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Abstract
For a normalized root system R in R

N and a multiplicity function k ≥ 0 let N =
N +∑

α∈R k(α). We denote by dw(x) = Πα∈R |〈x, α〉|k(α) dx the associated measure
inRN . Let L = −Δ+ V , V ≥ 0, be the Dunkl–Schrödinger operator onRN . Assume
that there exists q > max(1, N

2 ) such that V belongs to the reverse Hölder class
RHq(dw). We prove the Fefferman–Phong inequality for L . As an application, we
conclude that theHardy space H1

L , which is originally defined bymeans of themaximal
function associated with the semigroup e−t L , admits an atomic decomposition with
local atoms in the sense of Goldberg, where their localizations are adapted to V .

Keywords Rational Dunkl theory · Schrödinger operators · Reverse Hölder classes ·
Fefferman–Phong inequality · Hardy spaces

Mathematics Subject Classification 42B30 · 42B25 · 42B35 · 35K08 · 35J10

1 Introduction

On RN , N ≥ 3, let us consider Schrödinger differential operator

L = −Δeucl + V (x) = −
N∑

j=1

∂2j + V (x) (1)
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where V ∈ L2
loc(R

N , dx) is a non-negative potential which belongs to the reverse
Hölder class Bq with q > N

2 , i.e. the inequality

(
1

|B|
∫

B
V (x)q dx

)1/q

≤ C
1

|B|
∫

B
V (x) dx (2)

holds for every ball B in RN . Define the auxiliary function m as follows:

1

m(x)
= sup

{

r > 0 : 1

r N−2

∫

B(x,r)

V (x) dx ≤ 1

}

. (3)

The integral defining the function m was introduced by Ch. Fefferman (see [20, p.
146, the assumption of the main lemma]). The function is then used in the well-known
Fefferman–Phong inequality ( [20, p. 146], see also Shen [35], [36, Lemma 1.9]) which
we state below.

Theorem 1 (Fefferman–Phong inequality) There is a constant C > 0 such that for all
f ∈ C1

c (RN ) we have

∫

RN
m(x)2| f (x)|2 dx ≤ C

⎛

⎝
N∑

j=1

∫

RN
|∂ j f (x)|2 dx +

∫

RN
V (x)| f (x)|2 dx

⎞

⎠ . (4)

The proof of (4) is based on the usage of the fact that V ∈ Ap for some p > 1 and on
the Poincaré inequality

1

|B(x, r)|
∫

B(x,R)

| f (y) − fB(x,r)|2 dy ≤ Cr2

|B(x, r)|
∫

B(x,r)

|∇ f (y)|2 dx . (5)

The Fefferman–Phong inequality and the function m itself are very useful tools
which are used in analysis regarding the operatorL , e.g., in investigating behavior of
its eigenvalues [20], estimating of the fundamental solution ofL ( [36, Theorem 2.7])
and studying L p-bounds of the operators ∇L iγ , ∇L −1/2,∇L −1∇, ∇2L −1 (see
Theorems 0.3, 0.4, 0.5, 0.8 in [36]). It was proved in [15] (see also [16, Theorem 2.11,
Proposition 2.16]) that the integral kernel kt (x, y) of the Schrödinger semigroup e−tL

behaves like the classical heat semigroup for 0 < t < m(x)−2, while for t > m(x)−2

has essentially faster decay. These observations allowed Dziubański and Zienkiewicz
[15] to study the Hardy spaces associated withL and prove a local character of atoms
(see also [17,18]).

The aim of this article is to prove the Fefferman–Phong inequality for Dunkl–
Schrödinger operators and study its applications for describing behavior of the
corresponding Dunkl–Schrödinger semigroups and their Hardy spaces H1.

TheDunkl theory is a generalizationof theEuclideanFourier analysis. It startedwith
the seminal article [10] and developed extensively afterwards (see e.g. [8,9,11,12,21,
29–31,38,39]). We refer the reader to lecture notes [32] and [33] for more information
and references. We fix a normalized root system R in R

N and a multiplicity function
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k ≥ 0 (see Sect. 2). For ξ ∈ R
N , N ≥ 1, the Dunkl operators Tξ are the following

k-deformations of the directional derivatives ∂ξ by a difference operator:

Tξ f (x) = ∂ξ f (x) +
∑

α∈R

k(α)

2
〈α, ξ 〉 f (x) − f (σα(x))

〈α, x〉 ,

where σα is the reflection on RN with respect to the hyperspace orthogonal to α. The
Dunkl operators are generalizations of the directional derivatives (in fact, they are
ordinary partial derivatives for k ≡ 0), however they are non-local operators. There-
fore, in order to obtain counterparts of classical Euclidean harmonic analysis results
in the Dunkl setting, we have to deal with both: local and non-local parts of the opera-
tors under consideration. For instance, the question what would be a good counterpart
of Poincare’s inequality (5) in the rational Dunkl setting seems to be an interesting
problem. Recently various different versions of (5) were proved (see [27,40,41]). The
analysis is more complicated if we compose such operators. Furthermore, there are
other technical problems and open questions in Dunkl theory. One of them is the lack
of knowledge about boundendess of the so called Dunkl translations τx on L p(dw)-
spaces for p 	= 2. It makes analysis of convolution operators more complicated and
delicate.

In the present paper we consider the Dunkl–Schrödinger operator

L = −Δ + V on R
N , N ≥ 1,

where V ∈ L2
loc(dw) is a non-negative potential and Δ = ∑N

j=1 T 2
e j

is the Dunkl
Laplacian. Here and subsequently, {e j }1≤ j≤N denote the canonical orthonormal basis
in R

N . Such operators were recently studied by Amri and Hammi in [2] and [3]. An
example of such operator is the so called Dunkl harmonic oscillator −Δ + ‖x‖2,
whose properties are better understood (see [1,24,28,29], and [33]). Let N be the
homogeneous dimension (see (7)). We shall assume that V satisfies an analogue of (2)
with q > max(1, N

2 ) (see Sect. 2.3 for details). In the current paper we prove that a
counterpart of the Fefferman–Phong inequality (4) is true in the Dunkl setting, which
is one of our main results (see Theorem 6). The main difficulty which one faces trying
to prove Theorem 6 is the lack of knowledge about the Poincare’s inequality, which is
the main ingredient of the proof in the classical case. Our idea of the proof is to mix
the methods which are known from the theory of non-local operators (see [18, proof
of Theorem 9.4]), a version of pseudo–Poincare’s inequality (62) (which is very close
to that in [40, Section 5]), together with properties of the counterpart of the function
m, which in the Dunkl setting will be denoted here by m. The careful analysis of the
properties of the function m and the proof of Theorem 6 are the goals of Part 1 of the
paper.

Part 2 is devoted to the application of the Fefferman–Phong inequality to prove
the characterization of the Hardy space H1

L associated with the Dunkl–Schrödinger
operator by themaximal function associated with the semigroup generated by−Δ+V
and by a special atomic decomposition - see Sect. 6 (Theorem 7) for the details. This
application is inspired by [15] (see also [14] and [17]). The atoms for H1

L have the
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structure of local atoms in the sense of Goldberg [23] with localization adapted to the
behavior of the function m. So, in order to obtain our result, we need characterizations
of a family local Hardy spaces in the Dunkl setting proved in [24, Section 5].

2 Preliminaries

2.1 Basic Definitions of the Dunkl Theory

In this section we present basic facts concerning the theory of the Dunkl operators.
For details we refer the reader to [10,32], and [33].

We consider the Euclidean space RN with the scalar product 〈x, y〉 = ∑N
j=1 x j y j ,

where x = (x1, . . . , xN ), y = (y1, . . . , yN ), and the norm ‖x‖2 = 〈x, x〉. For a
nonzero vectorα ∈ R

N , the reflection σα with respect to the hyperplaneα⊥ orthogonal
to α is given by

σα(x) = x − 2
〈x, α〉
‖α‖2 α.

In this paper we fix a normalized root system in RN , that is, a finite set R ⊂ R
N \ {0}

such that R ∩αR = {±α}, σα(R) = R, and ‖α‖ = √
2 for all α ∈ R. The finite group

G generated by the reflections σα ∈ R is called the Weyl group (reflection group) of
the root system. A multiplicity function is a G-invariant function k : R → C which
will be fixed and ≥ 0 throughout this paper. Let

dw(x) =
∏

α∈R

|〈x, α〉|k(α) dx (6)

be the associated measure in R
N , where, here and subsequently, dx stands for the

Lebesgue measure in RN . We denote by

N = N +
∑

α∈R

k(α) (7)

the homogeneous dimension of the system. Clearly,

w(B(tx, tr)) = tNw(B(x, r)) for all x ∈ R
N , t, r > 0,

where B(x, r) = {y ∈ R
N : ‖y − x‖ < r}. Moreover,

∫

RN
f (x) dw(x) =

∫

RN
t−N f (x/t) dw(x) for f ∈ L1(dw) and t > 0.

Observe that there is a constant C > 0 such that

C−1w(B(x, r)) ≤ r N
∏

α∈R

(|〈x, α〉| + r)k(α) ≤ Cw(B(x, r)), (8)
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so dw(x) is doubling, that is, there is a constant C > 0 such that

w(B(x, 2r)) ≤ Cw(B(x, r)) for all x ∈ R
N , r > 0. (9)

Moreover, there exists a constant C ≥ 1 such that, for every x ∈ R
N and for all

r2 ≥ r1 > 0,

C−1
(r2

r1

)N ≤ w(B(x, r2))

w(B(x, r1))
≤ C

(r2
r1

)N
. (10)

For a measurable subset A of RN we define

O(A) = {σα(x) : x ∈ A, α ∈ R}. (11)

Clearly, by (8), for all x ∈ R
N and r > 0 we get

w(O(B(x, r))) ≤ |G|w(B(x, r)). (12)

For ξ ∈ R
N , the Dunkl operators Tξ are the following k-deformations of the

directional derivatives ∂ξ by a difference operator:

Tξ f (x) = ∂ξ f (x) +
∑

α∈R

k(α)

2
〈α, ξ 〉 f (x) − f (σα(x))

〈α, x〉 . (13)

The Dunkl operators Tξ , which were introduced in [10], commute and are skew-
symmetric with respect to the G-invariant measure dw.

For fixed y ∈ R
N the Dunkl kernel E(x, y) is the unique analytic solution to the

system

Tξ f = 〈ξ, y〉 f , f (0) = 1. (14)

The function E(x, y), which generalizes the exponential function e〈x,y〉, has the unique
extension to a holomorphic function on C

N × C
N . Moreover, it satisfies E(x, y) =

E(y, x) for all x, y ∈ C
N .

Let {e j }1≤ j≤N denotes the canonical orthonormal basis in RN and let Tj = Te j . In
our further consideration we shall need the following lemma.

Lemma 1 For all x ∈ R
N , z ∈ C

N and ν ∈ N
N
0 we have

|∂ν
z E(x, z)| ≤ ‖x‖|ν| exp(‖x‖‖Rez‖).

In particular,

|E(iξ, x)| ≤ 1 for all ξ, x ∈ R
N .

