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Abstract
We show spectral invariance for faithful ∗-representations for a class of twisted con-
volution algebras. More precisely, if G is a locally compact group with a continuous
2-cocycle c for which the corresponding Mackey group Gc is C∗-unique and sym-
metric, then the twisted convolution algebra L1(G, c) is spectrally invariant in B(H)

for any faithful ∗-representation of L1(G, c) as bounded operators on a Hilbert space
H. As an application of this result we give a proof of the statement that if � is a
closed cocompact subgroup of the phase space of a locally compact abelian group G ′,
and if g is some function in the Feichtinger algebra S0(G ′) that generates a Gabor
frame for L2(G ′) over �, then both the canonical dual atom and the canonical tight
atom associated to g are also in S0(G ′). We do this without the use of periodization
techniques from Gabor analysis.

Keywords Spectral invariance · Convolution algebras · C∗-uniqueness · Gabor
analysis

Mathematics Subject Classification 46H15 · 22D15 · 22D20 · 43A20 · 43A70

1 Introduction

The primary focus of this article is the concept of spectral invariance. In short, ifA is
a ∗-subalgebra of a Banach ∗-algebra B, then A is said to be spectrally invariant in
B if σA(a) = σB(a) for all a ∈ A, where σA(a) denotes the spectrum of the element
a in the algebra A, and likewise for σB(a). In particular, if A and B are both unital
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with common unit, and if a ∈ A is invertible in B, spectral invariance of A in B tells
us that a−1 ∈ A as well. Spectral invariance of Banach ∗-algebras in C∗-algebras is a
concept that has been extensively studied and is of importance in a number of different
mathematical fields. Due to the seminal paper [22] the study of spectral invariance has
been linked to Wiener’s lemma, and variations of this result. As fields where spectral
invariance is of importance we mention the theory of noncommutative tori [9,30],
Gabor analysis and window design in the theory of Gabor frames [30], convolution
operators on locally compact groups [4,19,20], infinite-dimensional matrices [5,23,
38,54], and the theory of pseudodifferential operators [26,27,31,54]. This list is by no
means exhaustive. For an introduction to these variations on spectral invariance and
Wiener’s lemma we refer the reader to [28]. Moreover, we note that in recent years
quite a bit of work has been done on spectral invariance of various algebras motivated
by a plethora of different problems, see e.g. [6,29,45,46].

The main motivations for this article are the uses of spectral invariance in noncom-
mutative geometry [10] and in Gabor analysis [30] as spectral invariance of twisted
convolution algebras appear frequently in both. Indeed, Gabor analysis has in recent
years been used as a source of examples for concepts in noncommutative geometry,
see e.g. [43,44]. Our focus will not be on general ∗-subalgebras of Banach ∗-algebras.
Instead we will limit ourselves to a subclass of all twisted convolution algebras of
locally compact groups where the twist is implemented by a continuous 2-cocycle,
see Definition 2.2. For such a locally compact group G and a continuous 2-cocycle
c, the resulting twisted convolution algebra will be denoted L1(G, c). Given a faith-
ful ∗-representation π : L1(G, c) → B(H) for some Hilbert space H, we wish to
find conditions on G and π that guarantee that σL1(G,c)( f ) = σB(H)(π( f )) for all
f ∈ L1(G, c), i.e. that L1(G, c) is spectrally invariant in B(H). Key to our approach
to this problem is the use of the Mackey group Gc associated to the locally compact
group G and the continuous 2-cocycle c, and we define this group in Sect. 2.1. Note
that in general L1(G, c) and L1(Gc) are not isomorphic as Banach ∗-algebras. It will
be of importance to us that the convolution algebra L1(Gc) is symmetric, which in
short means that the positive elements of the Banach ∗-algebra L1(Gc) have positive
spectra, seeDefinition 2.6.We then applyBarnes’ extension [4] of a result of Hulanicki
[32], stated for the reader’s convenience in Proposition 2.9, to prove the main result
of the article.

Due to the use of the result of Hulanicki, the argument for spectral invariance will
depend on a norm condition on self-adjoint elements. This norm condition may be
difficult to check in practice, so we describe a class of groups for which the condition
is automatically satisfied. This leads us to C∗-unique groups, introduced by Boidol
[7]. In short, a locally compact group G isC∗-unique if its convolution algebra L1(G)

has a unique C∗-norm. A Banach ∗-algebra admitting a faithful ∗-representation is
calledC∗-unique if it has a uniqueC∗-completion. Examples ofC∗-unique groups are
semidirect products of abelian groups, connected metabelian groups, as well as groups
where every compactly generated subgroup is of polynomial growth [7, p. 224]. We
may now state the article’s main theorem.

Theorem A (Theorem 3.1) Let G be a locally compact group with a continuous 2-
cocycle c.
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(i) If L1(Gc) is C∗-unique, so is L1(G, c).
(ii) If L1(Gc) is symmetric and C∗-unique and π : L1(G, c) → B(H) is a faithful

∗-representation, then f �→ ‖π( f )‖B(H), f ∈ L1(G, c), is the full C∗-norm on
L1(G, c), and σL1(G,c)( f ) = σB(H)(π( f )) for all f ∈ L1(G, c).

Though there are some known examples ofC∗-unique groups, there are very few state-
ments in the literature concerning the C∗-uniqueness of twisted convolution algebras.
This is why we go via the convolution algebra of theMackey groupGc, and why state-
ment i) is of independent interest. Note also that for all unital Banach ∗-algebras, being
symmetric is equivalent to being spectrally invariant in the envelopingC∗-algebra, see
for example [40, p. 340].

Important to our proof of the main theorem is the observation that convolution in
L1(Gc) can be expressed in terms of convolution in the algebras L1(G, cn), n ∈ Z,
where cn is the 2-cocycle c raised to thenthpower, seeProposition3.6.As an immediate
consequence, L1(Gc) can be decomposed in terms of the subalgebras L1(G, cn) as in
Corollary 3.7, and this allows us to extend a faithful ∗-representation of L1(G, c) to
a faithful ∗-representation of L1(Gc) in the proof of Theorem 3.1. This is the crucial
step in the proof.

