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Our paper [1] contains an error in the proof of Proposition 8.1. More precisely the
estimate claimed in Eq. (8.3) is erroneously motivated. In the following we state and
prove Proposition 8.1 correctly.

We need the Hermite functions

hα(x) = π− d
4 (−1)|α|(2|α|α!)− 1

2 e
|x |2
2 ∂αe−|x |2 , x ∈ Rd , α ∈ Nd ,

and formal series expansions
f =

∑

α∈Nd

cαhα

where {cα} is a sequence of coefficients defined by cα = cα( f ) = ( f , hα). The
Hermite functions {hα}α∈Nd ⊆ L2(Rd) is an orthonormal basis.

Langenbruch [4, Theorem3.4] has shown that the family ofHilbert sequence spaces
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The original article can be found online at https://doi.org/10.1007/s00041-016-9478-6.
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for r > 0 yields a family of seminorms for �s(Rd) that is equivalent to the family
(2.3) for all h > 0, when t = s > 1

2 . Thus �s(Rd) can be identified topologically as
the projective limit

�s(Rd) =
⋂

r>0

⎧
⎨

⎩
∑

α∈Nd

cαhα : {cα} ∈ �2s,r

⎫
⎬

⎭ . (1)

Lemma If s > 1
2 and h > 0 then

sup
x∈R
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2
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where Ch,s > 0.

Proof It is clear that
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2
)

= pk(x) e
− 1

2 x
2

(2)

where pk is a polynomial of order k ∈ N. By induction one can prove the formula
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�k/2�∑
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Since k! � 2k(k − 2m)!(2m)! we can estimate
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Combining with m! = m!2s−ε where ε = 2s − 1 > 0, this gives for any h > 0 and
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where we pick b = s 4
1
s h− 1

s in the last equality, and Ch,s > 0. Thus since 1
s < 2

sup
x∈R
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for a new constant Ch,s > 0. �	
The corrected result concerns operators with Schwartz kernel of the oscillatory

integral form

KT (x, y) = (2π)−(d+N )/2

√

det

(
p′′
θθ /i p′′

θ y
p′′
xθ i p′′

xy

) ∫

RN
eip(x,y,θ)dθ ∈ S ′(R2d) (8.1)

where x, y ∈ Rd . Here p is a quadratic form on R2d+N associated with the positive
Lagrangian that is defined by the twisted graph of the matrix T ∈ Sp(d,C) which
is assumed to be positive in the sense of [3, Eq. 5.10]. The kernel is, modulo sign,
independent of the form p and the dimension N , thanks to the the factor in front of
the integral [3, p. 444].

Proposition 8.1 Suppose T ∈ Sp(d,C) is positive and let KT : S (Rd) → S ′(Rd)

be the continuous linear operator having Schwartz kernel KT ∈ S ′(R2d) defined
by (8.1). For s > 1/2 the operator KT is continuous on �s(Rd) and KT extends
uniquely to a continuous operator on �′

s(R
d).

Proof By [3, Proposition 5.10] (cf. [2]) the matrix T can be factorized as

T = χ1T0χ2

whereχ1, χ2 ∈ Sp(d,R), T0 ∈ Sp(d,C) is positive and (y, η) = T0(x, ξ), x, ξ, y, η ∈
Rd , where for each 1 � j � d we have either

(
y j
η j

)
=

(
cosh τ j −i sinh τ j
i sinh τ j cosh τ j

) (
x j
ξ j

)
(3)

with τ j � 0, or (
y j
η j

)
=

(
1 0
i 1

)(
x j
ξ j

)
. (4)

By [3, Proposition 5.9] we have

KT = ±μ(χ1)KT0μ(χ2).
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According to Proposition 4.4, μ(χ j ) is continuous on �s(Rd), so it remains to show
that KT0 is continuous on �s(Rd).

The matrix T0 can be factorized as

T0 = T1T2 · · · Td

where the matrices Tj , 1 � j � d, commute pairwise, and have the following struc-
ture. It holds (y, η) = Tj (x, ξ) where (yk, ηk) = (xk, ξk), k ∈ {1, 2, · · · , d} \ { j} and
either (3) for some τ j � 0, or (4) holds.