Proof See [30, Corollary 5.3]. ��
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Corollary 1 There is a constant C > 0 such that for all x, ξ ∈ R
N we have

|E(iξ, x) − 1| ≤ C‖x‖‖ξ‖. (15)

The Dunkl transform

F f (ξ) = c−1
k

∫

RN
E(−iξ, x) f (x) dw(x),

where

ck =
∫

RN
e− ‖x‖2

2 dw(x) > 0,

originally defined for f ∈ L1(dw), is an isometry on L2(dw), i.e.,

‖ f ‖L2(dw) = ‖F f ‖L2(dw) for all f ∈ L2(dw), (16)

and preserves the Schwartz class of functions S(RN ) (see [7]). Its inverse F−1 has
the form

F−1g(x) = c−1
k

∫

RN
E(iξ, x)g(ξ) dw(ξ).

Moreover,

F(Tj f )(ξ) = iξ jF f (ξ). (17)

The Dunkl translation τx f of a function f ∈ S(RN ) by x ∈ R
N is defined by

τx f (y) = c−1
k

∫

RN
E(iξ, x) E(iξ, y)F f (ξ) dw(ξ).

It is a contraction on L2(dw), however it is an open problem if the Dunkl translations
are bounded operators on L p(dw) for p 	= 2.

The Dunkl convolution f ∗ g of two reasonable functions (for instance Schwartz
functions) is defined by

( f ∗ g)(x) = ck F−1[(F f )(Fg)](x) =
∫

RN
(F f )(ξ) (Fg)(ξ) E(x, iξ) dw(ξ) for x ∈ R

N ,

or, equivalently, by

( f ∗g)(x) =
∫

RN
f (y) τxg(−y) dw(y) =

∫

RN
f (y)g(x, y) dw(y) for all x ∈ R

N ,

where, here and subsequently, g(x, y) = τxg(−y).
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2.2 Dunkl Laplacian and Dunkl Heat Semigroup

The Dunkl Laplacian associated with R and k is the differential-difference operator
Δ = ∑N

j=1 T 2
j , which acts on C2(RN )-functions by

Δ f (x) = Δeucl f (x) +
∑

α∈R

k(α)δα f (x),

δα f (x) = ∂α f (x)
〈α, x〉 − ‖α‖2

2

f (x) − f (σαx)
〈α, x〉2 .

Obviously, F(Δ f )(ξ) = −‖ξ‖2F f (ξ). The operator Δ is essentially self-adjoint on
L2(dw) (see for instance [2, Theorem 3.1]) and generates the semigroup Ht of linear
self-adjoint contractions on L2(dw). The semigroup has the form

Ht f (x) = F−1(e−t‖ξ‖2F f (ξ))(x) =
∫

RN
ht (x, y) f (y) dw(y), (18)

where the heat kernel

ht (x, y) = τxht (−y), ht (x) = F−1(e−t‖ξ‖2)(x) = c−1
k (2t)−N/2e−‖x‖2/(4t) (19)

is a C∞-function of all variables x, y ∈ R
N , t > 0, and satisfies

0 < ht (x, y) = ht (y, x),
∫

RN
ht (x, y) dw(y) = 1. (20)

Let

d(x, y) = min
σ∈G

‖σ(x) − y‖

be the distance of the orbit of x to the orbit of y. Let us denote

Gt (x, y) =
(
max(w(B(x,

√
t)), w(B(y,

√
t)))

)−1
exp

(
− d(x, y)2

t

)
. (21)

We shall need the following estimates for ht (x, y) - their two step proof, which is
based on Rösler’s formula for the Dunkl translations of radial functions (see [31]), can
be found in [5, Theorem 4.1] and [13, Theorem 3.1].

Theorem 2 There are constants C, c > 0 such that for all x, y ∈ R
N and t > 0 we

have

ht (x, y) ≤ C
(
1 + ‖x − y‖√

t

)−2Gt/c(x, y). (22)

Theorem 2 implies the following Lemma (see [13, Corollary 3.5]).
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Lemma 2 Suppose that ϕ ∈ C∞
c (RN ) is radial and supported by the unit ball B(0, 1).

Set ϕt (x) = t−Nϕ(t−1x). Then there is C > 0 such that for all x, y ∈ R
N and t > 0

we have

|τxϕt (−y)| ≤ C
(
1 + ‖x − y‖

t

)−2(
max(w(B(x, t)), w(B(y, t)))

)−1
χ[0,1](d(x, y)/t).

2.3 Dunkl–Schrödinger Operator and Semigroup

Let V ≥ 0 be a measurable function such that V ∈ L2
loc(dw). We consider the

following operator on the Hilbert space L2(dw):

L = −Δ + V (23)

with the domain

D(L) = { f ∈ L2(dw) : ‖ξ‖2F f (ξ) ∈ L2(dw(ξ)) and V (x) f (x) ∈ L2(dw(x))}

(see [2]). We call this operator the Dunkl–Schrödinger operator. Let us define the
quadratic form

Q( f , g) =
N∑

j=1

∫

RN
Tj f (x)Tj g(x) dw(x) +

∫

RN
V (x) f (x)g(x) dw(x) (24)

with the domain

D(Q) =

⎧
⎪⎨

⎪⎩
f ∈ L2(dw) :

⎛

⎝
N∑

j=1

|Tj f |2
⎞

⎠

1/2

, V 1/2 f ∈ L2(dw)

⎫
⎪⎬

⎪⎭
.

The quadratic form is densely defined and closed (see [2, Lemma 4.1]), so there exists
a unique positive self-adjoint operator L such that

〈L f , f 〉 = Q( f , f ) for all f ∈ D(L),

moreover,

D(L1/2) = D(Q) and Q( f , f ) = ‖L1/2 f ‖L2(dw),

where L1/2 is a unique self-adjoint operator such that (L1/2)2 = L . It was proved in
[2, Theorem 4.6], that L is essentially self-adjoint on C∞

c (RN ) and L is its closure.
Consequently, L generates the semigroup of self-adjoint contractions on L2(dw). The
semigroup has the form (see [2, Theorem 4.8])

Kt f (x) =
∫

RN
kt (x, y) f (y) dw(y), (25)
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where kt (x, y) is the integral kernel which satisfies

0 ≤ kt (x, y) ≤ ht (x, y). (26)

Part 1: Fefferman–Phong inequality in the rational Dunkl setting

3 Reverse Hölder Class

In this part, we assume that q > max(1, N
2 ) and V ≥ 0 belongs to the reverse Hölder

class RHq(dw), that is, there is a constant CRH > 0 such that

(
1

w(B)

∫

B
V (x)q dw(x)

)1/q

≤ CRH
1

w(B)

∫

B
V (x) dw(x) for every ball B. (27)

For any Lebesque measurable set A we define

μ(A) =
∫

A
V (x) dw(x). (28)

Our goal is to study the properties of the measureμ. The proofs of the results in this
section are standard and they are based on the [22, Chapter 7]. For the convenience of
the reader we present details.

Lemma 3 For all balls B ⊂ R
N and measurable sets E ⊆ B we have

μ(E)

μ(B)
≤ CRH

(
w(E)

w(B)

)1/q ′

, (29)

where, here and subsequently, 1
q + 1

q ′ = 1.

Proof Applying Hölder’s inequality, then the reverse Hölder inequality (27), we get

μ(E) =
∫

RN
χE (x)V (x) dw(x) ≤ w(E)1/q ′

(∫

B
V (x)q dw(x)

)1/q

≤ CRH

(
w(E)

w(B)

)1/q ′

μ(B).

��
Lemma 4 Let ε > 0. There is a constant 0 < γ < 1 such that for all x ∈ R

N and
r > 0 we have

1 − w(B(x, γ r))

w(B(x, r))
= w(B(x, r) \ B(x, γ r))

w(B(x, r))
< ε.
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Proof Thanks to (6) we obtain

w(B(x, r) \ B(x, γ r)) =
∫

B(x,r)\B(x,γ r)

∏

α∈R

|〈y, α〉|k(α) dy

≤
∫

B(x,r)\B(x,γ r)

∏

α∈R

(|〈y − x, α〉| + |〈x, α〉|)k(α) dy.

For all y ∈ B(x, r) we have |〈y − x, α〉| ≤ √
2r , so

w(B(x, r) \ B(x, γ r)) ≤ 2N/2
∫

B(x,r)\B(x,γ r)

∏

α∈R

(|〈x, α〉| + r)k(α) dy

= vN2
N/2(r N − γ N r N )

∏

α∈R

(|〈x, α〉| + r)k(α),

where vN is the Euclidean measure of the unit N -dimensional ball. Consequently,
thanks to (8), we have

w(B(x, r) \ B(x, γ r))

w(B(x, r))
≤ C(1 − γ N ),

where the constant C > 0 is independent of x and r . The claim follows easily. ��
Lemma 5 The measure μ defined in (28) is doubling, i.e. there is a constant Cμ > 0
such that for all x ∈ R and r > 0 we have

μ(B(x, 2r)) ≤ Cμμ(B(x, r)).

Proof Let 0 < γ < 1. Setting B = B(x, r) and E = B(x, r) \ B(x, γ r) in (29), we
get

1 − μ(B(x, γ r))

μ(B(x, r))
≤ CRH

(

1 − w(B(x, γ r))

w(B(x, r))

)1/q ′

. (30)

Thanks to Lemma 4 for 1 − γ small enough we have

CRH

(

1 − w(B(x, γ r))

w(B(x, r))

)1/q ′

< 1/2,

consequently,

μ(B(x, r)) ≤ 2μ(B(x, γ r)). (31)

There is n ∈ N such that γ n < 1/2. Applying (31) n times we get the claim. ��
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As the consequence of the doubling property ofμ, we obtain the following corollary.

Corollary 2 There is a constant C ′
RH > 0 such that for all cubes Q ⊂ R

N and
measurable sets E ⊆ Q we have

(
1

w(Q)

∫

Q
V (x)q dw(x)

)1/q

≤ C ′
RH

1

w(Q)

∫

Q
V (x) dw(x), (32)

μ(E)

μ(Q)
≤ C ′

RH

(
w(E)

w(Q)

)1/q ′

. (33)

Lemma 6 There are 0 < γ, δ < 1 such that for all cubes Q ⊂ R
N and measurable

sets E ⊆ Q the following implication is true:

μ(E) < γμ(Q) ⇒ w(E) < δw(Q). (34)

Proof Set γ ′ > 0 small enough in order to have δ′ = C ′
RH(γ ′)1/q ′

< 1, where C ′
RH is

the constant in (33). Then, by (33), we have the implication

w(E) ≤ γ ′w(Q) ⇒ μ(E) ≤ δ′μ(Q). (35)

Taking Q \ E instead of E in (35) we get

w(E) ≥ (1 − γ ′)w(Q) ⇒ μ(E) ≥ (1 − δ′)μ(Q). (36)

Note that (36) is equivalent to (34) with γ = 1 − δ′ and δ = 1 − γ ′. ��
We will need the following classical result from theory of the Ap weights (see [22,

Corollary 7.2.4]).

