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Abstract
A time–frequency transform is a sesquilinear mapping from a suitable family of test
functions to functions on the time–frequency plane. The goal is to quantify the energy
present in the signal at any given time and frequency. The transform is further specified
by imposing conditions such as those stemming from basic transformations of signals
and those which an energy density should satisfy. We present a systematic study on
how properties of a time–frequency transform are reflected in the associated evaluation
at time–frequency origin, integral kernel and quantization and discuss some examples
of time–frequency transforms.
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1 Introduction

Representing a signal u : R
n → C in terms of simpler components is the basic prob-

lem in signal analysis. We consider quadratic time–frequency transforms (u, v) �→
Q(u, v), where Q(u, u) acts as an energy density of the signal u in the time–frequency
plane R

n × ̂Rn . For an ideal energy density (x, η) �→ Q(u, u)(x, η) the value at the
point (x, η) could be interpreted as the energy content of the component at frequency
η at time x . However, such a pointwise density cannot exist since several of the prop-
erties of energy densities are mutually incompatible for time–frequency transforms.
For instance, if we insist on pointwise positive energy densities, we lose the correct
marginal distributions both in time and in frequency.

We study characterizations of quadratic time–frequency transforms in the space
R
n . In general, a time–frequency transform is a function

Q(u, v) : R
n × ̂Rn → C

where the form (u, v) �→ Q(u, v) is sesquilinear and ̂Rn denotes the unitary dual
of R

n . We will call the quadratic form u �→ Q[u] := Q(u, u) the corresponding
time–frequency distribution.

The most well-known and widely-applied time–frequency transform is, largely due
to its simplicity and positivity, the spectrogram. It is defined using the short-time
Fourier transform1

Vgu(y, ξ) =
∫

Rn
e−i2πx ·ξu(x)g(x − y) dx (1)

as
u �→ |Vgu|2, (2)

where the function g : R
n → C is referred to as the window function.

Another example of a time–frequency transforms is the Wigner transform

W (u, v)(x, η) =
∫

Rn
e−i2π y·ηu(x + y/2)v(x − y/2) dy.

TheWigner distribution u �→ W [u] can also be interpreted as an energy distribution of
the signalu. However, this interpretation ismore difficult due to theWigner distribution
attaining also negative pointwise values for most signals.

Time–frequency transforms (x, η) �→ Q(u, v)(x, η) may be characterized by
properties related to basic transformations of signals. If they are considered as
functions on the Heisenberg group, the correspondence between automorphisms of
the Heisenberg group and certain unitary operators on signals u ∈ L2(Rn) yields
these so-called covariance properties. Further characterizations are given by prop-
erties defining an energy distribution. For instance, the time–frequency distribution

1 We use the variables (y, ξ) for the short-time Fourier transform, since it satisfies Vgu(y, ξ) =
FR(u, g)(y, ξ), where R(u, g)(x, η) is the Rihaczek transform defined in 26 and F is the symplectic
Fourier transform, see Definition 10.



Journal of Fourier Analysis and Applications (2022) 28 :6 Page 3 of 38 6

(x, η) �→ Q[u](x, η) should yield the total energy of the signal if integrated over the
whole time–frequency plane.

2 Fourier Analysis

We recall first some basic Fourier analysis. The basic theory can be found in many
introductory texts, for example, in [22]. For any u ∈ L1(Rn) the Fourier transform
û : ̂Rn → C is defined by the integral

û(ξ) =
∫

Rn
e−i2πx ·ξu(x) dx .

We use the operator notation Fu := û as well. Next we consider some simple opera-
tions on signals and their interplay with the Fourier transform.

Definition 1 For any signal u : R
n → C the modulation of u by ξ ∈ ̂Rn is given by

Mξu(x) = ei2πx ·ξu(x).

The translation of u by y ∈ R
n is given by

Tyu(x) = u(x − y),

and the energy preserving dilations Ds are defined by

Dsu(x) = |s|−n/2u(x/s), s ∈ R \ {0}.

It follows directly from the definitions that modulations, translations and dilations
satisfy

F ◦ Mξ = Tξ ◦ F ,

F ◦ Ty = M−y ◦ F ,

F ◦ Ds = D1/s ◦ F

as operators in L1(Rn). In addition to the previous formulas, we have for the complex
conjugation, z �→ z,

F (ι(u)) = Fu

where ιu(x) = u(−x). The notation ι is used throughout for the reflection operator.
For functions of two variables x, y ∈ R

n the separate reflections in each variable are
denoted by

ι1u(x, y) = u(−x, y),

ι2u(x, y) = u(x,−y).
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We define the convolution u ∗ v : R
n → C of two absolutely integrable functions

u, v : R
n → C by the formula

(u ∗ v)(x) =
∫

Rn
u(x − y)v(y) dy.

Convolution is commutative and associative as an algebraic operation and its Fourier
transform is the point-wise product of the individual transforms:

û ∗ v(ξ) = û(ξ )̂v(ξ).

For functions u(x, y) and v(x, y) of two variables x, y ∈ R
n we use the notation u∗1v

for the partial convolution with respect to the first variable defined by

(u ∗1 v)(x, y) =
∫

Rn
u(x − t, y)v(t, y) dt .

The partial convolution u ∗2 v is defined similarly.
The Fourier transform satisfies the following self-dual property which is used to

define it for distributions.

Lemma 1 If u and v are in L1(Rn), then

∫

Rn
û(x)v(x) dx =

∫

Rn
u(x )̂v(x) dx .

The Fourier inversion formula is defined by the integral

u(x) = F−1û(x) :=
∫

Rn
ei2πx ·ξ û(ξ) dξ

in the case of both u and û being absolutely integrable. This may be extended to other
spaces e.g. by the Plancherel theorem as follows:

Theorem 1 (Plancherel Theorem) If u ∈ L1(Rn) ∩ L2(Rn) then the equality

‖u‖L2(Rn) = ‖û‖L2(Rn)

holds. This allows the definition of the Fourier transform on L2(Rn) as the bounded
extension of the transform on L1(Rn)∩L2(Rn). The transform thus defined is a unitary
operator with the inverse

u(x) �→ û(−x).

We will mainly consider the space of Schwartz rapidly decreasing functions and
the corresponding distributions. As references for the theory of distributions we use
the books [13,20,23]. The definitions and theorems below as well as their proofs can
be found in these monographs.
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We will use the standard multi-index notation α = (α1, . . . , αn) ∈ N
n
0, where

N0 = {0, 1, 2, . . .} and define

xα = xα1
1 · · · xαn

n ,

∂α
x = ∂α1

x1 · · · ∂αn
xn ,

and |α| = ∑n
i=1 αi .

The space of smooth functions is denoted by C∞(Rn). It is a topological vector
space with the topology given by the countable family of seminorms ϕ �→ |ϕ|m,K ,
where

|ϕ|m,K = sup
|α|≤m

(

sup
x∈K

∣

∣∂α
x ϕ(x)

∣

∣

)

and K is a compact subset of R
n . The space of compactly supported smooth functions

is denoted by C∞
c (Rn).

Definition 2 Consider the vector space of functions ϕ ∈ C∞(Rn) satisfying

sup
x∈Rn

|xβ∂α
x ϕ(x)| < ∞ (3)

for all multi-indices α and β. This space equipped with the topology given by the
family of seminorms defined by the left-hand side of (3) is called the Schwartz space
S (Rn) of rapidly decreasing smooth functions, also known as the space of Schwartz
test functions.

Definition 3 The spaceS ′(Rn) of temperate distributions is the space of continuous
linear functionals on S (Rn). The notation

u(ϕ) =: 〈u, ϕ〉S ′,S

means the evaluation of the temperate distribution u at ϕ.

Any function u ∈ L p(Rn), 1 ≤ p ≤ ∞ has an interpretation as a temperate
distribution 
u by defining


u(ϕ) :=
∫

Rn
u(x)ϕ(x) dx . (4)

With this interpretation we have

S (Rn) ⊂ L p(Rn) ⊂ S ′(Rn),

and furthermore:

Lemma 2 The space S (Rn) is dense in the space of temperate distributions.
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We will use subscripts to differentiate the bilinear distribution pairing 〈u, ϕ〉S ′,S
from the usual sesquilinear Hilbert space inner product 〈u, v〉. We define the complex
conjugate of a temperate distribution u by

〈u, ϕ〉S ′,S := 〈u, ϕ〉S ′,S .

Given a polynomial p(x) = ∑

α aαxα wedefine p(∂x ) to be the constant-coefficient
differential operator formed from the polynomial p(x) by the formal substitution
xα �→ ∂α

x . The operator p(∂x ) is thus given by

p(∂x ) =
∑

α

aα∂α
x .

For the Schwartz test functions we may now formulate the following duality between
differentiation and multiplication operators.

Theorem 2 If ϕ ∈ S (Rn) and p is a polynomial then the identities

F(p(∂x )ϕ)(ξ) = p(i2πξ) · Fϕ(ξ)

F(p · ϕ)(ξ) = p((−i2π)−1∂ξ )Fϕ(ξ)

hold.

