ¢ is unique up to sign and can be chosen as a positive
function.

The starting point of the present work is the basic observation that

(—=A)Yu —u ass— 0" forevery u € C2(RY), (1.5)

which readily follows from (1.2) and standard properties of the Fourier transform (see
also [13, Proposition 4.4]. Similarly, we have

2

2@y, ass— 07 forevery u e CHRM), (1.6)

Es(u, u) — Jlull
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where & denotes the quadratic form associated with (—A)* given by

<u,v>Hss<u,v>=% / / (1) ~u)) —ve) o
RN JRN

|x _y|N+2s

We remark that these convergence properties in the limit s — 0" extend to a non-
Hilbertian setting of quasilinear operators where the Fourier transform cannot be
employed, see e.g. [1] and the references therein. It is not difficult to deduce from
(1.5) that

Ms— 1 ass— 0" forallk e N, (1.7

see Sect. 2 below for details. However, there is no straightforward approach to obtain
the asymptotics of associated eigenfunctions as s — 07 since, as a consequence of
(1.5) and (1.6), no uniform regularity theory is available for the fractional Laplacian
(—A)* inthe case where s is close to zero. For general bounded open sets with Lipschitz
boundary, the only available result regarding these asymptotics is contained in [9],
where Chen and the third author introduced the Dirichlet problem for the logarithmic
Laplacian operator LA to give a more detailed description of the first eigenvalue A1 ¢
and the corresponding eigenfunction ¢  as s — 0. On compactly supported Dini
continuous functions, the operator L 5 is pointwisely given by

Lau(x) = CN/ “OOLB 0O Z 1)y, (18)

RN lx —y|¥

where Cy = n_%r’(%), and py = 2log2 + w(%) — y. Here, ¥ = 1% denotes the
Digamma function, and y = —I"/(1) is the Euler-Mascheroni constant.

We note two key properties of the operator L shown in [9]. If u € Cf (RV) for
some B > 0, then

F(Lau) =2log|&|F(u)(€) forae. £ € RV, (1.9)
so the operator L A has the Fourier symbol & +— 2log |£|. Moreover,

d —A)Su —
— (=A)’'u = lim ()—uu =Lau inLP@®RY)forl < p < 0.
ds ls=0 s—0t s

(1.10)

Hence, L arises as a formal derivative of fractional Laplacians at s = 0. As a
consequence of (1.9), L A is an operator of logarithmic order, and it belongs to a class
of weakly singular integral operators having an intrinsic scaling property. Operators of
this type have also been studied e.g. in [11,16-19,21-23,28], while the most attention
has been given to Lévy generators of geometric stable processes. These operators have
a Fourier symbol of the form £ — log(1+ |&|*#) with some 8 > 0. The particular case
B = 1 corresponds to the variance gamma process, and the kernel of the associated
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Lévy generator has the same weakly singular behavior as the one of L 5. The operator
L A also arises in a geometric context of the O-fractional perimeter studied recently in
[12].

Using (1.10) and related functional analytic properties, it has been shown in [9,
Theorem 1.5] that

As— 1

N

—Ar and @1y — @ inL*(Q) ass— 0%, (1.11)

where A1 1, denotes the principal eigenvalue of the Dirichlet eigenvalue problem

Lau=Xxu in £, 112

u=0 in Q°, (1.12)

and ¢y 7 denotes the corresponding (unique) positive L>-normalized eigenfunction.

Here we note that we consider both (1.3) and (1.12) in a suitable weak sense which
we will make more precise below.

The main aim of the present paper is twofold. First, we wish to improve the L2-
convergence ¢1 s — 1,7 in (1.11). For this, new tools are needed in order to overcome
the lack of uniform regularity estimates for the fractional Laplacian (— A)* for s close to
zero. Secondly, we wish to extend the convergence result from [9] to higher eigenvalues
and eigenfunctions. Due to the multiplicity of eigenvalues and eigenfunctions for
k > 2, this also requires a new approach based on the use of Fourier transform in
combination with the Courant-Fischer characterization of eigenvalues.

In order to state our main results, we need to introduce some notation regarding the
weak formulations of (1.3) and (1.12). For the weak formulation of (1.3), we consider
the standard Sobolev space

H(Q) = {u e H*RY) : u=0on sz} (1.13)

and we call ¢ € H{(2) an eigenfunction of (1.3) corresponding to the eigenvalue A
if

Es(p,v) = )»/ pvdx  forallv e Hy(Q).
Q
For the weak formulation of (1.12), we follow [9] and define the space
0 o 2mNy . c
HO(Q) = {u € L’®Y) s u=00nQ, (u,uhpg < —I—oo}, (1.14)

where the quadratic form (-, '>H8<9) is given by

(1, ) > (. Vg g = Cz_N/ﬁc,yeRN () —u(y) W) —vy) dxdy.

N
Y
Padvi |x — vl
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(1.15)

A function ¢ € HS(Q) is called an eigenfunction of (1.12) corresponding to the
eigenvalue A if

Er(p,v) = A/ pvdx forallv e Hg(Q),
Q

where

(u,v) = EL(u, v) = (u, UHO(Q) //; u(x)v(y) dxdy + pn /RN uv dx

yeRN Ix — y|V

(1.16)

is the quadratic form associated with L 5. For more details, see Sect. 2 below and [9].
The first main result of this paper now reads as follows.

Theorem 1.1 Let @ C RY be a bounded open set with Lipschitz boundary and let
k € N. Moreover, fors € (0, 4—11), let i s resp. A1, denote the k-th Dirichlet eigenvalue
of the fractional and logarithmic Laplacian, respectively, and let ¢y s denote an L%-
normalized eigenfunction. Then we have:

(1) The eigenvalue Ay g satisfies the expansion
Mes =14k +o(s) ass— 0. (1.17)

(i1) The set {gpxs : s € (0, 4—1‘]} is bounded in L°°(2) and relatively compact in
LP(S2) for every p < oo.

(1) The set {¢rs : s € (0, %]} is equicontinuous in every point xo € 2 and therefore
relatively compact in C(K) for any compact subset K C Q.

(iv) If Q satisfies an exterior sphere condition, then the set {¢grs : s € (0, ‘—IL]} is
relatively compact in the space Co(2) = {u € C(RN) cu=0 in QY.

) If (sp)n C (O, %] is a sequence with s, — 0 as n — oo, then, after passing to a
subsequence, we have

ks, — Pk,L asn — 00 (1.18)

in LP(Q2) for p < oo and locally uniformly in Q2, where @i 1 is an L?-normalized
eigenfunction of the logarithmic Laplacian corresponding to the eigenvalue Ay ..

If, moreover, Q satisfies an exterior sphere condition, then the convergence in
(1.18) is uniform in Q.

Here and in the following, we identify the space L? (£2) with the space of functions
u € LP(RY) with u = 0 on Q°.
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Remark 1.2 (i) Theorem 1.1 complements [9, Theorem 1.5] by emphazising the rel-
evance of higher Dirichlet eigenvalues and eigenfunctions of L o for the spectral
asymptotics of the fractional Laplacian as s — 0. We note that upper and lower
bounds for the Dirichlet eigenvalues Ay ;, of the logarithmic Laplacian and corre-
sponding Weyl type asymptotics in the limit k — 400 have been derived in [27]
and more recently in [10].

(i) The number 4—{ in the above theorem is chosen for technical reasons, as it allows
to reduce the number of case distinctions in the arguments. In the case N > 2, it
can be replaced by any fixed number smaller than 1, and in the case N = 1 it can
be replaced by any fixed number smaller than % Since we are only interested in
parameters s close to zero in this paper, we omit the details of such an extension.

As noted already, the principal eigenvalue A (£2) admits, up to sign, a unique
L?-normalized eigenfunction which can be chosen to be positive. Hence Theorem 1.1
and [9, Theorem 1.5] give rise to the following corollary.

Corollary 1.3 Let @ C RN be a bounded open set with Lipschitz boundary and let,
fors € (0, %], @15 denote the unique positive L?-normalized eigenfunction of (—A)*
corresponding to the principal Dirichlet eigenvalue A 5. Then we have

Q15— @1 ass — 0" (1.19)

in L?(2) for p < oo and locally uniformly in 2, where @1 is the unique positive L%-
normalized eigenfunction of L corresponding to the principal Dirichlet eigenvalue
A, L-

If, moreover, Q satisfies an exterior sphere condition, then the convergence in (1.19)
is uniform in Q.

As a further corollary of Theorem 1.1, we shall derive the following regularity
properties of eigenfunctions of the logarithmic Laplacian.

Corollary 1.4 Let @ C RN be a bounded open set with Lipschitz boundary, and let
NS 'Hg(Q) be an eigenfunction of (1.12). Then ¢ € L°°(2) N Cipc (). Moreover, if
Q satisfies an exterior sphere condition, then ¢ € Cp(£2).

Remark 1.5 We briefly comment on the main steps and difficulties in the proof of
Theorem 1.1. The first step is to prove the asymptotic expansion (1.17) and the
L%-convergence property asserted in Theorem 1.1(v). Then, we prove the uniform
L*°-bound on eigenfunctions as stated in Theorem 1.1(ii). For this, we use a new
technique based on the splitting of the integral over R" on a small ball of radius &
(8-decomposition) and apply known results and conditions associated to the newly
obtained quadratic form as in [15,19]. We emphasize that this technique strongly sim-
plifies the general De Giorgi iteration method in combination with Sobolev embedding
to prove L°°-bounds. We also point out that this §-decomposition method is applicable
for general nonlocal operators and allows to get explicit constants for the boundedness.

As a third step, we prove the local equicontinuity result stated in Theorem 1.1(iii).
A natural strategy of proving this result is to first obtain a locally uniform estimate for
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the difference
(—A)* —id
[La - ——]ous (1.20)

and then to use the local regularity estimates available for the class of weakly singular
operators containing L A, see e.g. [21] and the references therein. However, we are not
able to obtain uniform estimates for the difference in (1.20). Therefore we first prove
uniform bounds related to an s-dependent auxiliary integral operator family instead
(see Lemma 4.4 below), and then we complete the proof by a direct contradiction
argument. We recall here that regularity estimates for (—A)* alone, even those with
explicit constants, cannot yield sufficient uniform control on continuity modules of the
functions ¢y s since (—A)* converges to the identity operator, as noted in (1.5). Once
local equicontinuity is established, we then prove, assuming a uniform exterior sphere
condition for €2, a uniform decay property in the sense that there exists, for every fixed
k € N, afunction hy € Co(€2) with the property that |@x 5| < hrin Qforalls € (0, 4—1‘].
This will be done with the help of a uniform small volume maximum principle and
uniform radial barrier function for the difference quotient operator (_AZﬁ ,see Sect. 5
below. We point out that the lack of uniform estimates for the difference in (1.20)
prevents us from using directly the boundary decay estimates in [23] and [9, Sect. 5].
On the other hand, the estimates in [23] allow to deduce, together with Corollary 1.4,
that every eigenfunction ¢ € Hg(Q) of L satisfies

lp(x)| = 0((— In dist(x, QC))‘W) as x — 9Q

at least in the case when the underlying domain €2 is of class C!'!. As a consequence,
we conjecture that also the majorizing functions A above can be chosen with the

property that A (x) ~ (— Indist(x, Sz“))_l/2 as x — 0.