Proposition 1 Let v be the weight and let ν be a doubling measure on R
N . Suppose

that there are 0 < γ, δ < 1 such that

ν(E) < γ ν(Q) ⇒
∫

E
v(x) dν(x) < δ

∫

Q
v(x) dν(x),

whenever E is a ν-measurable subset of a cube Q. Then there are constants C, η > 0
such that for every cube Q in R

N we have

(
1

ν(Q)

∫

Q
v1+η(x) dν(x)

)1/(1+η)

≤ C
1

ν(Q)

∫

Q
v(x) dν(x). (37)

Proposition 2 There is a constant C > 0 and the exponent p > 1 such that for every
cube Q in R

N we have

(
1

w(Q)

∫

Q
V (x) dw(x)

)(
1

w(Q)

∫

Q
V − 1

p−1 (x) dw(x)
)p−1

≤ C . (38)



46 Page 12 of 42 Journal of Fourier Analysis and Applications (2021) 27 :46

Proof Note that (34) is equivalent to

μ(E) < γμ(Q) ⇒
∫

E
V −1(x) dμ(x) < δ

∫

Q
V −1(x) dμ(x). (39)

Hence, applying Proposition 1 to v = V −1 and ν = μ (the assumption that ν is
doubling is satisfied thanks to Lemma 5) we get that there are C, η > 0 such that

(
1

μ(Q)

∫

Q
V (x)−1−ηV (x) dw(x)

)1/(1+η)

≤ C
1

μ(Q)

∫

Q
V (x)−1V (x) dw(x) = C

w(Q)

μ(Q)
.

(40)

Finally, it can be checked that (40) is equivalent to (38) with p = 1 + 1
η
. ��

Here and subsequently, we write

γ = 2 − N
q

. (41)

The reverse Hölder inequality (27) has the following consequence (see [36, Lemma
1.2]), which will be used in the next section many times.

Lemma 7 Assume that V ∈ RHq(dw), where q > max(1, N
2 ), and V ≥ 0. There is a

constant C ≥ 1 such that for all x ∈ R
N and 0 < r1 < r2 < ∞ we have

r21
w(B(x, r1))

∫

B(x,r1)
V (y) dw(y) ≤ C

(
r1
r2

)γ r22
w(B(x, r2))

∫

B(x,r2)
V (y) dw(y).

Proof Thanks to Hölder’s inequality and the reverse Hölder inequality (27), we get

1

w(B(x, r1))

∫

B(x,r1)
V (y) dw(y) ≤

(
1

w(B(x, r1))

∫

B(x,r1)
V (y)q dw(y)

)1/q

≤ w(B(x, r2))1/q

w(B(x, r1))1/q

(
1

w(B(x, r2))

∫

B(x,r2)
V (y)q dw(y)

)1/q

≤ CRH
w(B(x, r2))1/q

w(B(x, r1))1/q

1

w(B(x, r2))

∫

B(x,r2)
V (y) dw(y).

Finally, the claim follows from (10). ��
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4 The Auxiliary Functionm(x)

4.1 Definition and Growth Properties ofm(x)

For x ∈ R
N we define

1

m(x)
= sup

{

r > 0 : r2

w(B(x, r))

∫

B(x,r)

V (y) dw(y) ≤ 1

}

(42)

(see [36, Definition 1.3]). Thanks to Lemma 7, for all x ∈ R
N (and V 	≡ 0) we have

lim
r→0

r2

w(B(x, r))

∫

B(x,r)

V (y) dw(y) = 0, lim
r→+∞

r2

w(B(x, r))

∫

B(x,r)

V (y) dw(y) = +∞,

(43)

so the functionm is well-defined and 0 < m(x) < ∞. The next lemma is an adaptation
of [36, Lemma 1.4].

Lemma 8 Assume that V ∈ RHq(dw), where q > max(1, N
2 ), and V ≥ 0. There are

constants C, κ > 0 such that for all x, y ∈ R
N we have

C−1m(y) ≤ m(x) ≤ Cm(y) if ‖x − y‖ < m(x)−1, (44)

m(y) ≤ Cm(x)(1 + m(x)‖x − y‖)κ , (45)

m(y) ≥ C−1m(x)(1 + m(x)‖x − y‖)− κ
1+κ . (46)

Proof of (44) By the doubling property of w and μ we have w(B(x, r)) ∼ w(B(y, r))

and μ(B(x, r)) ∼ μ(B(y, r)) if r ≥ ‖x − y‖. So, by Lemma 7, for any r < m(x)−1

we have

r2

w(B(y, r))

∫

B(y,r)

V (z) dw(z)

≤ C

(
r

m(x)−1

)γ m(x)−2

w(B(y, m(x)−1))

∫

B(y,m(x)−1)

V (z) dw(z)

≤ C ′
(

r

m(x)−1

)γ m(x)−2

w(B(x, m(x)−1))

∫

B(x,m(x)−1)

V (z) dw(z)

≤ C ′
(

r

m(x)−1

)γ

,

(47)

where in the last inequality we have used the definition of m. Note that (47) implies
that for

r < min
(
1, (2C ′)−γ −1

)
m(x)−1,
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we get

r2

w(B(y, r))

∫

B(y,r)

V (z) dw(z) ≤ 1

2
,

so the inequality m(y) ≤ Cm(x) follows. Nowwe turn to the proof of m(x) ≤ Cm(y).
For r > 2m(x)−1, thanks to the doubling property of μ and w, then by Lemma 7, we
write

r2

w(B(y, r))

∫

B(y,r)

V (z) dw(z) ≥ C
r2

w(B(x, r))

∫

B(x,r)

V (z) dw(z)

≥ C ′
(

r

2m(x)−1

)γ
(2m(x)−1)2

w(B(x, 2m(x)−1))

∫

B(x,2m(x)−1)

V (z) dw(z) ≥ C ′
(

r

m(x)−1

)γ

.

where in the last inequality we have used the definition of m(x). Taking

r > max
(
2, (C ′/2)−γ −1

)
m(x)−1

we have

r2

w(B(y, r))

∫

B(y,r)

V (z) dw(z) ≥ 2,

so, thanks to the definition of m (see (42)), the proof is complete. ��
Proof of (45) Wemay assume ‖x−y‖m(x) ≥ 1, otherwise the claim follows from (44).
Let r = m(x)−1 and let j ≥ 1, j ∈ Z, be such that

2 j−1r < ‖x − y‖ ≤ 2 j r .

Let 0 < r1 < r . Thanks to Lemma 7, then the doubling property of μ and w together
with (10), we have

r21
w(B(y, r1))

∫

B(y,r1)
V (z) dw(z)

≤ C

(
r1

‖x − y‖
)γ ‖x − y‖2

w(B(y, ‖x − y‖))
∫

B(y,‖x−y‖)
V (z) dw(z)

≤ C

(
r1

‖x − y‖
)γ ‖x − y‖2

w(B(x, ‖x − y‖))
∫

B(x,‖x−y‖)
V (z) dw(z)

≤ C
( r1
2 j r

)γ

2− j N C j
μ

22 j r2

w(B(x, r))

∫

B(x,r)

V (z) dw(z) ≤ C
( r1
2 j r

)γ

2 j(2−N )C j
μ,
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where Cμ is the doubling constant for μ (see Lemma 5). Therefore, there is a constant

C1 > 1 independent of x, y ∈ R
N and r > r1 > 0 such that if r1 ≤ rC− j

1 , then

r21
w(B(y, r1))

∫

B(y,r1)
V (z) dw(z) ≤ C

( r1
2 j r

)γ

2− j N C j
μ2

2 j ≤ 1

2
.

Consequently, by the definition of m(y) we have

1

m(y)
≥ rC− j

1 = 1

m(x)
C− j
1 ,

which leads us to

m(y) ≤ m(x)C j
1 ≤ Cm(x)(1 + m(x)‖x − y‖)κ ,

where κ = log2 C1. ��
Proof of (46) We may assume that ‖x − y‖ ≥ m(y)−1, otherwise the claim follows
from (44). By (45) we have

m(x) ≤ Cm(y) (1 + ‖x − y‖m(y))κ ≤ Cm(y)1+κ‖x − y‖κ .

Thus,

m(y) ≥ C ′ m(x)1/(1+κ)

‖x − y‖κ/(1+κ)
≥ C

m(x)
(1 + m(x)‖x − y‖)κ/(1+κ)

,

so the proof is complete. ��

4.2 Associated Collection of CubesQ

For a cube Q ⊂ R
N , here and subsequently, let d(Q) denote the side-length of cube Q.

We denote by Q∗ the cube with the same center as Q such that d(Q∗) = 2d(Q). We
define a collection of dyadic cubesQ associated with the potential V by the following
stopping-time condition:

Q ∈ Q ⇐⇒ Q is the maximal dyadic cube for which
d(Q)2

w(Q)

∫

Q
V (y) dw(y) ≤ 1.

(48)

Fact 3 The collectionQ is well-defined and it forms a covering ofRN built from dyadic
cubes which have disjoint interiors.



46 Page 16 of 42 Journal of Fourier Analysis and Applications (2021) 27 :46

Proof Note that for any x /∈ ⋃
j∈Z 2 j

Z
N there is a unique sequence {Q j } j∈Z of dyadic

cubes such that x ∈ Q j satisfying

Q j ⊂ Q j+1 and d(Q j ) = 2 j for all j ∈ Z.

Further, if follows from (43) and the doubling property of measures dμ and dw that

lim
j→−∞

d(Q j )
2

w(Q j )

∫

Q j

V (y) dw(y) = 0 and lim
j→∞

d(Q j )
2

w(Q j )

∫

Q j

V (y) dw(y) = ∞.

Thus the collection given by (48) is well-defined and it forms the desired covering of
R

N . ��
We list below simple facts about the collectionQ, which are consequences of properties
of w, μ and m(x).

Fact 4 Assume that V ∈ RHq(dw), where q > max(1, N
2 ), and V ≥ 0. There is a

constant C > 0 such that for any Q ∈ Q we have

C−1 ≤ d(Q)2

w(Q)

∫

Q
V (x) dw(x) ≤ 1. (49)

Proof It is an easy consequence of the doubling property of μ. Namely, let Q̃ be the
parent of cube Q ∈ Q. As the consequence of the stopping-time condition (48), we
get

1 <
d(Q̃)2

w(Q̃)

∫

Q̃
V (x) dw(x) ≤ (2d(Q))2

w(Q)

∫

Q̃
V (x) dw(x) ≤ C

d(Q)2

w(Q)

∫

Q
V (x) dw(x).

��
Fact 5 Assume that V ∈ RHq(dw), where q > max(1, N

2 ), and V ≥ 0. There is a
constant C > 0 such that for any Q ∈ Q and x ∈ Q∗∗∗∗ we have

C−1d(Q)−1 ≤ m(x) ≤ Cd(Q)−1. (50)

Proof The proof is essentially the same as that of (44). We provide the details. The
doubling property of μ and w combined with (49) imply that there is C ′ ≥ 1 such
that

1

C ′ ≤ d(Q)2

w(B(x, d(Q))

∫

B(x,d(Q))

V (y) dw(y) ≤ C ′ for all x ∈ Q∗∗∗∗. (51)

Using Lemma 7 with r1 = d(Q) and any r2 ≥ (C ′C)1/γ d(Q), we get

1 ≤ r22
w(B(x, r2))

∫

B(x,r2)
V (y) dw(y),
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which implies m(x)−1 ≤ (CC ′)1/γ d(Q). Similarly, applying again Lemma 7, this
time with r1 = (CC ′)−1/γ d(Q) and r2 = d(Q), we obtain

r21
w(B(x, r1))

∫

B(x,r1)
V (y) dw(y) ≤ 1,

which leads to m(x)−1 ≥ r1 = (CC ′)γ d(Q). ��
Lemma 8 together with Fact 5 imply the following proposition.