Finally, motivated by Lemma (1), we define the Fourier transform for the space of
temperate distributions:

Definition 4 (Fourier transform for temperate distributions) For any ϕ ∈ S (Rn) we
define the Fourier transform û ∈ S ′(Rn) of u ∈ S ′(Rn) as a temperate distribution
by

〈̂u, ϕ〉S ′,S = 〈u, ϕ̂〉S ′,S .

The Fourier transform thus defined is an automorphism ofS ′ and it may be restricted
to automorphisms of L2 and S .

Definition 5 (Convolution of distributions) The convolution of a Schwartz function ϕ

and a temperate distribution u is the function given by

(ϕ ∗ u)(x) := 〈ιu, T−xϕ〉S ′,S . (5)

We will consider time–frequency transforms which are based on convolutions of
particular temperate distributions. In this context we need the spaces of multipliers
and convolutors. For the following definition we refer to [23, p. 275]:

Definition 6 The space ofmultipliers,OM (Rn), is the space of functions ϕ ∈ C∞(Rn)

such that for every multi-index α there is a polynomial Pα in R
n such that for all

x ∈ R
n ,

|∂αϕ(x)| ≤ |Pα(x)|.



Journal of Fourier Analysis and Applications (2022) 28 :6 Page 7 of 38 6

The space of convolutors is defined in [23, p. 315] as follows:

Definition 7 The space of convolutors, O ′
C (Rn), is the space of distributions 
 sat-

isfying the following property: Given any integer h ≥ 0, there is a finite family of
continuous functions in R

n , fα , with the multi-index α satisfying |α| ≤ m(h), such
that


 =
∑

|α|≤m(h)

∂α fα

and such that for all multi-indices α, |α| ≤ m(h),

lim|x |→∞(1 + |x |)h | fα(x)| = 0.

Referring to [23, Chap. 30], we point out that the space of convolutors is precisely
the subspace of temperate distributions such that Schwartz functions are mapped to
Schwartz functions in convolution, that is, f ∈ O ′

C (Rn) if and only if

f ∗ ϕ ∈ S (Rn)

for all ϕ ∈ S (Rn). The Fourier transform is a bijective linear map from OM (Rn) to
O ′
C (Rn) and from O ′

C (Rn) to OM (Rn).

3 Time–Frequency Plane

In this section,we introduce the structure of the time–frequencyplane andpresent some
basic properties of functions defined on it using [17] and [10] as basic references. In
applications, the time–frequency plane is often called the phase space or the position-
momentum space. Time–frequency transforms are certain covariant functions on the
time–frequency plane.

Definition 8 Time–frequency plane is defined to be the direct sum of vector spaces

R
n ⊕ ̂Rn,

where ̂Rn is the unitary dual of R
n consisting of the functions eξ (x) = ei2πx ·ξ with

ξ ∈ R
n . As the mapping ξ �→ eξ is an isomorphism R

n � ̂Rn of groups we will
regard the time–frequency plane as the space R

n ⊕ R
n � R

2n . This version of the
time–frequency plane is endowed with the symplectic form

B((x, η), (y, ξ)) = y · η − x · ξ. (6)

Of particular importance in the time–frequency plane are those coordinate trans-
forms which preserve the symplectic form. The set of these transforms forms the
symplectic group.
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Definition 9 Symplectic group Sp(2n) is the group of linear transformationsA onR
2n

satisfying

B(A(x, η),A(y, ξ)) = B((x, η), (y, ξ)),

where B is the symplectic form defined in (6).

The symplectic group is generated by the mappings

(x, η) �→ (T x, (T−1)∗η), (7)

(xk, ηk) �→ (ηk,−xk), k = 1, . . . , n, other coordinates remain fixed, (8)

(x, η) �→ (x, η + Sx), (9)

where T is an automorphism of R
n and S : R

n → R
n is a symmetric linear mapping,

see [17, Sect. 4.4.1].
The standard symplectic form gives rise to a version of the Fourier transformwhich

we call the symplectic Fourier transform.

Definition 10 (Symplectic Fourier Transform)We define the symplectic Fourier trans-
form Fa ∈ S (R2n) for functions a ∈ S (R2n) in the time–frequency plane as

(Fa)(y, ξ) :=
∫∫

R2n
ei2πB((x,η),(y,ξ))a(x, η) dx dη

=
∫∫

R2n
e−i2π(x ·ξ−y·η)a(x, η) dx dη.

The space of Fourier variables (y, ξ) ∈ R
2n is called the ambiguity plane. The sym-

plectic Fourier transform is also given by

F = S ◦ F1 ◦ F−1
2 , (10)

where F1 and F2 denote the partial Fourier transforms defined by

(F1a)(ξ, y) =
∫

Rn
e−i2πx ·ξa(x, y) dx,

(F2a)(x, η) =
∫

Rn
e−i2π y·ηa(x, y) dy,

and S : a(ξ, y) �→ a(y, ξ).

A direct consequence of the definition is that the symplectic Fourier transform is its
own inverse F−1 = F and that it commutes with symplectic coordinate transforms,
that is,

F ◦ TA = TA ◦ F, (11)
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where TAa(x, η) = a(A(x, η)) and A ∈ Sp(2n).
We state some basic mapping properties of the symplectic Fourier transformwhich,

in view of (10) are analogous to the properties for the standard Fourier transform in
R
2n .

Lemma 3 The symplectic Fourier transform is an automorphism of L2(R2n),S (R2n)

and S ′(R2n). It is also a bijective map OM (R2n) → O ′
C (R2n) and satisfies the

Plancherel formula

〈Fa, Fb〉L2(R2n) = 〈a, b〉L2(R2n)

and the identities

F ◦ T(z,ζ ) = M(z,ζ ) ◦ F,

Fa = ιF(a),

F(a ∗ b) = Fa · Fb,

where a, b ∈ S (R2n), translations and modulations in time and frequency are

T(z,ζ )a(x, η) := a(x − z, η − ζ ),

M(z,ζ )a(x, η) := ei2π(x ·ζ−z·η)a(x, η) = ei2πB((z,ζ ),(x,η))a(x, η),

and the phase space convolution is an ordinary convolution with respect to both time
and frequency.

Particularly interesting in terms of time–frequency analysis are those unitary oper-
ators on L2(Rn) which are connected to symplectic transforms in the time–frequency
plane. This group of operators is the metaplectic group. We present a few basic facts
referring to Sects. 2.1.4 and 4.4.2 of [17]. The following definition for the metaplectic
group is presented in [17, p. 60]:

Definition 11 The metaplectic group Mp(n) is the subgroup of unitary operators on
L2(Rn) generated by

Pu(x) = eiθu(x), (12)

Au(x) = | det T |−1/2u(T−1x), (13)

Bu(x̌k) =
∫

R

e−i2πxkξk u(x) dxk, k = 1, . . . , n, (14)

Cu(x) = eiπ〈Sx,x〉u(x), (15)

where θ ∈ R, T is an automorphism of R
n , x̌k = (x1, . . . , xk−1, ξk, xk+1, . . . , xn)

and S is a symmetric matrix.

Remark 1 The Metaplectic group is often defined as the connected double cover of
the symplectic group. This definition differs from the one presented in [17], see [17,
Remark 4.4.20].
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There is a surjective homomorphism

 : Mp(n) → Sp(2n) (16)

with kernel C
∗ idL2(Rn) such that ifA = (M), the Wigner transformW satisfies the

Segal formula

W (Mu, Mv)(x, η) = (W (u, v) ◦ A−1)(x, η), (17)

see [17, p. 61]. The mapping  maps the phase transformations P in (12) to the
identity, (P) = idSp(2n) and the operators A, B and C of Definition 11 to the
symplectic mappings (7), (8) and (9), respectively. We will take the formula (17) as
a source of transformation properties that a time–frequency transform should ideally
have.

4 Time–Frequency Transforms and Quantizations

We follow the common tradition of representing time–frequency transform in terms of
theWigner transform. Since theWigner transform satisfies many desirable properties,
such as (17), it is reasonable to have it as the starting point for defining other transforms.
We will consider transforms which can be defined as convolution smoothings of the
Wigner transform. In the usual terminology these transforms are referred to as the
Cohen class transforms named after Leon Cohen who first studied such transform
systematically in [6].

Definition 12 The Wigner transform W (u, v) is defined for u, v ∈ S (Rn) by the
formula

W (u, v)(x, η) =
∫

Rn
e−i2π y·ηu(x + y/2)v(x − y/2) dy. (18)

The Wigner transform is a particular example τ = 1/2 of the τ -Wigner transforms
defined by

Wτ (u, v)(x, η) =
∫

Rn
e−i2π y·ηu(x + τ y)v(x − (1 − τ)y) dy, τ ∈ R, (19)

which will be addressed in more in detail in Example 5 of Sect. 6.