The paper is organized as follows. In Sect. 2, we collect preliminary results on
the functional analytic setting. Moreover, we prove the asymptotic expansion (1.17)
and the L?-convergence property asserted in Theorem 1.1(v). In Sect. 3, we prove the
uniform L°°-bound on eigenfunctions as stated in Theorem 1.1(ii). In Sect. 4, we then
prove the local equicontinuity result stated in Theorem 1.1(iii). In Sect. 5, we prove,
assuming a uniform exterior sphere condition for €2, a uniform decay property for the
set of eigenfunctions {gr s : s € (0, }1]}. Combining this uniform decay property
with the local equicontinuity proved in Sect. 4, the relative compactness in Co(£2)
then follows, as claimed in Theorem 1.1(iv). In Sect. 6, we finally complete the proof
of the main results stated here inNthe introduction.

Notation. Weletwy_| = 1%’(’ %2 5 = % denote the measure of the unit sphere in RN,
Foraset A C RN and x € R", we define 84 (x) := dist(x, A°) with A = RV \ A
and, if A is measurable, then |A| denotes its Lebesgue measure. Moreover, for given
r > 0,let B.(A) := {x € RV : dist(x, A) < r}, and let B,(x) := B, ({x}) denote
the ball of radius » with x as its center. If x = 0 we also write B, instead of B, (0).
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For A ¢ RY and u : A — R we denote ut := max{u, 0} as the positive and
u~ = —min{u, 0} as the negative part of u, so that u = u™ — u~. Moreover, we let

oscu :=supu —infu € [0, o]
A A A

denote the oscillation of u over A. If A is open, we denote by Cf (A) the space of

function  : RY — R which are k-times continuously differentiable and with support
compactly contained in A.

2 First Order Expansion of Eigenvalues and L?-convergence of
Eigenfunctions

In this section, we first collect some preliminary notions and observations. After this,

we complete the proof Theorem 1.1(i), see Theorem 2.10 below.
For s € (0, 1), we use the fractional Sobolev space H* (RY) defined as

_ 2
H“(RN)z{ueLz(RN):/ / dedy<oo}, 2.1
RN JRV

|)C _y|N+2s

with corresponding norm given by

1
lu(x) —u(y)? 2
ol s vy = <IIuIIL2 &) / /RN P dxdy ) . 22)

We recall that this norm is induced by the scalar product
(u, v) > (u, U)]—].Y(RN) = (u, U>L2(RN) + & (u, v),

where

£, (. v) Cn.s fRN /RN (u(x) —u()(v(x) —v(y) dxdy

|)C _y|N+25

= [ e ds @3

for u, v € H*(R") and the constant C ~.s 1s given in (1.1). The following elementary
observations involving the asymptotics of Cy , are used frequently in the paper.

Lemma2.1 WithCy =~ 2I'(¥) = ;2- = 2log 2+ (¥) -y as defined
in the introduction, we have

C C
N _ ONZIENS _q 4 con +0(s)  ass — O (2.4)
sCy 2s

Birkhauser



Journal of Fourier Analysis and Applications (2022) 28:18 Page9of44 18

Consequently, there exists a constant Dy > 0 with

CN,s
CNS

-

C 1
< sDy and therefore ‘CN — ﬂ‘ <sCyDy fors € (0, Z].
s

2.5)
Proof The function

Cvs o TG +9)

STl = sCy — THra -s)

is of class C! on [0, 1) and satisfies t(0) = 1 and 7/(0) = pn - Hence (2.4) follows,
and (2.5) is an immediate consequence of (2.4) and the fact that the function s = Cy
18 continuous. O

In the remainder of this paper, we assume that  C RY is an open bounded
subset with Lipschitz boundary. As noted already in the introduction, we identify, for
p € [1, 0], the space LP(S2) with the space of functions u € LP(RY) satisfying
u = 0on Q°.

For s € (0, 1), we then consider the subspace HB(Q) CcC H ‘(RN ) as defined in
(1.13). Due to the boundedness of €2, we have

g ’
hs (@) = %(m”;”gﬂ 2.6)
ue
Cudo | REY

so we can equip the Hilbert space H})(£2) with the scalar product £ and induced norm
1
u > Nullpg @) = E @, u)2.

Moreover, HB(Q) is compactly embedded in L*(), CCZ(Q) is dense in Hf)(SZ),
and we have

E(u,v) = f u(x)(—=A)v(x)dx  forallu € H*(RY) and v € C2(RY),
RN

see [13]. We now set up the corresponding framework of problem (1.12) for the
logarithmic Laplacian. We let as in the introduction, see (1.15), (1.14),

Hg(Q) = {u e L>(RY) : u=00nQ°and

_ 2
/ / - ) = D" 4 gy +oo}. @7

lx —y|¥
Xyl <1
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Then the map

(1, 0) > (1 Vg g = / / - (e) —uO)EE Zve)

lx — y|¥

[x—yl<1

(2.8)

is a scalar product on HS(Q) by [15, Lemma 2.7], and the space HS(Q) is a Hilbert

space. Here, Cy = 7N/ 2F(%) = ﬁ is as in the introduction. We denote the

induced norm by || - ||H8(9>' Moreover, by [11, Theorem 2.1]),

the embedding Hg (Q) = L*(Q)is compact, 2.9)
and the space CZ(Q) is dense in HS(Q) by [9, Theorem 3.1].

Remark 2.2 We stress that, despite the similarities noted above, Hg(Q) should not be
considered as a limit of the Hilbert spaces H{(2) as s — 0. In particular, it is not the
limit in the sense of [24]. Instead, the space H8(S2) arises naturally when considering
a first oder expansion of (-, -) Hs(RN)> cf. Lemma 2.6 below.

Next we note that, setting

Eo(ut, v) = (t, Vhyyn ) — [/ ”(x)v(y) ' dxdy + py fRN wvdx  (2.10)

yGRN |x
with py = 2log2 + w(%) — y as in the introduction, we have
Eou,v) = / u(x)Lav(x) dx foru € HY(Q) and v € CL(R),
Q

see [9]. In order to get a convenient parameter-dependent notation for the remainder
of this section, we now put

L' =(—A) forse(0,1) and L°=1Lx.

Then, fors € [0, 1), we call A € R a Dirichlet-eigenvalue of L in € with correspond-
ing eigenfunction u € Hy(2) \ {0} if

@2.11)

Lu=Xu inQ
u=0 in QF,

holds in weak sense, i.e., if
Es(u, ) = A/ uy dx  forall € Hy(Q).
Q
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In the following Proposition we collect the known properties on the eigenvalues and
eigenfunctions of the fractional Laplacian and the logarithmic Laplacian, see e.g.
[4, Proposition 3.1] and the references in there for the fractional Laplacian and [9,
Theorem 3.4]) for the logarithmic Laplacian.

Proposition 2.3 Let 2 C RY be an open bounded set with Lipschitz boundary, and
let s € [0, 1). Then the following holds:

(a) The eigenvalues of problem (2.11) consist of a sequence {Aj s(2)}keN With
0 < 21,5(2) < A25(82) < -+ < Ags(2) < Ag41,5(2) < -+ and klim Me.s
— 00
() = 4o00.
(b) The sequence {¢i s}reN of eigenfunctions corresponding to eigenvalues hi s(S2)
forms a complete orthonormal basis of L?(Q2) and an orthogonal system of Hy(2).
(c) Foranyk € N, the eigenvalue Ay 5(S2) is characterized as

s () = min {E (u,u) 1w € Prs(R) and lulp2g) = 1},
where P 4(2) = HB(Q) and
Py () = {u € Hy(Q) : &, @j ) =0forj=1,--- k- l} fork > 1.

(d) The first eigenvalue Ay (2) is simple and the corresponding eigenfunction @ g
does not change its sign in Q2 and can be chosen to be strictly positive in 2.

Remark 2.4 (i) The characterization in Proposition 2.3(c) implies that Aj ;(£2), as
defined in (2.6), is indeed the first Dirichlet eigenvalue of (—A)* on €2, so the
notation is consistent.

(i) We emphasize that in the case s = 0 the eigenvalues Ay o and corresponding
eigenfunctions ¢y o for k € N are also denoted by A 1 and ¢k 1 resp. as in the
introduction for consistency.

(iii) By the Courant-Fischer minimax principle and due to the density of CE(SZ) in
Hg(Q), the eigenvalues Ay g, s € [0, 1), k € N can be characterized equivalently

as
Ak s(2) = inf max &Eg(v,v) = inf max & (v, v).
VCH(Q) veV\{0} veek() veV\{0)
dim V=k IIvl;2. =1 dim V=k IIvll;2q)=!1
(2.12)

This fact will be used in the sequel.
Next, we need the following elementary estimates.

Lemma 2.5 Fors € (0, 1) and r > 0 we have

‘rzs—l

‘ < 2(| Inr|1o1y(r) + 1(1,00)(r)r4) (2.13)

Birkhauser



18 Page120f44 Journal of Fourier Analysis and Applications (2022) 28:18

and

‘r2s -1

_ 2logr) < 4s (1n2(r)1(071](r) + 1(1.00) (r)r4) (2.14)
S

Proof Fix r > 0 and let h,(s) = r>*, r > 0. Then we have 4’(t) = 2r>" Inr and
hl(t) = 4r2" In%(r) for 7 > 0. Consequently,

2s s
-1 211 ;
‘r ’ = |Inr| / 2T dr < 2|Inr|max{l1, r>}
N N 0

< 2<| Inr|{1¢,1() + 1(1,oo)(r)r4),

2s

where in the last step we used that ¥“* < I forr < 1 and, since s < 1,

2541

P Inr <r <r* forr > 1.