Proposition 3 Assume that V ∈ RHq(dw), where q > max(1, N
2 ), and V ≥ 0. The

covering Q defined by (48) satisfies the following finite overlapping condition:

(∃C0 > 0) (∀Q1, Q2 ∈ Q) Q∗∗∗∗
1 ∩ Q∗∗∗∗

2 	= ∅ ⇒ C−1
0 d(Q1) ≤ d(Q2) ≤ C0d(Q1).

(52)

5 Fefferman–Phong Inequality in the Dunkl Setting

The goal of this section is the prove the Fefferman–Phong inequality in the rational
Dunkl setting. This result is crucial in the proof of condition (D) (see Sect. 6) for
potential satisfying (27). The result for k ≡ 0 is due to C. Feffermann and D.H. Phong
[20] (see also [36, Lemma 1.9]). The proof is inspired by one from [18, Theorem 9.4].

Theorem 6 (Fefferman–Phong type inequality) Assume that V ∈ RHq(dw), where
q > max(1, N

2 ), and V ≥ 0. There is a constant C > 0 such that for all f ∈ D(Q)

we have

∫

RN
| f (x)|2m(x)2 dw(x) ≤ CQ( f , f ). (53)

We need some lemmas before providing the proof of Theorem 6.

Lemma 9 Assume that V ∈ RHq(dw), where q > max(1, N
2 ), and V ≥ 0. There are

constants C, η > 0 such that for all Q ∈ Q and ε > 0 we have w(Eε) ≤ Cεηw(Q∗),
where

Eε = {y ∈ Q∗ : V (y) ≤ εd(Q)−2}. (54)

Proof Let p > 1 be the number from (38). By the definition of Eε we write

w(Eε)
p−1 =

(∫

Eε

dw(y)
)p−1

≤
(∫

Eε

ε1/(p−1)d(Q)−2/(p−1)V (y)−
1

p−1 dw(y)
)p−1

≤ εd(Q)−2
(∫

Q∗
V (y)−

1
p−1 dw(y)

)p−1

.

(55)
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Thanks to (49) and the doubling property of w we have

d(Q)−2 ≤ C
1

w(Q)

∫

Q
V (y) dw(y) ≤ C ′ 1

w(Q∗)

∫

Q∗
V (y) dw(y). (56)

Consequently, applying (55) and (56) together with (38) we get

w(Eε)
p−1 ≤ C ′ε

(
1

w(Q∗)

∫

Q∗
V (y) dw(y)

)(∫

Q∗
V (y)−

1
p−1 dw(y)

)p−1

≤ Cεw(Q∗)p−1.

��
Lemma 10 For all j ∈ {1, 2, . . . , N }, g ∈ C∞

c (RN ), and f ∈ L2(dw) such that its
weak Dunkl derivative Tj f is in L2(dw) we have Tj ( f g) ∈ L2(dw). Moreover,

Tj ( f g)(x) = (Tj f )(x)g(x) + f (x)∂ j g(x) +
∑

α∈R

k(α)

2
α j f (σα(x))

g(x) − g(σα(x))
〈x, α〉

(57)

in L2(dw)-sense.

Proof It is a standard fact, but for the convenience of reader we provide the proof. Let
us assume first that f ∈ C1(RN ). By the definition of Tj (see (13)) we have

Tj ( f g)(x) = ∂ j ( f g)(x) +
∑

α∈R

k(α)

2
α j

f (x)g(x) − f (σα(x))g(σα(x))
〈x, α〉

= f (x)(∂ j g)(x) + (∂ j f )(x)g(x) +
∑

α∈R

k(α)

2
α j g(x)

f (x) − f (σα(x))
〈x, α〉

+
∑

α∈R

k(α)

2
α j f (σα(x))

g(x) − g(σα(x))
〈x, α〉

= f (x)∂ j g(x) + (Tj f )(x)g(x) +
∑

α∈R

k(α)

2
α j f (σα(x))

g(x) − g(σα(x))
〈x, α〉 .

(58)

In order to obtain the general case, let us take ψ ∈ C∞
c (RN ). By the definition of

Tj ( f g) and (58) we have

∫

RN
Tj ( f g)(x)ψ(x) dw(x) = −

∫

RN
f (x)g(x)Tjψ(x) dw(x)

= −
∫

RN
f (x)Tj (gψ)(x) +

∫

RN
f (x)∂ j g(x)ψ(x) dw(x)

+
∑

α∈R

k(α)

2
α j

∫

RN
f (x)ψ(σα(x))

g(x) − g(σα(x))
〈x, α〉 dw(x)
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=
∫

RN
Tj f (x)g(x)ψ(x) dw(x) +

∫

RN
f (x)∂ j g(x)ψ(x) dw(x)

+
∑

α∈R

k(α)

2
α j

∫

RN
f (σα(x))

g(x) − g(σα(x))
〈x, α〉 ψ(x) dw(x).

��
Definition 1 Assume that Q̃ is a covering of RN by the cubes with pairwise disjoint
interiors and it satisfies the finite overlapping condition (52). By the smooth resolution
of identity {φQ}Q∈Q̃ associated with Q̃ we mean the collection of C∞-functions on

R
N such that suppφQ ⊆ Q∗, 0 ≤ φQ(x) ≤ 1,

|∂αφQ(x)| ≤ Cαd(Q)−|α| for all α ∈ N
N
0 , (59)

and
∑

Q∈Q̃ φQ(x) = 1 for all x ∈ R
N .

In this part of the paper, we consider the smooth resolution of identity associated with
Q. The existence of {φQ}Q∈Q is guaranteed by (52) (see Proposition 3).

Lemma 11 There is a constant C > 0 such that for all α ∈ R, Q ∈ Q, and x ∈ Q∗
we have

∣
∣
∣
∣
φQ(x) − φQ(σα(x))

〈x, α〉
∣
∣
∣
∣ ≤ Cd(Q)−1.

Proof This is the standard fact - we write

φQ(x) − φQ(σα(x))
〈x, α〉 = − 1

〈x, α〉
∫ 1

0

d

dt
φQ

(

x − 2t
〈x, α〉
‖α‖2 α

)

dt

=
∫ 1

0

〈

(∇xφQ)

(

x − 2t
〈x, α〉
‖α‖2 α

)

, α

〉

dt,

so the claim is a consequence of (59). ��
Lemma 12 Assume that V ∈ RHq(dw), where q > max(1, N

2 ), and V ≥ 0. There is
a constant C > 0 such that for all j ∈ {1, . . . , N }, f ∈ L2(dw) such that its weak
Dunkl derivative Tj f is in L2(dw), and Q ∈ Q we have

‖Tj ( f φQ)‖L2(dw) ≤ C

((∫

Q∗
|Tj f (x)|2 dw(x)

)1/2

+
(∫

O(Q∗)
| f (x)|2m(x)2 dw(x)

)1/2
)

.

Let us remind that O(Q∗) denotes the orbit of the cube Q∗, see (11).



46 Page 20 of 42 Journal of Fourier Analysis and Applications (2021) 27 :46

Proof By Lemma 10 we have

‖Tj ( f φQ)‖L2(dw) ≤ ‖(Tj f )(x)φQ(x)‖L2(dw(x)) + ‖ f (x)(∂ jφQ)(x)‖L2(dw(x))

+ C
∑

α∈R

∥
∥
∥ f (σα(x))

φQ(x) − φQ(σα(x))
〈x, α〉

∥
∥
∥

L2(dw(x))
.

Thanks to the property that suppφQ ⊆ Q∗, (59), and Fact 5 we have

‖(Tj f )(x)φQ(x)‖L2(dw(x)) ≤ C

(∫

Q∗
|Tj f (x)|2 dw(x)

)1/2

,

‖ f (x)(∂ jφQ)(x)‖L2(dw(x)) ≤ C

(∫

Q∗
| f (x)|2m(x)2 dw(x)

)1/2

.

Therefore, it is enough to estimate

∫

O(Q∗)

∣
∣
∣
∣ f (σα(x))

φQ(x) − φQ(σα(x))
〈x, α〉

∣
∣
∣
∣

2

dw(x)

=
∫

O(Q∗)∩{x :√2|〈x,α〉|≤m(x)−1}
. . .

+
∫

O(Q∗)∩{x :√2|〈x,α〉|>m(x)−1}
. . . =: I1 + I2

for fixed α ∈ R. We consider I1 first. Let us denote

E = O(Q∗) ∩
{
x : √

2|〈x, α〉| ≤ m(x)−1
}

∩
{
x : φQ(x) − φQ(σα(x))

〈x, α〉 	= 0
}
.

(60)

If x ∈ E , then x ∈ Q∗ or σα(x) ∈ Q∗, so, by Fact 5, d(Q)−1 ≤ Cm(x) or d(Q)−1 ≤
Cm(σα(x)) respectively. Note that

O(Q∗) ∩ {x : √
2|〈x, α〉| ≤ m(x)−1} = O(Q∗) ∩ {x : ‖x − σα(x)‖ ≤ m(x)−1},

so, by (44), we have

d(Q)−1 ≤ C max(m(x), m(σα(x))) ≤ C ′m(σα(x)) for all x ∈ E .

Consequently, by Lemma 11, we get

I1 ≤
∫

E

∣
∣
∣
∣ f (σα(x))

φQ(x) − φQ(σα(x))
〈x, α〉

∣
∣
∣
∣

2

dw(x) ≤ C
∫

E
| f (σα(x))|2d(Q)−2 dw(x)

≤ C ′
∫

O(Q∗)
| f (σα(x))|2m(σα(x))2 dw(x) = C ′

∫

O(Q∗)
| f (x)|2m(x)2 dw(x).
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In order to estimate I2, thanks to property 0 ≤ |φQ(x) − φQ(σα(x))| ≤ 2, we write

I2 ≤ 4
∫

O(Q∗)∩{x :√2|〈x,α〉|>m(x)−1}
| f (σα(x))|2|〈x, α〉|−2 dw(x).

By (46), for x ∈ O(Q∗) such that
√
2|〈x, α〉| = ‖x − σα(x)‖ > m(x)−1 we have

m(x) ≤ Cm(σα(x)) (1 + m(x)‖x − σα(x)‖) κ
1+κ ≤ C ′m(σα(x))m(x)|〈x, α〉|.

Consequently,

1 ≤ C ′m(σα(x))|〈x, α〉|,

which leads us to

I2 ≤ C
∫

O(Q∗)
| f (σα(x))|2|〈x, α〉|−2m(σα(x))2|〈x, α〉|2 dw(x)

= C
∫

O(Q∗)
| f (x)|2m(x)2 dw(x),

which ends the proof. ��
Proof of Theorem 6 Suppose first that

∫

RN
| f (x)|2m(x)2 dw(x) < ∞. (61)

Let ψ ∈ C∞
c (RN ) be a radial non-negative function such that

∫
RN ψ dw = 1 and

suppψ ⊆ B(0, 1), and let A > 1 be a large constant (it will be chosen later). For
Q ∈ Q we define the following scaled version of ψ :

ψ A
Q(x) = (A−1d(Q))−Nψ(Ad(Q)−1x).

It follows from Corollary 1 that

|Fψ(ξ) − 1| ≤ C‖ξ‖.