The symplectic Fourier transform of the Wigner transform is the (narrowband)
ambiguity transform

χ(u, v)(y, ξ) := FW (u, v)(y, ξ) =
∫

Rn
e−i2πx ·ξu(x + y/2)v(x − y/2) dx . (20)

The ambiguity transform is also given by the matrix coefficients

χ(u, v)(y, ξ) = 〈u, ρ(y, ξ)v〉, (21)
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where
ρ(y, ξ) f (x) = Mξ/2TyMξ/2 f (x) = e−iπ y·ξ+i2πx ·ξ f (x − y) (22)

is the symmetric version of the Schrödinger representation ρ of the Heisenberg group.
Since the Wigner transform is taken to be the basic time–frequency transform, its

properties are of interest when defining other transforms. The lists of properties for
the Wigner transform and several other transforms can be found, for instance, in [1].
The Wigner transform is a member of the Cohen class (Definition 14) having several
desirable properties such as full symplectic covariance, correct marginal distributions,
Moyal property and invertibility. The Wigner distribution is not positive, however, as
can be readily verified by consideringW [u] for odd u in R. Positivity is characterized
by Hudson’s theorem which states that the Wigner distribution is positive only for
generalized Gaussians [11, p. 70].

As mapping properties Wigner transform satisfies, for instance,

W : S (Rn) × S (Rn) → S (R2n), (23)

W : L2(Rn) × L2(Rn) → L2(R2n). (24)

When defining other time–frequency transforms Q we will mainly consider those that
have mapping properties like (23) and (24). Not all well-known transform satisfy (23)
and (24) as can be seen by examining the spectrogram |Vgu|2(x, η). For the short-time
Fourier transform we have by [11, Chap. 11] that assuming g ∈ S (Rn) nonzero and
u ∈ S ′(Rn) then Vgu ∈ S (R2n) if and only if u ∈ S (Rn). Hence by using the
identity

Vgu(y, ξ) = e−i2π y·ξVug(−y,−ξ),

most spectrograms are not mappings fromS (Rn) toS (R2n).
Translations move the signal in time and modulations move the signal in frequency.

The corresponding property jointly in time and frequency is time–frequency covari-
ance.

Definition 13 A sesquilinear map (u, v) �→ Q(u, v)(x, η) is time–frequency covari-
ant if

Q(Tx0Mη0u, Tx0Mη0v)(x, η) = Q(u, v)(x − x0, η − η0) (25)

for all (x, η), (x0, η0) ∈ R
2n and u, v ∈ S (Rn).

Based on the mapping properties (23), (24) and time–frequency covariance we
define the Cohen class time–frequency transforms considered in this article as follows.

Definition 14 A sesquilinear map Q : S (Rn) × S (Rn) → S (R2n) is a time–
frequency transform if it satisfies

FQ(u, v)(y, ξ) = φQ(y, ξ)χ(u, v)(y, ξ),

where χ is the ambiguity transform defined in (20) and φQ ∈ OM (R2n) ∩ L∞(R2n).
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A time–frequency transform Q can be specified by different kernels which are
Fourier transforms of one another.Wewill use the following notation and terminology:

ambiguity kernel, φQ(y, ξ),

time–frequency kernel, ψQ(x, η) := FφQ(x, η),

time-delay kernel, ϕQ(x, y) := F−1
2 ψQ(x, y).

Definition 14 implies that a time–frequency transform Q is a convolution of theWigner
transform,

Q(u, v) = ψQ ∗ W (u, v),

for some distribution ψQ ∈ O ′
C (R2n). Time–frequency covariance of the Wigner

transform implies that the transforms defined in 14 are also covariant.
The boundedness requirement of the ambiguity kernel φQ ∈ L∞(R2n) makes the

transform square-integrable for finite-energy signals by the Plancherel theorem and
the estimate

‖Q(u, v)‖L2(R2n) ≤ ‖φQ‖L∞(R2n)‖u‖L2(Rn)‖u‖L2(Rn).

Remark 2 Time–frequency transforms can also be based on the Rihaczek transform
R := W0 given by

R(u, v)(x, η) = u(x)e−i2πx ·ηv̂(η), (26)

which can be generalized easily to groups without dilation. The difficulty with the
Wigner transform is y �→ y/2whichdoes notworkwell ongroups in general.Rihaczek
transform is the starting point for defining Cohen class time–frequency transforms on
groups in the article by Turunen [24].

In view of (25), the value of a covariant time–frequency transform at any point
(x, η) is determined by the sesquilinear form

(u, v) �→ Q(u, v)(0, 0),

where u, v ∈ S (Rn). We use this sesquilinear form to define the evaluation at origin
operator Q0 : S (Rn) → S ′(Rn) by

〈Q0v, u〉S ′,S := Q(u, v)(0, 0). (27)

This operator admits a representation by a distribution kernel δQ ∈ S ′(R2n) by the
Schwartz kernel theorem as

〈Q0v, u〉S ′,S = 〈δQ, u ⊗ v〉S ′,S . (28)
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We collect these observations into a lemma which is a version of [11, Theorem
4.5.1]. The original lemma excludes transforms which are not in general point-wise
bounded for signals of finite energy. An example of such a transform is the Rihaczek
transform (26).

Lemma 4 Let Q be a time–frequency transform according to Definition 14. The eval-
uation at the time–frequency origin defines the distribution kernel δQ ∈ S ′(R2n)

and
Q(u, v)(x, η) =

〈

δQ, ρ(x, η)−1u ⊗ ρ(x, η)−1v
〉

S ′,S
, (29)

where ρ(x, η) = Mη/2TxMη/2 is the symmetric time–frequency shift defining the
Schrödinger representation and δQ the distribution kernel defined in (28). The corre-
sponding time–frequency distribution is expressed in terms of the τ -Wigner transform
as

Q(u, v)(x, η) = (Wτ (u, v) ∗ ι1F2Pτ δ
Q)(x, η), (30)

where the operator Pτ is defined by Pτa(x, y) = a(x + τ y, x + (τ − 1)y) with τ ∈ R

and a ∈ S (R2n).

Proof The evaluation at the origin defines the operator Q0 by

Q(u, v)(0, 0) = 〈Q0v, u〉S ′,S

= 〈Q0v, u〉S ′,S

= 〈δQ, u ⊗ v〉S ′,S

= 〈δQ, u ⊗ v〉S ′,S .

By time–frequency covariance

Q(u, v)(x, η) =
〈

δQ, (T−x M−ηu) ⊗ T−x M−ηv
〉

S ′,S

=
〈

δQ, ρ(x, η)−1u ⊗ ρ(x, η)−1v
〉

S ′,S
,

where the phase introduced by the Schrödinger representation is cancelled by the
complex conjugation.

The τ -Wigner transform is given by

Wτ (u, v) = F2Pτ (u ⊗ v).

We express the evaluation of Q at the origin in terms of the τ -Wigner transform

Q(u, v)(0, 0) = 〈δQ, P−1
τ F−1

2 Wτ (u, v)〉S ′,S

= 〈F−1
2 Pτ δQ,Wτ (u, v)〉S ′,S ,
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where P−1
τ a(x, y) = a((1 − τ)x + τ y, x − y). For any point in the time–frequency

plane we find by covariance of the τ -Wigner transform

Q(u, v)(x, η) = 〈F−1
2 Pτ δQ, T(−x,−η)Wτ (u, v)〉S ′,S

= (Wτ (u, v) ∗ ιF−1
2 Pτ δQ)(x, η)

= (Wτ (u, v) ∗ ι1F2Pτ δQ)(x, η).

��
When defining a time–frequency transform in terms of the τ -Wigner transform, we

use the notation

Q(u, v) = ψτ
Q ∗ Wτ (u, v),

whereψτ
Q is the τ -Wigner time–frequency kernel. The corresponding ambiguity kernel

and time-delay kernel are denoted by φτ
Q and ϕτ

Q , respectively.

Proposition 1 The kernel of the evaluation at origin Q0 is related to the τ -Wigner
time-delay kernel ϕτ

Q of the transform Q by

δQ = P−1
τ ι1ϕ

τ
Q . (31)

Proof The transform Q is defined with the τ -Wigner time-delay kernel as

Q(u, v)(x, η) = F2(ϕ
τ
Q ∗1 Pτ (u ⊗ v))

and at the time–frequency origin we find

Q(u, v)(0, 0) =F2(Pτ (u ⊗ v) ∗1 ϕτ
Q)(0, 0)

= 〈ι1ϕτ
Q, Pτ (u ⊗ v)〉S ′,S

= 〈P−1
τ ι1ϕ

τ
Q, u ⊗ v〉S ′,S ,

which proves the claim. ��
We define next the the Q-quantization related to a time–frequency transform Q.

Definition 15 Let (u, v) �→ Q(u, v) be a Cohen class time–frequency transform. The
Q-quantization is the map a �→ OpQ a taking temperate distributions a ∈ S ′(R2n)

to linear operators fromS (Rn) toS ′(Rn) defined by

〈a, Q(u, v)〉S ′(R2n),S (R2n) = 〈(OpQ a)v, u〉S ′(Rn),S (Rn). (32)

The distribution a is called a symbol of the operator OpQ a.