Using our main theorem we are able to give a short proof on a problem concerning
regularity of canonical dual atoms and canonical tight atoms inGabor analysis.Wewill
do this by restating the problem in operator algebraic terms and then use Theorem 3.1.
Exploring the interplay betweenGabor analysis and operator algebras has gainedmuch
popularity in recent years [2,3,14,35,37,43,44]. The field of Gabor analysis has its
origins in the seminal paper of Gabor [21], where he claimed that it is possible to obtain
basis-like representations of functions in L2(R) in terms of the set {e2π ilxφ(x − k) :
k, l ∈ Z}, where φ denotes a Gaussian. A central problem of the field is still to find
basis-like expansions of functions in terms of time-frequency shifts of the form (4.1).
Although most research in this field is done on one or several real variables, it is
possible, due to the nature of time-frequency shifts, to study Gabor analysis on phase
spaces of locally compact abelian groups [24]. Let G be a locally compact abelian
group. Then its phase space is the group G × ̂G, where ̂G is its Pontryagin dual. Let
π(z) be a time-frequency shift of the form (4.1) for some point z = (x, ω) ∈ G × ̂G.
Ignoring normalizations on the relevant Haar measures for the time being, one may
then consider a closed, cocompact subgroup � ⊆ G × ̂G and a function g ∈ L2(G)

and ask when a set G(g;�) := (π(z)g)z∈� is a frame for L2(G), i.e. when there exist
constants C, D > 0 for which

C‖ f ‖22 ≤
∫

�

| 〈 f , π(z)g〉 |2dz ≤ D‖ f ‖22

holds for all f ∈ L2(G), where dz is the chosen Haar measure on �. The reason
for assuming that � is cocompact will be explained in Remark 4.1. In time-frequency
analysis it is often also of interest that theGabor atom g has good time-frequency decay.
One way of expressing good time-frequency decay is to say that g is in Feichtinger’s
algebra S0(G), see (4.5).
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Equivalent toG(g;�)being aGabor frame for L2(G) is the invertibility of the frame
operator S : L2(G) → L2(G) associated to G(g;�). The form of S most suitable for
our purposes is given in (4.6). Two functions of interest are then the canonical dual
atomof g, which is S−1g, and the canonical tight atomassociated to g, which is S−1/2g.
They are of importance in Gabor analysis since they allow for perfect reconstuction
formulas for all functions in L2(G) in terms of g, S−1g, and S−1/2g, as illustrated by
(4.3) and (4.4). If g ∈ S0(G) generates a frame G(g;�) for L2(G), a natural question
in Gabor analysis is then whether S−1g and S−1/2g are in S0(G) also. This leads us
to our second main result.

Theorem B (Theorem 4.2) Let � ⊆ G × ̂G be a closed cocompact subgroup,
and suppose g ∈ S0(G) is such that G(g;�) is a Gabor frame for L2(G). Then
S−1g, S−1/2g ∈ S0(G) as well.

We note that the above result was proved in the case of separable lattices in R
2d ,

and claimed to hold more generally for lattices in phase spaces of locally compact
abelian groups, in the celebrated paper [30]. Though it is somewhat technical to prove
Theorem 3.1, our approach to Theorem 4.2 presented below makes it simple to prove
the extension of the main result of [30] for general closed cocompact subgroups rather
than just lattices. It may be possible to adapt the proof from [30] to this setting as well,
but we offer a proof which makes no use of periodization techniques available in the
setting of Gabor analysis.

As mentioned, to prove Theorem 4.2 we will restate the problem in operator alge-
braic language. For a Gabor frame G(g;�) with g ∈ S0(G), the frame operator S can
be rephrased in terms of a faithful (right) ∗-representation of the Banach ∗-algebra
�1(�◦, c), where �◦ is the adjoint lattice of � and c is the Heisenberg 2-cocycle, see
(4.2) and (4.7). Aswe explain in the proof of Theorem 4.2, any locally compact abelian
group isC∗-unique and for any continuous 2-cocycle on it the associatedMackeygroup
Gc is also C∗-unique. In addition, L1(Gc) will in this case be symmetric. Hence we
may apply Theorem 3.1 to obtain our second main result.

The strength in avoiding the periodization arguments of [30] and proving spectral
invariance of a twisted L1-algebra in terms of symmetry and C∗-uniqueness lies in
the fact that the approach might be adaptable to other representations of groups where
one has an analogous space to the Feichtinger algebra and an L1-algebra acting on it,
such as in the case of certain (projective) coorbit spaces [8,15,16].

The article is organized as follows. Section 2 is dedicated to reminding the reader of
some results on how we obtain twisted convolution algebras and C∗-algebras through
projective unitary representations of locally compact groups, as well as some results
on symmetric convolution algebras and C∗-unique groups. Our first main result is
Theorem 3.1, andmost of Sect. 3 is dedicated to the proof of this theorem, though some
results are of independent interest. In Sect. 4 we rephrase a problem in Gabor analysis
in terms of a faithful ∗-representation of a twisted convolution algebra, and apply
Theorem 3.1 to obtain a simple proof of the main result of this section, Theorem 4.2.
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2 Twisted Convolution Algebras

2.1 Projective Unitary Representations and Twisted Convolution Algebras

We dedicate this section to explaining how we obtain twisted convolution algebras
from projective unitary representations of locally compact groups.

Definition 2.1 Let G be a locally compact group and let U(H) denote the group of
unitary operators on the Hilbert space H equipped with the strong topology. A pro-
jective unitary representation of G is a strongly continuous group homomorphism
π : G → U(H) satisfying

π(e) = IdH, π(x1)π(x2) = c(x1, x2)π(x1x2)

where x1, x2 ∈ G, e is the unit of G, and c : G × G → T is some continuous map.

The map c : G × G → T associated to the projective group representation π : G →
U(H) in Definition 2.1 has some important properties. Using associativity of π we
realize that

c(x1, x2)c(x1x2, x3) = c(x1, x2x3)c(x2, x3), x1, x2, x3 ∈ G. (2.1)

Moreover, π(e) = IdH forces

c(x, e) = c(e, x) = 1, x ∈ G. (2.2)

Definition 2.2 Let G be a locally compact group. A continuous map c : G × G → T

satisfying (2.1) and (2.2) is called a continuous 2-cocycle for G.

Continuous 2-cocycles are part of a cohomology theory for groups, though this is not
something we will have much need for in the sequel. The following result lists some
elementary results for 2-cocycles of groups.

Lemma 2.3 For a continuous 2-cocycle c for a locally compact group G we have

(i) For any n ∈ Z, the map cn : G × G → T given by

cn(x1, x2) = (c(x1, x2))
n, x1, x2 ∈ G,

is also a continuous 2-cocycle.
(ii) For all x ∈ G we have

c(x, x−1) = c(x−1, x).