Consequently, by Plancherel’s theorem (see (16)), (17), and Lemma 12,

∫

Q∗

∣
∣ψ A

Q ∗ (φQ f )(x) − (φQ f )(x)
∣
∣2 dw(x)

≤ C A−2d(Q)2
N∑

j=1

∫

RN
|Tj (φQ f )(x)|2 dw(x)

≤ C ′ A−2d(Q)2

⎛

⎝
N∑

j=1

∫

Q∗
|Tj f (x)|2 dw(x) +

∫

O(Q∗)
| f (x)|2m(x)2 dw(x)

⎞

⎠ .

(62)
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The first inequality in (62) can be thought as a counterpart of the Poincaré inequality
(cf. (5)). By the doubling property of w we have w(B(x, d(Q))) ∼ w(Q) ∼ w(Q∗)
for all x ∈ Q∗. Applying Lemma 2, we obtain

∫

Q∗

∣
∣ψ A

Q ∗ (φQ f )(x)
∣
∣2 dw(x) =

∫

Q∗

∣
∣
∣
∣

∫

Q∗
τxψ

A
Q(−y)(φQ f )(y) dw(y)

∣
∣
∣
∣

2

dw(x)

≤ C
∫

Q∗
w(B(x, d(Q)))2

w(B(x, A−1d(Q)))2

1

w(B(x, d(Q)))2
dw(x)‖φQ f ‖2L1(dw)

≤ C A2N 1

w(Q∗)
‖φQ f ‖2L1(dw)

.

(63)

Let ε > 0 (it will be chosen later) and let Eε be defined as in (54). We write

A2N

w(Q∗)
‖φQ f ‖2L1(dw)

= A2N

w(Q∗)
‖φQ f ‖2L1(Eε,dw)

+ A2N

w(Q∗)
‖φQ f ‖2L1(Q∗\Eε,dw)

.

(64)

By the Cauchy–Schwarz inequality and Lemma 9 we have

A2N 1

w(Q∗)
‖φQ f ‖2L1(Eε,dw)

≤ C A2Nεη‖φQ f ‖2L2(dw)
. (65)

Next, by the definition of Eε (see (54)) and the Cauchy–Schwarz inequality we get

A2N 1

w(Q∗)
‖φQ f ‖2L1(Q∗\Eε,dw)

≤ C A2Nd(Q)2ε−1
∫

Q∗
V (x)|(φQ f )(x)|2 dw(x).

(66)

Combining (63), (64), (65), and (66) we get

∫

Q∗

∣
∣ψ A

Q ∗ (φQ f )(x)
∣
∣2 dw(x) ≤ C A2N

(

εη‖φQ f ‖2L2(dw)
+ d(Q)2

ε

∫

Q∗
V (x)|(φQ f )(x)|2 dw(x)

)

. (67)

Consequently, by (62) and (67) we get

‖φQ f ‖2L2(dw)
≤ C A−2d(Q)2

⎛

⎝
N∑

j=1

∫

Q∗
|Tj f (x)|2 dw(x) +

∫

O(Q∗)
| f (x)|2m(x)2 dw(x)

⎞

⎠

+ C A2N

(

εη‖φQ f ‖2L2(dw)
+ d(Q)2

ε

∫

Q∗
V (x)|(φQ f )(x)|2 dw(x)

)

,
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which, for ε = ( 1
2C−1A−2N

)1/η
, leads us to

‖φQ f ‖2L2(dw)
≤ C ′ A−2d(Q)2

⎛

⎝
N∑

j=1

∫

Q∗
|Tj f (x)|2 dw(x) +

∫

O(Q∗)
| f (x)|2m(x)2 dw(x)

⎞

⎠

+ C ′ A2Nd(Q)2ε−1
∫

Q∗
V (x)|(φQ f )(x)|2 dw(x).

(68)

Dividing the inequality (68) by d(Q)2 and then use Fact 5, we obtain

∫

Q∗
|(φQ f )(x)|2m(x)2 dw(x) ≤ C A−2

N∑

j=1

∫

Q∗
|Tj f (x)|2 dw(x)

+ C A−2
∫

O(Q∗)
| f (x)|2m(x)2 dw(x) + C A2Nε−1

∫

Q∗
V (x)|(φQ f )(x)|2 dw(x).

(69)

Summing up over all Q ∈ Q we get

∫

RN
| f (x)|2m(x)2 dw(x)

≤ C A−2

⎛

⎝
N∑

j=1

∫

RN
|Tj f (x)|2 dw(x) + |G|

∫

RN
| f (x)|2m(x)2 dw(x)

⎞

⎠

+ C A2Nε−1
∫

RN
V (x)| f (x)|2 dw(x).

Taking into account (61) and taking A large enough we obtain the claim for f satisfy-
ing (61). For general case, we take a radial function η ∈ C∞

c (RN ) such that 0 ≤ η ≤ 1,
η(x) = 1 for all ‖x‖ ≤ 1, η(x) = 0 for all ‖x‖ > 2, and

|∂ jη(x)| ≤ 2 for all x ∈ R
N and j ∈ {1, 2, . . . , N }.

For f ∈ D(Q) and n ∈ N we define fn(x) = f (x)η(x/n). Note that by (57) we have
fn ∈ D(Q). Moreover, thanks to the fact that f ∈ L2(dw) and (45), the condition (61)
is satisfied for fn . Therefore, by (53) for fn , we get

∫

RN
| f (x)|2m(x)2 dw(x) = lim

n→∞

∫

RN
| fn(x)|2m(x)2 dw(x) ≤ C lim

n→∞Q( fn, fn).

(70)

Clearly,

lim
n→∞ ‖ f − fn‖L2(dw) = 0. (71)
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Recall that f , Tj f ∈ L2(dw). Applying Lemma 10, we have

lim
n1,n2→∞

∫

RN
|Tj ( fn1 − fn2)(x)|2 dw(x)

≤ 2 lim
n1,n2→∞

∫

RN
|Tj f (x)|2|η(x/n1) − η(x/n2)|2 dw(x)

+ 4 lim
n1,n2→∞

∫

RN
| f (x)|2(|∂ j (η(x/n1))|2 + |∂ j (η(x/n2))|2) dw(x)

≤ 2 lim
n1,n2→∞

∫

min(n1,n2)≤‖x‖≤2max(n1,n2)
|Tj f (x)|2 dw(x)

+ 32 lim
n1,n2→∞

∫

RN
| f (x)|2(n−2

1 + n−2
2 ) dw(x) = 0.

(72)

Similarly, V (x)1/2 f (x) ∈ L2(dw(x)), so

lim
n1,n2→∞

∫

RN
V (x)|( fn1 − fn2)(x)|2 dw(x)

= lim
n1,n2→∞

∫

RN
V (x)| f (x)|2|η(x/n1) − η(x/n2)|2 dw(x)

≤ lim
n1,n2→∞

∫

min(n1,n2)≤‖x‖≤2max(n1,n2)
V (x)| f (x)|2 dw(x) = 0.

(73)

Consequently, by (72) and (73) we have

lim
n1,n2→∞Q( fn1 − fn2 , fn1 − fn2) = 0. (74)

By [2, Lemma 4.1] the form Q is closed, so using (71) and (74), we get

lim
n→∞Q( fn, fn) = Q( f , f ),

which, thanks to (70), ends the proof. ��
Part 2: Hardy spaces associated with Dunkl–Schrödinger operator.
In this part we assume that V ∈ L2

loc(dw) (we do not assume is in the reverse
Hölder class unless it is explicitly pointed out).

6 Statement of the Results

6.1 Background to the Subject

The classical real Hardy spaces H p in R
N occurred as boundary values of harmonic

functions on R+ × R
N satisfying generalized Cauchy–Riemann equations together

with certain L p bound conditions (see e.g. Stein–Weiss [37]). In the seminal paper of
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Fefferman and Stein [19] the spaces H p were characterized by means of real analysis.
One of the possible characterization assets that a tempered distribution f belongs to
the H p(RN ), 0 < p < ∞, if and only if the maximal function supt>0 |ht ∗ f (x)|
belongs to L p(RN ), where ht is the heat kernel of the semigroup etΔeucl . An important
contribution to the theory is the atomic decomposition proved by Coifman [6] for
N = 1 and Latter [26] in higher dimensions, which says that every element of H p can
be written as an (infinite) combination of special simple functions called atoms. These
characterizations led to generalizations of theHardy spaces on spaces of homogeneous
type, in particular, to H p spaces associated with semigroups of linear operators. In
[5] (see also [4,13]) a theory of Hardy spaces H1 in the rational Dunkl setting parallel
to the classical one was developed. The purpose of the remaining part of the paper
is to study an H1

L space related to L . Our starting definition is that by means of the
maximal function for the semigroup e−t L . Then we shall prove that the space admits
a special atomic decomposition. This result generalizes one of [24] where H1

L for the
Dunkl harmonic oscillator −Δ + ‖x‖2 was consider. In [25] the authors provided a
general approach to the theory of Hardy spaces associated with semigroups satisfying
Davies–Gaffney estimates and in particular Gaussian bounds. We want to emphasize
that the integral kernel for the Dunkl–Laplace semigroup does not satisfy the Gaussian
bounds. Therefore the methods developed in [25] cannot be directly applied. One may
askwhether theHardy space H1

L can be characterized by theRiesz transforms Tj L−1/2.
The affirmative solution will appear in a forthcoming article.

6.2 Hardy Spaces Associated with L

Let us introduce the notion of the Hardy space associated with the operator L .

Definition 2 Let f ∈ L1(dw).We say that f belongs to theHardy space H1
L associated

with operator L if and only if

f ∗(x) = sup
t>0

|Kt f (x)| (75)

belongs to L1(dw). The norm in the space is given by

‖ f ‖H1
L

= ‖ f ∗‖L1(dw). (76)

LetQ be a collection of closed cubes with parallel sides whose interiors are disjoint
such that

⋃
Q∈Q Q = R

N . Let us remind that d(Q) denotes the side-length of cube Q
and we denote by Q∗ the cube with the same center as Q such that d(Q∗) = 2d(Q).
Assume that this family satisfies the following finite overlapping condition:

(∃C0 > 0) (∀Q1, Q2 ∈ Q) Q∗∗∗∗
1 ∩ Q∗∗∗∗

2 	= ∅ ⇒ C−1
0 d(Q1) ≤ d(Q2) ≤ C0d(Q1).

(F)

We define the atomic Hardy space associated with the collection Q (see [18]).
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Definition 3 A measurable function a(x) is called an atom for the Hardy space H1,at
Q

associated with the collection of cubes Q if

(A) supp a ⊆ B(x0, r) ⊆ Q∗∗∗∗ for some Q ∈ Q, x0 ∈ R
N , and r > 0,

(B) supy∈RN |a(y)| ≤ w(B(x0, r))−1,
(C) if r < d(Q), then

∫
RN a(x) dw(x) = 0.

Theatomic Hardy space H1,at
Q associatedwith the collectionQ is the space of functions

f ∈ L1(dw) which admit a representation of the form

f (x) =
∞∑

j=1

c j a j (x), (77)

where c j ∈ C and a j are atoms for the Hardy space H1,at
Q such that

∑∞
j=1 |c j | < ∞.