Journal of Fourier Analysis and Applications (2022) 28 :6 Page 15 of 38 6

As an example of quantization we have previously set Q0 := OpQ(δ(0,0)). If the
equality 32 makes sense in L2 we write it using the usual inner product as

〈Q(u, v), a〉 = 〈u, (OpQ a)v〉. (33)

Example 1 (Weyl–Wigner quantization) Choosing the time–frequency transform in
the above formula as the Wigner transform we obtain the Weyl–Wigner quantization.
The operator corresponding to the symbol a ∈ S (R2n) is given by

(OpW a)u(x) =
∫∫

R2n
ei2π(x−y)·ηa([x + y]/2, η)u(y) dy dη, (34)

where u ∈ S (Rn).

Symbols in other quantizations have unique representations in terms of Weyl–
Wigner symbols.

Lemma 5 Given a Q-symbol a ∈ S (R2n) and denoting A = OpQ a : S (Rn) →
S ′(Rn), there is a unique Weyl-Wigner symbol aW such that A = OpW aW . This
symbol is given by

aW = F−1(φQFa). (35)

Proof Writing out the quantization formula for any u, v ∈ S (Rn), we find

〈Av, u〉S ′,S = 〈Q(u, v), a〉
= 〈FQ(u, v), Fa〉
= 〈φQFW (u, v), Fa〉
= 〈FW (u, v), φQFa〉
= 〈W (u, v), F−1(φQFa)〉,

so the Weyl-Wigner symbol of the operator A is aW = F−1(φQFa). ��
We note that if the symbol satisfies supp Fa ⊂ {(y, ξ) : φQ(y, ξ) = 0}, then

OpQ a = 0. The quantization map may thus be non-injective.
So far we have seen that a time–frequency transform can be characterized by the

sesquilinear form at the time–frequency origin and the time–frequency kernel ψQ . In
addition to these, it suffices to give the quantization of symbols inS (R2n) to specify
the corresponding time–frequency transform.

Lemma 6 If a quantization OpQ is the quantization related to some time–frequency
transform Q, this transform is uniquely specified by considering the quantization of
symbols inS (R2n).

This lemma is just a consequence of the continuity of the quantization map and
the Lemma 2. We recover the operator Q0 of the transform given by the distribution
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symbol δ(0,0). Furthermore, the distribution kernel δQ of the operator Q0 has the
representation in terms of the Wigner time-delay kernel as

δQ = P−1
1/2ι1ϕQ .

5 Characterization of the Properties of Cohen-Class Time–Frequency
Transforms

We show next how properties of a time–frequency transform are reflected in the
associated kernel and quantization. We study also other ways of characterizing these
properties. The conditions are usually formulatedwith respect to some of the following
objects.

• The transform Q itself.
• The operator Q0.
• Some of the kernels e.g. φQ or ϕQ .
• The quantization OpQ .

There are extensive treatments of the various desirable properties of time–frequency
transforms. Many such properties with the corresponding conditions for kernels have
been studied first in relation to quantum physics in [19] and [16]. Further works in
time–frequency analysis include [1,5,9,14]. An overview of quadratic time–frequency
distributions with an extensive list of references can be found in [12].

We study the properties elaborating on the tables found in [1, pp. 146–147] and [9,
p. 131].

5.1 Covariance Properties

The term covariant is commonly used when a time–frequency transform behaves
regularly under a symplectic coordinate transform of the time–frequency plane. These
are also the center-fixing automorphisms of the Heisenberg group, see [11, Sect. 9.4].

Definition 16 A time–frequency transform Q is covariant under a symplectic coordi-
nate transform A of the time–frequency plane if

Q(u, v)(A−1(x, η)) = Q(μ(A)u, μ(A)v)(x, η) (36)

holds for any u, v ∈ S (Rn), where μ(A) : L2(Rn) → L2(Rn) is a symplectic
operator given by the metaplectic representation μ such that  ◦ μ(A) = A with the
projection  as in (16).

The symplectic operator μ(A) is defined up to a complex phase factor by applying
Schur’s lemma to the Schrödinger representation ρ. It is the unitary operator satisfying

ρ(A(x, η)) = μ(A)ρ(x, η)μ(A)−1, (37)
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see [11, Sect. 9.4]. By Schur’s lemma, the metaplectic representationA �→ μ(A) also
satisfies

μ(AB) = cμ(A)μ(B), (38)

where |c| = 1 is a complex phase factor.
Definition 16 ismotivated by the full symplectic covariance of theWigner transform

as expressed in the following lemma:

Lemma 7 ([10], p. 180) The Wigner transform satisfies

W (u, v)(A−1(x, η)) = W (μ(A)u, μ(A)v)(x, η) (39)

for any u, v ∈ S ′(Rn) and for any A ∈ Sp(2n).

Wewill denote the symplectic transform acting on functions in the time–frequency
or ambiguity plane also by TAa(x, η) = a(A(x, η)).

Theorem 3 Letμ(A)beametaplectic operator such that◦μ(A) = A. The following
conditions are equivalent for a time–frequency transform Q:

1. Time–frequency transform Q is covariant under A.
2. The evaluation at origin Q0 commutes with μ(A).
3. The ambiguity kernel φQ satisfies φQ = TA−1φQ.
4. The quantization OpQ satisfies OpQ(TAa) = μ(A)−1 ◦ OpQ a ◦ μ(A).

Proof (a) ⇔ (b): We have on one hand

Q(u, v)(A−1(x, η)) = 〈ρ[A−1(x, η)]−1u, Q0ρ[A−1(x, η)]−1v〉
= 〈μ(A)−1ρ(x, η)−1μ(A)u, Q0μ(A)−1ρ(x, η)−1μ(A)v〉
= 〈ρ(x, η)−1μ(A)u, μ(A)Q0μ(A)−1ρ(x, η)−1μ(A)v〉 (40)

and on the other hand

Q(μ(A)u, μ(A)v)(x, η) = 〈ρ(x, η)−1μ(A)u, Q0ρ(x, η)−1μ(A)v〉 (41)

for all u, v ∈ S (Rn). Assuming covariance under A, we combine (40) and (41) into
the equality

〈ρ(x, η)−1μ(A)u, μ(A)Q0μ(A)−1ρ(x, η)−1μ(A)v〉
= 〈ρ(x, η)−1μ(A)u, Q0ρ(x, η)−1μ(A)v〉

which shows

μ(A)Q0μ(A)−1 = Q0
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since μ(A) and ρ(x, η) are isomorphisms mappingS (Rn) toS (Rn). Assuming (b)
also implies (a) by the previous calculations.

(a) ⇔ (c): Taking the symplectic Fourier transform of TA−1Q we find

FTA−1Q(u, v)(y, ξ) = TA−1FQ(u, v)(y, ξ)

= TA−1(φQχ(u, v))(y, ξ)

= TA−1φQ(y, ξ)TA−1χ(u, v))(y, ξ)

= TA−1φQ(y, ξ)〈u, ρ ◦ A−1(y, ξ)v〉
= TA−1φQ(y, ξ)〈u, μ(A)−1ρ(y, ξ)μ(A)v〉
= TA−1φQ(y, ξ)〈μ(A)u, ρ(y, ξ)μ(A)v〉
= TA−1φQ(y, ξ)χ(μ(A)u, μ(A)v)(y, ξ).

In addition, we have

FQ(μ(A)u, μ(A)v)(y, ξ) = φQ(y, ξ)χ(μ(A)u, μ(A)v)(y, ξ)

so by the Fourier inversion the condition φQ(y, ξ) = TA−1φQ(y, ξ) is equivalent to
covariance under A.

(a) ⇒ (d): Assuming the covariance we have on one hand

〈Q(μ(A)u, μ(A)v), a〉 = 〈μ(A)u, (OpQ a)μ(A)v〉
= 〈u, μ(A)−1(OpQ a)μ(A)v〉

and on the other hand

〈Q(μ(A)u, μ(A)v), a〉 = 〈TA−1Q(u, v), a〉
= 〈Q(u, v), TAa〉
= 〈u,OpQ(TAa)v〉.

Hence, if the transform is A-covariant we have

〈u, μ(A)−1(OpQ a)μ(A)v〉 = 〈u,OpQ(TAa)v〉

for all u, v ∈ S (Rn) which implies

OpQ(TAa) = μ(A)−1 ◦ OpQ a ◦ μ(A).

(d) ⇒ (a): Assuming the quantization condition we find from the previous calcu-
lations

〈Q(μ(A)u, μ(A)v), a〉 = 〈TA−1Q(u, v), a〉
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for any u, v ∈ S (Rn) and a ∈ S (R2n). This implies the equality

Q(μ(A)u, μ(A)v) = TA−1Q(u, v).

��
The full symplectic covariance is restrictive enough to single out the Weyl–Wigner

quantization, which is proven, for instance, in Chap. 30 of [26]. This uniqueness result
has also been further studied in [8]. To admit other transforms one has to consider
covariance under certain subgroups of the symplectic group. The usual particular
cases of covariance in the space R

n are given by rotations scalings and shears.