Hence (2.13) is true. Moreover, by Taylor expansion,
) S
h(s) = 1 4 sh.(0) +f R/ (t)(s — T)dt =1+ 2sInr +4ln2r/ P2 (s — 1)dT
0 0
and therefore

r2s —1

41 2 K
- 210gr‘ < () ‘/ 2T (s — T)d‘[‘ < 45 In°(r) max{r*, 1}.
N N 0

2s

Hence (2.14) follows since for r € (0, 1] we have r=* < 1 and, since s < 1,

P2 r <Pt <% forr > 1.

O

Lemma 2.6 Foreveryu € Cf,(Q) and s € (0, 1) we have
&, w) = 2 v | = 25 (el o) + 1802, 00))  2115)

S L2RN)| = L1(RN) L2(RN)
and
c 2 _ 2 2 2
) =l g, = s€0(u )| = 45 (iwlul, o + 18U, )

(2.16)

Wlﬂ’l KN = (27T)_N fB](O) 11’12 |§| ds

Proof Letu € CCZ(Q) and s € (0, 1). By (2.3) and (2.13), we have

&, 1) = ]2, g | = fRNHsW —1[1a) ds

Birkhauser



Journal of Fourier Analysis and Applications (2022) 28:18 Page 130f44 18

§2s(/ |1n|s|||ﬁ<s)|2ds+/N 611161 ds )
B1(0) R™\By
=251, [ TGS + 1A )
= 25(@0 MW, [ 0PI+ A0 )
Thus (2.15) follows. Moreover, by (2.14) we have

Es(u, u) — ||u)}

2y — 5€otu )|

< [ liePs = 1~ 2stoglel] ) ae

< 4s2(/31<o In |£[]2(§)|” dé +/RN\B. g1*1a@)1 dt)
<4 (||u||m/31(O n? [§] d + | Aul2, )

< 4s%(@m)” NnuuLl(RN)fBl( In? [§] d + | Aul2, )

Hence (2.16) follows. O

Lemma 2.7 For all k € N we have

M () — 1 s () — 1
A.0(Q) < limin pres@ =1 1ims.upL < Mo(Q) (2.17)
s—0t Ky 50+ Ky
and
Mes(Q) < 14+5C  foralls € (0, 1) (2.18)

with a constant C = C(N, 2, k) > 0.

Proof We fix a subspace V C CCZ(Q) of dimension k and let Sy = {u € V
lull12(q) = 1}. Using (2.12) and (2.15), we find that, for s € (0, 1),

Aes(82) — 1 Es(u,u) — 1
— <max ———

K T ueSy K

<C (2.19)

with

€ = CN. 2.k = 2max (il g, + 1801, )

Hence (2.18) holds. Technically speaking, the constant C depends on the choice of
V, but V can be chosen merely in dependence of 2. Moreover, setting Ry(u) =
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M — & (u, u) for u € C3(R), we deduce from (2.19) that

As(82) — 1

< max & (u, u) + max |Ry(u)|
N ueSy ueSy

while, by Lemma 2.6,
IRs(m)| < 4S<KN||M||L](RN) + ”AM”LZ(RN)) — 0 ass — 0" uniformly inu € Sy.

Consequently,

Mes(2) =1
lim sup L < max &y (u, u).
s—0+ S ueSy

Since V was chosen arbitrarily, the characterization of the Dirichlet eigenvalues of the
logarithmic Laplacian given in (2.12) with s = 0 implies that

Mes(R) — 1
1imsupL inf o omax  Er(uw) = Aio(@). (220)
50t s veck() ,  ueV
dim(V)= k”””L2<m !

In particular, the last inequality in (2.17) holds. Moreover, since A s(2) > A1 (S2)
for every k € N and

As(2) —1
fim M@=l )
s—>07F S
by [9, Theorem 1.5], the first inequality in (2.17) also follows. O

Corollary 2.8 For all k € N we have liIng A s () =1
s—

Proof This immediately follows from (2.17). O

Lemma2.9 Letk € N, 5o € (0, 1), and let, for s € (0, 50), ¢x,s € Hy(S2) denote an
L?-normalized eigenfunction of (—A)® in Q. Then the set

{@rs = s €(0,50)}
is uniformly bounded in 'Hg () and therefore relatively compact in L*>().

Proof By (2.18), there exists a constant C = C(N, 2, k) > 0 with the property that

)\ks(Q)_l g((ka7¢kS)_1

_cNY |k, () — wkv(ynzdxd 1
- N lx —y |N+25 y

C
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CNS // lok,s (X) — @i s (]2 dxdy
[x—yl<1

|x_ |N+2s
CN s // @k,s (X)@r s (¥)
——————"dxdy + fn(s), (2.21)
oy=1 X — y|N+2s Y+ In

where, due to the L2-normalization of Dk.s»

1 1
fwis) = ~(Cw. / 95O / ———dvdx -1
s Yo RV\ By (x) X — y|NF2 )

1 CON
_! <—CN~“’N L 1). 2.22)
s 2s

Therefore, using the definition of || - ”H8<9>’ we deduce that

Cp.s 2 // [0r,s () @r,s (V)]
cC>—= ———— " dxd , (2.23
sl SCN ”‘pk,s”ng(Q) ‘x y‘>1 |x _ y|N+2Y y + fN(s) ( )

where, by Holder’s inequality,
2
// |<Pks(x)§0llf]i(2):)|d dyf// |‘Pk,s(x)1|v dydx
oyl X =yl e Jon(x—y=1y 1X =l
< Qx5 = 1€,

using again the L?-normalization. Combining this with (2.23), we find that
2 sCn ( _ )
lots ey = g m (€ + 191 = )

Since moreover CC — land fy(s) = py ass — 0" by Lemma 2.1, we conclude
that there exists a constant K = K (N,k,) > 0and s; € (0, 1) such that

”‘pk’S”HS(Q) <K foralls € (0, s)).

Consequently, the set {¢x s : s € (0, s1)} is uniformly bounded in H8(§2) and thus
relatively compact in L2(Q) by (2.9). Hence the claim follows for 5o < s1.
If 5o € (s1, 1), we can use the fact that by (2.18) we have, for s € [s1, so],

B _ Cns |or.s () = ors )1
1+ C = M s(Q2) = E(@kss rs) = 2 Jan Jan x — y|N+2 dxdy
_ Cns // ms(x) oes (I N.s )
’ dxdy = sl
—yl<1 lx —yI¥ C Ho(@

) Birkhduser
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with a constant C = C(N, €2, k) > 0 and hence

SUp ks ) < Cn(1+C) sup

s€ls1,50] s€ls1,s0] ©“N,s

< Q.

We thus conclude that the set {¢x s : s € (0, s9)} is uniformly bounded in Hg(Q) and
thus relatively compact in L>($2) by (2.9), as claimed. O

We finish this section with the the following theorem which, in particular, completes
the proof of Theorem 1.2(i).

Theorem 2.10 For every k € N we have

fim M@ =1 A0(R). (2.24)

s—0t s

Moreover, if (sp)n C (0, 1) is a sequence such that lim s, = 0 and ¢y 5, is an L2-
n—oo

normalized Dirichlet eigenfunction of (—A)* corresponding to the eigenvalue hi 5 (S2),
then, after passing to a subsequence,

Gks = 0o in L*(Q) asn — oo,

where @i o is an L?-normalized Dirichlet eigenfunction of the logarithmic Laplacian
corresponding to Ay o(S2).

Proof To establish (2.24), it suffices, in view of (2.17), to consider an arbitrary
sequence (s,), C (0,1) with lim s, = 0, and to show that, after passing to a
n—oo

subsequence,

s, () =11
lim —————

n—o0

=0(Q) fork e N. (2.25)

Let {¢r,s, : k € N} be an orthonormal system of eigenfunctions corresponding to
the Dirichlet eigenvalue At 5, (€2) of (—A)®. By Lemma 2.9, it follows that, for every
k e N, the sequence of functions ¢ 5,, n € N is bounded in HS(Q) and relatively
compact in L?(£2). Consequently, we may pass to a subsequence such that, for every
keN,

@k,s,—¢k,0 weakly in Hg(Q) and @5, — @k,0 strongly in LZ(Q) asn — oo.
(2.26)

Here a diagonal argument is used to have convergence for all k € N. Moreover, by
(2.17) we may, after passing again to a subsequence if necessary, assume that, for
every k € N,

As, (§2) — 1

~ Ae [xl,o(sz),,\k,o(sz)] as n — oo. (2.27)
Sn
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To prove (2.25), it now suffices to show that
eo() =2;  forevery k € N. (2.28)
It follows from (2.26) that
lekollz =1 and (@r0,¢e0)12) =0 fork, £ e N, €#k. (2.29)
Moreover, for w € CZ.(Q) and n € N we have
Esy @husys ) = hks, (D {Phos, - W20 (2.30)

and therefore, by [9, Theorem 1.1(i1)],

M, (82) — 11 .1
A (ks W) = lim (55 (@.sn> W) = (Phosy w>Lz(9))
. (=A)"w —w
= nlggo <‘Pk,sn, T>L2(Q) = {¢k.0, LAw)LZ(Q) = EL(pk.0, w).

Since moreover (gx.s,, W) 12(q) —> (¥k.0, W) 12(q) forn — oo, it follows from (2.27)
that

EL(Pr0. w) = M@0, w2 forall w e C2(Q). (2.31)

Thus ¢y o is a Dirichlet eigenfunction of the logarithmic Laplacian L o corresponding
to Ay.

Next, for fixed k € N, we consider Ey o := span{¢1 0, 2.0, - , ¥k,0}, Which is a
k-dimensional subspace of Hg(Q) by (2.29). Since

* * *

as a consequence of (2.27) and since A; 5, < A;,, forl <i < j <k,n € N, we have
k
the following estimate for every w = Y «;@; 0 € Exo withay, -+, € R:
i=1

k k
Eo(w, w) = Z a;ia;j (@i 0, ¢j0) = Z oo AT (90,05 95.0) L2(0) (2.32)
i j=1 ij=1

k k
D ainflgiol g < 4 Do = 2ilwliz g, (2.33)
i=1 i=1

The characterization in (2.12) now yields that

Mo(Q) < max  E(w, w) < AL
weEL o

”w”LZ(Q)Zl
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Since also A} < Ar0(S2) by (2.27), (2.28) follows. We thus conclude that (2.25)
holds. Moreover, the second statement of the theorem also follows a posteriori from
the equality A} = Ay 0(€2), since we have already seen that ¢ 5, — ¢x,0 in L2(Q),
where ¢y o is a Dirichlet eigenfunction of the logarithmic Laplacian L( corresponding
to the eigenvalue 7. The proof is thus finished. O

3 Uniform L°°-bounds on Eigenfunctions

Through the remainder of this paper, we fix k € N, and we consider, for s € (0, }‘],
eigenfunctions ¢; := @i s of (—A)® in Q corresponding to A := A . Furthermore,
we assume that ¢ is L2-normalized, that is lgsliz2q = 1 foralls € (0, 4—1‘]. The
main result of this section is the following.