(iii) For all x, y ∈ G we have

c(y, y−1)c(y−1, x) = c(y, y−1x). (2.3)
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Proof Statement i) is obvious. Statement ii) follows by setting x1 = x3 = x and
x2 = x−1 in (2.1) and then using (2.2). For iii) we may equivalently show that

c(y, y−1)c(yy−1, x) = c(y, y−1x)c(y−1, x)

since c(yy−1, x) = 1. Setting x1 = y, x2 = y−1 and x3 = x in (2.1) and then using
(2.2) we obtain the result. �

Given a locally compact group G and a continuous 2-cocycle c for G, there is
always a distinguished c-projective unitary representation of G, namely the c-twisted
left regular representation. It is the map Lc : G → U(L2(G)) given by

Lc
y f (x) = c(y, y−1x) f (y−1x), x, y ∈ G, f ∈ L2(G).

If c = 1 we drop the c from the notation and just write Ly for y ∈ G.
Given a locally compact group G and a continuous 2-cocycle c, we can construct

an associated group Gc known as the Mackey group. It has appeared in the literature
numerous times before. As a topological space, Gc is just G × T with the product
topology. The binary operation is given by

(x1, τ1)(x2, τ2) = (x1x2, τ1τ2c(x1, x2)). (2.4)

The identity is given by (e, 1), and the inverse of an element (x, τ ) ∈ Gc is given
by (x, τ )−1 = (x−1, τc(x−1, x)). Gc is a locally compact group, and its left Haar
measure is the product measure. Hence its modular function may be identified with
the modular function of G. We normalize the measure of T to 1.

The usefulness of theMackey group for us is in the fact that c-projective unitary rep-
resentations ofG induce unitary representations ofGc. Explicitly, given a c-projective
unitary representation of G, say π : G → U(H) for some Hilbert spaceH, we obtain
a unitary representation πc : Gc → U(H) by setting

πc(x, τ ) = τπ(x) (2.5)

for (x, τ ) ∈ Gc.
We proceed to introduce twisted convolution algebras of these groups and show

how we may complete them to C∗-algebras. For a locally compact group G with
modular function m, we consider the space of measurable and integrable functions
L1(G). For a continuous 2-cocycle c for G we define c-twisted convolution on L1(G)

by

f1	c f2(x) =
∫

G
f1(y) f2(y

−1x)c(y, y−1x)dy,

for f1, f2 ∈ L1(G), where dy is the Haar measure on G. Should f2 ∈ L p(G) and
p ∈ [1,∞] we will use the same notation. We also define the c-twisted involution

f ∗c (x) = m(x−1)c(x, x−1) f (x−1)
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for f ∈ L1(G). We denote the resulting ∗-algebra by L1(G, c). It becomes a Banach
∗-algebra when equipped with the usual L1-norm.

Any c-projective unitary representation π : G → U(H) now induces a nondegen-
erate ∗-representation π : L1(G, c) → B(H) by setting

π( f )η =
∫

G
f (x)π(x)ηdx, f ∈ L1(G, c), η ∈ H,

where we interpret the integral weakly in H. Note that ‖π( f )‖ ≤ ‖ f ‖L1(G). If the
integrated representation π is faithful this gives us a way of completing L1(G, c) to a
C∗-algebra, namely for any f ∈ L1(G) we set ‖ f ‖ := ‖π( f )‖B(H). The integrated
representation of the c-twisted left regular representation will be denoted by f �→ Lc

f .
The following result, which will be important for us in the proof of Theorem 3.1, is a
special case of [39, Satz 6].

Proposition 2.4 Let G be an amenable locally compact group with a continuous 2-
cocycle c. Then f �→ ‖Lc

f ‖B(L2(G)) is the maximal C
∗-norm on L1(G, c).

Instead of twisting the convolution algebra of the locally compact group G by a
continuous 2-cocycle c, we could first ”twist” the groupG by c to obtain the associated
Mackey group Gc, and then consider the associated convolution algebra L1(Gc) with
usual (untwisted) convolution and involution. We will have much use for this in the
sequel. Any c-projective unitary representation of G induces a unitary representation
πc of Gc by (2.5), which in turn induces a nondegenerate ∗-representation πc of
L1(Gc). Note however that πc is in general not a faithful ∗-representation of L1(Gc)

even if πc is a faithful unitary representation of Gc. Indeed, let f ∈ L1(G) \ {0} and
define F ∈ L1(Gc) by F(x, τ ) = τ f (x). Then

πc(F)η =
∫

G

∫

T

F(x, τ )πc(x, τ )ηdτdx

=
∫

G

∫

T

τ f (x)τπ(x)ηdτdx =
∫

G

∫

T

τ 2 f (x)π(x)ηdτdx = 0,

for all η ∈ H, even though F is not the zero function.

Remark 2.5 Note that if G is nondiscrete we may always extend a representation
π : L1(G, c) → B(H) to its minimal unitization L1(G, c)∼ by forcing the induced
representation, also denoted π , to satisfy π(1L1(G,c)∼) = IdH. Indeed we will need
to do this in the sequel. If L1(G, c) is already unital it will always be implied that
π(1L1(G,c)) = IdH.

2.2 Symmetric Group Algebras and C∗-Uniqueness

Two concepts that will be of great importance when proving our main result Theo-
rem 3.1 are that of symmetric convolution algebras and C∗-uniqueness.

In the sequel, if A is a ∗-algebra and a ∈ A, we let σA(a) denote the spectrum of
a in the algebra A.
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Definition 2.6 A Banach ∗-algebra A is called symmetric if for all a ∈ A we have
σA(a∗a) ⊆ [0,∞). We will say that a locally compact groupG is symmetric if L1(G)

is a symmetric Banach ∗-algebra.
Remark 2.7 By the famous Shirali-Ford theorem a Banach ∗-algebra A is symmetric
if and only if it is hermitian (i.e. a = a∗ ∈ A implies σA(a) ⊂ R).

Note thatC∗-algebras are symmetric [47, Theorem2.2.5].Moreover, ifA is a nonunital
Banach ∗-algebra,A is symmetric if and only if its minimal unitization Ã is symmetric
[50, Theorem (4.7.9)].