Example 2 Let S be a symmetric matrix in R
n×n . A time–frequency transform is

covariant under time–frequency shears A(x, η) = (x, η + Sx) given by the chirp
transforms u(x) �→ eiπ〈Sx,x〉u(x) if its ambiguity kernel satisfies

φQ(y, ξ) = φQ(y, ξ − Sy)

for all (y, ξ) ∈ R
2n .

Next we consider the covariance under complex conjugation of the signals defined
in [14, Eq. (2.39)].

Definition 17 Time–frequency transform Q is covariant under complex conjugation
if Q(u, v)(x, η) = Q(u, v)(x,−η).

Theorem 4 The following conditions are equivalent for a time–frequency transform
Q:

1. Time–frequency transform Q is covariant under complex conjugation.
2. The evaluation at origin Q0 commutes with complex conjugation.
3. The ambiguity kernel φQ satisfies φQ(y, ξ) = φQ(y,−ξ).
4. The quantization OpQ satisfies OpQ(ι2(a))u = OpQ(a)(u).

Proof (a)⇔ (c): We find the equivalence of covariance and the kernel condition using
the symplectic Fourier transform by

FQ(u, v)(y, ξ) = φQ(y, ξ)χ(u, v)(y, ξ)

= φQ(y, ξ)χ(u, v)(y,−ξ)

and

F ι2Q(u, v)(y, ξ) = ι2FQ(u, v)(y, ξ)

= φQ(y,−ξ)χ(u, v)(y,−ξ).

(b) ⇔ (c): The Schrödinger representation satisfies

ρ(y, ξ)u(x) = e−iπ y·ξ+i2πx ·ξu(x − y)

= ρ(y,−ξ)u(x) (42)
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and the evaluation at origin may be expressed by

Q(u, v)(0, 0) =
∫∫

R2n
FQ(u, v)(y, ξ) dy dξ

=
∫∫

R2n
φQ(y, ξ)χ(u, v)(y, ξ) dy dξ. (43)

Applying (21), (42) and (43), we find that the condition for the evaluation Q0 and the
kernel condition are equivalent by

Q0u(x) =
∫∫

R2n
φQ(y, ξ)ρ(y, ξ)u(x) dy dξ

=
∫∫

R2n
φQ(y, ξ)ρ(y,−ξ)u(x) dy dξ

=
∫∫

R2n
φQ(y,−ξ)ρ(y, ξ)u(x) dy dξ

and

Q0u(x) =
∫∫

R2n
φQ(y, ξ)ρ(y, ξ)u(x) dy dξ .

(a) ⇔ (d): The quantization condition is equivalent to the covariance by

〈u,OpQ(ι2(a))v〉 = 〈Q(u, v), ι2(a)〉
= 〈ι2Q(u, v), a〉
= 〈ι2Q(u, v), a〉

and

〈u,OpQ(a)(v)〉 = 〈u,OpQ(a)(v)〉
= 〈Q(u, v), a〉.

��
Example 3 (Particular examples of kernel conditions) The kernel condition for the
time–frequency kernel ψQ is similar to the condition for the ambiguity kernel as can
be seen by

FψQ = φQ = TAφQ = TAFψQ = FTAψQ .

The Rihaczek ambiguity kernel φ0
Q (τ -Wigner with τ = 0) is given in terms of the

(Wigner) ambiguity kernel φQ by φ0
Q(y, ξ) = eiπ y·ξφQ(y, ξ). As an example, the
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kernel condition for the covariance under complex conjugation becomes

φ0
Q(y, ξ) = eiπ y·ξφQ(y, ξ)

= eiπ y·ξφQ(y,−ξ)

= eiπ y·(−ξ)φQ(y,−ξ)

= φ0
Q(y,−ξ).

5.2 Energy Distribution Properties

An ideal time–frequency distribution would measure the energy content of a signal at
a given time and frequency. However, such an ideal density cannot exist. For instance,
positivity and correct marginal densities of a time–frequency distribution are mutually
exclusive as was first proven in [25]. In addition to this, the Heisenberg uncertainty
principle shows that a single point in the time–frequency plane cannot be interpreted
as a single frequency component located precisely at the given time.

It is possible to try to mimic an energy distribution by requiring the time–frequency
distribution to satisfy different properties characteristic to an energy distribution. We
will discuss several of these properties starting with the requirement of the distribution
being real-valued.

Symmetry:

Definition 18 A time–frequency transform Q is symmetric if it satisfies

Q(u, v) = Q(v, u)

for any u, v ∈ S (Rn).

If a time–frequency transform Q is symmetric, then the time–frequency distribu-
tions Q[u] are real-valued for any u ∈ S (Rn).

Theorem 5 The following conditions are equivalent for a time–frequency transform
Q.

1. Time–frequency transform Q is symmetric.
2. The evaluation at origin Q0 is a symmetric operator.
3. The ambiguity kernel φQ satisfies φQ(y, ξ) = φQ(−y,−ξ).
4. The quantization OpQ satisfies OpQ(a) = (OpQ a)∗.

Proof (a) ⇒ (b): Assume first that the transform is symmetric. Then the operator Q0
is symmetric by

〈u, Q0v〉 = Q(u, v)(0, 0) = Q(v, u)(0, 0) = 〈v, Q0u〉 = 〈Q0u, v〉

which holds for all u, v ∈ S (Rn).
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(b) ⇒ (a): Conversely, we have by shift-covariance

Q(u, v)(x, η) = 〈T−x M−ηu, Q0T−x M−ηv〉
= 〈Q0T−x M−ηu, T−x M−ηv〉
= 〈T−x M−ηv, Q0T−x M−ηu〉
= Q(v, u)(x, η)

for all u, v ∈ S (Rn).
(a) ⇔ (c): Equivalence of the kernel condition and the symmetry of the transform

follows by taking symplectic Fourier transforms. The ambiguity kernel is defined by

FQ(u, v)(y, ξ) = φQ(y, ξ)χ(u, v)(y, ξ).

Taking the symplectic Fourier transform of the function Q(v, u) we find

F(Q(v, u))(y, ξ) = φQ(−y,−ξ)χ(v, u)(−y,−ξ)

= φQ(−y,−ξ)χ(u, v)(y, ξ),

where the last equality follows by the basic properties of the ambiguity transform.
Hence, if the transform is symmetric we have the kernel condition

φQ(y, ξ) = φQ(−y,−ξ)

and also the converse by Fourier inversion.
(a) ⇒ (d): Assuming symmetry of the transform we find

〈u, (OpQ a)v〉 = 〈Q(u, v), a〉
= 〈Q(v, u), a〉
= 〈Q(v, u), a〉
= 〈v, (OpQ a)u〉
= 〈(OpQ a)u, v〉

which shows that the quantization is symmetric.
(d) ⇒ (b): If the quantization is symmetric we have for any real-valued symbol

a ∈ S (R2n) the equality

〈u, (OpQ a)v〉 = 〈(OpQ a)u, v〉.
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In particular, taking the sequence of real-valued symbols converging to the Dirac delta
distribution δ(0,0) we find

〈u, Q0v〉 = lim
α

〈Q(u, v), aα〉
= lim

α
〈u, (OpQ aα)v〉

= lim
α

〈v, (OpQ aα)u〉
= lim

α
〈Q(v, u), aα〉

= 〈v, Q0u〉
= 〈Q0u, v〉,

for any u, v ∈ S (Rn) which proves the claim. ��
Remark 3 The Rihaczek ambiguity kernel φ0

Q yields a symmetric transform Q if it
satisfies

φ0
Q(y, ξ) = ei2π y·ξφ0

Q(−y,−ξ). (44)

This equation has the expression in terms of the Rihaczek time-delay kernel ϕ0
Q as

ϕ0
Q(x, y) =

∫

Rn
ei2πx ·ξφ0

Q(y, ξ) dξ

=
∫

Rn
ei2π(y+x)·ξφ0

Q(−y,−ξ) dξ

= ϕ0
Q(x + y,−y).

Positivity: As a function of time and frequency, the transform should be positive if
it represents an energy density of a given signal. Hence, we say that a time–frequency
transform Q is positive if Q[u](x, η) ≥ 0 for all u ∈ S (Rn) and (x, η) ∈ R

2n . There
are several articles and results about positivity and many references can be found in
the survey [14].

Aswas the case inTheorem5, the pointwise values of aCohen-class time–frequency
distribution Q are related to the numerical range of the operator Q0. In particular, if
Q0 : L2(Rn) → L2(Rn) we may write

Q[u](0, 0) = 〈u, Q0u〉.

An example of a positive time–frequency transform is obtained by setting Q0 = P
for some projection in L2(Rn) as is seen by

Q[u](0, 0) = 〈u, Pu〉 = 〈u, P2u〉 = 〈Pu, Pu〉 = ‖Pu‖2 ≥ 0.

