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Abstract
In this paper we introduce new function spaces which we call anisotropic hyper-
bolic Besov and Triebel-Lizorkin spaces. Their definition is based on a hyperbolic
Littlewood-Paley analysis involving an anisotropyvector only occurring in the smooth-
ness weights. Such spaces provide a general and natural setting in order to understand
what kind of anisotropic smoothness can be described using hyperbolic wavelets (in
the literature also sometimes called tensor-product wavelets), a wavelet class which
hitherto has beenmainly used to characterize spaces of dominatingmixed smoothness.
A centerpiece of our present work are characterizations of these new spaces based on
the hyperbolic wavelet transform. Hereby we treat both, the standard approach using
wavelet systems equipped with sufficient smoothness, decay, and vanishing moments,
but also the very simple and basic hyperbolic Haar system. The second major question
we pursue is the relationship between the novel hyperbolic spaces and the classi-
cal anisotropic Besov–Lizorkin-Triebel scales. As our results show, in general, both
approaches to resolve an anisotropy do not coincide. However, in the Sobolev range
this is the case, providing a link to apply the newly obtained hyperbolic wavelet char-
acterizations to the classical setting. In particular, this allows for detecting classical
anisotropies via the coefficients of a universal hyperbolic wavelet basis, without the
need of adaption of the basis or a-priori knowledge on the anisotropy.
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1 Introduction

With the development of wavelet analysis from the beginning of the 1980s until the
present time we nowadays have several powerful tools at hand to perform signal anal-
ysis with the aim to extract important information out of a signal. The information is
thereby usually coded in objects easy to compute and handle—thewavelet coefficients.

Wavelet methods have been used with the known success for the purpose of com-
pression, denoising, classification, completion, etc., of data, to mention just a few.
Roughly speaking, the common underlying idea is the fact that a few wavelet coeffi-
cients contain a rather complete information of the signal to be analyzed. However,
due to their construction principle (dyadic dilations and integer translates of a few
basic “mother” functions) classical wavelets are not well-suited for the analysis of,
say, anisotropic signals. In fact, a signal which is rather smooth in x-direction but
rough in y-direction (such as layers in the earth, stripes on a shirt, etc.) can not be
properly resolved by a classicalmulti-resolution analysis. The respectivewavelet coef-
ficients do not contain the anisotropic smoothness information, they rather resolve a
certain minimal smoothness. That results in a bad decay of the sequence of wavelet
coefficients or, in other words, a bad compression rate.

Anisotropy is not a rare phenomenon since it arises whenever physics does not
act the same in different directions, e.g., geophysics, oceanography, hydrology, fluid
mechanics, or medical image processing (see [4,41] among others) are some of the
fields where it naturally appears. For this reason wavelets have been adapted in many
different ways in order to “detect” and resolve anisotropy. There is a vast amount of lit-
erature dealing with this. For instance, there are wave atoms [14] as well as curvelets
[7–9], shearlets [26,31,33], anisets, and anisotropic wavelets [28,50,51]. The latter
concept represents a rather flexible construction since it can be build (theoretically)
for any present anisotropy. The theoretical basis of anisotropic wavelet analysis is the
equivalent characterization of corresponding anisotropic function spaces, like Hölder,
Besov, Sobolev and Triebel-Lizorkin spaces. The major shortcoming of the existing
theory is the fact that one has to know the anisotropy in advance, i.e., one has to adapt
the wavelet accordingly. In other words, if physics does not provide the anisotropy
parameters of the signal we are not able to resolve the signal accordingly without “try-
ing out” several anisotropic bases. Such a method is, of course, hardly implementable
in practice.

In Abry et. al. [1] it has been shown that any anisotropic Besov space—defined
with respect to the cartesian axis—can “almost” be characterized with the help of
the so-called hyperbolic wavelet transform. The anisotropy of the signal can then
be detected using a uniform basis and is characterized by a special weight in the
wavelet coefficients. This has led to an efficient algorithm for image classification and
anisotropy detection applied to both synthetic and real textures (see [2,40]).

In this paperwe further develop this idea of describing anisotropywith the help of the
hyperbolic wavelet transform. For this reasonwe introduce a new family of anisotropic
function spaces which are defined via a hyperbolic Littlewood–Paley analysis and
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for which we prove exact characterization with hyperbolic wavelets. The motivation
behind this is to provide a general setting of anisotropic spaces characterized by one
single basis of wavelets and thus to understand how one such fixed basis can help to
describe anisotropic smoothness.

Concretely, we start with a hyperbolic Littlewood–Paley analysis defined as the
usual tensor product

� j̄ f := F−1[θ j1 ⊗ ...⊗ θ jdF f ] , j̄ = ( j1, . . . , jd) ∈ N
d
0 . (1)

This hyperbolic decomposition of the frequency space has been widely used for
the Fourier analytic definition of the well-known spaces with dominating mixed
smoothness, see [42,59] and the references therein. These spaces represent a suit-
able framework formultivariate appoximation, see [16,46] and the recent survey article
[12]. Themain ideas have been developed overmore than fifty years of intense research
in the former Soviet Union such that it is beyond the scope of this paper to name all
the relevant references (cf. [12]).

Based on the decomposition (1), we then define spaces ˜As,ᾱ
p,q(Rd) with A ∈ {B, F}

of Besov–Lizorkin-Triebel type involving an anisotropy vector ᾱ = (α1, . . . , αd) > 0
with

∑d
i=1 αi = d. As a special case (A = F , 1 < p <∞, q = 2), these include the

Sobolev type spaces ˜W s,ᾱ
p (Rd) := ˜Fs,ᾱ

p,2 (R
d), where

‖ f ‖
˜Fs,ᾱ

p,q (Rd )
:=

∥

∥

∥

(
∑

j̄∈Nd
0

2qs‖ j̄/ᾱ‖∞|� j̄ f (·)|q
)1/q∥

∥

∥

p
, f ∈ S ′(Rd) .

It is important to note that the anisotropy hereby only enters in the weight 2s‖ j̄/ᾱ‖∞ ,
where we use the short-hand notation ‖ j̄/ᾱ‖∞ := max{| j1|/α1, ..., | jd |/αd} for j̄ ∈
Z

d , but not in the choice of the Littlewood–Paley decomposition.
One of the main results of this paper is the coincidence (with respect to equivalent

norms)

˜W s,ᾱ
p (Rd) = W s,ᾱ

p (Rd) , if 1 < p <∞ , (2)

where the space on the right-hand side represents the classical anisotropic Sobolev
space defined in (4) below. This relation has already been observed for isotropic (i.e.
ᾱ = (1, ..., 1)) Hilbert-Sobolev spaces (p = 2) on the d-torus, see [13,25], as well
as on R

2 in [1]. Our result extends this observation to all 1 < p < ∞. Surprisingly,
such a coincidence in the spirit of (2) is only possible in the Sobolev case. To be more
precise, it holds

˜As,ᾱ
p,q(Rd) = As,ᾱ

p,q(Rd) if and only if A = F, 1 < p <∞, and q = 2.

As an important consequence of this equality (2), we can further prove that it is
possible to characterize (e.g. detect and classify) classical anisotropies described by
the spaces W s,ᾱ

p (Rd) via the wavelet coefficients of a universal hyperbolic wavelet
basis. Compared to the classical approach using anisotropic wavelets, this approach
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has the advantage that one does not need a-priori knowledge on the anisotropies,
otherwise required for constructing the “right” basis. In particular, our results entail
that any sufficiently regular orthonormal basis (ψ j̄,k̄) j̄,k̄ of tensorized waveletsψ j̄,k̄ =
ψ j1,k1⊗· · ·⊗ψ jd ,kd constitutes an unconditional Schauder basis for W s,ᾱ

p (Rd), whose
coefficients, measured in an appropriate corresponding sequence space, give rise to
an equivalent norm on W s,ᾱ

p (Rd), i.e. for f ∈ W s,ᾱ
p (Rd) with coefficients 〈 f , ψ j̄ ,k̄〉

‖ f ‖W s,ᾱ
p (Rd )

	
∥

∥

∥

(
∑

j̄∈Nd
0

22s‖ j̄/ᾱ‖∞
∣

∣

∣

∑

k̄∈Zd

〈 f , ψ j̄ ,k̄〉χ j̄,k̄(·)
∣

∣

∣

2)1/2∥
∥

∥

p
.

This is stated in Theorem 6.3. A similar result, see Theorem 6.4, holds true for the
hyperbolic Haar system Hd = (h j̄,k̄) j̄,k̄ , where h j̄,k̄ = h j1,k1 ⊗ · · · ⊗ h jd ,kd , under

the following restriction on the parameter s of the space W s,ᾱ
p (Rd),

|s|/αmin < min
{ 1

p
, 1− 1

p

}

.

In this direction, we would also like to mention the new and related findings of Oswald
in [36] on the Schauder basis property of the hyperbolic Haar system in the classic
isotropic Besov spaces defined via first-order moduli of smoothness.

At the center of our respective proofs, we will rely on discrete characterizations
provided by hyperbolic wavelets for the spaces ˜As,ᾱ

p,q(Rd), A ∈ {B, F}. These char-
acterizations are fundamental and established in separate theorems, Theorem 4.6
(Remark 4.5) and Theorem 5.4 (Remark 5.5), whereby we follow two paths. On
the one hand, we use the usual methodology and consider orthonormal wavelet bases
for which we assume sufficient smoothness, decay, and vanishing moments. As a
byproduct, we thereby significantly extend the wavelet characterizations in [57,59]
for Besov–Lizorkin-Triebel spaces with dominating mixed smoothness. On the other
hand, we use a hyperbolic Haar system, which does not fulfill smoothness conditions
as before but nevertheless allows for characterization in a certain restricted param-
eter range. Here we expect larger ranges for higher order spline wavelets (see e.g.
Section 2.5 and Remark 2.14 in the book [53]) but leave this investigation for the
future. The methodology developed here in context of the Haar wavelet will certainly
be useful.

Let us remark that analysis with the Haar wavelet has a long tradition (see e.g. [3,23,
39,48]), theHaarwavelet being the oldest and simplest orthonormalwavelet, conceived
as early as 1910 [27]. Besides its elegance and simplicity, notably its connection to the
Faber system [18] and other spline functions, such as e.g. the Chui-Wang wavelet [11],
makes it interesting from a numerical perspective (see also [15]). Fast implementations
are possible based on the fast Haar transform [29,38] and variations thereof (see e.g.
[10]). In particular in imaging science it plays an important role in practical applications
(here we refer to the survey [37]). Lastly, we would like to mention recent progress on
basis properties of Haar systems in multivariate Besov–Lizorkin-Triebel spaces (see
e.g. [22,36,43]). A short summary on this topic is given by Triebel in [54, Sect. 3.5]
(see especially Remarks 3.20 and 3.21 there).
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The paper has the following structure. After having recalled in Sect. 2 some
helpful Fourier analytic tools (in particular some classical maximal functions and
associated inequalities) as well as the definition of the classical (anisotropic) function
spaces As,ᾱ

p,q(Rd), where A ∈ {B, F}, we introduce in Sect. 3 the notion of hyperbolic
Littlewood–Paley analysis and the related Besov–Lizorkin-Triebel spaces ˜As,ᾱ

p,q(Rd).
Wavelet characterizations of these new hyperbolic spaces are the topic of Sects. 4
and 5, whereby we first resort to standard wavelets with sufficient smoothness, decay,
and vanishing moments in Sect. 4, while in Sect. 5 we utilize a hyperbolic Haar basis.
The relationship of the new scale to the traditional spaces is finally investigated in
Sects. 6 and 7. Specifically, in Sect. 6, we show the equality ˜W s,ᾱ

p (Rd) = W s,ᾱ
p (Rd),

i.e. ˜Fs,ᾱ
p,2 (R

d) = Fs,ᾱ
p,2 (R

d), in the range 1 < p <∞, from which we can then extract
our main theorems concerning hyperbolic wavelet characterizations of the classical
W s,ᾱ

p (Rd).
Let us agree on the following general notation.As usualN shall denote the natural

numbers. We further put N0 := N ∪ {0}, and let Z denote the integers, R the real
numbers, andC the complex numbers. ByT := R/2πZwe refer to the torus identified
with the interval [0, 2π ] ⊂ R. We write 〈x, y〉 or x · y for the Euclidean inner product
in R

d or Cd . The letter d is hereby always reserved for the underlying dimension
and by [d] we mean the set {1, ..., d}. For 0 < p ≤ ∞ and x ∈ R

d we define
‖x‖p := (

∑d
i=1 |xi |p)1/p, with the usual modification in the case p = ∞. If 1 ≤

p ≤ ∞ we set p′ such that 1/p + 1/p′ = 1. For 0 < p, q ≤ ∞ we further
denote σp,q := max{1/p − 1, 1/q − 1, 0} and σp := max{1/p − 1, 0}. We also
put x+ := ((x1)+, ..., (xd)+), whereby a+ := max{a, 0} for a ∈ R. Analogously we
define x−. By (x1, . . . , xd) > 0 we shall mean that each coordinate is positive. Finally,
as usual, a ∈ R is decomposed into a = a� + {a}, where 0 ≤ {a} < 1 and a� ∈ Z.
In case x ∈ R

d , {x} and x� are then meant component-wise. Multivariate indices are
typesetted with a bar, like e.g. k̄, j̄, 	̄, or m̄, to indicate the multi-index. In all the paper,
the multi-index ᾱ = (α1, ..., αd) > 0 thereby stands for an anisotropy and is such that
α1+...+αd = d. In addition,wehere use the abbreviationsαmin := min{α1, .., αd} and
αmax := max{α1, .., αd}. The notation j̄/ᾱ shall always stand for ( j1/α1, . . . , jd/αd).
Given a positive real a > 0, we further write aᾱ for the vector (aα1 , . . . , aαd ) and let
f (aᾱx) := f (aα1x1, . . . , aαd xd) be the anisotropically scaled version of the function
f : Rd → C. For two (quasi-)normed spaces X and Y , the (quasi-)norm of an
element x ∈ X will be denoted by ‖x‖X . The symbol X ↪→ Y indicates that the
identity operator is continuous. For two sequences an and bn we will write an � bn

if there exists a constant c > 0 such that an ≤ c bn for all n. We will write an 	 bn if
an � bn and bn � an .

2 Classical Spaces and Tools from Fourier Analysis

Let L p = L p(R
d), 0 < p ≤ ∞, be the Lebesgue space of all measurable functions

f : Rd → C such that

‖ f ‖p :=
(

∫

Rd
| f (x)|pdx

)1/p
<∞ ,
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with the usual modification if p = ∞. We will also need L p-spaces on compact
domains � ⊂ R

d instead of Rd and shall write ‖ f ‖L p(�) for the corresponding
restricted L p-(quasi-)norms.

For k ∈ N0, we denote by Ck
0 (R

d) the collection of all compactly supported func-
tions ϕ on R

d which have uniformly continuous derivatives Dγ̄ ϕ on R
d whenever

‖γ̄ ‖1 ≤ k. Additionally, we define the spaces of infinitely differentiable functions
C∞(Rd) and infinitely differentiable functions with compact support C∞0 (Rd) as
well as the Schwartz space S = S(Rd) of all rapidly decaying infinitely differentiable
functions on Rd , i.e.,

S(Rd) := {

ϕ ∈ C∞(Rd) : ‖ϕ‖k,	 <∞ for all k, 	 ∈ N0
}

,

and

‖ϕ‖k,	 :=
∥

∥

∥(1+ | · |)k
∑

‖γ̄ ‖1≤	

|Dγ̄ ϕ(·)|
∥

∥

∥∞ , k, 	 ∈ N0 .

The space S ′(Rd), the topological dual of S(Rd), is also referred to as the space of
tempered distributions on R

d . Indeed, a linear mapping f : S(Rd) → C belongs to
S ′(Rd) if and only if there exist numbers k, 	 ∈ N and a constant c = c f such that

| f (ϕ)| ≤ c f ‖ϕ‖k,	

for all ϕ ∈ S(Rd). If f ∈ S ′(Rd) is a regular distribution it can be identified with a
locally integrable function on Rd in the sense that

f (ϕ) =
∫

Rd
f (x)ϕ(x) dx , ϕ ∈ S(Rd) .

The space S ′(Rd) is equipped with the weak∗-topology.
For f ∈ L1(R

d) we define the Fourier transform

F f (ξ) = (2π)−d/2
∫

Rd
f (y)e−iξ ·ydy, ξ ∈ R

d ,

and the corresponding inverse Fourier transform F−1 f (ξ) = F f (−ξ). As usual,
the Fourier transform can be extended to S ′(Rd) by (F f )(ϕ) := f (Fϕ), where
f ∈ S ′(Rd) and ϕ ∈ S(Rd). The mapping F : S ′(Rd)→ S ′(Rd) is a bijection.
The convolution ϕ ∗ ψ of two square-integrable functions ϕ,ψ is defined via the

integral

(ϕ ∗ ψ)(x) =
∫

Rd
ϕ(x − y)ψ(y) dy .

If ϕ,ψ ∈ S(Rd) then ϕ ∗ψ still belongs to S(Rd). In fact, we have ϕ ∗ψ ∈ C∞(Rd)

with at most polynomial growth even if ϕ ∈ S(Rd) andψ ∈ L1(R
d). The convolution
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can be extended to S(Rd) × S ′(Rd) via (ϕ ∗ ψ)(x) = ψ(ϕ(x − ·)), which makes
sense pointwise and is a C∞-function on R

d .

2.1 Classical (an)isotropic Littlewood–Paley Analysis

Subsequently, ᾱ = (α1, ..., αd) > 0 will denote an anisotropy and be such that α1 +
...+ αd = d. Anisotropic Besov spaces may then be introduced using an anisotropic
Littlewood–Paley analysis depending on ᾱ. Classical isotropic spaces—as a particular
case of anisotropic spaces – will thereby be obtained for ᾱ = (1, 1, ..., 1).

Let ϕᾱ
0 ≥ 0 belong to the Schwartz class S(Rd) and be such that, for ξ =

(ξ1, ..., ξd) ∈ R
d ,

ϕᾱ
0 (ξ) = 1 if sup

i=1,2,...,d
|ξi | ≤ 1 ,

and ϕᾱ
0 (ξ) = 0 if sup

i=1,...,d
|2−αi ξi | ≥ 1 .

For j ∈ N, further define

ϕᾱ
j (ξ) := ϕᾱ

0 (2− j ᾱξ )− ϕᾱ
0 (2−( j−1)ᾱξ )

= ϕᾱ
0 (2− jα1ξ1, . . . , 2

− jαd ξd)− ϕᾱ
0 (2−( j−1)α1ξ1, . . . , 2−( j−1)αd ξd) .

Then
∑∞

j=0 ϕᾱ
j ≡ 1, and (ϕᾱ

j ) j≥0 is called ananisotropic resolution of unity. It satisfies

supp(ϕᾱ
0 ) ⊂ Rᾱ

1 , supp(ϕᾱ
j ) ⊂ Rᾱ

j+1 \ Rᾱ
j−1 ,

where Rᾱ
j =

{

ξ = (ξ1, . . . , ξd) ∈ R
d : |ξi | ≤ 2αi j for i ∈ [d] = {1, . . . , d}

}

.