Locally compact groups G yielding symmetric (untwisted) convolution algebras
L1(G) are of importance due to the following result shown in [30, Theorem 2.8]
(though noted several times earlier). Note that we can omit the condition that G
should be amenable, as it was recently shown that if L1(G) is symmetric, then G is
amenable [52, Corollary 4.8].

Proposition 2.8 If G is a locally compact group the following statements are equiva-
lent.

(i) L1(G) is symmetric.
(ii) σL1(G)( f ) = σB(L2(G))(L f ) for all self-adjoint f ∈ L1(G).

Note that for a locally compact group G and a continuous 2-cocycle c for G, the
Mackey group Gc is amenable if and only if G is amenable [48, Proposition 1.13].

Like in [30], the proofs of some crucial steps will rely on the following result of
Hulanicki, see [32], and the extension by Barnes, see [4]. For a ∈ A, let ρA(a) denote
the spectral radius of a in A.

Proposition 2.9 LetA be a ∗-subalgebra of a Banach ∗-algebra B, and suppose there
is a faithful ∗-representation π : B → B(H), where H is a Hilbert space. If B is
unital with unit 1B we require π(1B) = IdH. If for all self-adjoint a ∈ A we have
‖π(a)‖B(H) = ρA(a), then

σB(a′) = σB(H)(π(a′))

for all a′ ∈ A.

Recall that for an element b in a Banach ∗-algebra B, the spectral radius can be
expressed as ρB(b) = limn→∞ ‖bn‖1/nB [47, Theorem 1.2.7].

Locally compact groups yielding symmetric convolution algebras have been stud-
ied quite extensively. As examples we mention that all locally compact compactly
generated groups of polynomial growth yield symmetric convolution algebras [41], as
do all compact extensions of nilpotent groups [42, p. 191]. The latter fact will come
into play in Sect. 4. Note also that if a group G is locally compact and compactly
generated of polynomial growth, so is its Mackey extension Gc for any continuous
2-cocycle c.

To deduce spectral invariance of L1(G, c) in Theorem 3.1 the strategy in Sect. 3
will be to use Proposition 2.9. In order to do this, we will need a certain norm equality
in order for the conditions of Proposition 2.9 to be satisfied. We will restrict to a class
of groups for which this is automatic.
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Definition 2.10 LetB be a Banach ∗-algebra admitting a faithful ∗-representation. We
say B is C∗-unique if the maximal C∗-norm ‖ · ‖∗ given by

‖b‖∗ = sup{‖π(b)‖B(H) | π : B → B(H) is a ∗ -representation of B}

for b ∈ B, is the unique C∗-norm on B.
We say a locally compact group G isC∗-unique if L1(G) isC∗-unique as a Banach

∗-algebra.
A C∗-unique group G is amenable, since C∗-uniqueness in particular implies that the
full and reduced group C∗-algebras of G coincide. The converse is not true [7,49].
There are some known examples of C∗-unique groups. As examples we mention
semidirect products of abelian groups, connected metabelian groups, as well as groups
where every compactly generated subgroup is of polynomial growth [7, p. 224]. The
latter will also come into play in Sect. 4. Moreover, note that if G is a group where
every compactly generated subgroup is of polynomial growth, so is its Mackey group
Gc for any continuous 2-cocycle c.

3 Spectral Invariance of Twisted Convolution Algebras

All results below will be stated and proved in terms of left representations, i.e. left
projective unitary representations of groups and left ∗-representations of the twisted
convolution algebras we treated in Sect. 2. This is only due to left representations
being more common in the literature. We note that with proper restatements all results
in this section also apply to the case of right representations. Indeed we will need to
consider right representations in Sect. 4.

We start by presenting themain theorem of the article, and the rest of the sectionwill
mostly be dedicated to its proof. Note that some of the lemmas presented leading up
to the proof of the main theorem were proved in [13] in a more abstract way. However,
as we are considering T-valued 2-cocycles (as opposed to the more general setting
of [13]), we believe the clarity offered by the explicit calculations using the Fourier
transform below makes the constructions clearer.

Theorem 3.1 Let G be a locally compact group with a continuous 2-cocycle c.

i) If L1(Gc) is C∗-unique, so is L1(G, c).
ii) If L1(Gc) is symmetric and C∗-unique and π : L1(G, c) → B(H) is a faithful

∗-representation, then f �→ ‖π( f )‖B(H), f ∈ L1(G, c), is the full C∗-norm on
L1(G, c), and σL1(G,c)( f ) = σB(H)(π( f )) for all f ∈ L1(G, c).

Remark 3.2 Theorem3.1 also gives us sufficient conditions for L1(G, c) to be symmet-
ric. Namely, from statement ii) in Theorem 3.1 we see that if L1(Gc) isC∗-unique and
symmetric, then L1(G, c) is spectrally invariant in its (unique)C∗-completion. There-
fore it is spectrally invariant in its enveloping C∗-algebra, which we know happens if
and only if L1(G, c) (and therefore also its minimal unitization if G is nondiscrete) is
symmetric [40, p. 340].
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Remark 3.3 In generalGc is less tractable than the groupG, so at first glance imposing
requirements of symmetry and C∗-uniqueness on Gc in Theorem 3.1 might not seem
like an improvement. However, untwisted convolution algebras aremore tractable than
twisted ones, and has been studied to a much larger extent in the literature. In addition,
as mentioned in Sect. 2, some classes of symmetric groups and C∗-unique groups
are closed under compact extensions, meaning we for groups G in those classes can
impose symmetry and C∗-uniqueness on G itself rather than on Gc.

We begin by embedding L p(G) as a subspace of L p(Gc) for 1 ≤ p ≤ ∞. Define
the map j : L p(G) → L p(Gc) by

j( f )(x, τ ) = τ f (x). (3.1)

Lemma 3.4 Let G be a locally compact group and let c be a continuous 2-cocycle for
G. Then j defined by (3.1) is an isometric ∗-homomorphism from L1(G, c) to L1(Gc),
and an isometry from L p(G) to L p(Gc) for 1 < p ≤ ∞. Moreover, if f ∈ L1(G, c)
and g ∈ L p(G), we have

j( f 	cg) = j( f ) ∗ j(g) (3.2)

for p ∈ [1,∞].
Proof We begin by verifying that j is an isometry for 1 ≤ p < ∞. Let f ∈ L p(G).
Then

‖ j( f )‖p
L p(Gc)

=
∫

Gc

| j( f )(x, τ )|pdτdx =
∫

G

∫

T

|τ f (x)|pdτdx

=
∫

G
| f (x)|pdx = ‖ f ‖p

L p(G).