Theorem 3.1 There exists a constant C = C(N, Q,k) with the property that
lgsliz@) < C foralls € (0, 7

To prove this result, we use a new approach based on a so-called §-decomposition
of nonlocal quadratic forms.
For§ > 0 and u, v € H*(R"), we can write

Es(u,v) = E(u, v) + % f/ @) —u() ) = v() dxdy
[x=y|>d

|x_y|N+2s

= E2(u, v) + 155 (1, V) 2y = (Ko s 14, V) 2 gy

with the §-dependent quadratic form

(u,v) > E(u,v) = dxdy,

Cn.s // (u(@) —u(y) W) —v(y))
|x—y|<$

2 |x — y|N+2s
the function ks s = C s Igny g (o)l - |=N=25 ¢ LY(R") and the constant

Cy soN—1872
2s '

Kss =

In particular, this decomposition is valid if & c R¥ is a bounded Lipschitz domain
and u, v € H{(S).

Proof of Theorem 3.1 Let§ € (0, 1), ¢ > 0, and consider the function w. = (¢;—c)™ :
Q2 — R fors € (0,1). Then w, € Hg(Q) by [18, Lemma 3.2]. Moreover, for
x,y € RY we have

(@5 (x) — s (M) (We(x) — we(y)) = ([@s(x) — c] = [ps(¥) — cD(we(x) — we(y))
= [ps(x) — clwe(x) + [@5(¥) — clwe(y) — [@s(x) — clwe(¥) — we(X)[@s () — ]
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= we (¥) + w2 (y) — 2we()we(y) + g5 (x) — ] we(y) + we (D)@ (y) — €]
> wZ(x) + wi(y) — 2w () we(y) = (wex) — we(»)?,
which implies that
Cn.s (we(x) — we(y))?
Es(w,w)z . // dxdy
s 2 |x—y|<8 |x — y|N+2S
< CN,S // ((ps(x) - %(Y))(U;IL(;C) - wc(y)) dxdy
2 |x—y|<8 lx — vl 2
= gg(%, we) = Es (@5, we) — k5.5 (@s, wc)LZ(Q) + (ks.s * @5, wc‘)LZ(Q)
= (Ay — K5.5) (@5, we) 120y + (ks.s * @5 we) 1200y = 85(5) (@5, We) 12(q)
+ (ks.s * @5, we) 2 (3.1
with the function
CynsoN_18"5
85 O D) >R gi(s) =hs —wp = hy = o (32)

Since Ay = 1 4+ Ars 4 o(s) by Theorem 2.10, where A, = A o denotes the k-the

eigenvalue of the logarithmic Laplacian, and

Cn son—1872

> =1+(,0N+21n8)s+0(s) as s — 0
s

by Lemma 2.1, we have

gs(s) = (A — pv +2In8)s +o(s) as s — OF.

Here the remainder term o(s) depends on § > 0. Nevertheless, we may first fix
6 € (0, 1) sufficiently small such that A; — py +21Ind§ < —1, and then we may fix

so € (0, %] with the property that

gs(s) < —s <0 forall s € (0, so]. 3.3)

Since also ¢ (x)we(x) > cw(x) > 0 forx € 2, s € (0, so], we deduce from (3.1)

that

€9 (we we) < /Q [ks.s % @y — sclwedx < (Iks.s * gyl — 5¢) / we dx. (3.4)
Q

Here we note that, by Holder’s (or Young’s) inequality,

ks.s  @slloe@) < Iks.s 2y ls 2y = sl 2 en,
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with

1
> N
C 2 —5—2
Ns®y_ 8277

1/2
||k8u ” Ny = CN” < / | |—2N—4s d ) _
e \ Jrrsg ' ' N +4s

Since

L N
7772w
d= sup ||k6,s||L2(RN): sup Cnswy_ 87277 e
5€(0,50] S 5€(0,50] s«/N + 4s

we deduce from (3.4) that for ¢ > d and s € (0, so] we have

Ofé’f(wc,wc) fs(d~—c)/ wedx <0
Q

and therefore Ef(wc, w,) = 0. Consequently, w, = 0 in Q for s € (0, so] by the
Poincaré type inequality given in [15, Lemma 2.7] . But then ¢, (x) < c a.e. in €2, and
therefore

sup oIl <c.
s€(0,s0]

Repeating the above argument for —¢; in place of ¢s, we also find that sup

s€(0,50]
llos L) < c¢ and therefore
sup [lgsliLe) < c. (3.5)
5€(0,50]
It remains to prove that
sup  [lsllzoe(@) < oo. (3.6)
selso. 41

To see this, we argue as above, but with different values of § € (0, 1) and ¢ > 0. For
this we first note that, by (3.2), we may choose § € (0,~1) sufficiently small so that
(3.3) holds for s € [s0, }‘]. With this new value of § and d redefined as

1 N
J ”k(S,x”LZ(RN) CN,swi/,]a_T_zs

= Sup — = Sup < 00,

xe[so,%] $ se[so,%] S N +4s

we may now fix ¢ > d and complete the argument as above to see that also

sup lgsllLee(e) < c.
se[so,%]
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Hence (3.6) holds. The proof is now finished by combining (3.5) and (3.6). m]

4 Local Equicontinuity

This section is devoted to prove local equicontinuity of the set {¢; : s € (0, }—1]} in Q.
The first step of the proof consists in deriving s-dependent Holder estimates for the
functions with uniform (i.e., s-independent) constants as s — 0. As a preliminary
tool, we need to consider the Riesz kernel

sT(E —s)
45 N2 (1 4+ 5)°
4.1

Fy :RV\ {0} = [0,00), Fi(z) =knslz* ™ with «y, =

The following two lemmas contain estimates which are essentially standard but
hard to find in the literature in this form with s-independent constants. For closely
related estimates, see e.g. [31, Sect. 2] and [26, Sect. 7].

Lemma4.1 Lets € (0, %], re,)and f € LOO(E). Moreover, let
ufr :]RN—>]R, uf(x) :=/ Fs(x—y)f(y) dy. “4.2)
B,

Thenuy € C* (RN) N LOO(RN), and there is a constant C = C(N) > 0 such that

lug(x) —up (M < Cri|| fllzsepylx — yI° forall x,y e RY. (4.3)

If, moreover, f € C¥ (B)) for some o € (0, 1 — s), then we also have

s+o

() =y DI < Cr 7 Flleugny = Y5 for x.y € By (4.4)

after making C = C(N) larger if necessary.

Proof For x € B; we have
up(rx) = f Fy(rx — ) f () dy = r / Folx — 2 £r2) dz.
B, B

so that we may assume r = 1 in the following. Next, we recall the following standard
estimate:

_ _ wy-—117
/ Ix —z|"Ndz < / 1z|TNdz = for every
By By T

t>0,7€e(,N)and x € RV. 4.5)
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From this we deduce that u ; € L®(R") with

_ KN, s®WN—1
e 1l ooevy < I fllLoekn,s Sup lx —y*Ndy < | fllresy —o——
R™) 2
xeRN Y Bj s
r§ —s)oy-1
2 I fllieesy < Cill f sy (4.6)

= 223+17—[N/21-*(1 +5)

with a constant C; = C(N) independent of s € (0, }t]. Next, by e.g. [14, Eq. (A.3)]
we use

N-2
|a2S—N _ b2S—N| E N — S |a _ b|S(aS—N + bS—N)
la —bl*@ N +b*N) fora,b>0. 4.7)

IA

With this estimate and (4.5), we deduce that

lu(x +h) —ux)| = ‘/ (Fs(x —z+h) — Fy(x —2)) f(z) dz
B

= IhISIIfIILOO(Bl)KN,sf (x—z=h""N+|x—z1"N)dz
By
20N-1KN s 20y 1T(5 —9) N
< — 0o hf=— = 0 h|* for x,h € RY.
< g I fllzoecmy Rl VAT 5 s) I fllzoecny|hl x

Hence there is C; = C2(N) independent of s € (0, }‘] such that
lu(x +h) —u(x)| < Caoll flleossplhl®  forall x,h e RV, 4.8)

We thus deduce (4.3).

Next we assume that f € C%(B;) for some « € (0, 1 — s), and we establish (4.4)
in the case r = 1.

We choose a cut-off function n € C° (RN ywith0 <n <1,n = 1on By and
n = 0 on RV \ B;. We then define w € Cg(RN) by w(x) = n(x)f(x) forx € By
and w(x) = 0 for x € RV \ By. Then ur(x) =ui(x) +uz(x) for x € By with

ui(x) = /B Fo(x —2)(1 —n@) f(z) dz = /B Fo(x —2)(1 = n(2) f(z) dz

1\B7/8

and
uz(x) = /N Fy(x —2)w(z)dz  for x € RV,
R
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Since |x — z| > %forx € B3jsand z € By \ Byg, forall B € N¢, |B] < 1 we have

8%y ()] = \f O F(x = (1 = @) F @ dz| = 1l |9 Bl o)
B 3

2

2
= ||f||L°°(B|)’<N,sz71((N - 25)/ 1232 4t +/ (251 dt)
1/8 1

/8

2
< 1 f loemyen.son—1 (N +2) / 272 4t < Gl fll e
1/8

for x € B34, s € (0,1) with a constant C3 = C3(N) > 0. Hence u; € Cl(B3/4),
and

1 (x) —ur(Y)| < C3ll fllLepylx —y| forall x,y € B3js. (4.9)
To estimate u;, we first note that, by the same estimate as in (4.6), we find that
luzllLooB)) < CllwliLoeny) < Cll fliLoo(ay). (4.10)

Moreover, we write S, w(x) = w(x+h)—w(x) forx, h € RV . Since w has a compact
support contained in B and 7 is smooth, there is C4 = C4(N) such that

180w < Call fllcuapy |11 forall x,h € RY.
Forx,h e RN, |h| < 1 we now have, by (4.7) and since 8, w is supported in By,

lur(x + 2h) — 2ur(x + h) + up(x)|

= [sju2(0)| =

/ 54 Fy (x — 2)8w(2) dz
RN

= ‘/ OnFs(x — 2)0pw(z) dz
By
< |h|a+sC4||f||Ca(B—l)KN,S/ (x—z—=h" N +x —zI* M) dz.
B

Using now (4.5) again, we deduce that

luz(x +2h) — 2uz(x + h) + uz(x)|

Cson—12TIT(5 —5)

KN,s s+1 o a+s __ o a+s
= TC4CUN712 ||f||ca(31)|h| = 4ST(N/2F(1 9 ||f||ca(31)|h| .
Hence there is C5 = C5(N) such that
Jua(x +2h) — 2un(x + h) + uz ()] < Csl| ey 114
forall x e RV, || < 1. (4.11)
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By (4.10), we may make C5 > O larger if necessary so that (4.11) holds for all
x,h e RY Sincea+s < 1 by assumption, it now follows, by a well known argument,
that

uz(x + 1) — ur(0)| < Coll fll oy | forall x,h e RV (4.12)

with a constant C¢ = C¢(N) > 0. For the convenience of the reader, we recall this
argument in the appendix. The estimate (4.4) now follows by combining (4.9) and
(4.12). 0

Lemma4.2 Letr > 0, f € L®(B,), and suppose thatu € L (RN ) is a distributional
solution of the equation (—A)*u = f in B, for some s € (0, %]. Moreover, let
ufr: RN — R be defined as in (4.2), and let uy, = u — us.