(3)

For f ∈ S ′(Rd), we then define

�ᾱ
j f := F−1(ϕᾱ

j F f ) .

The sequence (�ᾱ
j f ) j≥0 is called an anisotropic Littlewood–Paley analysis of f . With

this tool, the anisotropic Besov spaces are now defined as follows (see [5,6]).

Definition 2.1 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, the Besov space Bs,ᾱ
p,q(Rd) is

defined by

Bs,ᾱ
p,q(Rd) =

{

f ∈ S ′(Rd) :
(
∑

j≥0
2 jsq‖�ᾱ

j f ‖q
p

)1/q
<∞

}

,

with the usual modification for q = ∞.
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This definition does not depend on chosen resolution of unity ϕᾱ
0 and the quantity

‖ f ‖Bs,ᾱ
p,q
=

(
∑

j≥0
2 jsq‖�ᾱ

j f ‖q
p

)1/q

is a norm (resp. quasi-norm) on Bs,ᾱ
p,q(Rd) for 1 ≤ p, q ≤ ∞ (resp. 0 < min{p, q} <

1) and with the usual modification if q = ∞.

As in the isotropic case, anisotropic Besov spaces encompass a large class of clas-
sical anisotropic function spaces (see [51] for details). For example, when p = q = 2,
the Besov spaces coincidewith the anisotropic Sobolev spaces and, when p = q = ∞,
the spaces Bs,ᾱ∞,∞(Rd) are called anisotropic Hölder spaces and are denoted by
Cs,ᾱ(Rd).

Definition 2.2 For 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, the Triebel-Lizorkin space
Fs,ᾱ

p,q (Rd) is defined by

Fs,ᾱ
p,q (Rd) =

{

f ∈ S ′(Rd) :
∥

∥

∥

(
∑

j≥0
2 jsq |�ᾱ

j f (·)|q
)1/q∥

∥

∥

p
<∞

}

,

with the usual modification for q = ∞.
This definition does not dependon the chosen resolution of unityϕᾱ

0 and the quantity

‖ f ‖Fs,ᾱ
p,q
=

∥

∥

∥

(
∑

j≥0
2 jsq |�ᾱ

j f (·)|q
)1/q∥

∥

∥

p

is a norm (resp. quasi-norm) on Fs,ᾱ
p,q (Rd) for 1 ≤ p < ∞ and 1 ≤ q ≤ ∞ (resp.

0 < min{p, q} < 1) and with the usual modification if q = ∞.

If q = 2 and 1 < p < ∞, the anisotropic Triebel-Lizorkin space coincides with
the anisotropic Sobolev space denoted by W s,ᾱ

p (Rd) :

W s,ᾱ
p =

{

f ∈ S ′(Rd) :
∥

∥

∥F−1
[(

d
∑

i=1
(1+ ξ2i )1/2αi

)sF f (ξ)
]∥

∥

∥

p
<∞

}

. (4)

Remark 2.3 (i) As mentioned before, if ᾱ = (1, ..., 1), it is easy to check that the
spaces Bs,ᾱ

p,q(Rd) (resp. Fs,ᾱ
p,q (Rd)) coincide with the classical spaces Bs

p,q(Rd) (resp.

Fs
p,q(Rd)). In addition, we have F0,ᾱ

p,2 (Rd) = L p(R
d) in the range 1 < p <∞.

(ii) Our understanding of anisotropic spaces coincides with the one in Triebel [51]
(see also the references therein). There are different (but related) notions of anisotropy
in the Russian literature, see Nikol’skij [35, Chapt. 4] or Temlyakov [46, II.3]. A con-
sequence of our Theorem 6.1 below is the fact that in case of W -spaces the mentioned
approaches coincide and lead to the same notion of anisotropy. However, in case of
Besov–Nikol’skij spaces this is in general not the case as for instance Theorem 7.1
shows.
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2.2 Maximal Inequalities

Let us provide here the maximal inequalities for the Hardy-Littlewood and Peetre
maximal functions as required later. For further details we refer to [59, Chapt. 1] or
[42, Chapt. 2] .

We need a direction-wise version of the classical Hardy-Littlewood maximal oper-
ator acting on the i-th variable. For a locally integrable function f : Rd → C we let
Mi f denote the (centered) Hardy-Littlewood type maximal function given by

(Mi f )(x) = sup
s>0

1

2s

∫ xi+s

xi−s
| f (x1, ..., xi−1, t, xi+1, ..., xd)| dt , x ∈ R

d . (5)

We further denote the composition of these operators by Me =∏

i∈e Mi , where e is a
subset of [d] = {1, . . . , d}, M	Mk has to be interpreted as M	 ◦ Mk , and the product
is taken in descending order of the elements of e.

The following variant of the Fefferman-Stein maximal inequality [19], i.e. the
vector-valued generalization of the classical Hardy-Littlewood maximal inequality,
is due to Stöckert [45] and valid in the direction-wise setting.

Theorem 2.4 ([45]) For 1 < p < ∞ and 1 < q ≤ ∞ there exists a constant c > 0
such that for any i ∈ [d]

∥

∥

∥

(
∑

	∈N
|Mi f	|q

)1/q∥
∥

∥

p
≤ c

∥

∥

∥

(
∑

	∈N
| f	|q

)1/q∥
∥

∥

p

holds for all sequences { f	}	∈N of locally Lebesgue-integrable functions on R
d .

Remark 2.5 Iteration of this theorem yields a similar boundedness property for the
operators Me with e ⊂ [d]. Furthermore, it should be noted that the uncentered
versions of these operators also have similar properties due to the relation

(Mi f )(x) ≤ sup
s,t>0

1

s + t

∫ xi+t

xi−s
| f (x1, ..., xi−1, u, xi+1, ..., xd)| du ≤ 2(Mi f )(x) .

The following construction of a maximal function is due to Peetre, Fefferman, and
Stein. Let b̄ = (b1, ..., bd) > 0, a > 0, and f ∈ L1(R

d) with F f compactly
supported. We define the Peetre maximal function Pb̄,a f by

Pb̄,a f (x) = sup
z∈Rd

| f (x − z)|
(1+ |b1z1|)a · ... · (1+ |bd zd |)a

. (6)

Details for the following lemma can be found in [42, 1.6.4].

Lemma 2.6 ([42, 1.6.4]) Let � ⊂ R
d be a compact set. Let further a > 0 and γ̄ =

(γ1, ..., γd) ∈ N
d
0 . Then there exist two constants c1, c2 > 0 (independent of f ) such
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that

P(1,...,1),a(Dγ̄ f )(x) ≤ c1P(1,...,1),a f (x)

≤ c2
(

Md
(

Md−1
(

...
(

M1| f |1/a)...
)))a

(x)
(7)

holds for all f ∈ L1(R
d) with supp (F f ) ⊂ � and all x ∈ R

d . The constants c1, c2
depend on �.

We finally give a vector-valued version of the Peetre maximal inequality which is a
direct consequence of Lemma 2.6 together with Theorem 2.4.

Theorem 2.7 Let 0 < p < ∞, 0 < q ≤ ∞ and a > max{1/p, 1/q}. Let further
b̄	 = (b	

1, ..., b	
d) > 0 for 	 ∈ N and � = {�	}	∈N, such that

�	 ⊂ [−b	
1, b	

1] × · · · × [−b	
d , b	

d ]

is compact for 	 ∈ N. Then there is a constant C > 0 (independent of f and �) such
that

∥

∥

∥

(
∑

	∈N
|Pb̄	,a f	|q

)1/q∥
∥

∥

p
≤ C

∥

∥

∥

(
∑

	∈N
| f	|q

)1/q∥
∥

∥

p

holds for all systems f = { f	}	∈N with supp (F f	) ⊂ �	, 	 ∈ N .

3 Hyperbolic Littlewood–Paley Analysis

Let θ0 ∈ S(R) be a non-negative function supported on [−2, 2] with θ0 = 1 on
[−1, 1]. For any j ∈ N, let us further define

θ j = θ0(2
− j ·)− θ0(2

−( j−1)·)

such that (θ j ) j is a univariate resolution of unity, i.e.,
∑

j≥0 θ j (·) = 1. Observe that,

for any j ≥ 1, supp(θ j ) ⊂ {2 j−1 ≤ |ξ | ≤ 2 j+1} and θ j = θ1(2−( j−1)·).
Remark 3.1 In the following, the function θ0 can be chosen with an arbitrary compact
support. It does not change the main results even if technical details of proofs and
lemmas have to be adapted. This allows to choose θ0 as the Fourier transform of a
Meyer scaling function.

Let us now come to themain concept of this paper, the hyperbolic Littlewood–Paley
analysis.

Definition 3.2 (i) For any j̄ = ( j1, ..., jd) ∈ N
d
0 and any ξ = (ξ1, ..., ξd) ∈ R

d set

θ j̄ (ξ1, ..., ξd) := θ j1(ξ1)θ j2(ξ2)...θ jd (ξd) .
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The function θ j̄ belongs to S(Rd) for all j̄ ∈ N
d
0 and is compactly supported on a

dyadic rectangle. Further
∑

j̄∈Nd
0
θ j̄ ≡ 1 and (θ j̄ ) j̄ is called a hyperbolic resolution

of unity.
(ii) For f ∈ S ′(Rd) and j̄ ∈ N

d
0 set

� j̄ f := F−1(θ j̄F f ) .

The sequence (� j̄ f ) j̄∈Nd
0
is called a hyperbolic Littlewood–Paley analysis of f .

We are now in the position to introduce new functional spaces called anisotropic
hyperbolic Besov spaces and anisotropic hyperbolic Triebel-Lizorkin spaces defined
via the hyperbolic Littlewood–Paley analysis.

Definition 3.3 For 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such
that

∑d
i=1 αi = d we define the anisotropic hyperbolic Besov space ˜Bs,ᾱ

p,q(Rd) via

˜Bs,ᾱ
p,q(Rd) =

{

f ∈ S ′(Rd) :
(

∑

j̄∈Nd
0

2‖( j1/α1,..., jd/αd )‖∞sq‖� j̄ f ‖q
p

)1/q
<∞

}

,

with the usual modification in case q = ∞. The quantity (with usual modification if
q = ∞)

‖ f ‖
˜Bs,ᾱ

p,q
:=

(
∑

j̄∈Nd
0

2‖( j1/α1,..., jd/αd )‖∞sq‖� j̄ f ‖q
p

)1/q

is a norm (resp. quasi-norm) on ˜Bs,ᾱ
p,q(Rd) for 1 ≤ p, q ≤ ∞ (resp. 0 < min{p, q} <

1).

Definition 3.4 For 0 < p <∞, 0 < q ≤ ∞, s ∈ R, ᾱ = (α1, . . . , αd) > 0 such that
∑

i αi = d we define the anisotropic hyperbolic Triebel-Lizorkin space via

˜Fs,ᾱ
p,q (Rd) =

{

f ∈ S ′(Rd) :
∥

∥

∥

(
∑

j̄∈Nd
0

2‖( j1/α1,..., jd/αd )‖∞sq |� j̄ f (·)|q
)1/q∥

∥

∥

p
<∞

}

,

with the usual modification in case q = ∞. The quantity (with usual modification if
q = ∞)

‖ f ‖
˜Fs,ᾱ

p,q
:=

∥

∥

∥

(
∑

j̄∈Nd
0

2‖( j1/α1,..., jd/αd )‖∞sq |� j̄ f (·)|q
)1/q∥

∥

∥

p

is a norm on ˜Fs,ᾱ
p,q (Rd) for 1 ≤ p < ∞, 1 ≤ q ≤ ∞ (resp. quasi-norm for 0 <

min{p, q} < 1).
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Remark 3.5 The definitions of anisotropic hyperbolic Besov and Triebel-Lizorkin
spaces given above do not depend on the chosen resolution of unity (θ j̄ ) j̄ . They include
four indices: s stands for the regularity, p is the integration parameter and q the so-
called fine-index. The parameter ᾱ = (α1, . . . , αd) encodes the present anisotropy:
the more αmin = min{α1, .., αd} is close to 0 and αmax = max{α1, ..., αd} is close to
d, the more we need directional smoothness in one axis compared to others. On the
other hand, if ᾱ = (1, ..., 1) the anisotropy becomes an “isotropy”.

Remark 3.6 By analogy with the classical spaces, if q = 2 and 1 < p <∞, ˜Fs,ᾱ
p,q (Rd)

is called anisotropic hyperbolic Sobolev space and is denoted by ˜W s,ᾱ
p (Rd). In case

ᾱ = (1, ..., 1) we write ˜W s
p(R

d).

Let us finally introduce classical spaces with dominating mixed smoothness in the
spirit of [42,59].

Definition 3.7 Let r ∈ R, 0 < p, q ≤ ∞ (p <∞ in the F-case).
(i) The Besov space with dominating mixed smoothness Sr

p,q B(Rd) is the collection
of all distributions f ∈ S ′(Rd) such that the following (quasi-)norm

‖ f ‖Sr
p,q B(Rd ) :=

(
∑

j̄∈Nd
0

2r‖ j̄‖1q‖� j̄ f ‖q
p

)1/q
is finite.

(ii) The Triebel-Lizorkin space with dominating mixed smoothness Sr
p,q F(Rd) is the

collection of all distributions f ∈ S ′(Rd) such that the following (quasi-)norm

‖ f ‖Sr
p,q F(Rd ) :=

∥

∥

∥

(
∑

j̄∈Nd
0

2r‖ j̄‖1q |� j̄ f (x)|q
)1/q∥

∥

∥

p
is finite.

(iii) If 1 < p < ∞ and r ∈ R then the Sobolev space with dominating mixed
smoothness Sr

pW (Rd) is the collection of all f ∈ S ′(Rd) such that

‖ f ‖Sr
p W :=

∥

∥

∥F−1
[

d
∏

i=1
(1+ |ξi |2)r/2F f

]∥

∥

∥

p
is finite.

Let us also state a useful Fourier multiplier theorem, see [59, Thm. 1.12] or [42, p.
77].

Lemma 3.8 ([42,59]) Let 0 < p < ∞, 0 < q ≤ ∞, and r > 1
min(p,q)

+ 1
2 . Further,

let {�k̄}k̄∈Nd
0

be a sequence of compact subsets of Rd such that

�k̄ ⊂
{

x ∈ R
d : |xi | ≤ 2ki , i = 1, . . . , d

}

.
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Then, there is a positive constant C > 0 such that

∥

∥

∥

(
∑

k̄∈Nd
0

∣

∣

∣F−1[ρk̄F fk̄](·)
∣

∣

∣

q) 1
q
∥

∥

∥

p
≤ C

∥

∥

∥

(
∑

k̄∈Nd
0

| fk̄(·)|q
) 1

q
∥

∥

∥

p

× sup
	̄∈Nd

0

‖ρ	̄(2
	1 ·, . . . , 2	d ·)‖Sr

2W

holds for all systems { fk̄}k̄∈Nd
0
∈ L p(	q) with supp (F fk̄) ⊂ �k̄ and all systems

{ρk̄}k̄∈Nd
0
⊂ Sr

2W (Rd).

4 Hyperbolic Wavelet Analysis

In this section we prove hyperbolic wavelet characterizations of the spaces ˜Bs,ᾱ
p,q(Rd)

and ˜Fs,ᾱ
p,q (Rd) defined in Definitions 3.3 and 3.4, respectively. It should be noted that

the proof technique used for Theorem 4.6 below also represents a progress towards
new optimal wavelet characterizations of Besov–Lizorkin-Triebel spaces with dom-
inating mixed smoothness, which extends the results in [59, Sect. 2.4] significantly,
see Remark 4.8 below.

Let us start with univariate orthogonal wavelets given by a scaling functionψ0 and a
corresponding waveletψ . These functions are supposed to satisfy ‖ψ0‖2 = ‖ψ‖2 = 1
and the following (minimal) conditions:

(K) It holds ψ0, ψ ∈ C K (R). For any M ∈ N there is a constant CM > 0 such that
for all 0 ≤ α ≤ K it holds

|Dαψ0(x)| + |Dαψ(x)| ≤ CM (1+ |x |)−M , x ∈ R .

(L) The wavelet ψ has vanishing moments up to order L − 1: For L > β ∈ N0 it
holds

∫

R

ψ(x)xβ dx = 0 .

In case L = 0 the condition is void.

We shall denote

ψ j,k := 1√
2
ψ(2 j−1 · −k) , j ∈ N, k ∈ Z ,

and ψ0,k := ψ0(· − k). In addition, we set ψ j,k ≡ 0 if j < 0, so that each f ∈ L2(R)

has the expansion
∑

j,k∈Z 2| j |〈 f , ψ j,k〉L2ψ j,k . To obtain the hyperbolic wavelet basis

in L2(R
d) we tensorize over all scales and obtain

ψ j̄,k̄(x1, ..., xd) := ψ j1,k1(x1) · ... · ψ jd ,kd (xd) ,
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x = (x1, ..., xd) ∈ R
d , j̄ ∈ Z

d , k̄ ∈ Z
d .

The following lemma recalls a useful convolution relation. Let us clarify the nota-
tion first. For a given univariate function � we will use the notation � j (·) :=
2 j−1�(2 j−1·), j ∈ N. �0 is typically defined separately, and � j ≡ 0 if j < 0.
For j ∈ Z, we will further put x j,m := 2− j m and I j,m := [2− j m, 2− j (m + 1)) with
associated characteristic function χ j,m := 1I j,m .

Lemma 4.1 Let �0,� ∈ S(R) with � having infinitely many vanishing moments, i.e.,

∫

R

�(x)xβ dx = 0

for all β ∈ N . Let further ψ0 and ψ satisfy (K ) and (L) as above and R > 0 be a
given real number. Then it exists a constant CR > 0 such that for any j ∈ N0 and
	, m ∈ Z the convolution relation

|(� j ∗ ψ j+	,m)(x)| ≤ CR2
−Nsign(	)|	|(1+ 2min{ j, j+	}|x − x j+	,m |)−R

holds true with sign(	) ∈ {+,−, 0} and N0 := 0, N+ := L + 1 and N− := K .

Proof The above lemma is a special case of a more general convolution relation, see
for instance [24, p. 466] for the most general version. Originally, this relation is due
to Frazier, Jawerth [20, Lem. 3.3], [21, Lem. B.1, B.2]. ��

Lemma 4.1 immediately implies the following multivariate version by exploiting
the tensor product structure. Similar as for the hyperbolic wavelet system, we use the
notation

� j̄ (x) := � j1(x1) · ... ·� jd (xd) , x ∈ R
d , j̄ ∈ Z

d .

In the sequel we will further need the notation

Q j̄,m̄ := I j1,m1 × . . .× I jd ,md and χ j̄,m̄(x1, ..., xd ) := χ j1,m1(x1) · ... · χ jd ,md (xd) , (8)

with the notation I ji ,mi and χ ji ,mi , i ∈ [d] = {1, . . . , d}, introduced right before
Lemma 4.1.