Likewise, for p = ∞ and f ∈ L∞(G) we get

‖ j( f )‖L∞(Gc)= sup
(x,τ )∈Gc

| j( f )(x, τ )|= sup
(x,τ )∈Gc

|τ f (x)|= sup
x∈G

| f (x)| = ‖ f ‖L∞(G).

We now verify that j is a ∗-homomorphism when p = 1. Let f1, f2 ∈ L1(G, c). Then
for all (x, τ ) ∈ Gc we have

( j( f1) ∗ j( f2))(x, τ ) =
∫

Gc

j( f1)(y, ξ) j( f2)((y, ξ)−1(x, τ ))dξdy

=
∫

G

∫

T

j( f1)(y, ξ) j( f2)(y
−1x, ξc(y, y−1)τc(y−1, x))dξdy

=
∫

G

∫

T

ξ f1(y)ξτc(y, y−1)c(y−1, x) f2(y
−1x)dξdy

= τ

∫

G
f1(y) f2(y

−1x)c(y, y−1)c(y−1, x)dy

= τ

∫

G
f1(y) f2(y

−1x)c(y, y−1x)dy

= j( f1	c f2)(x, τ ),
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where we in the second to last line used (2.3). Doing the same calculation with f2 ∈
L p(G) shows that (3.2) holds.

It then remains to show that j respects the involutions. For f ∈ L1(G, c) and all
(x, τ ) ∈ Gc, we have

j( f )∗(x, τ ) = m(x−1) j( f )((x, τ )−1) = m(x−1) j( f )(x−1, τc(x, x−1))

= m(x−1)τc(x, x−1) f (x−1) = m(x−1)τc(x−1, x) f (x−1)

= τ f ∗c (x) = j( f ∗c )(x, τ ).

Hence j( f )∗ = j( f ∗c ) for all f ∈ L1(G, c). This finishes the proof. �

Since j is an isometry and L p(G) is complete for all p ∈ [1,∞], we get that
j(L p(G)) is a closed subspace of L p(Gc). We may actually obtain a quite explicit
description of this subspace. To do this, we expand functions in L p(Gc) as Fourier
series with respect to their second argument, that is, in the T-variable. Since the
measure on Gc is the product measure coming from G and T, we have that for any
F ∈ L p(Gc), 1 ≤ p ≤ ∞, and any x ∈ G, the function τ �→ F(x, τ ) is in
L p(T) ⊆ L1(T). Therefore the Fourier coefficients

Fk(x) =
∫

T

F(x, τ )τ kdτ (3.3)

are well-defined, and the resulting Fourier series

F(x, τ ) =
∑

k∈Z
Fk(x)τ

k

converges in L p(T) for 1 < p < ∞. The following lemma then describes the range
of j .

Lemma 3.5 Let G be a locally compact group and let c be a continuous 2-cocycle for
G. For 1 ≤ p ≤ ∞ we have j(L p(G)) = {F ∈ L p(Gc) | Fk = 0 for k �= 1}.

Proof The inclusion j(L p(G)) ⊆ {F ∈ L p(Gc) | Fk = 0 for k �= 1} is immediate
by (3.1) and (3.3). For the converse containment note that if F ∈ {F ∈ L p(Gc) |
Fk = 0 for k �= 1}, then for all (x, τ ) ∈ Gc we have F(x, τ ) = τ F1(x). Since the
measure on Gc is the product measure we must have that x �→ F1(x) is in L p(G).
Hence F = j(F1), which proves the lemma. �

To simplify notation in the sequel, denote by L1(Gc)n the set

L1(Gc)n := {F ∈ L1(Gc) | Fk = 0 for k �= n}.

It is then immediate that L1(Gc)1 = j(L1(G, c)). We also have the following result.
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Proposition 3.6 Let G be a locally compact group with a continuous 2-cocycle c, let
F ∈ L1(Gc) and let H ∈ L p(Gc) for some 1 ≤ p < ∞. Then

(F ∗ H)(x, τ ) =
∑

n∈Z
(Fn	cn Hn)(x)τ

n, (3.4)

for all (x, τ ) ∈ Gc, where cn is c to the nth power as in Lemma 2.3. Moreover,

(Fn)
∗cn = (F∗)n (3.5)

for all n ∈ Z.

Proof Below we will make use of the Fourier expansions F(y, ξ) = ∑

m∈Z Fm(y)ξm

and H(y, ξ) = ∑

m∈Z Hm(y)ξm , where Fm and Hm are obtained through (3.3). We
will assume both F and H have finite expansions of the form (3.3). This is sufficient
since trigonometric polynomials are dense in L p(T), 1 ≤ p < ∞. The extension to
the full statement follows by a standard density argument.

Since {ξm}m∈Z is an orthonormal system in L2(T), we have for all (x, τ ) ∈ Gc

(F ∗ H)(x, τ ) =
∫

G

∫

T

F(y, ξ)H((y, ξ)−1(x, τ ))dξdy

=
∫

G

∫

T

F(y, ξ)H(y−1x, ξc(y−1, y)τc(y−1, x))dξdy

=
∫

G

∫

T

∑

m∈Z
Fm(y)ξm ·

∑

n∈Z
Hn(y

−1x)ξ
n
τ n(c(y, y−1x))ndξdy

=
∫

G

∑

n∈Z
Fn(y)Hn(y

−1x)cn(y, y−1x)τ ndy

=
∑

n∈Z

( ∫

G
Fn(y)Hn(y

−1x)cn(y, y−1x)dy

)

τ n

=
∑

n∈Z
(Fn	cn Hn)(x)τ

n

where we at the third equality used (2.3). This establishes (3.4).
For any F ∈ L1(Gc) we also have

(F∗)n(x) =
∫

T

F∗(x, τ )τ ndτ

=
∫

T

m(x−1)F(x−1, τc(x−1, x))τ ndτ

= m(x−1)

∫

T

F(x−1, τc(x−1, x))τ ndτ

= m(x−1)

∫

T

F(x−1, τ )τ nc(x−1, x)ndτ
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= m(x−1)c(x−1, x)n
∫

T

F(x−1, τ )τ ndτ

= m(x−1)cn(x−1, x)Fn(x−1)

= (Fn)
∗cn (x),

for all x ∈ G, which establishes (3.5). �
The following corollary is then immediate.