Then we have the estimate

() = )] = Clor = 3P (17l vy g,y + 77 1 ) )
forx,y e B% 4.13)

with a constant C = C(N) > 0.

Proof By scaling invariance, it suffices to consider the case r = 1. In this case, we
may follow the proof of [20, Lemma A.1], using the fact that u,, solves the problem

(=AY’u, =0 in B, u,=u—uy in RN\ B,.

Using the corresponding Poisson representation of u,, it was shown in [20, Proof of
Lemma A.1] that

0(0) — ()|
()|

e —ylovs [ o de U lsay)  for vy € By

e, 12V (2P = 1y o 2

(4.14)

with a constant ¢; = ¢1(N) and 1y 5 = ST see [20, P. 48]. From this,

2
T(s)[(1—s)]
we deduce (4.13) in the case r = 1 since s € (0, }1]. O

Corollary 4.3 Let s € (0, zlt]' Then g € C3S(B,/g(x0)) forall xo € Qand 0 < r <
min{1, §q(x0)}. Moreover, there is C = C(N, 2, k) > 0 such that

los (x) — @s (V)] -

sup

1
n Cr= for s € (0, =1.
X,y€B; 8(x0) |'x - )’| ’ 4

Proof By translation invariance we may assume x9 = 0 € Q. Let r €
(0, min{1, 6 (0)}). We write ¢; = us 1 + us,2 with

us1(x) = / Fy(x — 2)hsos(2) dz, for x e RN, ugp =5 —uy 1,
B,
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where Fj is the Riesz kernel defined in Lemma 4.1. Moreover, in the following,
the letter C > 0 denotes different constants depending only on N, 2 and k. By
Theorem 3.1 and Lemma 4.1, we have

lug, 1 (x) — us,1 ()| < Crilx —y[* forall x,y € RV,
Moreover, by Lemma 4.2 we have

lus 2(¥) — s 2 (M < Cr ¥ |x =y < Cr ' |x -y
<Cr%lx —y|® forall x,y € B, ). (4.15)

Hence
los(x) — sV < Cr¥|x —y|° forall x,y € B,)>.
Applying now the second claim in Lemma 4.1 with « = s, we deduce that
lug 1 (x) —usg 1 ()| < Cr|x — y|?* forall x,y € By /4.
Combining this estimate with (4.15), we deduce that
lps(x) — (] < Cr™*|x — y[* forall x,y € B4

Finally, applying the second claim in Lemma 4.1 with « = 2s, we deduce that

| 3s

lus, 1 (x) — s 1 ()] < Cr>|x —y forall x,y € B3.

Combining this estimate with (4.15), we deduce that
lps(x) — s (M < Cr~>|x — y* forall x, y € Byg,

as claimed. O
We now state a key local bound related to an auxiliary integral operator.

Lemma4.4 Let ty,r > 0. Then there exists a constant C = C(N, 2, k,r,ty) > 0
with the property that

‘/ @s(x) — %(Hy)
B ly

1
|N+2v <C forall s € (0, Z] and all x € Q with §q(x) > r.

0

Proof Without loss of generality, we may assume that » < 1. Moreover, we fix x € Q
with §q(x) > r. In the following, we fix t = min{%o, %} < 1, and we write

/ os(¥) — s +y) _/ s () —ps(x +y) / @s(x + y)
y = dy — T NiEs
B B, By\B;

o |y|N+2s |y|N+2s |y|N+2s

Birkhauser



18 Page260f44 Journal of Fourier Analysis and Applications (2022) 28:18

t—2s —2s

0
+oN_1————¢5(x)
2s

and

—os(x +y) @s(x +y)
N+2s dy = Cn.s N+2s
[yl rRM\B, |Vl
+0)N 1CnN.s (28
2s

(=A)'gs(x) = Ci.s /}; #s(x) dy
s (x).

Since Cywpy_1 = 2, we can thus write

s (X) — @s(x +y) (—A) —1 § § 3
CN/B S (F e = 1w+ B+ B

0

(4.16)

with
_ Cu, @s(x) —ps(x +y)
e ] et e
B [yl
ps(x +y) Cn.s ps(x +y)
L(x) := ( )/ —————dy + : ———>dy and
2 Biy\Br |y|N+2s s JRV\B, [y|N+2s
—2s —2s
17—t _1C
I(x) = P )<CNCUN 1 0 vt N’St_h)
2 2s
X C _

Bl Gy ]

By (2.5) and since
11—t Int Int, 1
73 <71 and |—0 | < [nfol ox(1. s 52 < |In 0|max{1,t0 7
K 2 2
1

f e (0, -1,

ors € ( 4]
it follows that

R _1 |lng] -1
|13(x)|§[DNl‘ 2+ ax{l, z, }] sup leslizoeo)s 4.17)
5€(0,1]

where the RHS is a finite constant by Theorem 3.1. To estimate I3, we let R :=
1 4+ diam(£2) and note that, by (2.5), Theorem 3.1, and since g5 = 0 on Q°,

Cn.s Cn.s lps(x + )]
L (e T M e
2 s s Be\B, YN
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CN, CN, t—2s _ R—2s
< (| S —Cn|+ S)CUNfl sl
Ky S 2S
CN s CN s t_zs B R_ZS

= (|22 g 2 S

(] S | sCN) g l@slizoe ()

t72s _ R72s

< (2sDy + 1)—S l@sllzoe @)

Dy t72s _ R72s 1
=(7 ) —— o=@ forse© ]

Since (17> — R™*) =2(InR — Int)s + o(s) as s — 0T, it follows that

Dy Z—ZS _ R—2S
[15(x)| < (7+1) sup ——— sup [l¢sllio@), (4.18)

5€(0, %] 5€(0,%]

where the RHS is a finite constant depending on ¢ but not on s.
Finally, to estimate /{ (x), we note that our choice of 1 = min{%", %} allows us to
apply Corollary 4.3, which gives that

- 1
los (x +h) — @5 (x)] < Cly|* fors € (0, 71,y € B

with a constant C = C(N, Q. k,r, to) > O. Using this together with (2.5) we may
estimate
N

CN,S
N

IHEIES v

~ ~ t
C/ v Ndy < wy-1C(sCyDy)—
B, s

~ ) ~ 1
=2CDyt* <2CDy fors € (0, Z].

Going back to (4.16), we now find that

— —A)¥ —1
p [y [ BOZWEED (D ) o
0.1 B |y N+2s s
36(0,4] 0]
Since also
wpK“Mhﬁﬁ@ﬂ = s (|20 @) ) < 0
AL o = - s Lo(Q
5€(0,4] § L=@ e0,1) § @
by Theorems 2.10 and 3.1, the claim now follows. O

We now have all tools to complete the proof of Theorem 1.1(iii) which we restate
here for the reader’s convenience.

Theorem 4.5 The set {¢p; : s € (0, ‘_11]} is equicontinuous in every point xo € 2 and
therefore relatively compact in C(K) for every compact subset K C Q.
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Proof We only have to prove the equicontinuity of the set M := {¢; : s € (0, 4—1‘]}
in every point xo € 2. Once this is shown, it follows from Theorem 3.1 and the
Arzela-Ascoli Theorem that, for every compact subset K C €2, the set M is relatively
compact when regarded as a subset of C(K).

Arguing by contradiction, we now assume that there exists a point xo € 2 such
that M is not equicontinuous at xp, which means that

lim sup osc g =€ > 0. (4.19)
t—0t s€0,1 1 Bi (x0)

Here, we note that this limit exists since the function

0, 0) — [0, 00), !+ Sup 0SC @
s€(0, I]Bt(xO)

is nondecreasing. Without loss of generality, to simplify the notation, we may assume
that xo = 0 € Q. We first choose § > 0 sufficiently small so that

g—96

N
v —2:3%8 >0 (4.20)

The relevance of this condition will become clear later. Moreover, we choose 79 > 0
sufficiently small so that

By, C @ @21)
and

e< sup oscys; <&+ for0 <t < 21. (4.22)
se0, 1y B

By Lemma 4.4 and (4.21), there exists a constant C1 > 0 with the property that

1
‘/ ‘pS(x)l IS N I forallx € By.s € (0,7 (423)
By, y

|N+2v

Next, we choose a sequence of numbers #, € (0, t—") with 7, — 01T asn — oo. By
(4.22), there exists a sequence (s,), C (0, 41'1] such that

%sc @5, >€—38 forall n € N, (4.24)

n

whereas, by Lemma 4.3, we have

%sc @5, < C2(2t,,)35" for all n € N with a constant Cp > 0.

n
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Hence,

1 _ 1
=2 Loseos ) =274 (E20) forall neN (4.25)
== \e ) = )

which implies, in particular, that
s, >0 as n— oo. (4.26)

To simplify the notation, we now set ¢, = ¢y, . By (4.24), we may write

— e—94
¢on(By,) = ldy —ry,dy +r,]  for n € N with some d, € Rund r, > .
4.27)
Together with (4.22) and the fact that B,, C By, we deduce that
e+38 e+38
©n(Bagy) C ldn — 5 dy + 3 ]. (4.28)
Indeed,
. e+ 38
supp, < inf +oscp, <dy, —rp+e+8 <d,+
By, B, B 2
and, similarly, 1'19nf on > d, — @ Next, we let
210
3,) "2 — g
cp = / |y|_N_25" dy = a)N_l(n)—O for n € N,
Bto\B3tn 2Sn
and we note that
c, —> 00 asn— o0 (4.29)

since ¢, > wy—1(logty — log(31,)) for n € Nand 1, — 0 for n — oo. We also put

Al :={y € By \ B3, : ¢u(y) = dy} and A" :={y e By \ By, : ¢u(y) < dn}.