Again by [3, Proposition 5.9]

KT0 = ±KT1KT2 · · ·KTd

and thus it suffices to show that KTj of each of the stated two types is continuous on
�s(Rd). In order to do that we first identify the operators KTj , cf. [2, p. 297].

Suppose (y, η) = Tj (x, ξ) where (yk, ηk) = (xk, ξk), k ∈ {1, 2, · · · , d} \ { j}.
Case (i) Suppose (3) for some τ j � 0. Define the symmetric block matrix

Q j = 1

2

(
e j etj 0
0 e j etj

)
∈ R2d×2d

where e j ∈ Rd denotes the standard basis vector with zero entries except for position
j which is one. With Fj = J Q j a short calculation shows that

e−2iτ j Fj = Tj

which reveals that KTj is the solution operator to the initial value Cauchy problem
(5.1) when the Hamiltonian Weyl symbol is defined by

q j (x, ξ) = 〈(x, ξ), Q j (x, ξ)〉 = 1

2

(
x2j + ξ2j

)
, (x, ξ) ∈ T ∗Rd ,

at time τ j , that is KTj = e−τ j qw
j (x,D). Here qw

j (x, D) = 1
2 (x

2
j + D2

j ) is the Hermite
operator (harmonic oscillator) acting on variable j , divided by two.

For this operator the Hermite functions are eigenfunctions, and

1

2
(x2j + D2

j )hα =
(

α j + 1

2

)
hα, α ∈ Nd

(cf. e.g. [5]). By the uniqueness of the solution to the Cauchy problem (5.1) we have

KTj hα = e− τ j
2 (x2j+D2

j )hα = e
−τ j

(
α j+ 1

2

)

hα, α ∈ Nd .
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Using the seminorms on �s(Rd) defined by Hilbert sequence spaces �2s,r (N
d), cf. (1),

and the orthonormality of {hβ}β∈Nd ⊆ L2(Rd)we obtain for f ∈ �s(Rd) and α ∈ Nd

(KTj f , hα) =
∑

β∈Nd

( f , hβ)(KTj hβ, hα) = ( f , hα)e
−τ j

(
α j+ 1

2

)

,

and hence for any r > 0

‖(KTj f , hα)α∈Nd‖2
�2s,r

=
∑
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|(KTj f , hα)|2e2r |α| 1
2s

=
∑
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|( f , hα)|2e−τ j(2α j+1)e2r |α| 1
2s

�
∑
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|( f , hα)|2e2r |α| 1
2s

= ‖( f , hα)α∈Nd‖2
�2s,r

.

This shows the continuity KTj : �s(Rd) → �s(Rd).
Case (ii) Suppose (4). Define the symmetric block matrix

Q j = 1

2

(
e j etj 0
0 0

)
∈ R2d×2d

and Fj = J Q j . Then
e−2i Fj = Tj

which implies that KTj is the solution operator to the initial value Cauchy problem
(5.1) when the Hamiltonian Weyl symbol is defined by

q j (x, ξ) = 〈(x, ξ), Q j (x, ξ)〉 = 1

2
x2j ,

at time t = 1, that is KTj = e−qw
j (x,D). Since qw

j (x, D) f (x) = x2j
2 f (x) we have

KTj f (x) = e− 1
2 x

2
j f (x) which is a Gaussian multiplicator operator with respect to

variable j .
From the Lemma we obtain for any α, β ∈ Nd and any h > 0 using the seminorms

(2.3)
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� ‖ f ‖Ss,h h
|α+β|(β!α!)s2α j

� ‖ f ‖Ss,h (2h)|α+β|(β!α!)s, x ∈ Rd ,

and thus ∥∥∥e− 1
2 x

2
j f

∥∥∥Ss,h
� ‖ f ‖Ss,h/2

.

We have shown the continuity of KTj : �s(Rd) → �s(Rd). �	
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