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Abstract
We prove modulation invariant embedding bounds from Bochner spaces L p(W; X)

on the Walsh group to outer-L p spaces on the Walsh extended phase plane. The
Banach space X is assumed to be UMD and sufficiently close to a Hilbert space in an
interpolative sense. Our embedding bounds imply L p bounds and sparse domination
for the Banach-valued tritile operator, a discrete model of the Banach-valued bilinear
Hilbert transform.

Keywords Tritile operator · Bilinear Hilbert transform · time-frequency analysis ·
Walsh group · UMD Banach spaces · Outer Lebesgue spaces · Interpolation spaces
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1 Introduction

The bilinear Hilbert transform (BHT) of two complex-valued Schwartz functions
f0, f1 ∈ S (R; C) is given by

BHT( f0, f1)(x) := p. v.
ˆ

R

f0(x − t) f1(x + t)
dt

t
.
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The L p bounds

‖BHT( f0, f1)‖L p(R) �p0,p1 ‖ f0‖L p0 (R)‖ f1‖L p1 (R) ∀ f0, f1 ∈ S (R; C),

(1.1)

with p0, p1 ∈ (1,∞] and p ∈ (2/3,∞) such that p−1 = p−1
0 + p−1

1 , were first proven
by Lacey and Thiele [28,29]. Their proof extended techniques developed by Carleson
and Fefferman in their proofs of Carleson’s theorem on the almost-everywhere conver-
genceofFourier series [8,17]. These techniques are now referred to as ‘time-frequency’
or ‘wave packet’ analysis. In order to streamline and modularise these techniques, Do
and Thiele developed a theory of ‘outer-L p’ spaces, yielding proofs of L p bounds for
the BHT in which the key difficulties are cleanly compartmentalised [16].

The outer-L p technique is not applied directly to theBHT, but rather to its associated
trilinear form BHF, given by dualising with a third function f2 ∈ S (R; C):

BHF( f0, f1, f2) :=
ˆ

R

p. v.
ˆ

R

f0(x − t) f1(x + t) f2(x)
dt

t
dx . (1.2)

For p0, p1, p ∈ [1,∞], the estimate (1.1) is equivalent to the bound

|BHF( f0, f1, f2)| �p0,p1,p

2∏

u=0

‖ fu‖L pu (R) ∀ f0, f1, f2 ∈ S (R; C). (1.3)

The trilinear form BHF is a nontrivial linear combination of the Hölder form (which
satisfies the desired L p bounds by Hölder’s inequality) and another trilinear form:

ˆ
R

f0(x) f1(x) f2(x) dx − i

π
BHF( f0, f1, f2)

=
ˆ

R
3+
E[ f0](x, η − t−1, t) E[ f1](x, η + t−1, t) E[ f2](x,−2η, t) dx dη dt

=:
ˆ

R
3+
E0[ f0](x, η, t) E1[ f1](x, η, t) E2[ f2](x, η, t) dx dη dt .

(1.4)

Here R
3+ = R × R × (0,∞) is the extended phase plane, which parametrises the

underlying translation, modulation, and dilation symmetries of BHF. The functions
E[ fu] are representations of the functons fu ∈ S (R; C) as functions R

3+ → C. We
refer to E as an embedding map; the modified embedding maps Eu differ from E by a
change of variables.1

The outer-L p technique factorises L p bounds for the trilinear form in (1.4) into a
chain of inequalities:

∣∣∣∣
ˆ

R
3+
E0[ f0] E1[ f1] E2[ f2] dx dη dt

∣∣∣∣ � ‖E0[ f0]E1[ f1]E2[ f2]‖L1
ν-L1

μS1

1 The precise definitions of E and Eu are not important for this introduction. [16, (6.1)] gives one possible
definition.
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�
2∏

u=0

‖Eu[ fu]‖L pu
ν -Lqu

μ Su
�

2∏

u=0

‖ fu‖L pu (R).