Corollary 3.7 Let G be a locally compact group and let c be a continuous 2-cocycle
for G. Then L1(Gc)n ∼= L1(G, cn) as Banach ∗-algebras.

As a final preparation before proving Theorem 3.1, we need the following lemma.

Lemma 3.8 Let G be a locally compact group and let c be a continuous 2-cocycle for
G. For f ∈ L1(G, c) we then have

ρL1(G,c)( f ) = ρL1(Gc)
( j( f )).

If, in addition, f is self-adjoint we get

ρB(L2(G))(L
c
f ) = ρB(L2(Gc))

(L j( f )). (3.6)

Proof Since j : L1(G, c) → L1(Gc) is an isometric ∗-homomorphism we have

ρL1(G,c)( f ) = lim
n→∞ ‖ f n‖1/n

L1(G,c)
= lim

n→∞ ‖ j( f )n‖1/n
L1(Gc)

= ρL1(Gc)
( j( f )),

which proves the first statement.
For the second statement, let f ∈ L1(G, c) be self-adjoint. Since f is self-adjoint

and Lc
f and L j( f ) realize f and j( f ) as bounded operators on Hilbert spaces, i.e. as

elements of a C∗-algebra, we have

ρB(L2(G))(L
c
f ) = ‖Lc

f ‖B(L2(G)) and ρB(L2(Gc))
(L j( f )) = ‖L j( f )‖B(L2(Gc))

,

(3.7)
see [47,Theorem2.1.1].Hence it suffices to show that‖Lc

f ‖B(L2(G))=‖L j( f )‖B(L2(Gc))
.

To do this, note first that by Lemma 3.4

L j( f ) j(g) = j( f ) ∗ j(g) = j( f 	cg) = j(Lc
f g)

for any g ∈ L2(G). Moreover, by Proposition 3.6 we see that L j( f )| j(L2(G))⊥ = 0.
Since j : L2(G) → L2(Gc) is an isometry it then follows that ‖Lc

f ‖B(L2(G)) =
‖L j( f )‖B(L2(Gc))

, which finishes the proof. �
We are finally ready to prove Theorem 3.1.
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Proof of Theorem 3.1 We begin by proving i). Let π : L1(G, c) → B(H) be a faithful
∗-representation. As Gc is assumed C∗-unique, Gc is in particular amenable, so it
follows that G is also amenable. Then Proposition 2.4 gives that f �→ ‖Lc

f ‖B(L2(G)),

f ∈ L1(G, c), is the maximal C∗-norm on L1(G, c). Hence it suffices to prove that
‖π( f )‖B(H) = ‖Lc

f ‖B(L2(G)) for all f ∈ L1(G, c). To do this, we will first extend

π to a faithful ∗-representation of L1(Gc). The obvious attempt at a ∗-representation
of L1(Gc), namely the integrated representation of πc : Gc → U(H) as in (2.5), is in
general not faithful as noted at the end of Sect. 2.1. The construction of the desired
faithful ∗-representation π̃ of L1(Gc) is therefore more involved.

For all n ∈ Z we know by Corollary 3.7 that L1(Gc)n ∼= L1(G, cn) as Banach
∗-algebras, and in the sequel we make this identification to ease notation. For any
n ∈ Z \ {1} we define

π(n) := Lcn : L1(G, cn) → B(L2(G)),

and set
π(1) := π : L1(G, c) → B(H).

Then π(n) is a faithful ∗-representation of L1(G, cn) for all n ∈ Z. Moreover, we set

H(n) =
{

L2(G) if n ∈ Z \ {1}
H if n = 1.

Note that ⊕k∈ZB(H(k)) becomes a C∗-algebra by realizing ⊕k∈ZB(H(k)) ⊂
B(⊕k∈ZH(k)), where ⊕k∈ZH(k) is the Hilbert direct sum. We then consider the map
π̃ : L1(Gc) → ⊕k∈ZB(H(k)) which for F ∈ L1(Gc) is given by

F �→ (Fk)k∈Z �→
⊕

k∈Z
π(k)(Fk). (3.8)

We must verify that this is a faithful ∗-homomorphism. Continuity will then follow
since any ∗-homomorphism from a Banach ∗-algebra to a C∗-algebra is continuous
[47, Theorem 2.1.7]

For F, H ∈ L1(Gc) it then follows from (3.4) that

π̃(F ∗ H) =
⊕

k∈Z
π(k)(Fk	ck Hk) =

⊕

k∈Z
π(k)(Fk) ◦ π(k)(Hk) = π̃(F)π̃(H).

It also follows from (3.5) that

π̃(F∗) =
⊕

k∈Z
π(k)((F∗)k) =

⊕

k∈Z
π(k)((Fk)

∗ck ) =
⊕

k∈Z
π(k)(Fk)

∗ = π̃(F)∗.

We conclude that π̃ is a continuous ∗-homomorphism.
Now suppose F ∈ L1(Gc) is such that π̃(F) = 0. Then π(k)(Fk) = 0 for all k ∈ Z,

and since π(k) : L1(G, ck) → B(H(k)) are all faithful, we conclude that Fk = 0 for
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all k ∈ Z. Since the Fourier transform is injective on L1, this happens if and only if
F = 0 almost everywhere, i.e. if F = 0 in L1(Gc). We deduce that π̃ is a faithful
∗-homomorphism.

Observe that since H(1) = H, the two representations π : L1(G, c) → B(H)

and π̃ ◦ j : L1(G, c) → B(H(1)) can naturally be identified. Using the C∗-identity,
C∗-uniqueness of Gc, and Lemma 3.8 we then obtain

‖π( f )‖2
B(H) = ‖π( f ∗	c f )‖B(H) = ‖π̃( j( f ∗	c f ))‖⊕k∈ZB(H(k))

= ‖L j( f ∗	c f )‖B(L2(Gc))
= ‖Lc

f ∗	c f ‖B(L2(G)) = ‖Lc
f ‖2B(L2(G))

for all f ∈ L1(G, c), which proves i).
To prove ii), let f ∈ L1(G, c) be self-adjoint. Using Lemma 3.8, Proposition 2.8

and i) of Theorem 3.1, we have the following chain of equalities

ρL1(G,c)( f ) = ρL1(Gc)
( j( f )) = ρB(L2(Gc))

(L j( f ))

= ρB(L2(G))(L
c
f ) = ‖Lc

f ‖B(L2(G)) = ‖π( f )‖B(H).