Any spectrogram is such a transform since for thew-windowed spectrogram the oper-
ator Q0 is the projection to the one-dimensional subspace spanned by w. Another
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example is given by the projection onto odd functions defined by Pu(x) = [u(x) −
u(−x)]/2. This results in

Q[u](x, η) = ‖u‖21(x, η)

2
− W [u](x, η)

4
.

Related to positive time–frequency transforms we define the positivity of a quanti-
zation.

Definition 19 The quantizationOpQ is said to be positive if every non-negative symbol
a(x, η) yields a positive operator OpQ a.

Referring to this definition we formulate the simple observations about positivity into
a theorem.

Theorem 6 The following conditions are equivalent for a time–frequency transform
Q:

1. Time–frequency transform Q is positive.
2. The evaluation at origin Q0 is a positive operator.
3. The quantization OpQ is positive.

Proof (a) ⇔ (b): The equivalence of the first conditions is immediate by the shift-
covariance of the transform.

(a) ⇒ (c): By the definition of OpQ we obtain

〈u, (OpQ a)u〉 = 〈Q[u], a〉 ≥ 0

for all test functions u.
(c) ⇒ (b): The delta distribution δ(0,0) can be approximated, for instance, by Gaus-

sian functions. Let limα aα = δ(0,0). Then

〈u, Q0u〉 = 〈Q[u], δ(0,0)〉 = lim
α

〈Q[u], aα〉 = lim
α

〈u,OpQ aαu〉 ≥ 0

by the positivity of the quantization. ��
Concerning the form of the ambiguity kernel, we find a simple characterization for
the case of trace-class Q0. This proposition is inspired by [9, p. 118].

Proposition 2 Let Q be a positive time–frequency transform on L2(Rn). If the corre-
sponding operator Q0 is a trace class operator, then the ambiguity kernel φQ(y, ξ)

is a weighted sum of ambiguity transforms. Hence, the transform itself is a weighted
sum of spectrograms.

Proof If Q0 is a trace class operator there is a total orthonormal set { fk} such that the
spectral decomposition formula

Q0u =
∑

k≥0

qk〈u, fk〉 fk
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holds with (qk)∞k=0 ∈ �1. The positive square root A of Q0 given by ak = √
qk is then

a Hilbert-Schmidt operator and

Q0u(x) = A∗Au(x) =
∑

k≥0

qk〈u, fk〉 fk =
∫

Rn
K (x, y)u(y) dy,

where K (x, y) ∈ L2(R2n) and

K (x, y) =
∑

k≥0

qk fk(x) fk(y).

The kernel of the operator Q0 can also be given by the time-delay kernel as

K (x, y) = P−1
1/2ι1ϕQ(x, y).

Taking the coordinate transform P1/2 on both sides we find

ϕQ(−x, y) = P1/2K (x, y) =
∑

k≥0

qk fk(x + y/2) fk(x − y/2) (45)

and by the inverse Fourier transform in the x-variable we have

φQ(y, ξ) =
∑

k≥0

qk

∫

Rn
e−i2πx ·ξ fk(x + y/2) fk(x − y/2) dx

=
∑

k≥0

qkχ [ fk](y, ξ),

which completes the proof. ��
In addition to real-valuedness and positivity, pointwise boundedness of a time–

frequency transform can be directly seen from Q0. If the operator Q0 is bounded in
L2(Rn), then the time–frequency transform Q satisfies the bound

‖Q(u, v)‖L∞(R2n) ≤ ‖Q0‖‖u‖L2(Rn)‖v‖L2(Rn)

and is thus bounded for finite-energy signals.

Distribution integrates to the total energy: The integral of an energy distribution
over the whole space yields the total energy. This should also be satisfied by an ideal
time–frequency distribution. We say that a time–frequency distribution is normalized
if it satisfies

∫∫

R2n
Q[u](x, η) dx dη = ‖u‖2 (46)

for any u ∈ L2(Rn). This is connected to the calculation of traces of operators under
the Q-quantization.



6 Page 26 of 38 Journal of Fourier Analysis and Applications (2022) 28 :6

The distribution kernel of the operator A = OpWτ
a given by the τ -Wigner symbol

a is [21, p. 202]

KA(x, y) =
∫

Rn
ei2π(x−y)·ηa((1 − τ)x + τ y, η) dη.

If the operator is trace-class its trace is thus given by

Tr(A) =
∫

Rn
KA(x, x) dx =

∫∫

R2n
a(x, η) dx dη.

We say that a quantization Q has correct traces if it satisfies the previous formula for
every symbol a ∈ S (R2n).

Theorem 7 The following conditions are equivalent for a time–frequency transform
Q:

1. Time–frequency transform Q is normalized.
2. The ambiguity kernel φQ satisfies φQ(0, 0) = 1.
3. The quantization OpQ has correct traces.

Proof (a) ⇔ (b): The equivalence follows by noting that the integral is just the evalu-
ation of the symplectic Fourier transform at the origin. Hence, we have

∫∫

R2n
Q(u, v) dη dx = FQ(u, v)(0, 0) = φQ(0, 0)χ(u, v)(0, 0) = φQ(0, 0)〈u, v〉.

(b) ⇔ (c): We find using the formula for the Weyl-Wigner symbol

Tr(OpW aW ) =
∫∫

R2n
aW (x, η) dη dx

=
∫∫

R2n
F−1(φQFa)(x, η) dη dx

= φQ(0, 0)Fa(0, 0)

= φQ(0, 0)
∫∫

R2n
a(x, η) dη dx

for any a ∈ S (R2n). Hence, if the kernel condition is satisfiedwehave (c). Conversely,
assume that the trace condition holds. Then

Tr(A) =
∫∫

R2n
a(x, η) dη dx = φQ(0, 0)

∫∫

R2n
a(x, η) dη dx = φQ(0, 0)Tr(A)

for any operator A given by Q-quantization by the Schwartz symbol a. Hence, we
have φQ(0, 0) = 1. ��
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Remark 4 If the evaluation at origin operator Q0 is trace class, then we may write
using the same notation as in (45),

Tr(Q0) =
∑

k≥0

qk =
∫

Rn
ϕQ(−x, 0) dx = φQ(0, 0).

Thus, such transform Q is normalized if and only if Tr(Q0) = 1.

Marginal distributions: Integrating a time–frequency energy distribution either over
time or frequency should yield the corresponding marginal distribution in frequency
or time, respectively.

Definition 20 A time–frequency transform has the correct frequency marginal distri-
bution if it satisfies

∫

Rn
Q[u](x, η) dx = |̂u(η)|2 (47)

for all u ∈ S (Rn), and the correct time marginal distribution if

∫

Rn
Q[u](x, η) dη = |u(x)|2 (48)

We characterize next the time–frequency distributions which have the correct
marginal distributions in time and frequency.

Theorem 8 The following conditions are equivalent for a time–frequency transform
Q:

1. Time–frequency transform Q has the correct frequency marginal distribution.
2. The ambiguity kernel φQ satisfies φQ(y, 0) = 1.
3. Symbols a of the form a(x, η) = ̂f (η), where f ∈ S (Rn), map to convolution

operators

(OpQ a)v = f ∗ v.

Proof (b) ⇒ (a): The ambiguity kernel condition gives

∫

Rn
Q(u, v)(x, η) dx =

∫

Rn
e−i2π y·ηφQ(y, 0)χ(u, v)(y, 0) dy

=
∫

Rn
e−i2π y·ηχ(u, v)(y, 0) dy

= û(η)̂v(η)

for any Schwartz test functions u and v.
(a) ⇒ (b): Conversely, by the previous calculation we find

∫

Rn
e−i2π y·ηφQ(y, 0)χ [u](y, 0) dy =

∫

Rn
e−i2π y·ηχ [u](y, 0) dy



6 Page 28 of 38 Journal of Fourier Analysis and Applications (2022) 28 :6

and by the Fourier inversion

(1 − φQ(y, 0))χ [u](y, 0) = 0

for every y ∈ R
n and every Schwartz test function u which implies the claim.

(b) ⇒ (c): Assuming the ambiguity kernel condition we find for the quantization

〈Q(u, v), 1 ⊗ ̂f 〉 = 〈φQχ(u, v), f ⊗ δ0〉
=

∫

Rn
φQ(y, 0) f (y)

∫

Rn
u(x + y/2)v(x − y/2) dx dy

=
∫

Rn
φQ(x − y, 0) f (x − y)

∫

Rn
u(x)v(y) dx dy

=
∫

Rn
u(x)

∫

Rn
v(y) φQ(x − y, 0)

︸ ︷︷ ︸

=1

f (x − y) dy dx

= 〈u, f ∗ v〉.

(c) ⇒ (b): Conversely, if frequency-dependent symbols map to convolution oper-
ators the previous calculation leads to

∫

Rn
u(x)

∫

Rn
φQ(x − y, 0) f (x − y)v(y) dy dx

= 〈Q(u, v), 1 ⊗ ̂f 〉
= 〈u, f ∗ v〉
=

∫

Rn
u(x)

∫

Rn
f (x − y)v(y) dy dx

for any u, v ∈ S (Rn) and convolution kernel f ∈ S (Rn), which implies the claim.
��

The characterization of correct time marginal distribution is similar.