Lemma 4.2 Let �,�0, ψ0, ψ as in Lemma 4.1. For any R > 0 there exists a contant
CR > 0 such that for any j̄ ∈ N

d
0 and 	̄, m̄ ∈ Z

d the convolution relation

|(� j̄ ∗ ψ j̄+	̄,m̄)(x)| ≤ CR

d
∏

i=1
2−Nsign(	i )|	i |(1+ 2min{ ji , ji+	i }|xi − 2−( ji+	i )mi |)−R

(9)

holds true with sign(	i ) ∈ {+,−, 0} and N0 := 0, N+ := L + 1 and N− := K .
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The next proposition is also crucial and represents a “hyperbolic version” of [30,
Lem. 3.7]. An isotropic version is originally due to Kyriazis [32, Lem. 7.1]. For the
convenience of the reader we give a proof.

Proposition 4.3 Let 0 < r ≤ 1 and R > 1/r . For any sequence (λm̄)m̄∈Zd of complex
numbers and any j̄, 	̄ ∈ Z

d we have, using the notation 	̄+ = ((	1)+, . . . , (	d)+),

∑

m̄∈Zd

|λm̄ |
d
∏

i=1

(

1+ 2min{ ji , ji+	i }|xi − 2−( ji+	i )mi |
)−R

� 2‖	̄+‖1/r
[

M[d]
∣

∣

∣

∑

m̄∈Zd

λm̄χ j̄+	̄,m̄

∣

∣

∣

r]1/r
(x) , x ∈ R

d ,

where M[d] =
d
∏

i=1
Mi stands for the iterated Hardy-Littlewood maximal operator

(see (5)).

Proof For d = 1 the statement is equivalent to the original result from Kyriazis [32,
Lem. 7.1] in one dimension. Subsequently, the case d > 1 is proved by induction on
d. Thereby, given x = (x1, . . . , xd) ∈ R

d , we use the notation x[d−1] for the vector
(x1, . . . , xd−1) ∈ R

d−1. In the same manner, we define j̄[d−1], 	̄[d−1], and m̄[d−1].
Using the statement for d = 1 yields

∑

m̄∈Zd

|λm̄ |
d
∏

i=1

(

1+ 2min{ ji , ji+	i }|xi − 2−( ji+	i )mi |
)−R

=
∑

md∈Z
λ̃md [x[d−1]]

(

1+ 2min{ jd , jd+	d }|xd − 2−( jd+	d )md |
)−R

� 2
|(	d )+|

r

[

Md

∣

∣

∣

∑

md∈Z
λ̃md [x[d−1]]χ jd+	d ,md

∣

∣

∣

r
] 1

r

(xd) ,

(10)

where for md ∈ Z

λ̃md [x[d−1]] :=
∑

m̄[d−1]∈Zd−1
|λm̄ |

d−1
∏

i=1

(

1+ 2min{ ji , ji+	i }|xi − 2−( ji+	i )mi |
)−R

.

Based on the induction hypothesis, we further have

∑

md∈Z
λ̃md [x[d−1]]χ jd+	d ,md (·)

=
∑

m̄[d−1]∈Zd−1

(

∑

md∈Z
|λm̄ |χ jd+	d ,md (·)

) d−1
∏

i=1

(

1+ 2min{ ji , ji+	i }|xi − 2−( ji+	i )mi |
)−R
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� 2
‖(	̄[d−1])+‖1

r

[

M[d−1]
∣

∣

∣

∑

m̄[d−1]∈Zd−1

(

∑

md∈Z
|λm̄ |χ jd+	d ,md (·)

)

χ( j̄+	̄)[d−1],m̄[d−1]

∣

∣

∣

r
] 1

r

(x[d−1])

= 2
‖(	̄[d−1])+‖1

r

[

M[d−1]
∣

∣

∣

∑

m̄∈Zd

λm̄χ j̄+	̄,m̄

∣

∣

∣

r
] 1

r

(x[d−1], ·) .

In view of the monotonicity of the operator Md , inserting this inequality into the last
line of (10) directly leads to the desired assertion. ��

Before stating our main result we need a further definition.

Definition 4.4 Let 0 < q ≤ ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
d
∑

i=1
αi =

d.
(i) If 0 < p <∞we define the sequence space f̃ s,ᾱ

p,q as the collection of all sequences
(λ j̄,k̄) j̄∈Nd

0 ,k̄∈Zd ⊂ C such that the (quasi-)norm (usual modification in case q = ∞)

‖(λ j̄,k̄) j̄∈Nd
0 ,k̄∈Zd‖ f̃ s,ᾱ

p,q

:=
∥

∥

∥

(
∑

j̄∈Nd
0

2‖( j1/α1,..., jd/αd )‖∞sq
∣

∣

∣

∑

k̄∈Zd

λ j̄,k̄χ j̄,k̄(·)
∣

∣

∣

q)1/q∥
∥

∥

p
is finite.

(ii) If 0 < p ≤ ∞we define the sequence space b̃s,ᾱ
p,q as the collection of all sequences

(λ j̄,k̄) j̄∈Nd
0 ,k̄∈Zd ⊂ C such that the (quasi-)norm (usual modification in case q = ∞)

‖(λ j̄,k̄) j̄∈Nd
0 ,k̄∈Zd‖b̃s,ᾱ

p,q

:=
(

∑

j̄∈Nd
0

2‖( j1/α1,..., jd/αd )‖∞sq
∥

∥

∥

∑

k̄∈Zd

λ j̄,k̄χ j̄,k̄(·)
∥

∥

∥

q

p

)1/q
is finite.

Now we are ready to state the wavelet characterization of the space ˜Fs,ᾱ
p,q (Rd) .

Recall that for 0 < p, q ≤ ∞ we put

σp,q := max{1/p − 1, 1/q − 1, 0} and σp := max{1/p − 1, 0} .

Remark 4.5 The theorem below states the result for the F-scale of spaces ˜Fa,ᾱ
p,q (Rd).

As for the corresponding result for the Besov type spaces ˜Bs,ᾱ
p,q(Rd), we simply replace

condition (11) on K , L by

K , L > σp + |s|/αmin

and use the corresponding sequence spaces b̃s,ᾱ
p,q .
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Theorem 4.6 Let 0 < p < ∞, 0 < q ≤ ∞, s ∈ R, ᾱ = (α1, . . . , αd) > 0 with
∑d

i=1 αi = d. Let further ψ0, ψ be wavelets satisfying (K) and (L) above with

K , L > σp,q + |s|/αmin. (11)

Then any f ∈ S ′(Rd) belongs to ˜Fs,ᾱ
p,q (Rd) if and only if it can be represented as

f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄ψ j̄,k̄ (12)

with (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,q and the sum converging inS ′(Rd) with respect to some ordering.

For each f ∈ ˜Fs,ᾱ
p,q (Rd) the convergence of the representation (12) is then even

unconditional. Moreover, if q <∞, the sum also converges in ˜Fs,ᾱ
p,q (Rd) and (ψ j̄,k̄) j̄,k̄

constitutes an unconditional basis in ˜Fs,ᾱ
p,q (Rd). The sequence of coefficients λ( f ) :=

(λ j̄,k̄) j̄,k̄ is uniquely determined via

λ j̄,k̄ = 2‖ j̄‖1〈 f , ψ j̄ ,k̄〉 (13)

and we have the wavelet isomorphism (equivalent (quasi-)norm)

‖ f ‖
˜Fs,ᾱ

p,q (Rd )
	 ‖λ( f )‖ f̃ s,ᾱ

p,q
, f ∈ ˜Fs,ᾱ

p,q (Rd) .

Remark 4.7 Following [34, Prop. 3.20], the dual pairing of f ∈ S ′(Rd) and ψ j̄,k̄ ∈
C K (Rd) in (13) has to be understood in the way (for a justification see Corollary 4.10
below)

〈 f , ψ〉 :=
∑

j̄∈Nd
0

〈� j̄ ∗ f ,� j̄ ∗ ψ〉L2(Rd ) . (14)

Here we choose � j̄ := F−1θ j̄ and � j̄ := F−1λ j̄ such that
∑

j̄∈Nd
0
θ j̄λ j̄ ≡ 1 (as e.g.

in (28)). Using elementary estimates and the Nikol’skij inequality in case p < 1, one
can show

˜Fs,ᾱ
p,q (Rd) ↪→ ˜Bs,ᾱ

p,∞(Rd) ↪→ S
−|s|/αmin−σp
max{p,1},∞ B(Rd) .

Setting sᾱ,p := |s|/αmin + σp and p̃ := max{p, 1} we obtain

|〈 f , ψ〉| ≤
∑

j̄∈Nd
0

‖� j̄ ∗ f ‖ p̃‖� j̄ ∗ ψ‖ p̃′

≤ sup
j̄∈Nd

0

2−sᾱ,p‖ j̄‖1‖� j̄ ∗ f ‖ p̃ ·
∑

j̄∈Nd
0

2sᾱ,p‖ j̄‖1‖� j̄ ∗ ψ‖ p̃′

� ‖ f ‖
S
−sᾱ,p
p̃,∞ B(Rd )

· ‖ψ‖
S

sᾱ,p
p̃′,1 B(Rd )

,
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where the right-hand side is finite due to (11) and (9). In other words, f ∈ ˜Fs,ᾱ
p,q (Rd)

generates a (conjugate) linear functional on the Banach space S
sᾱ,p

p̃′,1B(Rd).

Remark 4.8 As we will see below, our arguments apply as well to classical spaces of
dominating mixed smoothness Sr

p,q B(Rd) and Sr
p,q F(Rd), defined in Definition 3.7

above. Examining the proof, we obtain for the relation

‖ f ‖Sr
p,q F(Rd ) � ‖λ( f )‖sr

p,q f ,

where sr
p,q f is the sequence space associated to Sr

p,q F (for a definition see [59,
Def. 2.1]), the condition

L > σp,q − r and K > r . (15)

The converse relation holds under the condition

K > σp,q − r and L > r .

For the spaces Sr
p,q B(Rd) we replace σp,q by σp and sr

p,q f by sr
p,qb, which is the

sequence space associated to Sr
p,q B (for a definition see [59, Def. 2.1]).

Proof of Theorem 4.6 Step 1. We consider the sum

f :=
∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄ψ j̄,k̄ (16)

with λ := (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,q and show the relation

‖ f ‖
˜Fs,ᾱ

p,q (Rd )
� ‖λ‖ f̃ s,ᾱ

p,q
.

For the issues on the convergence and uniqueness of (16) and (13) we refer to Step 3
and 4 below, where we show that under the assumption (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ

p,q the element

f is well defined, with unconditional convergence of (16) at least in S ′(Rd), which is
sufficient for the subsequent considerations.

Let us consider � j̄ f for some chosen hyperbolic Littlewood–Paley analysis. This

gives for fixed j̄ ∈ N
d
0

2‖ j̄/ᾱ‖∞s |� j̄ f (x)| ≤
∑

	̄∈Zd

2‖ j̄/ᾱ‖∞s
∣

∣

∣� j̄ ∗
(
∑

k̄∈Zd

λ j̄+	̄,k̄ψ j̄+	̄,k̄

)

(x)

∣

∣

∣ ,
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where λ j̄+	̄,k̄ := 0 whenever ji + 	i < 0 for at least one index i ∈ {1, . . . , d},
� j̄ := F−1θ j̄ and (θ j̄ ) j̄ is the system from Definition 3.2. With u := min{p, q, 1}

‖ f ‖
˜Fs,ᾱ

p,q (Rd )
= ∥

∥2‖ j̄/ᾱ‖∞s� j̄ f (·)∥∥L p(	q )

�
(
∑

	̄∈Zd

∥

∥

∥2‖ j̄/ᾱ‖∞s� j̄ ∗
(
∑

k̄∈Zd

λ j̄+	̄,k̄ψ j̄+	̄,k̄

)

(·)
∥

∥

∥

u

L p(	q [ j̄])

)1/u
.
(17)

With the help of Lemma 4.2 we are aiming for pointwise estimates first.

∣

∣

∣� j̄ ∗
(
∑

k̄∈Zd

λ j̄+	̄,k̄ψ j̄+	̄,k̄

)

(x)

∣

∣

∣

≤
∑

k̄∈Zd

|λ j̄+	̄,k̄ | · |(� j̄ ∗ ψ j̄+	̄,k̄)(x)|

�
(

d
∏

i=1
2−Nsign(	i )|	i |

)
∑

k̄∈Zd

|λ j̄+	̄,k̄ |
d
∏

i=1
(1+ 2min{ ji , ji+	i }|xi − 2−( ji+	i )ki |)−R ,

where we choose R > 1/r with r < min{1, p, q} = u. Note that, due to condition
(K ) for the wavelet and Lemma 4.2, we can choose R > 0 arbitrarily large. This
allows for estimating with the help of Proposition 4.3

∣

∣

∣� j̄ ∗
(
∑

k̄∈Zd

λ j̄+	̄,k̄ψ j̄+	̄,k̄

)

(x)

∣

∣

∣

� 2−〈N̄sign(	̄),|	̄|〉2‖	̄+‖1/r
[

M[d]
∣

∣

∣

∑

k̄∈Zd

λ j̄+	̄,k̄χ j̄+	̄,k̄(·)
∣

∣

∣

r]1/r
(x) .

Hereby we use the short-hand notation 	̄+ := ((	1)+, . . . , (	d)+) and

〈N̄sign(	̄), |	̄|〉 :=
d

∑

i=1
Nsign(	i )|	i | .

Plugging this estimate into (17) gives

‖ f ‖
˜Fs,ᾱ

p,q (Rd )
�
(
∑

	̄∈Zd

2−u〈N̄sign(	̄),|	̄|〉2u‖	̄+‖1/r

∥

∥

∥2−‖( j̄+	̄)/ᾱ‖∞s2‖ j̄/ᾱ‖∞s
[

M[d]
∣

∣

∣2‖( j̄+	̄)/ᾱ‖∞s

∑

k̄∈Zd

λ j̄+	̄,k̄χ j̄+	̄,k̄

∣

∣

∣

r]1/r
(·)

∥

∥

∥

u

L p(	q [ j̄])

) 1
u

.
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Clearly, if s ≥ 0 then ‖( j̄ + 	̄)/ᾱ‖∞s ≥ ‖ j̄/ᾱ‖∞s − ‖	̄/ᾱ‖∞s and hence

2−‖( j̄+	̄)/ᾱ‖∞s2‖ j̄/ᾱ‖∞s ≤ 2‖	̄/ᾱ‖∞|s| . (18)

In addition, if s < 0 we also obtain (18) via the usual 	∞-triangle inequality.
Putting this into the previous estimate, using the vector-valued Hardy-Littlewood

maximal inequality (Theorem 2.4 and Remark 2.5) for the space L p/r (	q/r [ j̄]), we
obtain

‖ f ‖
˜Fs,ᾱ

p,q (Rd )
�
(
∑

	̄∈Zd

2−u〈N̄sign(	̄),|	̄|〉2u‖	̄+‖1/r2u‖	̄/ᾱ‖∞|s|

∥

∥

∥2‖( j̄+	̄)/ᾱ‖∞s
∣

∣

∣

∑

k̄∈Zd

λ j̄+	̄,k̄χ j̄+	̄,k̄

∣

∣

∣

∥

∥

∥

u

L p(	q [ j̄])

)1/u

�‖λ‖ f̃ s,ᾱ
p,q

(
∑

	̄∈Zd

2−u〈N̄sign(	̄),|	̄|〉2u‖	̄+‖1/r2u‖	̄/ᾱ‖1|s|
)1/u

.

The sum over 	̄ converges if L+1 = N+ > 1/r+|s|/αmin and K = N− > |s|/αmin .

Step 2. Let us prove the converse relation ‖λ( f )‖ f̃ s,ᾱ
p,q

� ‖ f ‖
˜Fs,ᾱ

p,q (Rd )
with

λ( f ) = (2‖ j̄‖1〈 f , ψ j̄ ,k̄〉) j̄,k̄ and start with f ∈ ˜Fs,ᾱ
p,q (Rd). As already pointed out

in Remark 4.7, the dual pairing 〈 f , ψ j̄ ,k̄〉 makes sense due to condition (11). Our
estimation begins as follows,

|2‖ j̄‖1〈 f , ψ j̄,k̄〉| ≤
∑

	̄∈Zd

|2‖ j̄‖1〈� j̄+	̄ ∗ f ,� j̄+	̄ ∗ ψ j̄,k̄〉|

≤
∑

	̄∈Zd

∑

m̄∈Zd

∣

∣

∣

∫

Q j̄+	̄,m̄

(� j̄+	̄ ∗ f )(y)2‖ j̄‖1(� j̄+	̄ ∗ ψ j̄,k̄)(y) dy
∣

∣

∣

≤
∑

	̄∈Zd

∑

m̄∈Zd

|θ j̄+	̄,m̄( f )|
∫

Q j̄+	̄,m̄

2‖ j̄‖1 |(� j̄+	̄ ∗ ψ j̄,k̄)(y)| dy ,

(19)

where � j̄+	̄ = � j̄+	̄ = 0 whenever ji + 	i < 0 for at least one index i ∈ {1, . . . , d}
and

θ j̄+	̄,m̄( f ) := sup
y∈Q j̄+	̄,m̄

|(� j̄+	̄ ∗ f )(y)| . (20)

We next estimate the integral, as in Step 1 with the help of Lemma 4.2. Here we have
to be particularly careful with the normalization factors. Note that, compared to (9),
the signs of the components of 	̄ in the convolution � j̄+	̄ ∗ ψ j̄,k̄ change the role.

This is why this time the factor 2−〈N̄sign(−	̄),|	̄|〉 appears and why we put M0 := 0,
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M− := L , M+ := K + 1 and M̄sign(	̄) := (Msign(	1), . . . , Msign(	d )). We then obtain
for z = (z1, . . . , zd) ∈ Q j̄,k̄ the estimate

∫

Q j̄+	̄,m̄

2‖ j̄‖1 |(� j̄+	̄ ∗ ψ j̄,k̄)(y)| dy

� sup
y∈Q j̄+	̄,m̄

2−〈N̄sign(−	̄),|	̄|〉
d
∏

i=1
2−	i (1+ 2min{ ji , ji+	i }|yi − 2− ji ki |)−R

� 2−〈N̄sign(−	̄)+sgn(	̄),|	̄|〉
d
∏

i=1
(1+ 2min{ ji , ji+	i }|2−( ji+	i )mi − 2− ji ki |)−R

� 2−〈M̄sign(	̄),|	̄|〉
d
∏

i=1
(1+ 2min{ ji , ji+	i }|2−( ji+	i )mi − zi |)−R .

This together with (19) and Proposition 4.3 yields for r < min{p, q, 1} = u and
z ∈ R

d

∑

k̄∈Zd

|2‖ j̄‖1〈 f , ψ j̄,k̄〉|χ j̄,k̄(z)

�
∑

	̄∈Zd

2−〈M̄sign(	̄),|	̄|〉
∑

m̄∈Zd

|θ j̄+	̄,m̄( f )|
d
∏

i=1
(1+ 2min{ ji , ji+	i }|2−( ji+	i )mi − zi |)−R

�
∑

	̄∈Zd

2−〈M̄sign(	̄),|	̄|〉2‖	̄+‖1/r
[

M[d]
∣

∣

∣

∑

m̄∈Zd

θ j̄+	̄,m̄( f )χ j̄+	̄,m̄(·)
∣

∣

∣

r]1/r
(z) .