Cnf/
A

Since

|2 dy+/ Iy~ dy  forall n e N,
A

n
+
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we may pass to a subsequence such that

/ Iy| N2 dy > 9 forallneN  or
AL 2
/ Iy| 7N dy > & forall n e N.

A" 2

Without loss of generality, we may assume that the second case holds (otherwise
we may replace ¢, by —¢, and d, by —d,). We then define the Lipschitz function
Un € Ce(RY) by

237 |x| S t}’l
0, lx| = 2t,
X) =
Vn( 9
t_(2tn = |xD., th < |x| < 2t,.

n

We also let 7, := ¢, + ¥, for all n € N. By (4.28), we have

T, =¢p < d, +

e+ 35 .
> < dn —+r, + 28 mn B2[0 \ BZtn'

Moreover, since d, + r, € ¢y (B_,n) by (4.27), we have

dy + 1y 428 € 1,(B;,) C 12(Bay,).

Consequently, Igax 7, is attained at a point x,, € By, with
210

Ty (X)) = dp + 1y +28

which implies that

e—34§
On(xXp) = dy +1 > dy + > (4.30)

By (4.23) and since B3, C By, (x,) for n € N by construction, we have that

C Z/ ©n(Xn) — @u(xp +Y)dy :/ ©n(Xn) —fﬂn(Y)d
B B

o |y|N+2s,, o () |Xn _ y|N+2sn

On(Xn) — @n(y) / On(Xn) — @u(y)
= et U dy + 4y (4.3D)
/33,,1 |xp — y|NF28 Biy Co\Bsy  1Xn — VIV +2sn

To estimate the first integral, we note that, by definition of the function ,,

26
V() = YW = T=lx = forall x,z € RY.
n
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Moreover, by the choice of x,, we have 7, (x,) > 7,(y) forall y € B3;,. Consequently,

/ @n(Xn) — %(y)d _/ Ty (Xn) — r,,(y)d B Ma]
By, |Xn— y|N A By, |Xn— y|N+28m By, |Xn— y|N+2sn
- 26 ,
L[ Y B,
B3y, |xn - )’| Sn th Bi,
26 o
pp— |y|1 N 2Sndy
In By,
3172sn _ 251‘_2S"
— _ WN—1 n > —1260N_18l;2S" > —C3 (432)
1—2s,

with a constant C3 > 0 independent of n. Here we used (4.5) and (4.25).
To estimate the second integral in (4.31) we first note, since x, € By, we have
that

2|y|z|y—xn|2% foreveryneNandyeRN\B3tn.

Moreover, by (4.22), (4.28), and (4.30) we have

e—34§
e+8>@n(xn) —on(y) > dy + T —on(y) > =28 for y € Bto(xn) - B2lo~

Consequently, combining (4.31) and (4.32), using again (4.30), we may estimate as
follows:

) —
Ci+C3 > / dey
By (en)\Byy, Y = Xn [T

) —
> / [@n (xn) ?:L];(y)dy—%/ |y_xn|7N72sndy
By (a)\By, |y — Xn [T Byy (xa)\Bs,

1 / [wn(xn)—wnh(y)dy
IN+2s, Biy )\ By | y|N+2sn

Y

_2_3N+2Sn8/ |y|7N725‘ndy
Blo (xn)\B3tn

1 (f [@n (xn) —wn]+(y)dy
Biy\ B3,

IN+2s, |y|N+2s,1

B / [@n (xn) — wn]+(y)dy)
Bo\Bo(x)  y[N T
—2'3N+25n8(/ |y|_N_2S”dy+/ |y|—N—2sndy)
Big\Ba, By i)\ By,

1 ( / N2 N2
vz (o [ T2y — e+ 9) v~V "2dy)
2NFZ AT ay Big\ By (xn)

-2 3N+2Sna(cn +/ |y|—N—2sndy)
By (xn)\ By,

v

v

) Birkhduser



18 Page320f44 Journal of Fourier Analysis and Applications (2022) 28:18

'n N+2s,
2 (3ogwem, — 23 8)a
1)
- v Iy Ty = 238 / IV dy
2 ' Big \Big—21n Byy+21, \ By
& —48 )
> (swmmy =237 8)ar =0 = (G5 —2+3%8 + o) Jen — oD
asn — oo,

where we used (4.27). By our choice of § > 0 satisfying (4.20), we arrive at a
contradiction to (4.29). The proof is thus finished. m|

5 Uniform Boundary Decay

Throughout this section, we assume that €2 is a bounded Lipschitz domain satisfying a
uniform exterior sphere condition. By definition, this means that there exists a radius
Ro > 0 such that for every point x, € 92 there exists a ball B** of radius Ry contained
in RV \ © and with B N Q = {x*}.

We first note the following boundary decay estimate.

Lemma 5.1 There is a constant C = C(N, 2, k) > 0 such that
s N 1
lps(x)| < Cdgy(x) forx e R™,s € (0, Z]. 5.1
Proof We note that ¢; is a weak solution of
(—A)’ps=fs inQ, ¢@;=0 in QF,
where the functions f; := As¢s, s € (0, }T] are uniformly bounded in L°°(2) by The-
orem 3.1. Therefore, the decay estimate in (5.1) essentially follows from [29, Lemma
2.7], although it is not stated there that the constant C can be chosen independently of
s. For an alternative proof of the latter fact, see [20, Appendix]. We stress here that the
use of radial barrier functions as in [29] and [20, Appendix] only requires a uniform
exterior sphere condition and no further regularity assumptions on €2. O
For § > 0, we now consider the one-sided neighborhood of the boundary
QO ={xeQ: sqkx) <8
The main result of the present section is the following.

Theorem 5.2 We have

lim  sup [|@sllz (s = 0.
~V se0, 11
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In other words, for every ¢ > 0, there exists §. > 0 with the property that
1 )
lps(x)| <& forall s € (0, e

The remainder of this section is devoted to the proof of this theorem. We need some
preliminaries. In the following, for s > 0, we let L } (RV) denotes the space of locally
integrable functions u : RN — R such that

e 11 :=/ %dx < +o00.
s RN (1+|x|)N+2A

We note that L} RY) ¢ L,l (RV) for 0 < s < t. Next, we need the following
generalization of [9, Theorem 1.1].

Lemma 5.3 Let A C RN be a compact set, let U C RN be an open neighborhood of
A, and letu € L(l)(RN) be a function with u € CJ} (U) for some o > 0. Then

s
lim sup (ZA)yux) — utx) — Lau(x)| =0.
s>0% xeA S

Proof In the following, we assume o < 1. Moreover, without loss of generality, we
may assume that u € C*(U), otherwise we replace U by a compact neighborhood
U’ C U of A. Next, since A is compact, we may fix r € (0, 1) such that for all x € A
we have dist(x, RV \ U) > r. For x € A we split the expression of the logarithmic
Laplacian as

Lau(x) =CN/ MWdy—CN/ u(x—-il-vy)dy
B, [yl RV\B, |V

Cy
ruw( [, w4 o)

With D, y(s) := %r‘zs and since Cywy—1 = 2, this splitting gives rise to
the inequality

—A)Y —1 — C
sup [ ZA =1 u() = Lau()| = sup/ e o E DN s -2 ey ay
xeA xeA JB, Iyl s
u(x + C _
+Sup/ Jua( Ny)l Nes | ZX—CN’dy
xedJRM\B, |V s
D;-,N(S) -1
+||u||LO°(A)’7S —pN+210gr‘
< lullcew)Ii(s) 4 sup Ir(s, x) + |lull Lo (a) I3(s), (5.2)
X€EA
where

_NICNs  _
ne) = [ [ Xy - el dy, ne
B,
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C )
:/ lu (x -l;]y)l N,slyl,zé —CN), and
rRM\B, )l s

Dr,N(S) -

1
13(s)=‘ —pN+210gr‘.

Dy n(s)—1

By Lemma 2.1, we have lim n

s—07F

= pny — 2logr and therefore

Dr,N(s) -1
S

lim Ii(s) = lim ‘ — on + 210gr‘ —o. (5.3)
s—0t s—0t

Moreover, by (2.5), we have the inequality

Cy, _ Cn. _ _
=Ly O < |2 - oy e[y - 1

< Co(s DulyI™ + [y 1)), (5:4)

for y € RV \ {0}. Using that |[y| = — 1| < £ (|y|7%~% +|y|2) by [20, Lemma 2.1]
it follows that

C
=22y - ey

4 o o
<sCn(DalyI™ + (1727 +1y1F))  for y e RV \(0). (5.5)

In particular,

C M
sy o] s sen(by+ o) E for0<blsr 66

and

c
‘ NSy 2S—CN‘<sch 2t (py 4 = )|y|2 for [yl >r. (5.7

Therefore, (5.6) gives

s—0t s—>

8 «
lim I1(s) < lim sCN(DN + _>/ ly|3-N=254,
0+ a B,

o
}’7_2S

o =
E_ZS

8
= lim 2s(D — 5.8
i 2s(0n 4 ) 9

It remains to consider I>(s, x) for x € A. For this, let € > 0 and note that there is
Ry > 0 such that for any R > Ry we have

/ lu(y) dy < —< . (5.9)
R

Mg IyIV — Cy2N
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Indeed, this is possible since u € L(]) and thus Igimo f ‘l“v(lyN)' dy = 0. In the
TURM\Bg

following, we fix R > max{2, Ro} such that B R (A) C Bg. Note that by this choice

we have in particular sup |z| < % Using (5.7) we then split for x € A (%)
z€EA
lu(y)l |Cn, _
12<s,x>=/ R — g7 ey ay
RM\B,(x) X — VI s
8
SSCNV_2S_O[(DN + _) L}{J_g dy
o JBR\B,(x) [x — y|7 72
U |Cws -
—i—CN/ —‘ Sy =yl S—l‘dy. (5.10)
RN \Bg 1X — yIN I sCy

To estimate the first integral in this decomposition, we use the fact that |[x — y| > r >
71 (1 + [yD for y € Bg \ Br(x) and therefore

[
Bi\B, |x —y|" 72 R

= (z

3N 2_N
1 luIA +yD2""dy
BRr\B(x)

D)

(4 R Flully < (14 RN rE N ull .
(5.11)

~ _1_‘:

IR

+

For the second integral in this decomposition, we note that, since |x —y| > max{l, M}
for y € RV \ Bg, we have for y € RV \ Bg by (2.4)

CN,S
sCy
for s — 01 (uniform in x and y).