By Proposition 2.9 it then follows that σL1(G,c)( f ) = σB(H)(π( f )) for all f ∈
L1(G, c). �

Remark 3.9 Looking at the proof of Theorem 3.1 we might hope in light of results on
symmetric (Banach) ∗-algebras in e.g. [6,19,20,29,45] that it is possible to obtain simi-
lar results for the algebras considered in these papers. However, considering the crucial
role C∗-uniqueness plays in order to get spectral invariance for all ∗-representations
for the ∗-algebra in Theorem 3.1, it would look like a key ingredient in a proof of such
a result should be analogousC∗-uniqueness results for these algebras, and for the time
being these remain elusive.

4 Applications to Gabor Analysis

We begin by introducing the central concepts of Gabor analysis, before formulating
the main result of this section. We then rephrase the setting of the problem in terms
spectral invariance of a certain convolution algebra and use Theorem 3.1 to prove the
result.

Throughout this section G will be a locally compact abelian group and ̂G will be
its Pontryagin dual. Note that we will write the group operation additively. Moreover,
� will denote a closed cocompact subgroup of the time-frequency plane G × ̂G. The
reason for restricting to cocompact subgroupswill bemade clear in Remark 4.1.We fix
aHaarmeasure onG and equip ̂G with the dualmeasure such that Plancherel’s formula
holds [12, Theorem 3.4.8]. We also fix a Haar measure on � (which in the sequel will
be denoted dz), and give (G × ̂G)/� the unique measure such that Weil’s formula
holds [34, equation (2.4)]. The size of � is the quantity s(�) := μ((G×̂G)/�), where
μ is the chosen Haar measure. As � is cocompact in G × ̂G, we have s(�) < ∞.
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We proceed to introduce the two unitary operators most relevant for Gabor analysis.
Given x ∈ G and ω ∈ ̂G, we define the translation operator Tx and modulation
operator Mω on L2(G) by

(Tx f )(t) = f (t − x), (Mω f )(t) = ω(t) f (t)

for f ∈ L2(G) and t ∈ G. Moreover, we define a time-frequency shift by

π(x, ω) := MωTx (4.1)

for x ∈ G and ω ∈ ̂G.
Having introduced both translation and modulation we may define the subgroup of

G × ̂G which will be of greatest importance to us when proving Theorem 4.2. This is
due to the reformulations of the frame operator in (4.6) and (4.8) below. The adjoint
subgroup of �, denoted �◦, is the closed subgroup of G × ̂G defined by

�◦ := {w ∈ G × ̂G | π(z)π(w) = π(w)π(z) for all z ∈ �}. (4.2)

Its importance for time-frequency analysis was first realized in [17]. We may identify
�◦ with ((G× ̂G)/�)̂as in [34, p. 234] to pick the dual measure on�◦ corresponding
to themeasure on (G×̂G)/�.� is cocompact inG×̂G, so�◦ is discrete. The induced
measure on�◦ is the counting measure scaled with the constant s(�)−1 [35, equation
(13)].

Given g ∈ L2(G), theGabor systemover�with generator g is a familyG(g;�) :=
(π(z)g)z∈�. It is called aGabor frame if it is a (continuous) frame for L2(G) [1,34,36]
in the sense that the following conditions are satisfied:

i) The family G(g,�) is weakly measurable, i.e. for every f ∈ L2(G) the map
z �→ 〈 f , π(z)g〉 is measurable.

ii) There exist positive constants C, D > 0 such that for all f ∈ L2(G) we have that

C‖ f ‖22 ≤
∫

�

| 〈 f , π(z)g〉 |2dz ≤ D‖ f ‖22.

Remark 4.1 Gabor frames G(g;�) for L2(G) with g ∈ L2(G) can only exist if � is
cocompact [34, Theorem 5.1]. Indeed, this is also the case if we consider finitely many
functions g1, . . . , gk ∈ L2(G) and a Gabor system G(g1, . . . , gk;�) as in Remark 4.5
below [35, Lemma 4.9]. The same is true if we consider matrix frames introduced in
[3], see [3, Proposition 4.29].

If G(g;�) is weakly measurable and D < ∞ for this family, we say G(g;�) is a
Bessel system. Associated to any Bessel system G(g;�) is a linear bounded operator
known as the frame operator associated to G(g;�). It is the operator

S : L2(G) → L2(G)

f �→
∫

�

〈 f , π(z)g〉π(z)gdz,
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where we interpret the integral weakly. It is well known in frame theory that S com-
mutes with all time-frequency shifts π(z) when z ∈ �, and that G(g;�) is a Gabor
frame for L2(G) if and only if S is invertible on L2(G). Moreover, it is not hard to
see that S is a positive operator.

Now let G(g;�) be a Gabor frame for L2(G). Using that the frame operator com-
mutes with time-frequency shifts from �, we have

f = S−1S f =
∫

�

〈 f , π(z)g〉π(z)S−1gdz (4.3)

for all f ∈ L2(G). The function S−1g is known as the canonical dual atom of g.
Moreover, we have

f = S−1/2SS−1/2 f =
∫

�

〈

f , π(z)S−1/2g
〉

π(z)S−1/2gdz (4.4)

for all f ∈ L2(G). The function S−1/2g is known as the canonical tight atom associ-
ated to g.

As a last preparation before presenting the main result of this section we must
introduce a function space. Let g ∈ L2(G).We define the short-time Fourier transform
with respect to g to be the operator Vg : L2(G) → L2(G × ̂G) given by

Vg f (z) = 〈 f , π(z)g〉

for f ∈ L2(G) and z ∈ G × ̂G. Using this, we define the Feichtinger algebra S0(G)

by
S0(G) := { f ∈ L2(G) | V f f ∈ L1(G × ̂G)}. (4.5)

The Feichtinger algebra is known as a nice space of test functions for time-frequency
analysis, and its elements have good decay in both time and frequency. We refer the
reader to [33] for more information on the Feichtinger algebra. At last, we may state
the main theorem of this section.

Theorem 4.2 Let � ⊆ G × ̂G be a closed cocompact subgroup, and suppose g ∈
S0(G) is such that G(g;�) is a Gabor frame for L2(G). Then S−1g, S−1/2g ∈ S0(G)

as well.