This leads to

2‖ j̄/ᾱ‖∞s
∑

k̄∈Zd

|2‖ j̄‖1〈 f , ψ j̄,k̄〉|χ j̄,k̄

�
∑

	̄∈Zd

2‖	̄+‖1/r−〈M̄sign(	̄),|	̄|〉+‖ j̄/ᾱ‖∞s−‖( j̄+	̄)/ᾱ‖∞s
[

M[d]
∣

∣

∣2‖( j̄+	̄)/ᾱ‖∞

∑

m̄∈Zd

θ j̄+	̄,m̄( f )χ j̄+	̄,m̄(·)
∣

∣

∣

r] 1
r

.
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Taking the L p(	q [ j̄])-(quasi-)norm on both sides and using (18) oncemore, we obtain

∥

∥

∥2‖ j̄/ᾱ‖∞s
∑

k̄∈Zd

|2‖ j̄‖1〈 f , ψ j̄,k̄〉|χ j̄,k̄

∥

∥

∥

L p(	q [ j̄])

�
(
∑

	̄∈Zd

2−u〈M̄sign(	̄),|	̄|〉2u‖	̄+‖1/r2u‖	̄/ᾱ‖∞|s|×

×
∥

∥

∥

[

M[d]
∣

∣

∣2‖( j̄+	̄)/ᾱ‖∞s
∑

m̄∈Zd

θ j̄+	̄,m̄( f )χ j̄+	̄,m̄(·)
∣

∣

∣

r]1/r∥
∥

∥

u

L p(	q [ j̄])

)1/u
.

(21)

Due to r < min{1, p, q} = u we can apply the vector-valued Hardy-Littlewood
maximal inequality (Theorem 2.4 and Remark 2.5) and obtain

∥

∥

∥

[

M[d]
∣

∣

∣2‖( j̄+	̄)/ᾱ‖∞s
∑

m̄∈Zd

θ j̄+	̄,m̄( f )χ j̄+	̄,m̄

∣

∣

∣

r]1/r∥
∥

∥

L p(	q [ j̄])

�
∥

∥

∥2‖ j̄/ᾱ‖∞s
∑

m̄∈Zd

θ j̄,m̄( f )χ j̄,m̄

∥

∥

∥

L p(	q )
.

From (20) we obtain for any z ∈ Q j̄,m̄ and any a > 0

|θ j̄,m̄( f )| = sup
y∈Q j̄,m̄

|(� j̄ ∗ f )(y)| � sup
y∈Rd

|(� j̄ ∗ f )(y)|
d
∏

i=1
(1+ 2 ji |zi − yi |)a

= P2 j̄ ,a(� j̄ ∗ f )(z) ,

where we used the definition of the Peetre maximal function in (6). Choosing a >

max{ 1p , 1
q }with the corresponding maximal inequality in Theorem 2.7 then yields the

relation
∥

∥

∥2‖ j̄/ᾱ‖∞s
∑

m̄∈Zd

θ j̄,m̄( f )χ j̄,m̄

∥

∥

∥

L p(	q )
� ‖P2 j̄ ,a(2‖ j̄/ᾱ‖∞s� j̄ ∗ f )‖L p(	q )

� ‖2‖ j̄/ᾱ‖∞s� j̄ ∗ f ‖L p(	q ) 	 ‖ f ‖
˜Fs,ᾱ

p,q (Rd )
.

Returning to (21), we have seen

∥

∥

∥2‖ j̄/ᾱ‖∞s
∑

k̄∈Zd

|2‖ j̄‖1〈 f , ψ j̄,k̄〉|χ j̄,k̄

∥

∥

∥

L p(	q [ j̄])

� ‖ f ‖
˜Fs,ᾱ

p,q (Rd )

(
∑

	̄∈Zd

2−u〈M̄sign(	̄),|	̄|〉2u‖	̄+‖1/r2u‖	̄/ᾱ‖∞|s|
)1/u

.

It remains to discuss the sum over 	̄. It is easy to see that it converges if K + 1 =
M+ > 1/r + |s|/αmin and L = M− > |s|/αmin. Recall that r is chosen such that
r < min{1, p, q}.
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Step 3. Let us now clarify the convergence issues in (12) in case q < ∞. The
arguments in Step 1 above show in particular for a finite partial summation of (12)
that

∥

∥

∥

∑

j̄

∑

k̄

λ j̄,k̄ψ j̄,k̄

∥

∥

∥

˜Fs,ᾱ
p,q (Rd )

�
∥

∥

∥

(
∑

j̄

2‖ j̄/ᾱ‖∞sq
∣

∣

∣

∑

k̄

λ j̄,k̄χ j̄,k̄

∣

∣

∣

q)1/q∥
∥

∥

p
.

If q < ∞ (note that p < ∞ anyway) we use Lebesgue’s dominated convergence
theorem to conclude the unconditional convergence of (12) in ˜Fs,ᾱ

p,q (Rd). The required
majorant is thereby given by

‖(λ j̄,k̄) j̄∈Nd
0 ,k̄∈Zd‖ f̃ s,ᾱ

p,q
<∞.

In case q = ∞ we use the observation in Remark 4.8. From a simple application of
Hölder’s inequality (with respect to the sum over j̄) we first obtain for any ε > 0 the
relation

‖(λ j̄,k̄) j̄∈Nd
0 ,k̄∈Zd‖sr(s,ᾱ)−ε

p,1 f
� ‖(λ j̄,k̄) j̄∈Nd

0 ,k̄∈Zd‖ f̃ s,ᾱ
p,∞ with r(s, ᾱ) := −|s|/αmin .

(22)

Choosing ε > 0 small enough, we then obtain from (11) that condition (15) in
Remark 4.8 is satisfied. Hence, for a finite partial summation of (12) we have

∥

∥

∥

∑

j̄

∑

k̄

λ j̄,k̄ψ j̄,k̄

∥

∥

∥

Sr(s,α)−ε
p,1 F(Rd )

�
∥

∥

∥

∑

j̄

2(r(s,ᾱ)−ε)‖ j̄‖1 ∑

k̄

|λ j̄,k̄ |χ j̄,k̄

∥

∥

∥

p
.

Again, by Lebesgue’s dominated convergence theorem (the majorant given by (22))
we see the unconditional convergence of (12) in the space Sr(s,α)−ε

p,1 F(Rd). Taking the

embedding Sr(s,α)−ε
p,1 F(Rd) ↪→ S ′(Rd) into account, we actually proved more than

stated in the theorem.
Step 4. It remains to prove (12) for f ∈ ˜Fs,ᾱ

p,q (Rd) and coefficients λ j̄,k̄( f ) =
2‖ j̄‖1〈 f , ψ j̄,k̄〉 chosen as in (13). From Steps 1, 2, 3 above we have learned that

{λ j̄,k̄( f )} j̄,k̄ ∈ f̃ s,ᾱ
p,q , which implies that the sum

∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄( f )ψ j̄,k̄

converges (at least in) S ′(Rd) to an element g ∈ S ′(Rd). We now prove that f (ϕ) =
g(ϕ) for all ϕ ∈ S(Rd). Fix ϕ ∈ S(Rd), then clearly ϕ̄ ∈ L2(R

d) and we have

ϕ̄ =
∑

j̄∈Nd
0

∑

k̄∈Zd

2‖ j̄‖1〈ϕ̄, ψ j̄,k̄〉ψ j̄,k̄ (23)
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with convergence in L2(R
d). Since ϕ̄ ∈ S

sᾱ,p

p̃′,1B(Rd) we have by Step 1, 2, 3 above

that the right-hand side of (23) converges in S
sᾱ,p

p̃′,1B(Rd) to some η ∈ S
sᾱ,p

p̃′,1B(Rd).

Hence, we have ϕ̄ = η in S ′(Rd) which finally gives ϕ̄ = η almost everywhere and,
in other words, (23) holds true in S

sᾱ,p

p̃′,1B(Rd). Then f (ϕ) can be rewritten as follows,
using Corollary 4.10 and the continuity of 〈 f , ·〉 (see Remark 4.7),

f (ϕ) = 〈 f , ϕ̄〉 =
〈

f ,
∑

j̄∈Nd
0

∑

k̄∈Zd

2‖ j̄‖1〈ϕ̄, ψ j̄,k̄〉ψ j̄,k̄

〉

=
∑

j̄∈Nd
0

∑

k̄∈Zd

2‖ j̄‖1〈ϕ̄, ψ j̄ ,k̄〉〈 f , ψ j̄,k̄〉

=
∑

j̄∈Nd
0

∑

k̄∈Zd

2‖ j̄‖1〈ϕ,ψ j̄ ,k̄〉〈 f , ψ j̄,k̄〉 .

On the other hand,

g(ϕ) =
∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄( f )ψ j̄,k̄(ϕ) =
∑

j̄∈Nd
0

∑

k̄∈Zd

2‖ j̄‖1〈ϕ,ψ j̄ ,k̄〉〈 f , ψ j̄,k̄〉 = f (ϕ) ,

which finishes the proof. ��
Lemma 4.9 Let {ϕ j̄ } j̄∈Nd

0
be a hyperbolic decomposition of unity (as defined in Sect. 3)

and define Tj̄ :=
∑

k̄≤ j̄ ϕk̄ . Then for any enumeration j̄ = j̄(N ), N ∈ N0, and every

ζ ∈ S(Rd)

Tj̄(N )ζ → ζ (strongly) in S(Rd) as N →∞ . (24)

Proof We first show (24) for the sequence TN := ∑

‖ j̄‖∞≤N ϕ j̄ , which is equivalent
to showing ‖SN ζ‖k,	 → 0 for each fixed k, 	 ∈ N0 and SN := 1− TN . We estimate

‖SN ζ‖k,	 =
∥

∥

∥(1+ | · |)k
∑

‖γ̄ ‖1≤	

|Dγ̄
(

SN ζ
)|
∥

∥

∥∞ ≤
∑

‖γ̄ ‖1≤	

∥

∥

∥(1+ | · |)k |Dγ̄
(

SN ζ
)|
∥

∥

∥∞

and apply the multivariate Leibniz formula

Dγ̄
(

SN ζ(·)) =
∑

ν̄≤γ̄

(

γ̄

ν̄

)

(

Dγ̄−ν̄ SN
)(

Dν̄ ζ
)

.

This leads to

∥

∥

∥(1+ | · |)k |Dγ̄
(

SN ζ
)|
∥

∥

∥∞ ≤
∑

ν̄≤γ̄

(

γ̄

ν̄

)

∥

∥

∥(1+ | · |)k(Dγ̄−ν̄ SN
)(

Dν̄ ζ
)

∥

∥

∥∞ .



Journal of Fourier Analysis and Applications (2021) 27 :51 Page 25 of 55 51

Since ζ ∈ S(Rd), there is a constant C > 0 such that for every x ∈ R
d and every

‖ν̄‖1 ≤ 	

(1+ |x |)k |Dν̄ ζ (x)| ≤ C(1+ |x |)−1 .

In addition, due to SN = S0(2−N ·), we have Dν̄ SN (x) = 2−N‖ν̄‖1(Dν̄ S0
)

(2−N x).
Thus ‖Dν̄ SN‖∞ ≤ 2−N‖ν̄‖1C ′ ≤ C ′ with C ′ := max‖ν̄‖1≤	 ‖Dν̄ S0‖∞. Using the fact

that Dγ̄−ν̄ SN vanishes on the rectangle R(1,...,1)
N defined in (3), we can finally estimate

for every γ̄ , ν̄ ∈ N
d
0 with ν̄ ≤ γ̄ and ‖γ̄ ‖1 ≤ 	

∥

∥

∥(1+ | · |)k(Dγ̄−ν̄ SN
)(

Dν̄ ζ
)

∥

∥

∥∞
� sup

x∈Rd\R(1,...,1)
N

|(1+ |x |)k Dν̄ ζ (x)| � (1+ |2N |)−1 � 2−N ,

with a right-hand side that tends to 0 for N →∞. This proves (24) for the sequence
TN . We conclude the argument with the observation that for every fixed M ∈ N0 the
terms ‖Tj̄(N )ζ − ζ‖k,	 eventually, as N →∞, become smaller than ‖TMζ − ζ‖k,	 =
‖SMζ‖k,	. ��

Corollary 4.10 Let 〈·, ·〉 be given as in (14). For every f ∈ S ′(Rd) and ζ ∈ S(Rd) we
have

〈 f , ζ 〉S ′×S = 〈 f , ζ 〉 .

Proof As a consequence of Lemma 4.9, we have with unconditional convergence in
S(Rd)

F−1ζ =
∑

j̄∈Nd
0

θ j̄λ j̄F−1ζ or equivalently ζ =
∑

j̄∈Nd
0

� j̄ ∗� j̄ ∗ ζ ,

where � j̄ = � j̄ (−·) = Fθ j̄ , � j̄ = � j̄ (−·) = Fλ j̄ , and θ j̄ , λ j̄ are functions with
∑

j̄∈Nd
0
θ j̄λ j̄ ≡ 1 as in (14). The relations � j̄ = � j̄ (−·) and � j̄ = � j̄ (−·) are due

to the fact that θ j̄ and λ j̄ are real-valued functions. Hence, we can conclude

〈 f , ζ 〉 =
∑

j̄∈Nd
0

〈� j̄ ∗ f ,� j̄ ∗ ζ 〉L2(Rd ) =
∑

j̄∈Nd
0

〈� j̄ (−·) ∗ f ,� j̄ ∗ ζ 〉S ′×S

=
∑

j̄∈Nd
0

〈 f ,� j̄ ∗� j̄ ∗ ζ 〉S ′×S = 〈 f , ζ 〉S ′×S .

��
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5 Hyperbolic Haar Characterization

We next utilize a hyperbolic Haar basis for the characterization of the spaces ˜Bs,ᾱ
p,q(Rd)

and ˜Fs,ᾱ
p,q (Rd) from Definitions 3.3 and 3.4, the main result being Theorem 5.4. It

will show that Haar characterizations are possible in a certain restricted range of
parameters, although the Haar wavelet does not fulfill smoothness requirements (K )

as assumed for the derivation of Theorem 4.6 in the previous section. Hence, for the
proof of Theorem 5.4 a different methodology is needed than in Sect. 4. We follow the
technique used in [?], exploiting the special structure of the Haar wavelet, and want to
mention that this technique is presumably extendable to higher order spline systems
enabling characterizations in a larger parameter range.

We begin by fixing a convenient inhomogeneous Haar system on the real line,
namely

H1 :=
{

h j,k : k ∈ Z, j ∈ N0
}

,

where for j ∈ N, k ∈ Z, the functions h j,k are scaled Haar functions of the form

h j,k(x) := 1√
2

h(2 j−1x − k) , where h(x) := 1I+0,0
(x)− 1I−0,0

(x) .

The intervals I+j,k = [2− j k, 2− j (k + 1/2)) and I−j,k = [2− j (k + 1/2), 2− j (k +
1)) thereby represent the dyadic children of the standard dyadic intervals I j,k =
[2− j k, 2− j (k+1)). At the lowest scale j = 0 the ordinary Haar functions 1I+0,k

−1I−0,k
are replaced by the characteristic functions h0,k := 1I0,k . Further, we set h j,k ≡ 0
if j < 0. Defined like this, the structure of the system H1 fits closely to the wavelet
systems considered in Sect. 4. The inhomogeneous scale is at j = 0 (and not the
standard j = −1 for Haar systems).

For dimension d ∈ N we derive a corresponding hyperbolic d-variate Haar system
by the following tensorization procedure,

Hd :=
{

h j̄,k̄ := h j1,k1 ⊗ · · · ⊗ h jd ,kd : k̄ = (k1, . . . , kd) ∈ Z
d ,

j̄ = ( j1, . . . , jd) ∈ N
d
0

}

. (25)

As already earlier in (8), we denote by χ j̄,k̄ the characteristic function of the rectangle

Q j̄,k̄ := [2− j1k1, 2
− j1(k1 + 1))× · · · × [2− jd kd , 2− jd (kd + 1)) .

At each fixed “scale” j̄ these rectangles represent a partition of the d-dimensional
domain R

d . For j̄ ∈ N
d
0 and k̄ ∈ Z

d they moreover correspond to the strict support
of the Haar functions, namely strict supp (h j̄,k̄) = {x ∈ R

d : h j̄,k̄(x) �= 0} =
Q( j1−1,..., jd−1)+,k̄ .
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Proposition 5.1 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d. Under the condition

|s|/αmin < min
{

1− 1

p
, 1− 1

q

}

we have for f ∈ S ′(Rd) (with the dual pairing 〈 f , h j̄,k̄〉 defined as in (14) in
Remark 4.7)

∥

∥

∥

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∣

∣

∣

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(x)

∣

∣

∣

q)1/q∥
∥

∥

p
� ‖ f ‖

˜Fs,ᾱ
p,q

, (26)

whenever the left-hand side is defined. In case |s|/αmin < 1− 1
p we have

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∥

∥

∥

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(·)
∥

∥

∥

q

p

)1/q
� ‖ f ‖

˜Bs,ᾱ
p,q

. (27)

Proof For the proof, we first build a suitable decomposition of unity adapted to the
hyperbolic tiling of the frequency domain. For a respective construction, we start with
univariate functions φ0, φ ∈ S(R) and λ0, λ ∈ S(R) such that

λ0φ0 +
∑

j∈N
λ(2− j ·)φ(2− j ·) =

∑

j∈N0

λ jφ j ≡ 1,

where φ j := φ(2− j ·) and λ j := λ(2− j ·) for j ∈ N. The functions φ0 and φ1 shall
thereby, as usual, be compactly supported with

supp (φ0) ⊂ {|x | ≤ 2ε} , supp (φ) ⊂ {ε/2 ≤ |x | ≤ 2ε}

for some ε > 0. As a consequence, their inverse Fourier transforms however, namely
�0 := F−1φ0 and � := F−1φ, cannot have compact supports.

The functions λ0, λ, on the other hand are chosen such that the supports of �0 :=
F−1λ0 and� := F−1λ are compact. Further, they are assumed to fulfill the Tauberian
conditions

|λ0(x)| > 0 on {|x | ≤ 2ε} , |λ(x)| > 0 on {ε/2 ≤ |x | ≤ 2ε}

with the same ε > 0 as above and furthermore λ(0) = λ′(0) = 0. Such a construction
is indeed possible, see [55, Lem. 3.6] for example.