The space H1,at
Q is a Banach space with the norm

‖ f ‖H1,at
Q

= inf

⎧
⎨

⎩

∞∑

j=1

|c j | : f (x) =
∞∑

j=1

c j a j (x) and a j are H1,at
Q atoms

⎫
⎬

⎭
. (78)

Inspired by [18], we consider the following two additional conditions onQ and V :

(∃C, δ > 0)(∀x ∈ R
N , Q ∈ Q, t ≤ d(Q)2)

∫ 2t

0

∫

Q∗∗∗
V (y)G2s/c(x, y) dw(y) ds

≤ C

(
t

d(Q)2

)δ

,

(K)

where c > 0 is the constant from Theorem 2,

(∃C, ε > 0)(∀Q ∈ Q, s ∈ N) sup
y∈Q∗∗∗∗

∫

RN
k2s d(Q)2(x, y) dw(x) ≤ Cs−1−ε. (D)

The next theorem is one of the main result of the paper. We provide its proof in
Sect. 9.

Theorem 7 Assume that V ∈ L2
loc(dw) and the conditions (F), (D), and (K) hold for

V and a covering Q (let us remind that V is not necessary in a reverse Hölder class).
There is a constant C > 0 such that for all f ∈ L1(dw) we have

C−1‖ f ‖H1,at
Q

≤ ‖ f ‖H1
L

≤ C‖ f ‖H1,at
Q

. (79)

It Sect. 10 we elaborate that the conditions (F), (D), and (K) hold for potentials
V satisfying the reverse Hölder inequality with q > max(1, N

2 ) and the associated
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collection of cubes (48), so, as a corollary, we obtain the following theorem, which is
our third main result.

Theorem 8 Assume that V ∈ RHq(dw), where q > max(1, N
2 ), and V ≥ 0. There is

a constant C > 0 such that for all f ∈ L1(dw) we have

C−1‖ f ‖H1,at
Q

≤ ‖ f ‖H1
L

≤ C‖ f ‖H1,at
Q

,

where Q is the collection of cubes defined in (48).

We want to emphasize that the Fefferman–Phong inequality (53) is used for proving
the condition (D).

7 Local Hardy Spaces in the Dunkl Setting

The following two definitions are inspired by [23] (see also [24]). Recall that {Ht }t≥0
denotes the Dunkl heat semigroup (see (18)).

Definition 4 Let T > 0 and f ∈ L1(dw). We say that f belongs to the local Hardy
space H1

loc,T associated with the Dunkl Laplacian if and only if

f ∗
loc,T (x) = sup

0<t≤T 2
|Ht f (x)| (80)

belongs to L1(dw). The norm in the space is given by

‖ f ‖H1
loc,T

= ‖ f ∗
loc,T ‖L1(dw). (81)

Definition 5 Let T > 0. A function a(x) is called an atom for the local Hardy space
H1,at
loc,T if there is a ball B(x, r) such that

(A) supp a ⊆ B(x, r),
(B) supy∈RN |a(y)| ≤ w(B(x, r))−1,
(C) If r < T , then

∫
RN a(x) dw(x) = 0.

A function f belongs to the local Hardy space H1,at
loc,T if there are c j ∈ C and atoms

a j for H1,at
loc,T such that

∑∞
j=1 |c j | < ∞,

f =
∞∑

j=1

c j a j . (82)

In this case, set ‖ f ‖H1,at
loc,T

= inf
{∑∞

j=1 |c j |
}

, where the infimum is taken over all

representations (82).

The following proposition was proved in [24] and its proof follows the pattern from
[23].



46 Page 28 of 42 Journal of Fourier Analysis and Applications (2021) 27 :46

Proposition 4 The spaces H1,at
loc,T and H1

loc,T coincide and there is a constant C > 0

independent of T such that for all f ∈ L1(dw) we have

C−1‖ f ‖H1
loc,T

≤ ‖ f ‖H1,at
loc,T

≤ C‖ f ‖H1
loc,T

.

Moreover, there exists a constant C > 0 such that for any T > 0 if f ∈ H1,at
loc,T and

supp f ⊆ B(y0, T ), then there are H1,at
loc,T atoms a j such that supp a j ⊆ B(y0, 4T )

and

f =
∞∑

j=1

c j a j ,

∞∑

j=1

|c j | ≤ C‖ f ‖H1,at
loc,T

. (83)

8 Auxiliary Lemmas

Lemmas in this section are inspired by [18]. It turns out that the presence of the factor

“
(
1+ ‖x−y‖2

t

)−1
” in the estimate from Theorem 2 is crucial in the proof of Theorem 7

and its proper usage is the main difficulty and difference between the proofs here and
in [18]. Let {φQ}Q∈Q be a smooth resolution of identity associated with the collection
Q (see Definition 1). The existence of {φQ}Q∈Q is guaranteed by (F).

Lemma 13 Assume that V ∈ L2
loc(dw), V ≥ 0. There is a constant C > 0 such that

for all Q ∈ Q and f ∈ L1(dw) we have

∫

RN \Q∗∗
sup

0<t≤d(Q)2
|Ht (φQ f )(x)| dw(x) ≤ C‖φQ f ‖L1(dw), (84)

∫

RN \Q∗∗
sup

0<t≤d(Q)2
|Kt (φQ f )(x)| dw(x) ≤ C‖φQ f ‖L1(dw). (85)

Proof We will prove just (84), thanks to (26) the proof of (85) is the same. We have

∫

RN \Q∗∗
sup

0<t≤d(Q)2
|Ht (φQ f )(x)| dw(x)

≤
∞∑

j=0

∫

RN \Q∗∗
sup

2− j−1d(Q)2<t≤2− j d(Q)2

(∫

Q∗
ht (x, y)|(φQ f )(y)| dw(y)

)

dw(x).
(86)

Thanks to Theorem 2 and the fact that for x ∈ R
N \ Q∗∗ and y ∈ Q∗ we have

‖x − y‖ ≥ d(Q), so we obtain

∫

RN \Q∗∗
sup

2− j−1d(Q)2<t≤2− j d(Q)2

(∫

Q∗
ht (x, y)|(φQ f )(y)| dw(y)

)

dw(x)
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≤ C
2− j d(Q)2

d(Q)2

∫

Q∗
|(φQ f )(y)|

∫

RN \Q∗∗
1

w(B(x, 2− j/2d(Q)))
e−cd(x,y)2/(2− j d(Q)2)

dw(x) dw(y)

≤ C ′2− j‖φQ f ‖L1(dw).

The latest estimate together with (86) implies the claim. ��
Corollary 3 Assume that V ∈ L2

loc(dw), V ≥ 0. There is a constant C > 0 such that
for every Q ∈ Q and f ∈ L1(dw) we have

‖φQ f ‖H1
loc,d(Q)

≤ C
∥
∥
∥ sup
0<t≤d(Q)2

|Ht (φQ f )|
∥
∥
∥

L1(Q∗∗, dw)
+ C‖φQ f ‖L1(dw). (87)

For Q ∈ Q we define

Q′(Q) = {Q′ ∈ Q : Q∗∗∗ ∩ (Q′)∗∗∗ 	= ∅}, (88)

Q′′(Q) = {Q′′ ∈ Q : Q∗∗∗ ∩ (Q′′)∗∗∗ = ∅}. (89)

Lemma 14 Assume that V ∈ L2
loc(dw), V ≥ 0. There is a constant C > 0 such that

for every Q ∈ Q and f ∈ L1(RN ) we have

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Kt (φQ g) − φQ Kt (g)|
∥
∥
∥
∥
∥

L1(Q∗∗,dw)

≤ C
∑

Q′∈Q′(Q)

‖φQ′ f ‖L1(dw), (90)

where g = ∑
Q′∈Q′(Q) φQ′ f .

Proof Thanks to (59), then Theorem 2 together with (26) and (10) we get

sup
0<t≤d(Q)2

|Kt (φQ g)(x) − φQ(x)Kt g(x)|

= sup
0<t≤d(Q)2

∣
∣
∣
∣

∫

RN
(φQ(y) − φQ(x))kt (x, y)g(y) dw(y)

∣
∣
∣
∣

≤ C sup
0<t≤d(Q)2

∫

RN

‖x − y‖
d(Q)

kt (x, y)|g(y)| dw(y)

≤ C sup
0<t≤d(Q)2

∫

RN

‖x − y‖
d(Q)

√
t

‖x − y‖
1

w(B(y,
√

t))
e−cd(x,y)2/t |g(y)| dw(y)

≤ C
∞∑

j=0

sup
2− j−1d(Q)2<t≤2− j d(Q)2

∫

RN

√
t

d(Q)

1

w(B(y,
√

t))
e−cd(x,y)2/t |g(y)| dw(y)

≤ C
∞∑

j=0

∫

RN

2− j/2d(Q)

d(Q)

1

w(B(y, 2− j/2d(Q)))
e−cd(x,y)2/(2− j d(Q)2)|g(y)| dw(y).
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Consequently, by the Fubini theorem,

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Kt (φQ g)(x) − φQ(x)Kt g(x)|
∥
∥
∥
∥
∥

L1(dw(x))

≤ C
∞∑

j=0

2− j/2‖g‖L1(dw) ≤ C‖g‖L1 .

��
Lemma 15 Assume that Q and V ∈ L2

loc(dw), V ≥ 0, satisfy the condition (D). Then
there is a constant C > 0 such that for all f ∈ L1(dw) we have

∑

Q∈Q

∥
∥
∥χQ∗∗∗(·) sup

t>0

∣
∣
∣Kt

( ∑

Q′′∈Q′′(Q)

φQ′′ f
)∣
∣
∣
∥
∥
∥

L1(dw)
≤ C‖ f ‖L1(dw). (91)

Proof Let us denote the left-hand side of (91) by S. Then, by (F), we get

S ≤
∑

Q∈Q

∑

Q′′∈Q′′(Q)

‖χQ∗∗∗(·) sup
t>0

(Kt |φQ′′ f |)‖L1(dw)

≤
∑

Q′′∈Q

∑

Q∈Q′′(Q′′)
‖χQ∗∗∗(·) sup

t>0
(Kt |φQ′′ f |)‖L1(dw)

≤ C
∑

Q′′∈Q

∥
∥
∥
∥sup

t>0
(Kt |φQ′′ f |)

∥
∥
∥
∥

L1(((Q′′)∗∗)c,dw)

≤ C
∑

Q′′∈Q

∥
∥
∥
∥
∥

sup
0<t<d(Q′′)2

(Kt |φQ′′ f |)
∥
∥
∥
∥
∥

L1(((Q′′)∗∗)c,dw)

+
∞∑

j=0

∑

Q′′∈Q

∥
∥
∥
∥
∥

sup
2 j d(Q′′)2≤t<2 j+1d(Q′′)2

(Kt |φQ′′ f |)
∥
∥
∥
∥
∥

L1(((Q′′)∗∗)c,dw)

=: S1 + S2.

The estimate S1 ≤ C‖ f ‖L1(dw) follows from (85) and (F). Furthermore, by the semi-
group property and Theorem 2 together with (26), for 2 j d(Q)2 ≤ t < 2 j+1d(Q)2,
we have

∫

RN
kt (x, y)|(φQ′′ f )(y)| dw(y)

=
∫

RN

∫

RN
kt−2 j−1d(Q′′)2 (x, z)k2 j−1d(Q′′)2 (z, y) dw(z)|(φQ′′ f )(y)| dw(y)

≤ C
∫

RN

∫

RN

1

w(B(x, 2 j/2d(Q′′)))e
−cd(x,z)2

2 j+1d(Q′′)2 k2 j−1d(Q′′)2 (z, y) dw(z)|(φQ′′ f )(y)| dw(y).