Theorem 9 The following conditions are equivalent for a time–frequency transform
Q:

1. Time–frequency transform Q has the correct time marginal distribution.
2. The ambiguity kernel φQ satisfies φQ(0, ξ) = 1.
3. Symbols a of the form a(x, η) = g(x), where g ∈ S (Rn), map to multiplication

operators

(OpQ a)v = gv.
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Proof (b) ⇔ (a): We assume first the ambiguity kernel condition and find

∫

Rn
Q(u, v)(x, η) dη =

∫

Rn
ei2πx ·ξφQ(0, ξ)χ(u, v)(0, ξ) dξ

=
∫

Rn
ei2πx ·ξχ(u, v)(0, ξ) dξ

= u(x)v(x).

The converse follows by a similar argument as in the case of the frequency marginal
distribution.

(b) ⇒ (c): The quantization property follows from the ambiguity kernel condition
by

〈Q(u, v), g ⊗ 1〉 = 〈φQ · χ(u, v), δ0 ⊗ ĝ〉
=

∫

Rn
φQ(0, ξ)
︸ ︷︷ ︸

=1

ĝ(ξ)

∫

Rn
e−i2πx ·ξu(x)v(x) dx dξ

=
∫

Rn
u(x)g(x)v(x) dx

= 〈u, gv〉.

(c) ⇒ (b): Conversely we find

∫

Rn
u(x)g(x)v(x) dx = 〈u, gv〉

= 〈Q(u, v), g ⊗ 1〉
=

∫

Rn
u(x)

∫

Rn
e−i2πx ·ξφQ(0, ξ)ĝ(ξ) dξ v(x) dx

for any u, v ∈ S (Rn) and g ∈ S ′(Rn). Hence,

g(x) =
∫

Rn
ei2πx ·ξφQ(0, ξ)ĝ(ξ) dξ

and by the Fourier inversion φQ(0, ξ) = 1 for any ξ ∈ R
n . ��

Remark 5 The correct marginal distributions can be characterized by the time-delay
kernel ϕQ . For correct frequency marginal distribution it has to satisfy

∫

Rn
ϕQ(x, y) dx = 1

for any y ∈ R
n . The time-delay condition for the correct time marginal distribution is

ϕQ(x, 0) = δ0(x).
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Highermoments: Someof themoments have been used in applications previously. In
particular, calculations for the secondmoments can be found in [7] and [18]. These are
usually related to modeling the signal using the instantaneous frequency and instanta-
neous amplitude, see [1, Chap. 2]. For a time–frequency transform in R the frequency
moments are

∫

R

ηk Q(u, v)(x, η) dη =
∫

R

ηk F−1(φQχ(u, v))(x, η) dη

=
∫

R

e−i2πx ·ξ 1

(i2π)k
∂ky

[

φQ(y, ξ)χ(u, v)(y, ξ)
]

y=0 dξ

for any u, v ∈ S (R). The transform has thus the same frequency moments as the
Wigner transform up to kth order if

φQ(0, ξ) = 1 and (∂ lyφQ)(0, ξ) = 0

for all 1 ≤ l ≤ k and ξ ∈ R.
Given a single-component signal u(x) = a(x)eiθ(x), the first moment of theWigner

transform is

∫

R

ηW [u](x, η) dη = 1

2π
θ ′(x)|a(x)|2

which corresponds to the mean frequency at x as can be seen by the remark in [9, p.
30]. We may thus formulate that the transform Q conserves instantaneous frequency
if

∫

R

ηQ(u, v)(x, η) dη =
∫

R

ηW (u, v)(x, η) dη,

which leads to the conditions

φQ(0, ξ) = 1 and (∂yφQ)(0, ξ) = 0

for all ξ ∈ R. The conditions are similar for the time moment.
The second moments would ideally be positive and describe the spread of the

signal in time or frequency. The higher moments of the Wigner transform do not
satisfy this requirement so different definitions for the correct second moments have
been proposed. For a discussion about these we refer to [18] and the references therein.

5.3 Support Properties

A time–frequency transform should be able to detect the times and frequencies where
the signal has energy. TheWigner transform conserves supports in the following sense
[10, Proposition (1.97)].



Journal of Fourier Analysis and Applications (2022) 28 :6 Page 31 of 38 6

Proposition 3 Let π1(x, η) = x and π2(x, η) = η be the projections to the axes in the
time–frequency plane. Let H(E) denote the closed convex hull of E ⊂ R

n. Then

π1(suppW [u]) ⊂ H(supp u),

π2(suppW [u]) ⊂ H(supp û).

Since in the one-dimensional case the convex hull of the support is the smallest
closed interval containing it, we call H(supp u) the lifetime of the signal. A time–
frequency transform is said to conserve the lifetime of a signal if it satisfies

π1(supp Q[u]) ⊂ H(supp u).

The transforms satisfying this property are characterized by their time-delay kernels.

Lemma 8 A time–frequency transform Q conserves the lifetime of the signal if and
only if its time-delay kernel ϕQ satisfies

suppϕQ ⊂ {(x, y) ∈ R
2n : x = (τ − 1/2)y, τ ∈ [0, 1]}.

Proof The distribution Q[u] can be given by its time-delay kernel as

Q[u](x, η) =
∫

Rn
e−i2π y·η

∫

Rn
ϕQ(t − x, y)u(t + y/2)u(t − y/2) dt dy.

Denoting U = H(supp u) we find that the lifetime of the function t �→ u(t +
y/2)u(t − y/2) is the set Ky = (U − y/2) ∩ (U + y/2). Let Ly be the support
of the distribution t �→ ϕQ(−t, y). The support of the function

x �→
∫

Rn
ϕQ(t − x, y)u(t + y/2)u(t − y/2) dt (49)

is then given by Ky + Ly . The condition for the conservation of the lifetime of u
becomes now

Ky + Ly ⊂ U

for all y ∈ R
n . For this inclusion to hold, the map (49) may increase the support only

in the direction of y by no more than y/2. Otherwise there are signals for any y for
which the lifetime increases. This leads to

suppϕQ ⊂ {(x, y) ∈ R
2n : x = τ y, τ ∈ [−1/2, 1/2]}

or using the convention compatible with the τ -Wigner transform

suppϕQ ⊂ {(x, y) ∈ R
2n : x = (τ − 1/2)y, τ ∈ [0, 1]},

completing the proof. ��
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Example 4 Let f be a finite Borel measure on R considered as a distribution and
g ∈ OM (Rn). Define a family of time–frequency transforms by Q(u, v) = F2r(u, v),
where, abusing the notation of the distribution f slightly, we set formally

r(u, v)(x, y) = g(y)
∫

R

f (τ )u(x + τ y)v(x + (τ − 1)y) dτ.

Such transforms conserve the lifetime of the signal if and only if supp f ⊂ [0, 1]. The
time-delay kernel is ϕQ(x, y) = g(y)δ(τ−1/2)y(x) f and the distribution Q[u] may be
written for any u ∈ S (Rn) as

Q[u](x, η) =
∫

Rn
e−i2π y·η

∫

R

f (τ )g(y)u(x + τ y)u(x + (τ − 1)y) dτ dy

=
∫

R

f (τ )

∫

Rn
e−i2π y·ηg(y)u(x + τ y)u(x + (τ − 1)y) dy dτ

= f (ĝ ∗2 Wτ [u]).

Setting g = 1 and f = δ1/2 one obtains the Wigner distribution. Other examples are
presented in Sect. 6.

Remark 6 The strict conservation of supports is more restrictive and only frequency-
averaged sums of W0 and W1 satisfy it. This result can be found in [9, p.125].

5.4 Unitarity

Definition 21 The time–frequency transform Q is unitary or satisfies theMoyal prop-
erty if

〈Q(u, v), Q( f , g)〉 = 〈u, f 〉〈g, v〉

for all u, v, f , g ∈ L2(Rn).

Interpreting this property in terms of the Q-quantization with the assumption ‖u‖ =
‖v‖ = 1 we have

〈Q[u], Q[v]〉 = 〈u, v〉〈v, u〉 = 〈u, 〈u, v〉v〉 = 〈u, Pvu〉.

Hence, the symbol Q[v] in the Q-quantization yields the projection operator Pv . An
interesting example is given by the identity operator in a Hilbert space with a total
orthonormal set hα . The identity operator is given by the sum

I =
∑

α

Phα
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so we find

〈u, Iv〉 =
∑

α

〈u, Phα v〉 =
∑

α

〈Q(u, v), Q[hα]〉 = 〈Q(u, v), a〉,

with the Q-symbol of the identity as a = ∑

α Q[vα]. If Q is normalized then the
identity operator is given by the constant symbol 1, so we conclude

∑

α

Q[vα] = 1.