For the subsequent proof, it is convenient to also define the functions� j := F−1φ j

and � j := F−1λ j for j ∈ N. They fulfill the scaling relations � j = 2 j�(2 j ·) and
� j = 2 j�(2 j ·).
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Next, we put � j := 0 and � j := 0 for j ∈ Z with j < 0 and build the tensor
products

�	̄ :=
⊗

i∈{1,...,d}
�	i and �	̄ :=

⊗

i∈{1,...,d}
�	i for 	̄ ∈ Z

d . (28)

Then we have the decomposition, which in fact is a discrete version of Calderón’s
reproducing formula,

f =
∑

	̄∈Zd

�	̄ ∗�	̄ ∗ f for every f ∈ S ′(Rd) ,

enabling a component-wise evaluation of the scalar product 〈 f , h j̄,k̄〉. Each Haar
coefficient can in this way be understood in the following sense (see also Remark 4.7),

〈 f , h j̄,k̄〉 =
∑

	̄∈Zd

〈�	̄ ∗�	̄ ∗ f , h j̄,k̄〉 =
∑

	̄∈Zd

〈�	̄ ∗ f ,�	̄(−·) ∗ h j̄,k̄〉 ,

whenever the right-hand sum converges.
If we further assume that �	̄ is even, we arrive at the estimate

|2‖ j̄‖1〈 f , h j̄,k̄〉| �
∑

	̄∈Zd

∣

∣

∣

∫

Rd
2‖ j̄‖1(� j̄+	̄ ∗ f )(y)(� j̄+	̄ ∗ h j̄,k̄)(y) dy

∣

∣

∣.

Let us investigate the integral on the right-hand side, and for this let us define

S j̄,k̄,	̄ := supp
(

� j̄+	̄ ∗ h j̄,k̄

)

.

If mini∈[d]{ ji + 	i } < 0 we have S j̄,k̄,	̄ = ∅ and the integral vanishes. Otherwise,

when mini∈[d]{ ji + 	i } ≥ 0, we fix a > 0 and x ∈ R
d and obtain the estimate

∣

∣

∣

∫

Rd
2‖ j̄‖1(� j̄+	̄ ∗ f )(y)(� j̄+	̄ ∗ h j̄,k̄)(y) dy

∣

∣

∣

≤ P2 j̄+	̄,a(� j̄+	̄ ∗ f )(x) · sup
y∈S j̄,k̄,	̄

[
d
∏

i=1
(1+ 2 ji+	i |xi − yi |)a

]

·
∣

∣

∣

∫

Rd
2‖ j̄‖1(� j̄+	̄ ∗ h j̄,k̄)(z) dz

∣

∣

∣ ,

where P2 j̄+	̄,a(� j̄+	̄ ∗ f ) denotes the Peetre maximal function (see (6))

P2 j̄+	̄,a(� j̄+	̄ ∗ f )(x) = sup
y∈Rd

|(� j̄+	̄ ∗ f )(y)|
(1+ 2 j1+	1 |x1 − y1|)a · · · (1+ 2 jd+	d |xd − yd |)a

.
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The integral term splits into

∫

Rd
2‖ j̄‖1(� j̄+	̄ ∗ h j̄,k̄)(z) dz

= 2‖ j̄‖1
∫

R

(� j1+	1 ∗ h j1,k1)(t) dt · · ·
∫

R

(� jd+	d ∗ h jd ,kd )(t) dt

according to the relation

� j̄+	̄ ∗ h j̄,k̄ = (� j1+	1 ∗ h j1,k1)⊗ · · · ⊗ (� jd+	d ∗ h jd ,kd ).

For fixed i ∈ {1, . . . , d}, assuming 	i < 0, we can then further estimate

∫

R

(� ji+	i ∗ h ji ,ki )(y) dy � 2− ji+	i (29)

since |supp (� ji+	i ∗ h ji ,ki )| 	 2−( ji+	i ) and ‖� ji+	i ∗ h ji ,ki ‖∞ � 22	i . For the latter
of these two inequalities the first order vanishing moment of the Haar wavelet comes
into play. Note here that indeed ji > 0 due to mini∈[d]{ ji + 	i } ≥ 0, allowing for the
estimate

|(� ji+	i ∗ h ji ,ki )(x)| ≤
∫

supp (h ji ,ki )

|� ji+	i (x − y)−� ji+	i (x − 21− ji ki )| · |h ji ,ki (y)| dy

≤ sup
y∈21− ji [ki ,ki+1]

|� ji+	i (x − y)−� ji+	i (x − 21− ji ki )| · ‖h ji ,ki ‖1

� 22(1− ji )‖�′ji+	i
‖∞ � 22(1− ji )22( ji+	i )‖�′‖∞ � 22	i .

In case 	i ≥ 0 we obtain a different estimate than (29), namely

∫

R

(� ji+	i ∗ h ji ,ki )(y) dy � 2−( ji+	i ).

Here we use the fact that the integrand is bounded by a constant together with the
observation that its support is contained in atmost three intervals of length	 2−( ji+	i ).
Indeed, as a consequence of the L1- resp. L∞-normalization of � ji+	i and h ji ,ki , we
have ‖� ji+	i ∗h ji ,ki ‖∞ ≤ ‖� ji+	i ‖1‖h ji ,ki ‖∞ � 1. Furthermore, due to the vanishing
moment properties of � ji+	i , the support of the convolution merely stems from the
either two or three discontinuities of the function h ji ,ki .

Now, let us turn our attention to the factor

sup
y∈S j̄,k̄,	̄

[
d
∏

i=1
(1+ 2 ji+	i |xi − yi |)a

]

.

Here, we have with xi ∈ Q ji ,ki and yi ∈ supp (� ji+	i ∗ h ji ,ki ) ⊂ supp (� ji+	i ) +
supp (h ji ,ki ) (and therefore |xi − yi | � 2− ji if 	i ≥ 0 and |xi − yi | � 2−( ji+	i ) if
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	i < 0)

(1+ 2 ji+	i |xi − yi |)a � 1

if 	i < 0. Otherwise, if 	i ≥ 0, we estimate

(1+ 2 ji+	i |xi − yi |)a � 2	i a .

Putting all together, this yields for x ∈ Q j̄,k̄

∣

∣

∣

∫

Rd
2‖ j̄‖1(� j̄+	̄ ∗ f )(y)(� j̄+	̄ ∗ h j̄,k̄)(y) dy

∣

∣

∣ � A(	̄, a)P2 j̄+	̄,a(� j̄+	̄ ∗ f )(x) ,

where

A(	̄, a) :=
∏

i∈{1,...,d}
A(	i , a) with A(	i , a) :=

{

2	i , 	i < 0

2(a−1)	i , 	i ≥ 0
.

Hence, we obtain uniformly in x ∈ R
d and for fixed j̄ ∈ N

d
0

∑

k̄∈Zd

|2‖ j̄‖1〈 f , h j̄,k̄〉|χ j̄,k̄(x) �
∑

	̄∈Zd

A(	̄, a)P2 j̄+	̄,a(� j̄+	̄ ∗ f )(x).

Finally, we can turn to the proof of (26). We estimate

∥

∥

∥

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∣

∣

∣

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(x)

∣

∣

∣

q)1/q∥
∥

∥

p

�
∥

∥

∥

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∣

∣

∣

∑

	̄∈Zd

A(	̄, a)P2 j̄+	̄,a(� j̄+	̄ ∗ f )(x)

∣

∣

∣

q)1/q∥
∥

∥

p

=
∥

∥

∥

(
∑

j̄∈Nd
0

∣

∣

∣

∑

	̄∈Zd

A(	̄, a)2(‖ j̄/ᾱ‖∞−‖( j̄+	̄)/ᾱ‖∞)s2‖( j̄+	̄)/ᾱ‖∞s P2 j̄+	̄,a(� j̄+	̄ ∗ f )(x)

∣

∣

∣

q)1/q∥
∥

∥

p
.

According to (18) it holds 2(‖ j̄/ᾱ‖∞−‖( j̄+	̄)/ᾱ‖∞)s ≤ 2‖	̄/ᾱ‖∞|s| for s ∈ R, and hence

∥

∥

∥

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∣

∣

∣

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(x)

∣

∣

∣

q)1/q∥
∥

∥

p

�
∥

∥

∥

(
∑

j̄∈Nd
0

∣

∣

∣

∑

	̄∈Zd

A(	̄, a)2‖	̄/ᾱ‖∞|s|2‖( j̄+	̄)/ᾱ‖∞s P2 j̄+	̄,a(� j̄+	̄ ∗ f )(x)

∣

∣

∣

q)1/q∥
∥

∥

p

≤
∑

	̄∈Zd

A(	̄, a)2‖	̄/ᾱ‖∞|s| ·
∥

∥

∥

(
∑

j̄∈Nd
0

∣

∣

∣2‖ j̄/ᾱ‖∞s P2 j̄ ,a(� j̄ ∗ f )(x)

∣

∣

∣

q)1/q∥
∥

∥

p
,
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where Young’s convolution inequality was used in the last step.
For (27) we argue analogously, namely

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∥

∥

∥

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(·)
∥

∥

∥

q

p

)1/q

�
(

∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∥

∥

∥

∑

	̄∈Zd

A(	̄, a)P2 j̄+	̄,a(� j̄+	̄ ∗ f )(·)
∥

∥

∥

q

p

)1/q

≤
(

∑

j̄∈Nd
0

∥

∥

∥

∑

	̄∈Zd

A(	̄, a)2‖	̄/ᾱ‖∞|s|2‖( j̄+	̄)/ᾱ‖∞s P2 j̄+	̄,a(� j̄+	̄ ∗ f )(·)
∥

∥

∥

q

p

)1/q

≤
∑

	̄∈Zd

A(	̄, a)2‖	̄/ᾱ‖∞|s| ·
(

∑

j̄∈Nd
0

∥

∥

∥2‖ j̄/ᾱ‖∞s P2 j̄ ,a(� j̄ ∗ f )(·)
∥

∥

∥

q

p

)1/q
.

Choosing a > max{1/p, 1/q} in the F-case and a > 1/p in the B-case, to ensure
the boundedness of the Peetre maximal operator (see Theorem 2.7, also compare e.g.
[56, Thm. 2.6]), as well as |s| < min

i∈{1,...,d}{αi }(1− a) we get

∑

	̄∈Zd

A(	̄, a)2‖	̄/ᾱ‖∞|s| <∞

and thus (26) and (27), respectively. ��

Using a duality argument, we can deduce an immediate companion result.

Proposition 5.2 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d. Under the condition

|s|/αmin < min
{ 1

p
,
1

q

}

we have for all f ∈ S ′(Rd) (with the dual pairing 〈 f , h j̄,k̄〉 defined as in (14) in
Remark 4.7)

‖ f ‖
˜Fs,ᾱ

p,q
�

∥

∥

∥

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∣

∣

∣

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(x)

∣

∣

∣

q)1/q∥
∥

∥

p
, (30)

whenever the right-hand side is defined. In case |s|/αmin < 1/p we have

‖ f ‖
˜Bs,ᾱ

p,q
�

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∥

∥

∥

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(·)
∥

∥

∥

q

p

)1/q
. (31)
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Proof We showed in Proposition 5.1 (i) that the linear operator

A : ˜Fs,ᾱ
p,q → f̃ s,ᾱ

p,q , f �→ (2‖ j̄‖1〈 f , h j̄,k̄〉) j̄,k̄ ,

is well-defined and bounded in the parameter range

|s| < min
i∈{1,...,d}{αi }min

{

1− 1

p
, 1− 1

q

}

.

Consequently, in this range, the dual operator

A′ : ( f̃ s,ᾱ
p,q

)′ → (

˜Fs,ᾱ
p,q

)′

is also well-defined and bounded. Identifying
(

f̃ s,ᾱ
p,q

)′ with f̃ −s,ᾱ
p′,q ′ with respect to the

non-standard duality product

〈(λ j̄,k̄), (μ j̄,k̄)〉 :=
∑

j̄∈Nd
0

2−‖ j̄‖1 ∑

k̄∈Zd

λ j̄,k̄μ j̄,k̄ , (32)

which is possible according to Theorem 5.6 (i) below, it can be represented in the
form

A′ : (λ j̄,k̄) j̄,k̄ �→
∑

j̄,k̄

λ j̄,k̄ h j̄,k̄ ,

where the convergence is weak*ly in
(

˜Fs,ᾱ
p,q

)′. This is a consequence of the relation

〈A f , g′〉Y×Y ′ =
∑

j̄∈Nd
0

2−‖ j̄‖1 ∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉 · λ j̄,k̄

=
∫

Rd
f (x) ·

(
∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄ h j̄,k̄(x)
)

dx

= 〈 f , A′g′〉X×X ′ ,

where we used the short-hand notation Y = f̃ s,ᾱ
p,q and X = ˜Fs,ᾱ

p,q .

Invoking Theorem 5.6(i) another time, X ′ can be identified with ˜F−s,ᾱ
p′,q ′ (and X ′′

with ˜Fs,ᾱ
p,q ). Then for (λ j̄,k̄) j̄,k̄ ∈ f̃ −s,ᾱ

p′,q ′ and some enumeration

(λ j̄,k̄) j̄,k̄ � (λn)n∈N

we have ‖(λn)n≥N‖ f̃ −s,ᾱ
p′,q′
→ 0 for N →∞. We estimate

‖A′
(

(λn)n≥N
)‖

˜F−s,ᾱ
p′,q′
= sup
‖ f ‖

˜Fs,ᾱ
p,q
=1
|〈A′((λn)n≥N

)

, f 〉| = sup
‖ f ‖

˜Fs,ᾱ
p,q
=1
|〈(λn)n≥N , A f 〉|
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≤ sup
‖ f ‖

˜Fs,ᾱ
p,q
=1
‖(λn)n≥N‖ f̃ −s,ᾱ

p′,q′
‖A f ‖ f̃ s,ᾱ

p,q

� ‖(λn)n≥N‖ f̃ −s,ᾱ
p′,q′
→ 0 (N →∞).

Hence, A′
(

(λn)n≤N
)→ A′

(

(λn)n∈N
)

strongly and unconditionally in ˜F−s,ᾱ
p′,q ′ .

In other words, we have shown that if |s| < min
i∈{1,...,d}{αi }min{1/p, 1/q} and

(λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,q then

∑

j̄,k̄

λ j̄,k̄ h j̄,k̄ converges strongly and unconditionally in ˜Fs,ᾱ
p,q

and

∥

∥

∥

∑

j̄,k̄

λ j̄,k̄ h j̄,k̄

∥

∥

∥

˜Fs,ᾱ
p,q

� ‖(λ j̄,k̄) j̄,k̄‖ f̃ s,ᾱ
p,q

. (33)

Hence, choosing λ j̄,k̄ := 2‖ j̄‖1〈 f , h j̄,k̄〉 and assuming a finite sequence norm

‖(λ j̄,k̄) j̄,k̄‖ f̃ s,ᾱ
p,q
, then

∑

j̄,k̄ λ j̄,k̄ h j̄,k̄ =
∑

j̄,k̄ 2
‖ j̄‖1〈 f , h j̄,k̄〉h j̄,k̄ converges strongly

to some limit f̃ ∈ ˜Fs,ᾱ
p,q (Rd). Since this sum also converges (weak*ly) in S′(R) to f

we have f = f̃ =∑

j̄,k̄ 2
‖ j̄‖1〈 f , h j̄,k̄〉h j̄,k̄ in ˜Fs,ᾱ

p,q . Now (30) follows from (33).
The proof of (31) works the same, using Proposition 5.1 (ii) and Theorem 5.6 (ii).

��
Combining both, Proposition 5.1 and Proposition 5.2, we arrive at the following

proposition, whereby we now concentrate on the F-case.

Proposition 5.3 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d. Under the condition

|s|/αmin < min
{ 1

p
,
1

q
, 1− 1

p
, 1− 1

q

}

.

we have for all f ∈ S ′(Rd) (with the dual pairing 〈 f , h j̄,k̄〉 defined as in (14) in
Remark 4.7)

∥

∥

∥

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq
∣

∣

∣

∑

k̄∈Zd

2‖ j̄‖1〈 f , h j̄,k̄〉χ j̄,k̄(x)

∣

∣

∣

q)1/q∥
∥

∥

p
	 ‖ f ‖

˜Fs,ᾱ
p,q

, (34)

whenever the left-hand side is defined.

As a direct consequence of this result, we can finally formulate the main theorem
of this section which corresponds to Theorem 4.6. Let us remark that we expect a
larger parameter range than (35) when moving to higher order spline systems (see e.g.
Sect. 2.5 and Remark 2.14 in the book [53]) but do not pursue this path further in this
article.
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Theorem 5.4 Let 1 < p, q < ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi = d. Further, assume

|s|/αmin < min
{ 1

p
,
1

q
, 1− 1

p
, 1− 1

q

}

. (35)

Then the Haar system Hd = (h j̄,k̄) j̄,k̄ defined in (25) constitutes an unconditional

basis of ˜Fs,ᾱ
p,q (Rd) with associated sequence space f̃ s,ᾱ

p,q . The unique sequence of basis

coefficients for f ∈ ˜Fs,ᾱ
p,q (Rd) is determined by λ := λ( f ) = (λ j̄,k̄) j̄,k̄ with

λ j̄,k̄ := λ j̄,k̄( f ) = 2‖ j̄‖1〈 f , h j̄,k̄〉 . (36)

Further, we have the wavelet isomorphism (equivalent norm)

‖ f ‖
˜Fs,ᾱ

p,q (Rd )
	 ‖λ( f )‖ f̃ s,ᾱ

p,q
, f ∈ ˜Fs,ᾱ

p,q (Rd) .

In addition, we can use Hd to distinguish those elements of S ′(Rd) that belong to
˜Fs,ᾱ

p,q (Rd). Those are characterized by either of the following two criteria:

(i) f can be represented as a sum

f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄ h j̄,k̄ converging (weak*ly) in S ′(Rd) (37)

with coefficients (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,q (with respect to some chosen ordering).

(ii) With λ( f ) being defined as in (36), it holds

λ( f ) = (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,q .

In both cases, the sequence (λ j̄,k̄) j̄,k̄ is necessarily the sequence of basis coefficients

and the representation (37) converges unconditionally to f in ˜Fs,ᾱ
p,q (Rd).

Proof As a direct consequence of the equivalence (34) proved in Proposition 5.3 the
analysis operator

λ : f �→ (

2‖ j̄‖1〈 f , h j̄,k̄〉
)

j̄,k̄

is well-defined and bounded from ˜Fs,ᾱ
p,q to f̃ s,ᾱ

p,q . Moreover, it is injective and we have
the equivalence of norms ‖ f ‖

˜Fs,ᾱ
p,q
	 ‖λ( f )‖ f̃ s,ᾱ

p,q
. Further, for f ∈ S ′(Rd) we have

f ∈ ˜Fs,ᾱ
p,q if and only if λ( f ) ∈ f̃ s,ᾱ

p,q (whenever λ( f ) is defined).
Now, let us have a look at the synthesis operator

S : (λ j̄,k̄) j̄,k̄ �→
∑

j̄,k̄

λ j̄,k̄ h j̄,k̄ . (38)
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Clearly, for every finite sequence the assignment S defines an element in ˜Fs,ᾱ
p,q . By

completion, using (34) and the fact that the finite sequences lie dense in f̃ s,ᾱ
p,q , this

synthesis further extends to all sequences of f̃ s,ᾱ
p,q , with unconditional and strong

convergence of (38) in ˜Fs,ᾱ
p,q . Hence, S is a well-defined bounded linear operator from

f̃ s,ᾱ
p,q to ˜Fs,ᾱ

p,q , which, as another consequence of (34), is also injective.