Integrating over the set ((Q′′)∗∗)c with respect to the x-variable, we obtain

∫

((Q′′)∗∗)c

(

sup
2 j d(Q′′)2≤t<2 j+1d(Q′′)2

∫

RN
kt (x, y)|(φQ′′ f )(y)| dw(y)

)

dw(x)
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≤ C
∫

RN
|(φQ′′ f )(y)|

∫

RN
k2 j−1d(Q′′)2(z, y) dw(z) dw(y).

Consequently, by (D) and (85), we get

S2 ≤ C
∑

Q′′∈Q
‖φQ′′ f ‖L1(dw) + C

∞∑

j=1

∑

Q′′∈Q
j−1−ε‖φQ′′ f ‖L1(dw) ≤ C‖ f ‖L1(dw).

��
Lemma 16 Assume that V ∈ L2

loc(dw), V ≥ 0. For all f ∈ L1(dw) we have

∫

RN

∫ ∞

0
V (x)Ks | f |(x) ds dw(x) ≤ ‖ f ‖L1(dw). (92)

Proof The lemma is well-known. We provide the proof for the sake of completeness.
By the perturbation formula we have

Ht | f |(x) − Kt | f |(x) =
∫ t

0
(Ht−s V Ks)| f |(x) ds,

so, by (26), we obtain

∫ t

0

∫

RN
ht−s(x, y)V Ks | f |(y) dw(y) ds ≤

∫

RN
ht (x, y)| f |(y) dw(y). (93)

Integrating (93) with respect to the x-variable, using the Fubini theorem and the fact
that for all t > 0 we have

∫
RN ht (x, y) dw(x) = 1 (see (20)), we get

∫ t

0

∫

RN
V (y)Ks | f |(y) dw(y) ds ≤ ‖ f ‖L1(dw).

Letting t → ∞ we obtain the lemma. ��
Lemma 17 Assume that Q and V ∈ L2

loc(dw), V ≥ 0, satisfy (K). There is a constant
C > 0 such that for all Q ∈ Q and f ∈ L1(dw) we have

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|(Ht − Kt )(φQ f )|
∥
∥
∥
∥
∥

L1(dw)

≤ C‖φQ f ‖L1(dw). (94)

Proof Thanks to (84) and (85) it is enough to estimate

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|(Ht − Kt )(φQ f )|
∥
∥
∥
∥
∥

L1(Q∗∗,dw)

.
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By the perturbation formula we write

Ht (φQ f )(x) − Kt (φQ f )(x) =
∫ t

0

∫

RN
ht−s(x, y)V (y)Ks(φQ f )(y) dw(y) ds

=
∫ t

0

∫

RN
ht−s(x, y)V1(y)Ks(φQ f )(y) dw(y) ds

+
∫ t

0

∫

RN
ht−s(x, y)V2(y)Ks(φQ f )(y) dw(y) ds,

(95)

where V1 + V2 = V and V1 = V χQ∗∗∗ . In order to estimate the summand with
V2, we use Theorem 2 and the fact that for y ∈ R

N \ Q∗∗∗ and x ∈ Q∗∗ we have
‖x − y‖ ≥ d(Q), so

sup
0<t≤d(Q)2

∣
∣
∣
∣

∫ t

0

∫

RN
ht−s(x, y)V2(y)Ks(φQ f )(y) dw(y) ds

∣
∣
∣
∣

≤
∞∑

j=02

sup
− j−1d(Q)2<t≤2− j d(Q)2

∫ t

0

∫

RN
ht−s(x, y)V2(y)Ks(|φQ f |)(y) dw(y) ds

=
∞∑

j=02

sup
− j−1d(Q)2<t≤2− j d(Q)2

∞∑

�=0

∫ t−2−�−1t

t−2−�t

∫

RN
ht−s(x, y)V2(y)Ks(|φQ f |)(y) dw(y) ds

≤ C
∞∑

j,�=02

sup
− j−1d(Q)2<t≤2− j d(Q)2

∫ t−2−�−1t

t−2−�t

∫

RN

t − s

‖x − y‖2
1

w(B(x,
√

t − s))

e−cd(x,y)2/(t−s)V2(y)Ks |(φQ f )|(y) dw(y) ds

≤ C
∞∑

j,�=0

∞∫

0

∫

RN

2− j−�d(Q)2

d(Q)2
1

w(B(x, 2−( j+�)/2d(Q)))
e
− cd(x,y)2

(2− j−�d(Q)2)

V (y)Ks |(φQ f )|(y) dw(y) ds.

Therefore, by the Fubini theorem and (92), we obtain

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

∫ t

0

∫

RN
ht−s(x, y)V2(y)Ks(φQ f )(y) dw(y) ds

∥
∥
∥
∥
∥

L1(Q∗∗, dw)

≤ C
∞∑

j,l=0

2− j−l
∫ ∞

0

∫

RN
V (y)Ks |(φQ f )|(y) dw(y) ds ≤ C‖φQ f ‖L1(dw).

In order to estimate the summand in (95) containing V1, we write
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∫ t

0

∫

RN
ht−s(x, y)V1(y)Ks(φQ f )(y) dw(y) ds =

∫ t/2

0
. . . +

∫ t

t/2
. . . =: It (x) + Jt (x).

Clearly, by Theorem 2 and the Fubini theorem, we get

∥
∥
∥ sup
0<t≤d(Q)2

|It (x)|
∥
∥
∥

L1(dw(x))
≤

∞∑

j=0

∥
∥
∥ sup
2− j−1d(Q)2<t≤2− j d(Q)2

|It (x)|
∥
∥
∥

L1(dw(x))

≤ C
∞∑

j=0

∫

RN

2− j d(Q)2∫

0

∫

RN

1

w(B(y, 2− j/2d(Q)))
e

−cd(x,y)2

2− j d(Q)2 V1(y)Ks |(φQ f )|(y) dw(y) ds dw(x)

≤ C
∞∑

j=0

∫ 2− j d(Q)2

0

∫

RN
V1(y)Ks |(φQ f )|(y) dw(y) ds

= C
∞∑

j=0

∫ 2− j d(Q)2

0

∫

Q∗∗∗
V (y)

∫

RN
ks(y, z)|(φQ f )(z)| dw(z) dw(y) ds

≤ C ′
∞∑

j=0

∫

RN
|(φQ f )(z)|

(∫ 2− j d(Q)2

0

∫

Q∗∗∗
V (y)Gs/c(y, z) dw(y) ds

)

dw(z),

where in the last step we have used (26) and Theorem 2. Consequently, by assump-
tion (K), we get

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|It (x)|
∥
∥
∥
∥
∥

L1(dw(x))

≤ C
∞∑

j=0

2− jδ‖(φQ f )‖L1(dw) ≤ C‖(φQ f )‖L1(dw).

Similarly, we write

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Jt (x)|
∥
∥
∥
∥
∥

L1(dw(x))

≤
∞∑

j=0

∥
∥
∥
∥
∥

sup
2− j−1d(Q)2<t≤2− j d(Q)2

|Jt (x)|
∥
∥
∥
∥
∥

L1(dw(x))

. (96)

Then, by changing of variables, we have

|Jt (x)| =
∫

RN

∫ t/2

0

∫

RN
hs(x, y)V1(y)kt−s(y, z)(|φQ f |)(z) dw(y) ds dw(z).

Applying Theorem 2 and (26), we get

sup
2− j−1d(Q)2<t≤2− j d(Q)2

|Jt (x)|

≤ C
∫

RN

∫ 2− j−1d(Q)2

0

∫

RN
Gs/c(x, y)V1(y)G2− j d(Q)2/c(y, z)(|φQ f |)(z) dw(y) ds dw(z).

(97)
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Note that for s ≤ t
2 ≤ 2− j−1d(Q)2 we have

e−cd(x,y)2/se−cd(y,z)2/(2− j d(Q)2) ≤ e−cd(x,y)2/(2s)e−cd(x,y)2/(2− j d(Q)2)e−cd(y,z)2/(2− j d(Q)2)

≤ e−cd(x,y)2/(2s)e−cd(x,z)2/(2− j+1d(Q)2),

so (97) and the doubling property of w lead us to

sup
2− j−1d(Q)2<t≤2− j d(Q)2

|Jt (x)|

≤
∫

RN

∫ 2− j−1d(Q)2

0

∫

RN
G2s/c(x, y)V1(y)

1

w(B(z, 2− j/2d(Q)))
e
− cd(x,z)2

2− j+1d(Q)2

(|φQ f |)(z) dw(y) ds dw(z).

Furthermore, by the assumption (K), we get

sup
2− j−1d(Q)2<t≤2− j d(Q)2

|Jt (x)|

≤ C2− jδ
∫

RN

1

w(B(z, 2− j/2d(Q)))
e
− cd(x,z)2

2− j+1d(Q)2 (|φQ f |)(z) dw(z). (98)

Finally, integrating (98) with respect to x-variable and taking (96) into account we see
that the proof is complete. ��

9 Proof of Theorem 7

The proof is based on the proof of [18, Theorem 2.2]. Let us remind that {φQ}Q∈Q is
the smooth resolution of identity associated with the covering Q (see Definition 1).

9.1 Proof of the Inequality C−1‖f‖
H1,atQ

≤ ‖f‖H1L
Thanks to Corollary 3 and Lemma 17 we have

∑

Q∈Q
‖φQ f ‖H1

loc,d(Q)
≤ C

∑

Q∈Q

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Ht (φQ f )|
∥
∥
∥
∥
∥

L1(Q∗∗, dw)

+ C‖ f ‖L1(dw)

≤ C
∑

Q∈Q

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|(Ht − Kt )(φQ f )|
∥
∥
∥
∥
∥

L1(Q∗∗, dw)

+ C
∑

Q∈Q

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Kt (φQ f )|
∥
∥
∥
∥
∥

L1(Q∗∗, dw)

+ C‖ f ‖L1(dw)
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≤ C‖ f ‖L1(dw) + C
∑

Q∈Q

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Kt (φQ f )|
∥
∥
∥
∥
∥

L1(Q∗∗, dw)

.

Then, by Lemma 14 and (91) we get

∑

Q∈Q

∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Kt (φQ f )|
∥
∥
∥
∥
∥

L1(Q∗∗, dw)

≤
∑

Q∈Q

∫

Q∗∗
sup

0<t≤d(Q)2
|Kt

(
φQ

∑

Q′∈Q′(Q)

(φQ′ f )
)
(x)| dw(x)

≤
∑

Q∈Q

∫

Q∗∗
sup

0<t≤d(Q)2

∣
∣
∣Kt

(
φQ

∑

Q′∈Q′(Q)

(φQ′ f )
)
(x)

− φQ(x)
(
Kt (

∑

Q′∈Q′(Q)

(φQ′ f )
)
(x)

∣
∣
∣ dw(x)

+
∑

Q∈Q

∫

Q∗∗
sup

0<t≤d(Q)2

∣
∣
∣φQ(x)

(
Kt (

∑

Q′′∈Q′′(Q)

(φQ′′ f )
)
(x)

∣
∣
∣ dw(x)

+
∑

Q∈Q

∫

Q∗∗
φQ(x) sup

0<t≤d(Q)2
|Kt ( f )(x)| dw(x)

≤ C‖ f ‖L1(dw) +
∥
∥
∥
∥sup

t>0
|Kt f |

∥
∥
∥
∥

L1(dw)

.