We call the quantization OpQ unitary if it satisfies

〈a1, a2〉L2(R2n) = 〈OpQ a1,OpQ a2〉HS := Tr[OpQ a1 ◦ (OpQ a2)
∗]

for all a1, a2 ∈ L2(R2n) and where the subscript HS refers to the Hilbert–Schmidt
inner product of operators. If the distribution associated with a unitary quantization is
interpreted as a probability distribution, we find the expectation 〈a〉Q of a phase space
function a as

〈a〉Q[u] = 〈Q[u], a〉 = Tr[Pu(OpQ a)∗],

which corresponds to the usual formula for the expectation of an hermitian observable
A in the state u

〈A〉u = Tr(Pu A).

Theorem 10 (Moyal Property) The following conditions are equivalent for a time–
frequency transform Q:

1. Time–frequency transform Q is unitary.
2. The ambiguity kernel φQ satisfies |φQ(ξ, y)| = 1 for all ξ, y.
3. The quantization OpQ is unitary.

Proof (b) ⇒ (a): Assuming the kernel condition we calculate

〈Q(u, v), Q( f , g)〉 = 〈FQ(u, v), FQ( f , g)〉
= 〈φQχ(u, v), φQχ( f , g)〉
= 〈|φQ |2χ(u, v), χ( f , g)〉
= 〈χ(u, v), χ( f , g)〉
= 〈W (u, v),W ( f , g)〉
= 〈u, f 〉〈g, v〉

for all u, v, f , g ∈ L2(Rn).
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(a) ⇒ (b): Using the previous calculation we find

〈(1 − |φQ |2)χ(u, v), χ( f , g)〉 = 0

which implies |φQ(y, ξ)| = 1 for all (y, ξ) ∈ R
2n .

(b)⇔ (c): Assuming the kernel conditionwefind theHilbert–Schmidt inner product
of the two operators by

〈OpQ a1,OpQ a2〉HS

= Tr(OpQ a1 ◦ (OpQ a2)
∗)

=
∫∫

R2n
Ka1(y, x)Ka2(y, x) dx dy

=
∫∫

R2n

∫

Rn
ei2πξ ·xφQ(y, ξ)Fa1(y, ξ) dξ

∫

Rn
e−i2πξ ′·xφQ(y, ξ ′)Fa2(y, ξ ′) dξ ′ dx dy

=
∫

Rn

∫

Rn
φQ(y, ξ)Fa1(y, ξ)φQ(y, ξ)Fa2(y, ξ ′) dξ dy

=
∫

Rn

∫

Rn
|φQ(y, ξ)|2Fa1(y, ξ)Fa2(y, ξ ′) dξ dy

=
∫

Rn

∫

Rn
Fa1(y, ξ)Fa2(y, ξ ′) dξ dy

= 〈Fa1, Fa2〉
= 〈a1, a2〉.

The converse follows since by unitarity of the quantization we have

‖φQFa‖ = ‖OpQ a‖HS = ‖a‖ = ‖Fa‖,

which yields

〈(1 − |φQ |2)a, a〉 = 0

for any symbol a ∈ S (R2n) and, consequently, |φQ |2 = 1. ��
The form of the ambiguity kernel has been previously deduced, for instance, in [9,

p. 126] and [11, p. 80]. The unitarity of the Weyl and Kohn–Nirenberg quantization
has been proven in [11, Theorem 14.6.1].

6 Examples of Time–Frequency Transforms

In addition to the usualWigner transform, other symmetric time–frequency transforms
may be defined in terms of the τ -Wigner transform. This transform has been studied
notably in [21] and more recently by Boggiatto, Oliaro and their collaborators in [2,3].



Journal of Fourier Analysis and Applications (2022) 28 :6 Page 35 of 38 6

Example 5 (τ -Wigner Transform) The transform Wτ , τ ∈ R, was defined in (19). It
can be presented with the ambiguity kernel φWτ given by

φWτ (y, ξ) = ei2π(τ−1/2)y·ξ .

Notable special cases in the family of τ -Wigner transforms are the Rihaczek transform
if R = W0 and the Wigner transform W = W1/2.

The τ -Wigner transforms can be used to present Cohen-class transforms which are
covariant under the transforms

u(x) �→ | det T |−1/2u(T−1x), (50)

u(x) �→
∫

R

e−i2πxkξk u(x) dxk, k = 1, . . . , n. (51)

Let φQ(y, ξ) = k(y · ξ) and f (τ ) = ̂k(τ ). Then a class of time–frequency transforms
can be given by

FQ(u, v)(y, ξ) =
∫

R

f (τ )ei2πτ y·ξχ(u, v)(y, ξ) dτ, (52)

which yields

Q(u, v)(x, η) =
∫

R

f (τ − 1/2)Wτ (u, v)(x, η) dτ.

These transforms are covariant under (50) and (51) by the kernel condition of Theorem
3.

In one dimension the situation is a bit simpler since the only transformations (50) are
scalings and in that case the transforms 52 are known as transformswith a product-type
kernel [1, p. 158]. They are characterized by the following proposition:

Proposition 4 Cohen-class time–frequency transforms inRwhich are scale-covariant
and have correct marginal distributions can be represented by weighted τ -Wigner
transforms as

Q(u, v)(x, η) =
∫

R

f (τ − 1/2)Wτ (u, v)(x, η) dτ. (53)

Proof By the marginal distribution condition we have φQ(0, ξ) = φQ(y, 0) = 1 for
all y, ξ ∈ R. Scale-covariance yields

φQ(y, ξ) = φQ(y/a, aξ)

and, in particular, if y, ξ �= 0 we may take a = y to obtain

φQ(y, ξ) = φQ(1, yξ) =: k(yξ).



6 Page 36 of 38 Journal of Fourier Analysis and Applications (2022) 28 :6

Defining further k(0) = 1 we have φQ(y, ξ) = k(yξ) for any y, ξ ∈ R. Hence, we
find

FQ(u, v)(y, ξ) =
∫

R

f (τ )ei2πτ yξχ(u, v)(y, ξ) dτ,

where f (τ ) = ̂k(τ ) and the result follows by Fourier inversion. ��
Particular examples of these transforms are the Born–Jordan distribution with

f (τ ) = 1[−1/2,1/2](τ ),

and the Choi–Williams transform with

f (τ ) = e−τ 2/2σ 2
/
√

2πσ 2.

We note that by the form of the function f the Born–Jordan transform conserves the
lifetime of the signal while the Choi–Williams distribution does not. Historically,
Born–Jordan quantization was presented first in [4] and the corresponding time–
frequency transform was introduced by Cohen in [6]. We present its explicit definition
with some further observations.

Example 6 (Born–Jordan transform inR) TheBorn–Jordan time–frequency transform,
given by f (τ ) = 1[−1/2,1/2](τ ), has the integral expression

Q(u, v)(x, η) =
∫

R

e−i2π y·η 1
y

∫ x+y/2

x−y/2
u(t + y/2)v(t − y/2) dt dy.

The time-delay kernel here is thus

ϕQ(x, y) =
{

1
|y|1[−|y|/2,|y|/2](x), if y �= 0,

δ0(x), if y = 0,

and the ambiguity kernel is ϕQ(y, ξ) = sinc(ξ y) ∈ OM (R2).

This transform can be motivated physically by considering the quantization of
Poisson brackets. Poisson correspondence is the formula

[

OpQ a,OpQ b
] = OpQ {a, b} , (54)

where the brackets denote the commutator, and

{a, b} =
n

∑

i=i

∂a

∂xi

∂b

∂ηi
− ∂a

∂ηi

∂b

∂xi

is the Poisson bracket of symbols a and b. Replacing Poisson brackets by operator
commutators would be themost direct analogy between classical mechanics and quan-
tum mechanics. However, no quantization satisfies the full Poisson correspondence.
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The Born–Jordan quantization is partly motivated by a reduced version of the Poisson
correspondence it satisfies, see [15].

Proposition 5 The reduced Poisson correspondence

OpQ {a1 + b1, a2 + b2} = [

OpQ a1 + OpQ b1,OpQ a2 + OpQ b2
]

with a1, a2 being functions of x and b1, b2 being functions of η characterizes the
Born–Jordan quantization. In particular, the quantization satisfies

OpQ(∂xa · ∂ηb) = [OpQ a,OpQ b].

The Weyl–Wigner quantization, on the other hand, satisfies (54) only for polynomial
symbols with degree at most two.

As an example of a zero-localization operator Q0 we consider the one related to
the Born–Jordan transform. The value of the Born–Jordan transform at the origin is
given after a change of variables by

〈u, Q0v〉 =
∫

R

u(x)
∫

R

θ(x) − θ(y)

x − y
v(y) dy dx,

where θ is the unit step function and the inner integral should be interpreted as a
principal value. The operator Q0 can be written in terms of the Hilbert transform as
the commutator

π [P, H ]u(x) = θ(x) p. v.
∫

R

u(y)

x − y
dy − p. v.

∫

R

θ(y)u(y)

x − y
dy,

where H is the Hilbert transform and Pu(x) = θ(x)u(x). This form yields after a
brief calculation the L2 bound

‖Q(u, v)‖L∞(R2) ≤ π‖u‖L2(R)‖v‖L2(R)

by the L2-boundedness of the Hilbert transform.
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