Next, turning to the composition λ ◦ S operating from f̃ s,ᾱ
p,q to f̃ s,ᾱ

p,q , we deduce for
each fixed j̄∗ ∈ N

d
0 and k̄∗ ∈ Z

d

〈
∑

j̄,k̄

2‖ j̄‖1λ j̄,k̄ h j̄,k̄, h j̄∗,k̄∗

〉

=
∑

j̄,k̄

2‖ j̄‖1λ j̄,k̄

〈

h j̄,k̄, h j̄∗,k̄∗
〉 = λ j̄∗,k̄∗ ,

using the orthogonality of the system (h j̄,k̄) j̄,k̄ in L2(R
d). We obtain I d f̃ s,ᾱ

p,q
= λ ◦ S

and in turn λ ◦ S ◦λ = λ. Due to the injectivity of λ, the latter equality further implies
I d

˜Fs,ᾱ
p,q
= S ◦ λ. In particular, λ and S are thus bijections and every f ∈ ˜Fs,ᾱ

p,q allows

for a representation (37).
To see that the representing coefficients (λ j̄,k̄) j̄,k̄ are unique, under the assumption

of strong convergence of the sum, let λ∗ = (λ∗̄
j,k̄

) j̄,k̄ be some sequence which satisfies

(37) in a strong sense for some special ordering of the sum. Then again (34) together
with a completion argument yields λ∗ ∈ f̃ s,ᾱ

p,q , and thus λ∗ = λ( f ) by the injectivity
of S. Hence, the expansion coefficients in (37) are unique and it follows that Hd is a
basis. Its unconditionality is due to the fact that the convergence of (37) for sequences
λ∗ ∈ f̃ s,ᾱ

p,q is always unconditional.

For the proof of criterion (i) we just remark that for sequences (λ j̄,k̄) j̄,k̄ in f̃ s,ᾱ
p,q

with weak*-convergence of (37) in S ′(Rd) the convergence is automatically in the
stronger sense of ˜Fs,ᾱ

p,q . ��

Remark 5.5 For brevity, the above theorem was only stated for the F-case. There also
exists a B-version, which reads precisely the same apart from condition (35) which is
replaced by

|s|/αmin < min
{ 1

p
, 1− 1

p

}

.

In the proof of Proposition 5.2 we utilized isomorphisms
(

˜Fs,ᾱ
p,q

)′ ∼= ˜F−s,ᾱ
p′,q ′ and

(

f̃ s,ᾱ
p,q

)′ ∼= f̃ −s,ᾱ
p′,q ′ as well as

(

˜Bs,ᾱ
p,q

)′ ∼= ˜B−s,ᾱ
p′,q ′ and

(

b̃s,ᾱ
p,q

)′ ∼= b̃−s,ᾱ
p′,q ′ . Hence, for the

completeness of our exposition, it remains to establish those.

Theorem 5.6 Let 1 < p, q <∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 with
∑d

i=1 αi =
d. Then

(

˜Fs,ᾱ
p,q (Rd)

)′ ∼= ˜F−s,ᾱ
p′,q ′ (R

d) and
(

f̃ s,ᾱ
p,q

)′ ∼= f̃ −s,ᾱ
p′,q ′ ,



51 Page 36 of 55 Journal of Fourier Analysis and Applications (2021) 27 :51

whereby the second of these isomorphies has to be understood with respect to the
non-standard pairing (32). In the Besov case, we have the analogous relations

(

˜Bs,ᾱ
p,q(Rd)

)′ ∼= ˜B−s,ᾱ
p′,q ′ (R

d) and
(

b̃s,ᾱ
p,q

)′ ∼= b̃−s,ᾱ
p′,q ′ .

The proof of this theorem is based on two auxiliary propositions. The first one of
these is stated without proof, since it is a straightforward generalization of the classic
identifications

(

L p(R
d)
)′ ∼= L p′(Rd) and

(

	p(I )
)′ ∼= 	p′(I ) when 1 < p < ∞ (see

e.g. [17]).

Proposition 5.7 Let I be an arbitrary countable index set. Then

(

	q
(

I , L p(R
d)
)

)′ ∼= 	q ′
(

I , L p′(R
d)
)

and
(

L p
(

R
d , 	q(I )

)

)′ ∼= L p′
(

R
d , 	q ′(I )

)

in the sense that there exist isomorphisms f �→ ( fi )i∈I such that

〈 f , g〉Y ′×Y =
∑

i∈I

∫

Rd
fi (x)gi (x) dx

for the respective cases Y = 	q
(

I , L p(R
d)
)

and Y = L p
(

R
d , 	q(I )

)

.

The second proposition provides an alternative way to characterize functions in
˜Fs,ᾱ

p,q (Rd) and ˜Bs,ᾱ
p,q(Rd). Its counterpart in the classical setting of Triebel-Lizorkin

spaces is Proposition 1 in [52, Sect. 2.3.4].

Proposition 5.8 Assume 1 < p, q < ∞, s ∈ R, ᾱ = (α1, . . . , αd) > 0, and
∑d

i=1 αi = d.

(i) Then f ∈ S ′(Rd) belongs to ˜Fs,ᾱ
p,q (Rd) if and only if there exists a family

{ f j̄ } j̄∈Nd
0
⊂ L p(R

d) such that

f =
∑

j̄

� j̄ f j̄ in S ′(Rd) and
∥

∥2‖ j̄/ᾱ‖∞s f j̄

∥

∥

L p(Rd ,	q )
<∞ .

(ii) Then f ∈ S ′(Rd) belongs to ˜Bs,ᾱ
p,q(Rd) if and only if there exists a family

{ f j̄ } j̄∈Nd
0
⊂ L p(R

d) such that

f =
∑

j̄

� j̄ f j̄ in S ′(Rd) and
∥

∥2‖ j̄/ᾱ‖∞s f j̄

∥

∥

	q (L p(Rd ))
<∞ . (39)

Proof (i) Adaption of proof of Proposition 1 in [52, Sect. 2.3.4].
(ii) Let (φ j̄ ) j̄ be a hyperbolic resolution of unity as introduced in Definition 3.2

with associated hyperbolic Littlewood–Paley analysis (� j̄ ) j̄ . Further, take f ∈ ˜Bs,ᾱ
p,q
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and put f j̄ :=
∑

r̄∈{−1,0,1}d
F−1φ j̄+r̄F f for j̄ ∈ N

d
0 , whereby we let φ−1 := 0. Then

{ f j̄ } j̄ ⊂ L p and

∑

j̄∈Nd
0

F−1φ j̄F f j̄ =
∑

j̄∈Nd
0

F−1φ j̄

(
∑

r̄∈{−1,0,1}d
φ j̄+r̄

)

F f

=
∑

j̄∈Nd
0

F−1φ j̄F f =
∑

j̄∈Nd
0

� j̄ f = f

as well as

∥

∥2‖ j̄/ᾱ‖∞s f j̄

∥

∥

	q (L p)
=

∥

∥

∥2‖ j̄/ᾱ‖∞s
∑

r̄∈{−1,0,1}d
F−1φ j̄+r̄F f

∥

∥

∥

	q (L p)

�
∑

r̄∈{−1,0,1}d

∥

∥

∥2‖ j̄/ᾱ‖∞sF−1φ j̄+r̄F f
∥

∥

∥

	q (L p)
	 ‖ f ‖

˜Bs,ᾱ
p,q

<∞ .

This settles one direction of the assertion. For the other direction, let f ∈ S ′(Rd)

satisfy (39) with associated { f j̄ } j̄ ⊂ L p. In view of f =∑

j̄ � j̄ f j̄ , we can estimate

∥

∥2‖ j̄/ᾱ‖∞s� j̄ f
∥

∥

	q (L p)
=

∥

∥

∥2‖ j̄/ᾱ‖∞s� j̄

∑

r̄∈{−1,0,1}d
� j̄+r̄ f j̄+r̄

∥

∥

∥

	q (L p)

≤
∑

r̄∈{−1,0,1}d

∥

∥2‖ j̄/ᾱ‖∞s� j̄� j̄+r̄ f j̄+r̄

∥

∥

	q (L p)

�
∑

r̄∈{−1,0,1}d

∥

∥2‖ j̄/ᾱ‖∞s� j̄+r̄ f j̄+r̄

∥

∥

	q (L p)

	 ∥

∥2‖ j̄/ᾱ‖∞s� j̄ f j̄

∥

∥

	q (L p)
�

∥

∥2‖ j̄/ᾱ‖∞s f j̄

∥

∥

	q (L p)
<∞ ,

where the last two lines are due to the Hörmander-Mikhlin multiplier theorem, which
is applied twice. This estimate shows f ∈ ˜Bs,ᾱ

p,q , finishing the proof. ��
Now we are ready to give a thorough proof of the duality relations stated in Theo-

rem 5.6.

Proof of Theorem 5.6 We restrict to the F-case and begin with the more involved rela-
tion

(

˜Fs,ᾱ
p,q

)′ ∼= ˜F−s,ᾱ
p′,q ′ . The subsequent proof is thereby an adaption of the proof of the

classical theorem in [52, Sect. 2.11.2] to the setting of hyperbolic spaces.
It is essential to note that, since S(Rd) lies dense in ˜Fs,ᾱ

p,q , there is a natural embed-
ding

κ :
(

˜Fs,ᾱ
p,q

)′
↪→ S ′(Rd) . (40)
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Hence, both
(

˜Fs,ᾱ
p,q

)′ and ˜F−s,ᾱ
p′,q ′ can be interpreted as subspaces of S ′(Rd), simplifying

the following considerations.
Let us first assume that f ∈ S ′(Rd) is an element of ˜F−s,ᾱ

p′,q ′ and take �	̄ and �	̄ as

in the proof of Proposition 5.1, for instance. Then f defines an element of
(

˜Fs,ᾱ
p,q

)′ via

〈 f , g〉∗ :=
∑

	̄∈Zd

〈�	̄ ∗ f ,�	̄ ∗ g〉 , where g ∈ ˜Fs,ᾱ
p,q , (41)

as can be seen by the following estimate,

|〈 f , g〉∗| =
∣

∣

∣

∑

	̄∈Zd

〈�	̄ ∗ f ,�	̄ ∗ g〉
∣

∣

∣ =
∣

∣

∣

∑

	̄∈Zd

∫

Rd
(�	̄ ∗ f )(y) · (�	̄ ∗ g)(y) dy

∣

∣

∣

=
∣

∣

∣

∫

Rd

∑

j̄∈Nd
0

(� j̄ ∗ f )(y) · (� j̄ ∗ g)(y) dy
∣

∣

∣

≤
∫

Rd

(
∑

j̄∈Nd
0

2−‖ j̄/ᾱ‖∞sq ′ |� j̄ ∗ f (y)|q ′
)1/q ′( ∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq |� j̄ ∗ g(y)|q
)1/q

dy

≤
(

∫

Rd

(
∑

j̄∈Nd
0

2−‖ j̄/ᾱ‖∞sq ′ |� j̄ ∗ f (y)|q ′
)p′/q ′

dy
)1/p′

×
(

∫

Rd

(
∑

j̄∈Nd
0

2‖ j̄/ᾱ‖∞sq |� j̄ ∗ g(y)|q
)p/q

dy
)1/p

� ‖ f ‖
˜F−s,ᾱ

p′,q′
· ‖g‖

˜Fs,ᾱ
p,q

.

Hereby, we applied Hölder’s inequality and used �	̄ = �	̄ = 0 if 	̄ /∈ N
d
0 .

The duality product 〈·, ·〉∗ thus yields an embedding ι : ˜F−s,ᾱ
p′,q ′ →

(

˜Fs,ᾱ
p,q

)′. Further,
we have natural embeddings ν : ˜F−s,ᾱ

p′,q ′ ↪→ S ′(Rd) and κ : (˜Fs,ᾱ
p,q

)′
↪→ S ′(Rd)

(see (40)). To establish a bridge between κ , ι, and ν, we now consider the special case
of a Schwartz function g = φ ∈ S(Rd) in (41). We obtain

〈 f , φ〉∗ =
∑

	̄∈Zd

〈�	̄ ∗ f ,�	̄ ∗ φ〉S ′×S =
∑

	̄∈Zd

〈�	̄ ∗�	̄ ∗ f , φ〉S ′×S = 〈 f , φ〉S ′×S .

Hence, the above (somewhat artificially) defined operation of f on ˜Fs,ᾱ
p,q via 〈·, ·〉∗ is

compatible with the operation of f as an element of S ′(Rd) on S(Rd). This proves
ν = κ ◦ ι and thus ˜F−s,ᾱ

p′,q ′ ⊂
(

˜Fs,ᾱ
p,q

)′, considered as subsets of S ′(Rd).

It remains to prove the converse inclusion
(

˜Fs,ᾱ
p,q

)′ ⊂ ˜F−s,ᾱ
p′,q ′ . For this, let f ∈ S ′(Rd)

be an element of
(

˜Fs,ᾱ
p,q

)′. We will show that this implies f ∈ ˜F−s,ᾱ
p′,q ′ and to this end

start with a construction of an isometric embedding

μ :
(

˜Fs,ᾱ
p,q

)′ → L p′
(

R
d , 	q ′

)

, f �→ ( f j̄ ) j̄ . (42)



Journal of Fourier Analysis and Applications (2021) 27 :51 Page 39 of 55 51

Thereby, we build upon the observation that the assignment g �→ (2‖ j̄/ᾱ‖∞s� j̄ g) j̄

maps ˜Fs,ᾱ
p,q isometrically to a closed subspace of L p

(

R
d , 	q

)

. Via this assignment and
the Hahn-Banach extension theorem, it is therefore possible to identify each func-
tional f ∈ (

˜Fs,ᾱ
p,q

)′ with a functional on L p
(

R
d , 	q

)

having the same norm. Invoking
Proposition 5.7 (i), this then yields an associated family ( f j̄ ) j̄ ∈ L p′

(

R
d , 	q ′

)

with

‖( f j̄ ) j̄‖L p′ (Rd ,	q′ ) = ‖ f ‖
(˜Fs,ᾱ

p,q )′ and 〈 f , g〉 = ∑

j̄ 〈 f j̄ , 2
‖ j̄/ᾱ‖∞s� j̄ g〉, establishing

(42).
In particular, for every φ ∈ S(Rd)

〈 f , φ〉 =
∑

j̄

〈 f j̄ , 2
‖ j̄/ᾱ‖∞s� j̄φ〉 =

∑

j̄

〈� j̄ f̃ j̄ , φ〉 ,

with f̃ j̄ := 2‖ j̄/ᾱ‖∞s f j̄ . Hence, we have

f =
∑

j̄

2‖ j̄/ᾱ‖∞s� j̄ f j̄ =
∑

j̄

� j̄ f̃ j̄ weak*ly in S ′(Rd).

Further, it holds ‖(2−‖ j̄/ᾱ‖∞s f̃ j̄ ) j̄∈Nd
0
‖	q′ (L p′ ) = ‖( f j̄ ) j̄∈Nd

0
‖	q′ (L p′ ) = ‖ f ‖

(˜Fs,ᾱ
p,q )′ . In

view of Proposition 5.8 (i), this shows f ∈ ˜F−s,ᾱ
p′,q ′ and finishes the proof of

(

˜Fs,ᾱ
p,q

)′ ∼=
˜F−s,ᾱ

p′,q ′ .

We next establish
(

f̃ s,ᾱ
p,q

)′ ∼= f̃ −s,ᾱ
p′,q ′ , which can be elegantly done using the previous

result together with the wavelet isomorphism λ : ˜Fs,ᾱ
p,q → f̃ s,ᾱ

p,q established in Theo-

rem 4.6. For this, we first verify that λ preserves the duality structure of ˜F−s,ᾱ
p′,q ′ × ˜Fs,ᾱ

p,q .

Indeed, for f ∈ ˜F−s,ᾱ
p′,q ′ and g ∈ ˜Fs,ᾱ

p,q we have

〈 f , g〉
˜F−s,ᾱ

p′,q′ ×˜Fs,ᾱ
p,q
=

〈
∑

j̄,k̄

2‖ j̄‖1〈 f , ψ j̄,k̄〉ψ j̄,k̄, g
〉

˜F−s,ᾱ
p′,q′ ×˜Fs,ᾱ

p,q

=
∑

j̄,k̄

2‖ j̄‖1〈 f , ψ j̄ ,k̄〉〈ψ j̄,k̄, g〉
˜F−s,ᾱ

p′,q′ ×˜Fs,ᾱ
p,q

=
∑

j̄,k̄

2−‖ j̄‖1(2‖ j̄‖1〈 f , ψ j̄ ,k̄〉
)(

2‖ j̄‖1〈g, ψ j̄,k̄〉
)

= 〈λ( f ), λ(g)〉 f̃ −s,ᾱ
p′,q′ × f̃ s,ᾱ

p,q
.

Note that hereby we relied on the strong convergence of the wavelet expansion in the
space ˜F−s,ᾱ

p′,q ′ . Next we recall the isomorphism ι : ˜F−s,ᾱ
p′,q ′ →

(

˜Fs,ᾱ
p,q

)′ established above
and let λ′ : ( f̃ s,ᾱ

p,q
)′ → (

˜Fs,ᾱ
p,q

)′ denote the dualmap of λ, which is also an isomorphism.
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Then we can read
(

f̃ s,ᾱ
p,q

)′ ∼= f̃ −s,ᾱ
p′,q ′ directly from the following chain of isomorphisms

(

f̃ s,ᾱ
p,q

)′ × f̃ s,ᾱ
p,q

λ′×λ−1−−−−→ (

˜Fs,ᾱ
p,q

)′ × ˜Fs,ᾱ
p,q

ι−1×I d−−−−→ ˜F−s,ᾱ
p′,q ′ × ˜Fs,ᾱ

p,q
λ×λ−−→ f̃ −s,ᾱ

p′,q ′ × f̃ s,ᾱ
p,q .

��

6 Hyperbolic and Classical (Anisotropic) Sobolev Spaces

In the remaining two sections we will analyze the relationship between the newly
introduced hyperbolic scale of spaces ˜As,ᾱ

p,q(Rd) from Sect. 3, where A ∈ {B, F},
and the classical scale of anisotropic spaces As,ᾱ

p,q(Rd), which was recalled in Sect. 2.
Our first result shows that, surprisingly, for Sobolev spaces (i.e. the case A = F ,
1 < p <∞, q = 2) both scales coincide.

Theorem 6.1 Let 1 < p < ∞, s ∈ R, and ᾱ > 0 be an anisotropy vector as above.
Then

˜W s,ᾱ
p (Rd) = W s,ᾱ

p (Rd) (in the sense of equivalent norms).

Proof The proof is divided into two steps. For convenience, wewill thereby abbreviate

by mᾱ,s :=
(

∑d
i=1(1+ ξ2i )1/(2αi )

)s
the function which appears in the definition (4)

of W s,ᾱ
p .