=y 7F =1 < 1 =4y 721 +spy +0(s) < 1+ O(s)

Combining this with (5.11) in (5.10) we find

lim sup I>(s, x) < Cy sup/ LMN dy < chN/ KyN)' dy <e
s—0% yea xed JRN\Bg X — ¥ RM\Bg |Vl
(5.12)
Combining (5.3), (5.8), and (5.12), we get from (5.2)
—A) -

lim sup (ZA)u() —ux) — Lau(x)| <e.

s—>0% xeA N
Here, € > 0 is chosen arbitrary and this completes the proof of the lemma. O
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Next we state a uniform small volume maximum principle. For this we define, for
s € (0, 1) and any open set U C R", the function space

. w(x) —u(y))?
VI(U) :={u € Lloc(RN) / /RN I dxdy < oo}

It is easy to see that the quadratic form

(w(x) —u()(x) —vy))
SS(M’U)=CN’X/RN - PRNIEEx dxd

is well-defined in Lebesgue sense for u € V¥ (U), v € H}(U), see e.g. [18] and the
references therein. If functions u € V*(U) and g € L2(U) are given, we say that
(=A)u > g in U weak sense if

Es(u,v)—/ gvdx > 0 forall ve HyU),v=>0.
U

Remark 5.4 Let U c R be an open bounded set. Moreover, let g € L*(U), and
letu € L (]RN) N LIOC(RN) be a function satisfying u € C%(K) for a compact
neighborhood K of U and, for some s € (0, 35

(=A)’u>g in U in pointwise sense.

Then u € V*(U), and u satisfies (—A)’u > g also in weak sense. This follows since,
under the stated assumptions, we have

f [(—A)’ulvdx = E(u,v)  forall v e Hy(U).
U

The latter property follows easily by Fubini’s theorem.

Our uniform small volume weak maximum principle now reads as follows.

Proposition 5.5 There exists (o = o(N) > 0 with the property that the operators
(=AY —id, s€(0,1)

satisfy the following weak maximum principle on every open set U C RN with |U| <
Ho:
For every s € (0, 1) and every function u € V*(U) satisfying

(~Au>u inU, u>0 inRV\U
we have u > 0 on RV,
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Proof By [18, Prop. 2.3], it suffices to find ;¢ > 0 with the property that

A1,5(U) > 1 for every open set U C R with |U| < po and every s € (0, 1),
(5.13)

where A1 ;(U) denotes the first Dirichlet eigenvalue of (—A)* on U.

Let ro = ro(N) := 2¢2(3)=7) It then follows from [9, Sect. 4] that A1 1 (By,) >
0, where 1,1 (By,) denotes the first Dirichlet eigenvalue of L on By, := B, (0).
Since

)Ll,s(Bro) —1

— A1.L(By) ass— 0T,
)

there exists so € (0, 1) with the property that
A,s(By) > 1 for s € (0, s0).
By the scaling properties of the fractional Laplacian, this also implies that
1o 2s
Ma(B) = (2) hs(B) = his(By) > 1 for s € (0.50). 7 € (0. rol.
(5.14)

To obtain a similar estimate for s € [sg, 1), we use a lower eigenvalue bound given by
Banuelos and Kulezycki. In [3, Corollary 2.2], they proved that

T+ 9T +9)

r

As(Bp) =2 for s € (0, 1).

From this we deduce that

s (By) > (%)zsr(l +O0(5+s) <2)zm Coin _

rd) r/ T
for s € [sg, 1) and 0 < r < ry, (5.15)
%
where r| := 2(%) *0 and I'yyin > 0 denotes the minimum of the Gamma function
7

on (0, 00). Setting r, := min{rg, r1}, we thus find, by combining (5.14) and (5.15),
that

As(Br)>1 fors e (0,1),r € (0, r]. (5.16)
Next, let o := |By,|, and let U C RY be a nonempty open set with |U| < puo.
Moreover, let ¥ € (0, r,] with |B,| = |U|. Combining (5.16) and the Faber—Krahn

type principle given in [2, Theorem 5], we deduce that
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)"I,S(U) = )\I,S(Br) > 1 for s € (0’ 1)7

as required. O

We recall aresult from [9] regarding a radial barrier type function for the logarithmic
Laplacian, see [9, Lemma 5.3, Case T = }1].

Lemma5.6 Let R € (0, %). Then there exists 5o = 89(R) > 0 and a continuous
function 'V € Lé(RN ) with the following properties:

() V=0inBgand V > 0in RN \ Bg;
(i) V e CL RN\ Bg);
@iii)) LAV(x) > oo as |x|] — R, |x| > R.

In fact, in [9, Lemma 5.3] it was only stated that V is locally uniformly Dini
continuous on RV \ By since this was sufficent for the considerations in this paper.
However, the construction in the proof of this lemma immediately yields that V'
Cloe RV \ Bp).

Proof of Theorem 5.2 (completed) We need some more notation. For R > 0 and R| >
R, we consider the open annulus

App ={xeRY :R<|x| <R} c RN
and its translations
. N . N
AR gy (y) ={x eR” R < |x —y| < R}, yeR™.

In the following, we let 3’2 C 92 denote the subset of boundary points x, € 92 for
which there exists an (inner) open ball By, C €2 with x,, € dBy,.

Since 2 satisfies a uniform exterior sphere condition, there exists a radius 0 <
Ry < % such that for every point x, € 3’ there exists a (unique) ball B¥ of radius
Ro contained in RY \5 and tangent to 0 By, at x. Let c(x,) denote the center of B*.

Applying Lemma 5.6 with the value R := % now yields a function V € L(I)(RN )
such that the properties (i—iii) of Lemma 5.6 are satisfied.

We now choose dp € (0, R) sufficiently small such that *)

AR, R+80] < IO,

where 1o > 0 is given by Proposition 5.5.
Next we consider the finite values

Ay — 1

N

Ps

my = sup |l@sllre(Q) and mp:= sup H

s€(0.4] 5€(0. 41 L=

Birkhauser



Journal of Fourier Analysis and Applications (2022) 28:18 Page390f44 18

By Lemma 5.6(iii), we can make §yp > O smaller if necessary to guarantee that
LAV (x)>2my  in AR R4sy- (5.17)
Next, for x, € 3'Q and ¢ € [0, R], we consider the point

2(t, Xy) 1= xs + (t + R)C(x*)—_x* in RV \ Q.
[c(Xs) — X

which lies on the extension of the line segment spanned by the points x, and c(xy)

beyond c(x,). By construction, Bg(z(t, x4)) N Q=0goforr € (0, R], while, for
t € (0, 8p), the intersection (*)

Qp x, = QN AR R+80(2(t, X4)) = QN ARys R150(2(2, X))
is nonempty. Since €2 is bounded, there exists R; > R such that
Q C Ag.g (z2(t,xy)) forall x, € 3'Q, 1 € (0, &),

which implies that

QN\ @ x, C Apysy,r (2(t, x4)) forall x, € Q.1 e (0, 89). (5.18)
Next, we define the translated functions
Vie, € LG®RY), Vi () =V(x —z(t,x%), x.€0Q.1€[0,R].

Since V is positive on the compact set Ags, g, by Lemma 5.6(i), we may choose
¢ > 1 sufficiently large such that V > %L in Agys, g, and thus, by (5.18), also

Vi = 20 in @\ Q. forall x, € 92,1 € (0, 8). (5.19)
C

To finish the proof of the theorem, we now let ¢ > 0 be given. Since V is continous
and V = 0 on Bg by Lemma 5.6(i), we may fix § € (0, 8—“) such that

0<V< in Bgyos. (5.20)

S| ™

Since Agys,r+50 CC RN \ Bg, we find, as a consequence of Lemmas 5.3 and 5.6,
that

(=A)FV —V
-

LAV  uniformly on Agys ris, as § — 0r.
s
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Hence, by (5.17), we may fix 51 € (0, 4—11] with the property that

(—AYV —V ms
f >my = T on AR+8,R+50 for s € (0, s1). (5.21)

We now claim that
lps(x)| <& for s € (0,s1), x € Q°. (5.22)

To show (5.22), we let x € Qfs, and we let x, € 9Q with dq(x) = |x — x4|. By
definition, we then have x, € 9'2. Moreover, by construction we have

X € QN ARts,R+25(2(8, x4)) C Br426(2(3, x4)). (5.23)
We now define W :=cV; , € L(l)(RN). By (5.21), we then have that
(=AW =W +smy  in Agys ris,(2(8,x%)) for s € (0,s51).  (5.24)

Consequently, in weak sense,

A — 1

(=D (W £¢5) = (=AW + A >

(W 1) +om2 £ 2L
>W=xe, in Qsy, = Q2N Arts, R45(2(8, x™)) (5.25)

by the definition of m,. Moreover, it follows from (5.19) and the definition of mz that
Wae,>0 inRY\Qs,, fors e (0,s). (5.26)

Using Propositions 5.5, (5.25), and (5.26) together with the fact that |Q5,,| <
|AR R+50] < o, we deduce that

W+ge, >0 inRY,
and thus, in particular,
los| < W <&  in Bry25(z(8, x4)) for s € (0, 51)

by (5.20). Consequently, |¢s(x)| < ¢ for s € (0, s1) by (5.23), and this yields (5.22).
Making § > 0 smaller if necessary, we may, by Lemma 5.1, also assume that

1
lps()l <& fors €lsi, 71, x € 2. (5.27)
Combining (5.22) and (5.27), we conclude that
1 $
lgs(x)| =& fors € (0, Z]’ x € Q.
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The proof of Theorem 5.2 is thus finished. O

6 Completion of the Proofs

In this section, we complete the proofs of Theorem 1.1, Corollarys 1.3 and 1.4.
We start with the

Proof of Theorem 1.1 Part (i) is proved in Theorem 2.10. Part (iii) is proved in Theo-
rem 4.5. Moreover, the first claim in Part (ii), the boundedness of the set M := {¢ s :
s € (0, }1]} in L°°(€2), has been proved in Theorem 3.1. Combining this fact with the
relative compactness of the set M in C (K) for every compact subset K C €2, it follows
from Theorem 5.2 together with the Kolmogorov—Riesz compactness theorem that M
is relatively compact in L?(€2) for every p € [1, 00), this completes the claim in Part
(ii).