In the case when � is a separable lattice in R
d × ̂Rd , Theorem 4.2 was proved in

[30], and it was claimed to hold for general lattices in phase spaces of locally compact
abelian groups. It is possible that their techniques can be adapted to the setting of
closed cocompact subgroups. However, it will turn out that the result is easier to
deduce by using Theorem 3.1, thereby circumventing any need to use the periodization
techniques of [30]. In order to show Theorem 4.2 we will reformulate the above setup
to incorporate twisted convolution algebras. As a first step towards this we present
the Fundamental Identity of Gabor Analysis. We refer the reader to [51, Proposition
2.11] for a proof. There the Schwartz-Bruhat space is used, but the proof can easily
be adapted to the case of S0(G). For the case of modulation spaces, see for example
[18] or [25]
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Proposition 4.3 Let f , g, h ∈ S0(G). Then

∫

�

〈 f , π(z)g〉π(z)hdz = 1

s(�)

∑

w∈�◦
〈π(w)h, g〉π(w)∗ f

where we interpret the integral and the sum weakly in L2(G).

Proposition 4.3 allows us to rewrite the frame operator S for G(g;�) as

S f =
∫

�

〈 f , π(z)g〉π(z)gdz = 1

s(�)

∑

w∈�◦
〈π(w)g, g〉π(w)∗ f . (4.6)

This observation is key in rephrasing the problem. It is the right hand side which is of
importance to us, and it will be most natural to restate the frame operator in terms of
a right ∗-representation of a twisted convolution algebra, see Equation (4.8).

We will also need the continuous 2-cocycle on G × ̂G known as the Heisenberg
2-cocycle [51, p. 263]. It is the map c : (G × ̂G) × (G × ̂G) → T given by

c((x, ω), (y, τ )) = τ(x) (4.7)

for (x, ω), (y, τ ) ∈ G × ̂G.

Remark 4.4 Having introduced the Heisenberg 2-cocycle c we may also describe �◦
without using time-frequency shifts directly by ways of

�◦ = {w ∈ G × ̂G | c(w, z)c (z, w) = 1 for all z ∈ �}

Restricting to �◦, we construct the twisted convolution algebra �1(�◦, c) as in
Sect. 2. Now the map

π∗ : G × ̂G → U(L2(G))

(x, ω) �→ π(x, ω)∗

defines a right c-projective unitary representation. A right projective unitary represen-
tation of a group may also be viewed as a (left) projective unitary representation of its
opposite group. We also get a right c-projective unitary representation of �◦, which
we also denote by π∗. The integrated representation defines a right ∗-representation
π∗ : �1(�◦, c) → B(L2(G)). This representation leaves S0(G) invariant, i.e.
π∗(�1(�◦, c))S0(G) ⊆ S0(G) [35, Theorem 3.4]. Given a = (aw)w∈�◦ ∈ �1(�◦, c)
and f ∈ L2(G) we have

π∗(a) f = 1

s(�)

∑

w∈�◦
awπ(w)∗ f .

Also, this ∗-representation is known to be faithful [51, Proposition 2.2]. Moreover, for
g ∈ S0(G) we have (〈π(w)g, g〉)w∈�◦ ∈ �1(�◦, c) [35, Theorem 3.4]. Using (4.6)
for the Gabor system G(g;�), g ∈ S0(G), we now see that
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S f = π∗((〈π(w)g, g〉)w∈�◦) f (4.8)

for f ∈ L2(G). We are finally ready to prove Theorem 4.2. The proof follows the
same general outline as the proof of [30, Theorem4.2], butwithout use of periodization
techniques unique to the Gabor analysis setting.

Proof of Theorem 4.2 If g ∈ S0(G) is such that G(g;�) is a Gabor frame for
L2(G), then the corresponding frame operator S is invertible. By (4.8) we may write
S f = π∗((〈π(w)g, g〉)w∈�◦) f for any f ∈ L2(G). Since �◦ is abelian, every com-
pactly generated subgroup of�◦ is of polynomial growth by the structure theorem for
compactly generated locally compact abelian groups [12, Theorem4.2.2]. Hence every
compactly generated subgroup of�◦

c is also of polynomial growth, since it is a compact
extension of �◦. It follows that �◦

c is C
∗-unique. Moreover, �◦

c is nilpotent of class 1
as�◦ is abelian, so it follows that �1(�◦

c) is symmetric. By Theorem 3.1 we then have
that �1(�◦, c) is spectrally invariant in B(L2(G)). Hence there is a = (aw)w∈�◦ ∈
�1(�◦, c) such that a	c(〈π(w)g, g〉)w∈�◦ = 1�1(�◦,c) = (〈π(w)g, g〉)w∈�◦	ca and

S−1 f = π∗(a) f

for all f ∈ L2(G). Since π∗(�1(�◦, c)) leaves S0(G) invariant, it follows that S−1g ∈
S0(G).

Since S, hence also S−1, is a positive operator, we may also take the square root of
the image of a under π∗ in B(L2(G)). By spectral invariance and the fact that Banach
∗-algebras are closed under holomorphic functional calculus [11, p. 212] it follows
that there is b = (bw)w∈�◦ ∈ �1(�◦, c) such that

S−1/2 f = π∗(b) f

for all f ∈ L2(G). Once again, since π∗(�1(�◦, c)) leaves S0(G) invariant, it follows
that S−1/2g ∈ S0(G). This finishes the proof. �
Remark 4.5 There are no issues extending this to multi-window Gabor frames, i.e. the
case of g1, . . . , gk ∈ S0(G) such that G(g1, . . . , gk;�) := G(g1;�)∪· · ·∪G(gk;�)

is a frame for L2(G). Indeed, the only real difference is that we in (4.8) will need to
consider π∗((

∑k
i=1 〈π(w)gi , gi 〉)w∈�◦). This is of no real consequence for the proofs.

Hence we may conclude that for a multi-window Gabor frame G(g1, . . . , gk;�) for
L2(G) with g1, . . . , gk ∈ S0(G) and associated (multi-window) frame operator S
we get S−1g1, . . . , S−1gk, S−1/2g1, . . . , S−1/2gk ∈ S0(G). Indeed one can go even
further and do this for the matrix Gabor frames introduced in [3], which generalize
multi-window super Gabor frames, using the setup from the same article. The key
observation for doing this is that since �1(�◦, c) is spectrally invariant in B(L2(G))

we also have that Mn(�
1(�◦, c)) is spectrally invariant in Mn(B(L2(G))) for any

n ∈ N [53].
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