Step 1. In the first step we prove ‖ f ‖W s,ᾱ
p

� ‖ f ‖
˜W s,ᾱ

p
. For j̄ = ( j1, ..., jd) ∈ N

d
0 ,

let (ϕ j̄ ) j̄ denote a fixed hyperbolic resolution of unity as introduced in Definition 3.2,
with corresponding univariate family (ϕ j ) j where supp (ϕ0) ⊂ [−2, 2] and ϕ0 ≡ 1
on [−1, 1], as well as ϕ j = ϕ0(2− j ·) − ϕ0(2−( j−1)·) for j ≥ 1. In addition, let us
also construct a second hyperbolic resolution of unity (ψ j̄ ) j̄ such that ψ j̄ϕ j̄ = ϕ j̄ for

every j̄ ∈ N
d
0 . Hereby, it is not possible for (ψ j̄ ) j̄ to obey the same strict building law

as formulated in Definition 3.2. We define functions

ψ∗0 := ϕ0 + ϕ1 , ψ∗1 := ϕ0 + ϕ1 + ϕ2 , ψ∗2 := ϕ0 + ϕ1 + ϕ2 + ϕ3 ,

ψ∗j :=
1

∑

r=−1
ϕ j+r ( j ≥ 3)

and then put ψ j := ψ∗j /3 for j ∈ N0. Then clearly
∑

j ψ j = 1 and ψ jϕ j = ϕ j .
Finally, we set

ψ j̄ := ψ j1 ⊗ · · · ⊗ ψ jd to obtain (ψ j̄ ) j̄ .

By construction, ψ0 = ϕ0(2−1·)/3, ψ j+1 = ψ j (2−1·) for j ∈ N0\{2}, and
ψ3 = ψ0(2−3·) − ψ0. Also note that supp (ψ0) ⊂ [−4, 4] and supp (ψ3) ⊂
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[−32, 32]\(−2, 2). As a consequence, we can record suppψ j (2 j ·) ⊂ [−4, 4] for
all j ∈ N0 and ψ j (2 j ·) = 0 on [−1/4, 1/4] when j ≥ 3.

Utilizing (ψ j̄ ) j̄ , we then first rewrite the W s,ᾱ
p -norm as follows,

‖ f ‖W s,ᾱ
p
	

∥

∥

∥F−1[mᾱ,sF f
]

∥

∥

∥

p

	
∥

∥

∥

(
∑

j̄∈Nd
0

∣

∣F−1ϕ j̄ mᾱ,sF f
∣

∣

2
) 1

2
∥

∥

∥

p

=
∥

∥

∥

(
∑

j̄∈Nd
0

∣

∣2s‖ j̄/ᾱ‖∞F−1(2−s‖ j̄/ᾱ‖∞ψ j̄ mᾱ,s
)

ϕ j̄F f
∣

∣

2
) 1

2
∥

∥

∥

p
.

The second equivalence is an anisotropic Littlewood–Paley theorem stating that the
concrete space L p and the anisotropic Triebel-Lizorkin space F0,ᾱ

p,2 coincide with

equivalent norms (applied to the function g = F−1[mᾱ,sF f
]

) as mentioned in Sect. 2
(see e.g. [42, Sect. 4.2.2] or [47, Sect. 2.5.2] for a proof).

After this, we denote Mᾱ,s, j̄ := 2−s‖ j̄/ᾱ‖∞ψ j̄ mᾱ,s and apply the Fourier multiplier

lemma 3.8 with ρ j̄ := Mᾱ,s, j̄ and f j̄ := 2s‖ j̄/ᾱ‖∞F−1ϕ j̄F f . Due to p > 1 and q = 2
we can thereby choose r := 2. This leads to

∥

∥

∥

(
∑

j̄∈Nd
0

22s‖ j̄/ᾱ‖∞|F−1Mᾱ,s, j̄ϕ j̄F f |2
) 1

2
∥

∥

∥

p
� sup

j̄∈Nd
0

‖Mᾱ,s, j̄ (2
j1 ·, . . . , 2 jd ·)‖S22W‖ f ‖

˜W s
p
.

To finish Step 1, it now merely remains to check whether sup j̄∈Nd
0
‖Mᾱ,s, j̄ (2

j1 ·, . . . ,
2 jd ·)‖S22W is finite. But, defining ψ̃0 := ψ0 and ψ̃1 := ψ3(23·) with support in

I0 := [−4, 4] and I1 := [−4, 4]\(−1/4, 1/4) , (43)

respectively, and letting ψ̃r̄ := ψ̃r1 ⊗ · · · ⊗ ψ̃rd for r̄ = (r1, . . . , rd) ∈ {0, 1}d , we
have

Mᾱ,s, j̄ (2
j1ξ1, . . . , 2

jd ξd) = 2−s‖ j̄/ᾱ‖∞ψ̃s( j̄)(ξ1, . . . , ξd)mᾱ,s(2
j1ξ1, . . . , 2

jd ξd) ,

where s( j̄) := (sgn( j1 − 2), . . . , sgn( jd − 2))+. And for each j̄ ∈ N
d
0 , the function

ψ̃s( j̄) belongs to S(Rd) and is supported on

Is( j̄) := Is( j1) × · · · × Is( jd ) ,

where I0, I1 are given as in (43) and s( j	) :=
(

sgn( j	−2)
)

+, 	 ∈ {1, . . . , d}. Hence, it
is sufficient to verify that the mixed derivatives—up to order 2 in each component—of



51 Page 42 of 55 Journal of Fourier Analysis and Applications (2021) 27 :51

Fᾱ,s, j̄ : (ξ1, . . . , ξd) �→ 2−s‖ j̄/ᾱ‖∞mᾱ,s(2
j1ξ1, . . . , 2

jd ξd)

=
(

d
∑

i=1
2−‖ j̄/ᾱ‖∞(1+ 22 ji ξ2i )1/(2αi )

)s

are uniformly bounded over j̄ ∈ N
d
0 and ξ ∈ Is( j̄). For this, we first observe that

Fᾱ,s, j̄ (ξ) =
(

d
∑

i=1
2−‖ j̄/ᾱ‖∞(1+ 22 ji ξ2i )1/(2αi )

)s

=
(

d
∑

i=1

(

2−2αi‖ j̄/ᾱ‖∞ + 2−2αi (‖ j̄/ᾱ‖∞− ji /αi )ξ2i

)1/(2αi )
)s

,

with quantities 2−2αi‖ j̄/ᾱ‖∞ and 2−2αi (‖ j̄/ᾱ‖∞− ji /αi ) all positive and never larger than
one. This immediately implies

sup
j̄∈Nd

0
ξ∈[−4,4]d

|Fᾱ,s, j̄ (ξ)| � 1. (44)

Next, we determine the partial derivatives ∂γ̄ mᾱ,s of mᾱ,s with γ̄ ∈ {0, 1, 2}d and
γ̄ �= (0, . . . , 0). They are given by

∂γ̄ mᾱ,s(ξ) =
∑

	̄=(	1,...,	d )∈Nd
0

(	1,...,	d )≤(γ1−1,...,γd−1)+

s(s − 1) · · · (s − ‖γ̄ − 	̄‖1 + 1)

ᾱγ̄−	̄
· mᾱ,s−‖γ̄−	̄‖1 (ξ)×

×
d
∏

i=1

[

ξi 〈ξi 〉
1
αi
−2]γi−2	i

[

〈ξi 〉
1
αi
−4(

(
1

αi
− 1)ξ2i + 1

)]	i
,

where we use the abbreviation 〈ξ	〉 for (1+ ξ2	 )1/2. We deduce the estimate

|∂γ̄ mᾱ,s(ξ)| �
∑

	̄=(	1,...,	d )∈Nd
0

(	1,...,	d )≤(γ1−1,...,γd−1)+

|mᾱ,s−‖γ̄−	̄‖1 (ξ)| ·
d
∏

i=1

[

〈ξi 〉
1
αi
−1]γi−2	i

[

〈ξi 〉
1
αi
−2]	i

and thus, using

d
∏

i=1

[

〈ξi 〉
1
αi
−1]γi−2	i

[

〈ξi 〉
1
αi
−2]	i =

d
∏

i=1
〈ξi 〉(γi−	i )/αi 〈ξi 〉−γi ,

∂γ̄ Fᾱ,s, j̄ (ξ) = 2−s‖ j̄/ᾱ‖∞ · 2 j̄ ·γ̄ · (∂γ̄ mᾱ,s
)

(2 j̄ξ) ,

mᾱ,s−‖γ̄−	̄‖1(2
j̄ξ) = 2(s−‖γ̄−	̄‖1)‖ j̄/ᾱ‖∞Fᾱ,s−‖γ̄−	̄‖1, j̄ (ξ) ,
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arrive at the inequality

|∂γ̄ Fᾱ,s, j̄ (ξ)| = 2−s‖ j̄/ᾱ‖∞ · 2 j̄ ·γ̄ · |(∂γ̄ mᾱ,s
)

(2 j̄ξ)| �
∑

	̄=(	1,...,	d )∈Nd
0

(	1,...,	d )≤(γ1−1,...,γd−1)+

S	̄(ξ )

with terms

S	̄(ξ ) := 2−‖γ̄−	̄‖1‖ j̄/ᾱ‖∞ · |Fᾱ,s−‖γ̄−	̄‖1, j̄ (ξ)| ·
d
∏

i=1
2 ji ·γi 〈2 ji ξi 〉(γi−	i )/αi 〈2 ji ξi 〉−γi .

We now use 〈2 ji ξi 〉 ≤ 2 ji 〈ξi 〉. Further, if ji ∈ {0, 1, 2} we estimate 2 ji 〈2 ji ξi 〉−1 ≤
4〈ξi 〉−1 ≤ 4. In case ji ≥ 3 we consider only |ξi | ≥ 1

4 and obtain 2 ji 〈2 ji ξi 〉−1 ≤
|ξi |−1 ≤ 4. Under the condition ξ ∈ Is( j̄), we have thus shown

S	̄(ξ ) ≤ 4 · 2−‖γ̄−	̄‖1‖ j̄/ᾱ‖∞ · |Fᾱ,s−‖γ̄−	̄‖1, j̄ (ξ)| · 2(γ̄−	̄)·( j̄/ᾱ) ·
d
∏

i=1
〈ξi 〉(γi−	i )/αi .

Observing (γ̄ − 	̄) ·( j̄/ᾱ) ≤ ‖γ̄ − 	̄‖1‖ j̄/ᾱ‖∞ and taking (44) into account, we finally
realize that the terms S	̄(ξ ) are uniformly bounded in the range ξ ∈ Is( j̄) with respect

to j̄ ∈ N
d
0 . Step 1 is finished.

Step 2. For the proof of the converse inequality ‖ f ‖
˜W s,ᾱ

p
� ‖ f ‖W s,ᾱ

p
we argue

analogously to Step 1 and use this time the multiplier

˜Mᾱ,s, j̄ (ξ) := ψ j̄ (ξ)2s‖ j̄/ᾱ‖∞

mᾱ,s(ξ)
.

It is well-defined since mᾱ,s > 0, and we have, using the same notation as in Step 1,

˜Mᾱ,s, j̄ (2
j1ξ1, . . . , 2

jd ξd) = ψ̃s( j̄)(ξ1, . . . , ξd)

2−s‖ j̄/ᾱ‖∞mᾱ,s(2 j1ξ1, . . . , 2 jd ξd)
.

Again, it is not difficult to check that the mixed derivatives of order at most 2 in each
component are bounded on Is( j̄) independently of j̄ .

By Lemma 3.8, applied with ρ j̄ := ˜Mᾱ,s, j̄ , f j̄ := F−1mᾱ,sϕ j̄F f , and r := 2, we
get

‖ f ‖
˜W s,ᾱ

p
	

∥

∥

∥

(
∑

j̄∈Nd
0

22s‖ j̄/ᾱ‖∞ ∣∣F−1ϕ j̄F f
∣

∣

2
) 1

2
∥

∥

∥

p

=
∥

∥

∥

(
∑

j̄∈Nd
0

22s‖ j̄/ᾱ‖∞ ∣∣F−1ψ j̄ m
−1
ᾱ,smᾱ,sϕ j̄F f

∣

∣

2
) 1

2
∥

∥

∥

p



51 Page 44 of 55 Journal of Fourier Analysis and Applications (2021) 27 :51

=
∥

∥

∥

(
∑

j̄∈Nd
0

∣

∣F−1 ˜Mᾱ,s, j̄ mᾱ,sϕ j̄F f
∣

∣

2
) 1

2
∥

∥

∥

p

�
(

sup
j̄∈Nd

0

∥

∥ ˜Mᾱ,s, j̄ (2
j1 ·, . . . , 2 jd ·)∥∥S22W

)

·
∥

∥

∥

(
∑

j̄∈Nd
0

∣

∣(F−1[ϕ j̄ mᾱ,sF f ])∣∣2
) 1

2
∥

∥

∥

p

�
∥

∥

∥F−1
[

mᾱ,sF f
]

∥

∥

∥

p
	 ‖ f ‖W s,ᾱ

p
.

��
Remark 6.2 We mention that, in contrast to this result, in case A = B we only have
coincidence when p = q = 2. A proof can be found in [1].

As a direct consequence of Theorems 6.1 and 4.6, we obtain new characterizations
of classical Sobolev spaces via hyperbolic wavelets.

Theorem 6.3 Let 1 < p <∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi =
d. Let further ψ0, ψ be wavelets satisfying (K) and (L) with

K , L > σp,2 + |s|/αmin.

Then any f ∈ S ′(Rd) belongs to W s,ᾱ
p (Rd) if and only if it can be represented as

f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄ψ j̄,k̄ (45)

with (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,2 . The representation (45) converges unconditionally in S ′(Rd)

and in W s,ᾱ
p (Rd). In addition, (ψ j̄,k̄) j̄,k̄ is an unconditional basis in W s,ᾱ

p (Rd). The
sequence of coefficients λ := λ( f ) = (λ j̄,k̄) j̄,k̄ is uniquely determined via

λ j̄,k̄ := λ j̄,k̄( f ) = 2‖ j‖1〈 f , ψ j̄ ,k̄〉

and we have the wavelet isomorphism (equivalent norm)

‖ f ‖W s,ᾱ
p (Rd )

	 ‖λ( f )‖ f̃ s,ᾱ
p,2

, f ∈ W s,ᾱ
p (Rd) .

Analogously, combining Theorem 6.1 with Theorem 5.4, we also derive new char-
acterizations of Sobolev spaces with the hyperbolic Haar system Hd from (25).

Theorem 6.4 Let 1 < p <∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 such that
∑d

i=1 αi =
d. Further, assume

|s|/αmin < min
{ 1

p
, 1− 1

p

}

.
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Then the Haar system Hd = (h j̄,k̄) j̄,k̄ from (25) constitutes an unconditional basis

of W s,ᾱ
p (Rd) with associated sequence space f̃ s,ᾱ

p,2 . The unique sequence of basis

coefficients for f ∈ W s,ᾱ
p (Rd) is determined by λ := λ( f ) = (λ j̄,k̄) j̄,k̄ with

λ j̄,k̄ := λ j̄,k̄( f ) = 2‖ j̄‖1〈 f , h j̄,k̄〉 . (46)

Further, we have the wavelet isomorphism (equivalent norm)

‖ f ‖W s,ᾱ
p (Rd )

	 ‖λ( f )‖ f̃ s,ᾱ
p,2

, f ∈ W s,ᾱ
p (Rd) .

In addition, those elements of S ′(Rd) belonging to W s,ᾱ
p (Rd) are characterized by

either of the following two criteria:

(i) f can be represented as a sum

f =
∑

j̄∈Nd
0

∑

k̄∈Zd

λ j̄,k̄ h j̄,k̄ converging (weak*ly) in S ′(Rd) (47)

with coefficients (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,2 (with respect to some chosen ordering).

(ii) With λ( f ) being defined as in (46), it holds

λ( f ) = (λ j̄,k̄) j̄,k̄ ∈ f̃ s,ᾱ
p,2 .

In both cases, the sequence (λ j̄,k̄) j̄,k̄ is necessarily the sequence of basis coefficients

and the representation (47) converges unconditionally to f in W s,ᾱ
p (Rd).

7 Hyperbolic and Classical (Anisotropic) BLT Spaces

The next and final theorem of this paper complements the statement of Theorem 6.1,
showing that in general the spaces ˜As,ᾱ

p,q(Rd) and As,ᾱ
p,q(Rd), with A ∈ {B, F}, do not

coincide.

Theorem 7.1 Let 0 < p, q ≤ ∞, s ∈ R, and ᾱ = (α1, . . . , αd) > 0 with
∑d

i=1 αi =
d.

(i) If Bs,ᾱ
p,q(Rd) = ˜Bs,ᾱ

p,q(Rd) then p = q = 2.

(ii) In the range 0 < p <∞: If Fs,ᾱ
p,q (Rd) = ˜Fs,ᾱ

p,q (Rd) then q = 2 and 1 < p <∞.

Remark 7.2 The Besov result (i) follows directly from the very general investigations
on embeddings between decomposition spaces conducted in [58]. Evenmore, the find-
ings there allow to strengthen the statement to more general independent parameters,
namely

Bs1,ᾱ1
p1,q1(R

d) = ˜Bs2,ᾱ2
p2,q2(R

d) ⇔ p1 = p2 = q1 = q2 = 2 and ᾱ1 = ᾱ2 and s1 = s2 .



51 Page 46 of 55 Journal of Fourier Analysis and Applications (2021) 27 :51

The results of [58], however, are not applicable in the proof of (ii) since Triebel-
Lizorkin spaces do not fit into the decomposition space framework. In the sequel, we
will therefore give a proof for the F-case (ii) which by slight modifications would also
provide a direct way to establish the B-case (i).

Before we start, let us remind ourselves that the converse statement of (ii), the coin-
cidence of Fs,ᾱ

p,q and ˜Fs,ᾱ
p,q when 1 < p < ∞ and q = 2, is given by Theorem 6.1.

The coincidence of Bs,ᾱ
p,q and ˜Bs,ᾱ

p,q when p = q = 2, the converse of (i), is further
observed in Remark 6.2.

Proof of Theorem 7.1 (ii) Step 1: Preparation.Fix an anisotropyvector ᾱ = (α1, . . . , αd)

and consider a univariate resolution of unity (θ j ) j∈N0 of the following form:
The generator θ0 ∈ S(R) shall satisfy

supp θ0 ⊂ [−2αmin/3, 2αmin/3] and θ0 = 1 on [−1, 1] ,

and the functions θ j for j ∈ N shall be obtained via θ j (·) := θ0(2− j ·)− θ0(2−( j−1)·).
Using (θ j ) j∈N0 , we can then construct two multivariate resolutions of unity on Rd .

First, via simple tensorization, we get the hyperbolic resolution (θ j̄ ) j̄∈Nd
0
with

θ j̄ := θ j1 ⊗ . . .⊗ θ jd , j̄ = ( j1, . . . , jd) ∈ N
d
0 .