To prove Part (iv) of Theorem 1.1, we first observe that, since €2 satisfies an exterior
sphere condition by assumption, it follows from Lemma 5.1 that ¢ s € Cp(2) for
any k € Nand s € (0, }‘]. Furthermore, M is equicontinuous in all points in € by
Theorem 4.5 and in all points in d€2 by Theorem 5.2. Since moreover M is uniformly
bounded with respect to || - || () by Part (ii), the Arzela-Ascoli Theorem implies
that M is relatively compact in Co(£2).

To prove Part (v), let (s,), C (0, }t] be a sequence of numbers with s, — 07. By
Theorem 2.10, we may pass to a subsequence with the property that

Gks, — @ in L2(Q) asn — oo. 6.1)

Due to the relative compactness of the set M in L7 (2) already proved in Part (ii),
we also have LP-convergence in (6.1) for I < p < oo, and the locally uniform
convergence follows from Part (iii). Moreover, in the case where €2 satisfies an exterior
sphere condition, the convergence in C((£2) follows from the relative compactness in
the space Co(€2) stated in Part (iv). O

Next we complete the

Proof of Corollary 1.3 For the particular case 1 < p < 2, the convergent in (1.19)
follows directly from [9, Theorem 1.5] combined with the Holder inequality. But using
the relative compactness of the set M in L? (£2) proved in Part (ii) of Theorem 1.1 and
the uniqueness of ¢ g, the LP-convergence in (1.19) for 1 < p < oo and the locally
uniform convergence in €2 also follows by Part (iv) of Theorem 1.1. The additional
assertion follows from the additional assertion in Theorem 1.1(v). O

Proof of Corollary 1.4 Let (s,), C (0, %] be a sequence of numbers with s, — 07.
Moreover, for every n € N, let ¢, k € N denote L?%-orthonormal Dirichlet
eigenfunctions of (—A)® on Q corresponding to the eigenvalues Ay s, . Passing to
a subsequence, we may assume, by Theorem 1.1, that

A, — 1

— e and @, — o in LE(Q) (6.2)
Sn
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as n — oo, where, for every k € N, ¢ 1 is a Dirichlet eigenfunction of LA on 2
corresponding to the eigenvalue A ;. Parts (iii) and (v) of Theorem 1.1 then imply
that

kL € L2(Q) N Crpe ()  forevery k € N.

Moreover, it follows that ¢ 1 € Co(€2) in the case where 2 satisfies an exterior sphere
condition.

Finally, the L>-convergence in (6.2) implies that the sequence of functions ¢y 1,
k € N is L2-orthonormal. It then follows that every Dirichlet eigenfunction of L on
2 can be written as a finite linear combination of the functions ¢ 1, and therefore it
has the same regularity properties as the functions ¢ 1, k € N. O
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Appendix A. On Equivalent Holder Estimates

Here we recall that by the notion of Holder—Zygmund spaces we have for 7 € (0, 1)
and r > 0 that v € C*(RY) N L>°(R") if and only if

2v(x +h) —v(x +2h) —v(x)|

e ve <o0o. (Al

||U||LOO(RN) +
x,heRVN
h=0

Indeed, if v € CT(B,(0)) N L®°(RY), then clearly (A.1) holds. To see the reverse
implication, first note that we have ||v||Lm(RN) < vy < ooby (A.1). Next, letx € RN
and we claim that there is C; independent of x such that

v +h) — vl _
e o

yeRN
h#0
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Since v(x + h) —v(x) = (v —¢)(x + h) — (v — ¢)(x) for all constants ¢ € R, we
may assume v(x) = 0. Next, let 7 € RN, then

2v(x 4+ 2Kh) — v(x + 2T h)| = 20(x + 25Rh) — v(x + 28T h) — v(x)| < v 2XT|n|"

for k € Np.

But then, forn € N and since v < 1,

n—1
12"v(x + h) — v(x + 2"h)| < ZZ”_l_k|2v(x +2Kh) — v(x + 25 h))
k=0
n—1 00
< C|h|r Zzn—l—k+kr < vT2n|h|r 22—(1—r)k
k=0 k=0
n
= g

Hence, foralln € N,

lv(x +h) —vXx)| = [v(x +h)| <27"2"v(x + h) —v(x +2"h)|
L2 u(x + 2"h)|

Ur T _
< WW + 27",

and, for n — o0, we have |v(x + h) — v(x)] < —2Z—|h|" so thatv € CT(RN) N
Lo°([RNM).

1271

References

10.

. Alberico, A., Cianchi, A., Pick, L., Slavikov4, L.: On the limit as s — 07 of Fractional Orlicz-Sobolev

Spaces. J. Fourier Anal. Appl. 26, 80 (2020)

Baiiuelos, R., Latala, R., Méndez-Herndndez, P.J.: A Brascamp-Lieb-Luttinger-type inequality and
applications to symmetric stable processes. Proc. Am. Math. Soc. 129(10), 2997-3008 (2001)
Baiiuelos, R., Kulczycki, T.: The Cauchy process and the Steklov problem. J. Funct. Anal. 211(2),
355-423 (2004)

Bisci, G.M., Radulescu, V.D., Servadei, R.: Variational Methods for Nonlocal Fractional Problems,
vol. 162. Cambridge University Press, Cambridge (2016)

Bogdan, K., Byczkowski, T.: Potential theory for the «-stable Schrodinger operator on bounded Lips-
chitz domains. Stud. Math. 133(1), 53-92 (1999)

Bogdan, K., Kulczycki, T., Kwasnicki, M.: Estimates and structure of «-harmonic functions. Probab.
Theory Related Fields 140(3—4), 345-381 (2008)

Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications, vol. 20. Springer, Cham (2016)
Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial
Differ. Equ. 32(8), 1245-1260 (2007)

Chen, H., Weth, T.: The Dirichlet problem for the logarithmic Laplacian. Commun. Partial Differ. Equ.
44(11), 1100-1139 (2019)

Chen, H., Veron, L.: Bounds for eigenvalues of the Dirichlet problem for the logarithmic Laplacian.
(2020). http://arxiv.org/2011.05692

) Birkhduser


http://arxiv.org/2011.05692

Page 44 of 44 Journal of Fourier Analysis and Applications (2022) 28:18

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

. Correa, E., De Pablo, A.: Nonlocal operators of order near zero. J. Math. Anal. Appl. 461(1), 837-867

(2018)

. De Luca, L., Novaga, M., Ponsiglione, M.: The O-fractional perimeter between fractional perimeters

and Riesz potentials. (2019). http://arxiv.org/1906.06303

. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull.

Sci. Math. 136(5), 521-573 (2012)

Fall, M.M., Weth, T.: Monotonicity and nonexistence results for some fractional elliptic problems in
the half-space. Commun. Contemp. Math. 18(1), 1550012 (2016)

Felsinger, M., Kassmann, M., Voigt, P.: The Dirichlet problem for nonlocal operators. Math. Z. 279(3—
4), 779-809 (2015)

Grzywny, T., Ryznar, M.: Potential theory of one-dimensional geometric stable processes. Collog.
Math. 129, 7-40 (2012)

Grzywny, T., Kwasnicki, M.: Potential kernels, probabilities of hitting a ball, harmonic functions and
the boundary Harnack inequality for unimodal Lévy processes. Stoch. Process. Appl. 128, 1-38 (2018)
Jarohs, S., Weth, T.: On the maximum principle for nonlocal operators. Math. Z. 293(1-2), 81-111
(2019)

Jarohs, S., Weth, T.: Local compactness and nonvanishing for weakly singular nonlocal quadratic
forms. Nonlinear Anal. 193, 111431 (2020)

Jarohs, S., Saldafa, A., Weth, T.: A new look at the fractional Poisson problem via the Logarithmic
Laplacian. J. Funct. Anal. 279(11), 108732 (2020)

Kassmann, M., Mimica, A.: Intrinsic scaling properties for nonlocal operators. J. Eur. Math. Soc. 19(4),
983-1011 (2017)

Kim, P., Mimica, A.: Harnack inequalities for subordinate Brownian motions. Electron. J. Probab. 17,
23 (2012)

Kim, P., Mimica, A.: Green function estimates for subordinate Brownian motions: stable and beyond.
Trans. Am. Math. Soc. 366, 4383-4422 (2014)

Kuwae, K., Shioya, T.: Convergence of spectral structures: a functional analytic theory and its appli-
cations to spectral geometry. Commun. Anal. Geom. 11(4), 599-673 (2003)

Kwasnicki, M.: Eigenvalues of the fractional Laplace operator in the interval. J. Funct. Anal. 262(5),
2379-2402 (2012)

Kwasnicki, M.: Fractional Laplace Operator and its Properties. Handbook of Fractional Calculus with
Applications, vol. 1, pp. 159-193. De Gruyter, Berlin (2019)

Laptev, A., Weth, T.: Spectral properties of the logarithmic Laplacian. Anal. Math. Phys. 11(133), 24
(2021)

Mimica, A.: On harmonic functions of symmetric Lévy processes. Ann. Inst. Henri Poincaré Probab.
Stat. 50, 214-235 (2014)

Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the bound-
ary. J. Math. Pures Appl. 101(3), 275-302 (2014)

Servadei, R., Valdinoci, E.: Variational methods for non-local operators of elliptic type. Discret. Contin.
Dyn. Syst. 33(5), 2105-2137 (2013)

Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Com-
mun. Pure Appl. Math. 60, 67-112 (2007)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

) Birkhduser


http://arxiv.org/1906.06303

	Small Order Asymptotics of the Dirichlet Eigenvalue Problem for the Fractional Laplacian
	Abstract
	1 Introduction
	2 First Order Expansion of Eigenvalues and L2-convergence of Eigenfunctions
	3 Uniform L-infty-bounds on Eigenfunctions
	4 Local Equicontinuity
	5 Uniform Boundary Decay
	6 Completion of the Proofs
	Acknowledgements
	Appendix A. On Equivalent Hölder Estimates
	References