Hence, we have obtained

∑

Q∈Q
‖φQ f ‖H1

loc,d(Q)
≤ C‖ f ‖H1

L
.

Therefore, by Proposition 4 we get

φQ(x) f (x) =
∞∑

j=0

c j,Q(x)a j,Q(x)

where a j,Q are atoms of local Hardy space H1,at
loc,d(Q) (see Definition 5 and Proposi-

tion 4) and

∑

Q∈Q

∞∑

j=0

|c j,Q | ≤ C‖ f ‖H1
L
.

Since suppφQ f ⊆ Q∗, Proposition 4 guaranteed that we may get a j,Q such that
supp a j,Q ⊆ Q∗∗∗∗. Consequently, by Definition 3, each a j,Q is an atom of H1,at

Q .
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9.2 Proof of the Inequality ‖f‖H1L ≤ C‖f‖
H1,atQ

It is enough to check if there is a constant C > 0 such that for all atoms a(x) of H1,at
Q

we have ‖a‖H1
L

≤ C . Suppose that a(x) is associated with a cube Q ∈ Q. We write

a =
∑

Q′∈Q
φQ′a. (99)

Thanks to (F) and the fact that supp a ⊆ Q∗∗∗∗, there is a number M > 0 inde-
pendent of Q such that in (99) there are at most M nonzero summands and all of
them satisfy d(Q′) ∼ d(Q). Let � ≥ 0 be the smallest positive integer such that
d(Q′) ≥ 2−�/2d(Q) for all such a nonzero summands φQ′a in (99). Clearly, thanks
to (F), � is independent of a and Q ∈ Q. We write

‖a‖H1
L

≤
∥
∥
∥
∥
∥

sup
0<t≤2−�d(Q)2

|Kt a|
∥
∥
∥
∥
∥

L1(dw)

+
∥
∥
∥
∥
∥

sup
t>2−�d(Q)2

|Kt a|
∥
∥
∥
∥
∥

L1(dw)

=: I1 + I2.

Further,

I1 ≤
∥
∥
∥
∥
∥

sup
0<t≤2−�d(Q)2

|(Kt − Ht )a|
∥
∥
∥
∥
∥

L1(dw)

+
∥
∥
∥
∥
∥

sup
0<t≤2−�d(Q)2

|Ht a|
∥
∥
∥
∥
∥

L1(dw)

.

Thanks to the fact that atom a is, by definition, an atom for H1
loc,d(Q), we have

∥
∥
∥
∥
∥

sup
0<t≤2−�d(Q)2

|Ht a|
∥
∥
∥
∥
∥

L1(dw)

≤
∥
∥
∥
∥
∥

sup
0<t≤d(Q)2

|Ht a|
∥
∥
∥
∥
∥

L1(dw)

≤ C .

Thanks to (94) and (99), we get

∥
∥
∥
∥
∥
∥

sup
0<t≤2−�d(Q)2

|(Kt − Ht )
∑

Q′∈Q
(φQ′a)|

∥
∥
∥
∥
∥
∥

L1(dw)

≤
∑

Q′∈Q

∥
∥
∥
∥
∥

sup
0<t≤d(Q′)2

|(Kt − Ht )(φQ′a)|
∥
∥
∥
∥
∥

L1(dw)

≤ C
∑

Q′∈Q

‖φQ′a‖L1(dw) ≤ C M‖a‖L1(dw) ≤ C .
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In order to estimate I2, we repeat the argument presented in the proof of (91). We
provide details. We write

I2 ≤
∞∑

j=−�

∥
∥
∥
∥
∥

sup
2 j d(Q)2<t≤2 j+1d(Q)2

|Kt a|
∥
∥
∥
∥
∥

L1(dw)

. (100)

By the semigroup property, Theorem 2 together with (26), for

2 j d(Q)2 < t ≤ 2 j+1d(Q)2,

we have

∫

RN
kt (x, y)|a(y)| dw(y)

=
∫

RN

∫

RN
kt−2 j−1d(Q)2 (x, z)k2 j−1d(Q)2 (z, y) dw(z)|a(y)| dw(y)

≤ C
∫

RN

∫

RN

1

w(B(z, 2 j/2d(Q)))
e−cd(x,z)2/(2 j+1d(Q)2)k2 j−1d(Q)2 (z, y) dw(z)|a(y)| dw(y).

Therefore, integrating over the x-variable, we obtain

∫

RN
sup

2 j d(Q)2≤t<2 j+1d(Q)2

∫

RN
kt (x, y)|a(y)| dw(y) dw(x)

≤ C
∫

RN
|a(y)|

∫

RN
k2 j−1d(Q)2(z, y) dw(z) dw(y).

Consequently, by the condition (D) and (100), we get

I2 ≤ C
(
� +

∞∑

j=1

j−1−ε
)
‖a‖L1(dw) ≤ C ′‖a‖L1(dw) ≤ C ′.

10 Verification of Conditions (D) and (K) for potentials from the
reverse Hölder class

Let us note that the condition (F) for V ∈ RHq(dw), q > max(1, N
2 ), is already

checked, see Proposition 3.

10.1 Verification of Condition (D)

We will begin with the lemma, which holds for all V ∈ L2
loc(dw) (not necessary

V ∈ RHq(dw)).
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Lemma 18 Assume that V ∈ L2
loc(dw), V ≥ 0. There is a constant C > 0 such that

for all y ∈ R
N and t > 0 we have

〈Lkt (·, y), kt (·, y)〉 ≤ C

tw(B(y,
√

t))
. (101)

Proof Thanks to the fact that operator L is positive and self-adjoint, we have that
the semigroup {Kt }t≥0 is analytic on L2(dw), so the operator L Kt/2 is bounded on
L2(dw) for all t > 0. Therefore, by the semigroup property and the definition of L
(here Lx denotes the action of L with respect to the x-variable) we have

Lxkt (x, y) = Lx

∫

RN
kt/2(x, z)kt/2(z, y) dw(z) = ((L Kt/2)kt/2(·, y))(x). (102)

Consequently, by the Cauchy–Schwarz inequality we have

〈Lkt (·, y), kt (·, y)〉 = 〈L Kt/2(kt/2(·, y))(·), kt (·, y)〉
≤ ‖kt (·, y)‖L2(dw)‖L Kt/2(kt/2(·, y))(·)‖L2(dw).

(103)

By Theorem 2 and (26) we obtain

‖kt (·, y)‖L2(dw) ≤ C

w(B(y,
√

t))1/2
. (104)

Moreover, holomorphy of {Kt }t≥0 together with Theorem 2 lead us to

‖L Kt/2(kt/2(·, y))(·)‖L2(dw) ≤ C
1

t
‖kt/2(·, y)‖L2(dw) ≤ C ′ 1

tw(B(y,
√

t))1/2
.

(105)

The claim is a consequence of (103) together with (104) and (105). ��
Now we are ready prove that the condition (D) holds for the potential V satisfying

the reverse Hölder inequality (27). Fix y ∈ R
N and 0 < t ≤ d(Q)2. For any r > 0,

by Cauchy–Schwarz inequality, (26), and Theorem 2, we obtain

I =
(∫

RN
kt (x, y) dw(x)

)2

≤ 2

(∫

‖x−y‖≤r
kt (x, y) dw(x)

)2

+ 2

(∫

‖x−y‖>r
kt (x, y) dw(x)

)2

≤ Cw(B(y, r))

∫

‖x−y‖≤r
kt (x, y)2 dw(x) + Ctr−2.

By (102) and the comment above (102) we have kt (·, y) ∈ D(L). Therefore

Q(kt (·, y), kt (·, y)) = 〈Lkt (·, y), kt (·, y)〉.



Journal of Fourier Analysis and Applications (2021) 27 :46 Page 39 of 42 46

Consequently, using (46), then the Fefferman–Phong inequality (53), we get

I ≤ Cw(B(y, r))m(y)−2(1 + rm(y))
2κ
1+κ

∫

RN
kt (x, y)2m(x)2 dw(x) + Ctr−2

≤ Cw(B(y, r))m(y)−2(1 + rm(y))
2κ
1+κ 〈Lkt (·, y), kt (·, y)〉 + Ctr−2.

(106)

By (101) and (10) we get

I ≤ C
w(B(y, r))

tw(B(y,
√

t))
m(y)−2(1 + rm(y))

2κ
1+κ + Ctr−2

≤ Ct−1(rNt−N/2 + r N t−N/2)m(y)−2(1 + rm(y))
2κ
1+κ + Ctr−2.

(107)

If we plug in r = t
1+ε
2 m(y)ε, we get

I ≤ C(tNε/2−1m(y)Nε−2 + t Nε/2−1m(y)Nε−2)

(1 + t1/2+ε/2m(y)1+ε)2κ/(1+κ) + Ct−εm(y)−2ε.

Recall that m(y) ∼ d(Q)−1 for y ∈ Q∗∗∗∗. Hence for t > d(Q)2 ∼ m(y)−2 if we
take ε small enough, we get

I ≤ Ct−ε1m(y)−2ε1 for some ε1 > 0,

which ends the proof.

10.2 Verification of Condition (K)

Assume that V ∈ RHq(dw), q > max(1, N
2 ). Thanks to Hölder’s inequality we have

I =
∫ 2t

0

∫

Q∗∗∗
V (y)G2s/c(x, y) dw(y) ds

≤
∫ 2t

0

(
1

w(Q∗∗∗)

∫

Q∗∗∗
V (y)q dw(y)

)1/q

w(Q∗∗∗)1/q

(∫

Q∗∗∗
G2s/c(x, y)q ′

dw(y)
)1/q ′

ds.

(108)

Note that for y ∈ Q∗∗∗ we havew(B(y, d(Q))) ∼ w(Q∗∗∗), therefore, by Theorem 2,
we have

w(Q∗∗∗)1/q
(∫

Q∗∗∗
G2s/c(x, y)q ′

dw(y)
)1/q ′

≤ C

(∫

Q∗∗∗
w(B(y, d(Q)))q ′/q

w(B(y,
√

s))q ′−1

1

w(B(x,
√

s))
e−cq ′d(x,y)2/(2s) dw(y)

)1/q ′

.

(109)
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Recall that
√

s ≤ √
2t ≤ √

2d(Q) in the assumption (K), so, thanks to (10), we have

w(B(y, d(Q)))q ′/q

w(B(y,
√

s))q ′−1
= w(B(y, d(Q)))q ′/q

w(B(y,
√

s))q ′/q
≤ C

(
d(Q)√

s

)(Nq ′)/q

.

Consequently, (108) and (109) lead us to

I ≤ C
∫ 2t

0

(
d(Q)√

s

)N/q ( 1

w(Q∗∗∗)

∫

Q∗∗∗
V (y)q dw(y)

)1/q

ds.

Applying the reverse Hölder inequality (27) and the fact that q > max(1, N
2 ) we have

I ≤ Ct

(
d(Q)√

t

)N/q 1

w(Q∗∗∗)

∫

Q∗∗∗
V (y) dw(y) ≤ C

(
d(Q)√

t

)−γ

,

where, in the last step, the fact that themeasuresμ andw are doubling and the definition
of Q ∈ Q by the stopping-time condition (48) were utilize. The proof is finished (we
set δ = γ /2).
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