It clearly fulfills all the specifications formulated at the beginning of Sect. 3.
Second, putting ϕᾱ

0 := θ0 ⊗ . . .⊗ θ0 and

ϕᾱ
j := ϕᾱ

0 (2− j ᾱ·)− ϕᾱ
0 (2−( j−1)ᾱ·) for j ∈ N ,

we obtain (ϕᾱ
j ) j∈N0 , which is a classical anisotropic resolution of unity in compliance

with the definition from Sect. 2.1.
For parameters α > 0 and 	 ∈ N, let us next introduce the intervals

I α
	 := 2(	−1)α · [2αmin/3, 2α] and Jα

	 := [−2	α, 2	α] .

Then θ0(2−	α·) = 1 on Jα
	 and θ0(2−	α·) − θ0(2−(	−1)α·) = 1 on I α

	 . In particular,
θ j = 1 on I 1j for every j ∈ N and thus θ j̄ = 1 on I 1j1 × · · · × I 1jd . Further, we have

ϕᾱ
0 (2− j ᾱ·) = 1 on Jα1

j × · · · × Jαd
j and as a consequence ϕᾱ

j = 1 on (Jα1
j × · · · ×

Jαd
j )\(Jα1

j−1 × · · · × Jαd
j−1). This, in turn, implies ϕᾱ

j = 1 on the subset I α1
j × · · · ×

I αd−1
j × Jαd

j .

Observe now that for every 	 ∈ N and every i ∈ {1, . . . , d} either I αi
	 ∩ I 1	αi � or

I αi
	 ∩ I 1	αi �+1 is a nonempty interval of nonzero length. This is due to the fact that
always

2γ · L(I αi
	 ) ≤ R(I 1	αi �) ≤ R(I αi

	 ) or 2γ · L(I 1	αi �+1) ≤ R(I αi
	 ) ≤ R(I 1	αi �+1) ,

(48)
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whereL(I ) andR(I ) denote the left resp. right endpoint of a given interval I = [a, b]
and γ = α2

min/8. The verification of this fact is postponed to Step 3 at the end of this
proof.

As a consequence, for each i ∈ {1, . . . , d} and each 	 ∈ N, we may pick one of
those intersections with nonvanishing interior and denote it by Ĩ (i)

	 . Depending on our
choice, we then either have

Ĩ (i)
	 = I αi

	 ∩ I 1	αi � or Ĩ (i)
	 = I αi

	 ∩ I 1	αi �+1. (49)

Due to the nonvanishing interior of Ĩ (i)
	 we can further fix nontrivial functions

h[i]	 ∈ S(R) with supp h[i]	 ⊂ Ĩ (i))
	 , i ∈ {1, . . . , d − 1} .

With this preparation we are finally ready for the main argumentation.
Step 2: Main Proof. For 	 ∈ N let us consider g	 : R→ C with the property

supp (Fg	) ⊂ Jαd
	 = [−2	αd , 2	αd ] (50)

and associate a multivariate function f	 : Rd → C defined by its Fourier transform

F f	(ξ1, . . . , ξd) := h[1]	 (ξ1)h
[2]
	 (ξ2) · · · h[d−1]	 (ξd−1)Fg	(ξd) ,

where h[i]	 are the functions introduced at the end of Step 1.
SinceF f	 is supported inside I α1

	 ×· · ·× I αd−1
	 ×Jαd

	 , onwhichϕᾱ
	 = 1 according to

our considerations in Step 1, we can easily compute the classical anisotropic Triebel-
Lizorkin (quasi-)norm of f	. Denoting by (�

ϕ
j ) j∈N0 the Littlewood–Paley analysis

associated to (ϕᾱ
j ) j∈N0 , we have

‖ f	‖Fs,ᾱ
p,q (Rd )

=
∥

∥

∥

(
∑

j≥0
2 jsq |�ϕ

j f	|q
) 1

q
∥

∥

∥

p
= 2	s‖�ϕ

	 f	‖p = 2	s‖ f	‖p .

Moreover, as f	 is a tensor product, we can compute

‖ f	‖p = ‖F−1(h[1]	 )‖p · ... · ‖F−1(h[d−1]	 )‖p‖g	‖p = C	‖g	‖p

with C	 := C (1)
	 · ... · C (d−1)

	 and C (i)
	 := ‖F−1(h[i]	 )‖p for i ∈ {1, . . . , d − 1}.

Altogether, we end up with

‖ f	‖Fs,ᾱ
p,q
	 2	sC	‖g	‖p .

We proceed with the computation of the hyperbolic Triebel-Lizorkin (quasi-)norm
of f	. It follows right from the definition of the intervals Ĩ (i)

	 from (49) that there exist
numbers ki (	) ∈ N, either taking the value 	αi� or the value 	αi� + 1, such that
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Ĩ (i)
	 ⊂ I 1ki (	)

. Hence, due to suppF f	 ⊂ Ĩ (1)
	 × · · · × Ĩ (d−1)

	 × Jαd
	 the function F f	

is supported inside I 1k1(	) × · · · × I 1kd−1(	) × Jαd
	 .

Let now (�θ

j̄
) j̄∈Nd

0
denote the Littlewood–Paley analysis corresponding to (θ j̄ ) j̄∈Nd

0

and let us abbreviate ki (	) by ki and the vector (k1, . . . , kd−1, jd) by 	 jd . Then, since

	αd�+1
∑

jd=0
θ	 jd
= 1 on I 1k1 × · · · × I 1kd−1 × Jαd

	 ,

we calculate for the hyperbolic Triebel-Lizorkin (quasi-)norm of f	

‖ f	‖
˜Fs,ᾱ

p,q
=

∥

∥

∥

(
∑

j∈Nd
0

2max{ j1/α1,..., jd/αd }sq |�θ

j
f	(·)|q

)1/q∥
∥

∥

p

=
∥

∥

∥

(

	αd�+1
∑

jd=0
2max{k1/α1,...,kd−1/αd−1, jd/αd }sq |�θ

	 jd
f	(·)|q

)1/q∥
∥

∥

p

	 2	s
∥

∥

∥

(

	αd�+1
∑

jd=0
|�θ

	 jd
f	(·)|q

)1/q∥
∥

∥

p
= 2	sC	‖g	‖F0

p,q

with the same constant C	 as obtained before in the computation of ‖ f	‖Fs,ᾱ
p,q
.

Now we come to the core argument. Assuming that the spaces Fs,ᾱ
p,q (Rd) and

˜Fs,ᾱ
p,q (Rd) coincide, the associated (quasi-)norms would be equivalent. By our calcula-

tions, this would imply that ‖g	‖F0
p,q (R) is equivalent to ‖g	‖L p(R) for any band-limited

function g	 with frequency support as in (50). Moreover, since the proof holds true
for all 	 ∈ N this equivalence remains valid for any band-limited function g on R.

But, as a consequence of Lemma 7.3(iii), since the sequence ( f (3)
N )N constructed

in its proof consists of band-limited functions, this is only possible in the range 1 <

p < ∞. Furthermore, if 1 < p < ∞ the band-limited functions are dense in L p(R)

as well as F0
p,q(R). Hence, by Lemma 7.3(i) also q = 2 is a necessary condition. It

now only remains to verify (48).
Step 3: Proof of (48).We distinguish two cases depending on the size of the quantity

δ := 	αi − 	αi� ∈ [0, 1). Let us subsequently abbreviate ρ := αmin
4+αmin

and σ :=
8αmin

3αmin+12 = 2
3 (1 − ρ)αmin. Recalling that αmin = mini∈{1,...,d}{αi } ∈ (0, 1], we note

that ρ ∈ (0, 1
5 ] and σ ∈ (0, 2

3 ].
In case δ ∈ [0, σ ) we have δ ≤ (1− ρ)(αi − αmin/3) and thus

log2 R
(

I 1	αi �
) = 	αi� = 	αi − δ ≥ 	αi − (1− ρ)(αi − αmin/3)

= (	− 1)αi + αmin/3+ ρ(αi − αmin/3) ≥ log2 L
(

I αi
	

)+ 2

3
ραmin ,
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where we used L(I αi
	

) = 2(	−1)αi+αmin/3 and R(

I 1	αi �
) = 2	αi �. In view of γ =

α2
min/8 < 2

3ραmin and since we always have 	αi� ≤ 	αi ≤ 	αi� + 1, i.e.

log2 R
(

I 1	αi �
) ≤ log2 R

(

I αi
	

) ≤ log2 R
(

I 1	αi �+1
)

, (51)

the left inequality in (48) is hence valid in the respective range of δ.
In case δ ∈ [σ, 1) we first estimate

δ >
7αmin

3αmin + 1
= (1− ρ)+ ραmin/3 ≥ (1− ρ)αmin + ραmin/3 ,

from which we deduce, using 	αi = 	αi� + δ and L(I 1	αi �+1
) = 2	αi �+αmin/3,

log2 R
(

I αi
	

) =	αi > 	αi� + (1− ρ)αmin + ραmin/3 = log2 L
(

I 1	αi �+1
)

+ 2

3
(1− ρ)αmin .

This time, again taking into account (51) and γ = α2
min/8 < 2

3 (1− ρ)αmin, the right
inequality in (48) holds true. Altogether, the proof of (48) is thus finished. ��

The behavior of the L p-(quasi-)norms in relation to the A0
p,q -(quasi-)norms is

crucial for the proof of Theorem 7.1. Concretely, we have shown for A ∈ {B, F}

As,ᾱ
p,q (Rd) = ˜As,ᾱ

p,q (Rd) ⇐⇒ ‖ f ‖A0
p,q (R) 	 ‖ f ‖L p(R) for band-limited functions f .

(52)

On the right-hand side, the (quasi-)norms are thereby all classical and only the uni-
variate case matters. Using known embedding theorems, the exact parameters for
equality could therefore be determined (see [49] Sect. 2.3.2 or [44] Theorem 3.1.1.,
for example).

Prefering a direct and shorter route, the following lemma provides a simple and
quantitative argument for what we need. It investigates the behavior of the respective
(quasi-)norms for certain sequences of test functions. As a consequence of statement
(i), we extract the necessity p = q = 2 for equality in (52). From (ii) we further obtain
p = q in the B-case. Statement (iii) yields 1 < p < ∞ in the F-case. Altogether,
this shows that the Sobolev spaces in Theorem 6.1 are precisely those, where equality
holds true.

Lemma 7.3 Assume 0 < p < ∞, 0 < q ≤ ∞, A ∈ {B, F}. There are sequences
( f (i)

N )N∈N, i ∈ {1, 1′, 2, 3}, of functions on R such that

(i) ‖ f (1)
N ‖p � N 1/2 and ‖ f (1)

N ‖A0
p,q (R) 	 N 1/q , (i ′) ‖ f (1′)

N ‖p � N 1/2 and

‖ f (1′)
N ‖A0

p,q (R) 	 N 1/q ,
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(ii) ‖ f (2)
N ‖p 	 N 1/p and ‖ f (2)

N ‖B0
p,q (R) 	 N 1/q ,

(iii) ‖ f (3)
N ‖p 	 2N (1−1/p) and ‖ f (3)

N ‖F0
p,q (R) �

{

1 , p < 1,

N 1/p , p ≥ 1.

Remark 7.4 In case q = ∞ we need to interpret N 1/q 	 1. Further, the case A = B
with p = ∞ is not considered in Lemma 7.3. By an analogous argument, one can show
however that (ii) holds true also for p = ∞. So, for B0∞,q(R) we have the necessary
condition q = ∞ to be equivalent to L∞(R). It is further not difficult to show that
the sequence ( f (1)

N )N∈N0 from (i) fulfills ‖ f (1)
N ‖∞ ↗ ∞whereas ‖ f (1)

N ‖B0∞,∞(R) 	 1.

Hence, B0∞,∞(R) �= L∞(R).

Proof ad (i),(i′): We provide the proof for q < ∞. Let ε̄ = (ε0, ε1, . . .) ∈ {−1, 1}N0

and define

fN ,ε̄ :=
N
∑

j=0
ε j

2 j
∑

k=0
ψ j,k ,

where (ψ j,k) j,k shall be a compactly supported, orthogonal, and L∞-normalized
wavelet system with sufficient vanishing moments and smoothness to characterize
the space A0

p,q(R). Further, for each j ∈ N0 and k ∈ {0, . . . , 2 j }, we assume the
support condition supp (ψ j,k) ⊂ [0, 1].

Now we note that in a univariate setting, as considered here, we have the coin-
cidence Ã0

p,q(R) = A0
p,q(R). Hence, using the wavelet isomorphism established by

Theorem 4.6 for the F-scale and taking into account Remark 4.5 for the B-scale, we
immediately obtain

‖ fN ,ε̄‖B0
p,q (R) 	

(
N
∑

j=0

∥

∥

∥

2 j
∑

k=0
χ j,k

∥

∥

∥

q

p

)1/q 	 N 1/q ,

‖ fN ,ε̄‖F0
p,q (R) 	

∥

∥

∥

(
N
∑

j=0

∣

∣

∣

2 j
∑

k=0
χ j,k

∣

∣

∣

q)1/q∥
∥

∥

p
	 N 1/q ,

whereby the (quasi-)norms on the left-hand side do not depend on the choice of ε̄.
Fromhereweproceedwith a probabilistic argument and interpret ε̄ as aRademacher

random variable. Then, for the expectation of the L p-(quasi-)norms over ε̄,

Eε̄(‖ fN ,ε̄‖p
p) =

∫ 1

0

∫

R

∣

∣

∣

N
∑

j=0
r j (t)

2 j
∑

k=0
ψ j,k(x)

∣

∣

∣

p
dx dt ,

where r j (t) := sgn(sin 2 jπ t) is the j-th Rademacher function. ApplyingKhintchine’s
inequality, we obtain from this
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Eε̄(‖ fN ,ε̄‖p
p) =

∫ 1

0

∫ 1

0

∣

∣

∣

N
∑

j=0
r j (t)

2 j
∑

k=0
ψ j,k(x)

∣

∣

∣

p
dt dx

	
∫ 1

0

(
N
∑

j=0

∣

∣

∣

2 j
∑

k=0
ψ j,k(x)

∣

∣

∣

2)p/2
dx .

Next, we define for j ∈ N0 the auxiliary functions

Fj := 1

M

∣

∣

∣

2 j
∑

k=0
ψ j,k(x)

∣

∣

∣

2
with M > 0 such that ‖Fj‖∞ ≤ 1.

Observe that 0 ≤ Fj ≤ 1. Then, in case 0 < p ≤ 2,

N−p/2 · Eε̄(‖ fN ,ε̄‖p
p) 	

∫ 1

0

( 1

N

N
∑

j=0
Fj (x)

)p/2
dx ≥ 1

N

∫ 1

0

N
∑

j=0
Fj (x) dx ,

and
∫ 1
0 Fj (x) dx 	 1. HenceEε̄(‖ fN ,ε̄‖p

p) � N p/2. Also, since 2/p ≥ 1, with Hölder

Eε̄(‖ fN ,ε̄‖p
p) 	

∫ 1

0

(
N
∑

j=0
Fj (x)

)p/2
dx �

(

∫ 1

0

N
∑

j=0
Fj (x) dx

)p/2 	 N p/2 .

In case 2 < p <∞, we again argue with Hölder

Eε̄(‖ fN ,ε̄‖p
p) 	

∫ 1

0

(
N
∑

j=0
Fj (x)

)p/2
dx �

(

∫ 1

0

N
∑

j=0
Fj (x) dx

)p/2 	 N p/2 .

Further, since 2/p < 1,

N−p/2 · Eε̄(‖ fN ,ε̄‖p
p) 	

∫ 1

0

( 1

N

N
∑

j=0
Fj (x)

)p/2
dx � 1

N

∫ 1

0

N
∑

j=0
Fj (x) dx 	 1 .

Altogether, these estimates show Eε̄(‖ fN ,ε̄‖p
p) 	 N p/2. As a consequence, we can

choose fN := fN ,ε̄(N ) such that ‖ fN‖p
p � N p/2, or equivalently ‖ fN‖p �

√
N ,

proving (i). Analogously, choosing fN := fN ,ε̄(N ) with ‖ fN‖p
p � N p/2 proves (i′).

ad (ii): With the same wavelet system (ψ j,k) j,k as before, L∞-normalized, define

fN :=
N
∑

j=0
2 j/pψ j,k( j) ,
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where k( j) is chosen such that the (spatial) support of thewavelets ismutually disjoint.
Then, using again the wavelet isomorphism from Theorem 4.6 and Remark 4.5, we
deduce

‖ fN‖B0
p,q (R) = ‖ fN‖˜B0

p,q (R) 	
(

N
∑

j=0

∥

∥

∥2 j/pχ j,k( j)

∥

∥

∥

q

p

)1/q

=
(

N
∑

j=0

(

2 j/p2− j/p)q
)1/q 	 N 1/q .

For the L p-(quasi-)norm we obtain, due to the disjoint support,

‖ fN‖L p(R) =
∥

∥

∥

N
∑

j=0
2 j/pψ j,k( j)

∥

∥

∥

p
=

(
N
∑

j=0
2 j‖ψ j,k( j)‖p

p

)1/p 	 N 1/p .

ad (iii): Finally, let (ϕ j ) j be a (standard) dyadic resolution of unity, with ϕ0 = 1 in
a neighborhood of 0 and ϕ1 = ϕ0(·/2)− ϕ0, and put

fN := F−1ϕ0(2
−N ·) .

Then fN = 2N F1(2N ·). For the L p-(quasi-)norm we thus compute

‖ fN‖L p(R) = 2N‖F1(2
N ·)‖p 	 2N (1−1/p) .

Turning to the F0
p,q(R)-(quasi-)norm, for N ≥ 2, we calculate, writing �0 := F−1ϕ0

and �1 := F−1ϕ1,

‖ fN‖F0
p,q (R) =

∥

∥

∥

(
∞
∑

j=0

∣

∣

∣

(F−1(ϕ j · ϕ0(2
−N ·)))(·)

∣

∣

∣

q)1/q∥
∥

∥

p

≥
∥

∥

∥

(
N−1
∑

j=0

∣

∣

∣

(F−1ϕ j
)

(·)
∣

∣

∣

q)1/q∥
∥

∥

p

=
∥

∥

∥

(

|�0|q +
N−1
∑

j=1

∣

∣

∣2 j−1�1(2
j−1·)

∣

∣

∣

q)1/q∥
∥

∥

p

=
∥

∥

∥

(

|�0|q +
N−2
∑

j=0

∣

∣

∣2 j�1(2
j ·)

∣

∣

∣

q)1/q∥
∥

∥

p
.

Note that �1 has (infinitely many) vanishing moments and is thus oscillatory. Assum-
ing w.l.o.g. |�1| > δ on a set I ⊂ [1, 2), with δ > 0 being some fixed constant, we
can proceed
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‖ fN‖F0
p,q (R) �

∥

∥

∥

(
N−2
∑

j=0

∣

∣

∣2 jχI (2
j ·)

∣

∣

∣

q)1/q∥
∥

∥

p

=
∥

∥

∥

N−2
∑

j=0
2 jχI (2

j ·)
∥

∥

∥

p
=

(
N−2
∑

j=0
2 j p

∫

R

χI (2
j x) dx

)1/p

	
(

N−2
∑

j=0
2 j(p−1))1/p

�
{

1 , p < 1 ,

N 1/p , p ≥ 1 .
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