The first inequality is a Radon–Nikodym-style domination; the classical integral over
R
3+ is controlled by an iterated outer-L1 quasinorm ‖ · ‖L1

ν-L1
μS1 . This quasinorm is

defined with respect to certain outer measures μ and ν on R
3+, along with a size

S1 on functions on R
3+, which measures functions on distinguished subsets of R

3+.
The second inequality is a Hölder inequality for the iterated outer-L p quasinorms.
This involves further sizes Su , u ∈ {0, 1, 2}, which are connected to the size S1 by a
‘size-Hölder’ inequality. The first two inequalities follow from general properties of
outer-L p spaces. The third inequality follows from the bounds

‖Eu[ f ]‖L pu
ν -Lqu

μ Su
� ‖ f ‖L pu (R) ∀ f ∈ S (R; C), (1.5)

which carry most of the difficulty of the problem. These aremodulation invariant Car-
leson embedding bounds, so named because the operators Eu are modulation invariant
in the sense that

Eu[e2π i z·ξ f (z)](x, η, s) = Eu[ f ](x, η + ξ, s),

and the outer-L p quasinorms ‖ · ‖L pu
ν -Lqu

μ Su
are invariant with respect to translation in

the second variable.2 These bounds do not follow from general properties of outer-L p

spaces, making them an interesting object of study in their own right. The abstract
outer-L p theory offers one useful reduction in this direction: to prove the bounds (1.5),
it suffices to prove weak endpoint bounds and argue by an outer-L p version of the
Marcinkiewicz interpolation theorem.

In this paper we consider functions f : R → X valued in a complex Banach space
X . Banach-valued analysis has a rich history which we do not attempt to summarise
here; we simply point the reader to the recent volumes [19,20]. Embedding bounds
from the Bochner space L p(R; X) into outer-L p spaces on the upper half-space R ×
(0,∞) have been proven by Di Plinio and Ou [15], with applications to Banach-
valued multilinear singular integrals; the upper half-space parametrises translation
and dilation symmetries, but not modulation symmetries. We would like to prove such
embedding bounds into outer-L p spaces on R × R × (0,∞), in order to incorporate
modulation invariance.3 As a first step we prove these for a discrete model of the real
line—the 3-Walsh model—in which many technical difficulties in time-frequency
analysis are removed, while the core features of the analysis remain.

2 These embeddings are also translation and dilation invariant, as are classical Carleson embeddings.
3 Between the submission and acceptance of this paper, we successfully proved such embedding bounds
[1], establishing L p-bounds for UMD-valued bilinear Hilbert transforms. The bounds for bilinear Hilbert
transforms, and more general multilinear Fourier multipliers, were simultaneously proven by Di Plinio, Li,
Martikainen, and Vuorinen [13] using a different method.
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In the 3-Walsh model, the real line is replaced by the 3-Walsh group

W = W3 :=
{

x ∈
∏

n∈Z

Z/3Z : [x]n = 0 for n sufficiently large

}
, (1.6)

where [x]n denotes the n-th component of x , and with group operation inherited from
the infinite product. Up to measure zero, the Haar measure onW can be identified with
the Lebesguemeasure on [0,∞), and the group operation onW corresponds to ternary
digitwise addition modulo 3 (i.e. ternary digitwise addition without carry) on [0,∞).
The dual group of W can be identified with W itself, and theWalsh–Fourier transform
of the characteristic function of a triadic interval is again such a characteristic function
(up to a suitable Walsh modulation). Thus one can construct ‘Walsh wave packets’,
supported in a given triadic interval of [0,∞), with frequency support in another given
triadic interval. In this way, W supports an idealised time-frequency analysis that is
not possible on R, as a compactly supported function on R cannot have compactly
supported Fourier transform.

Weworkwith the 3-Walsh group, although the 2-Walsh group (defined by replacing
3 by 2 in the definition) is more commonly used in the literature. We have made this
choice because the 3-Walsh group leads to a more natural discrete model of BHF
than the 2-Walsh group. Our arguments work equally well for any choice of integer
parameter greater than or equal to 2.

In our application of the 3-Walsh model, the role of the extended phase plane R
3+ is

taken by the set 3P of all tritiles: i.e. the set of all rectangles P = IP × ωP of area 3 in
[0,∞)×[0,∞) (identified with W × W) whose sides are triadic intervals. The tritile
P roughly corresponds to the point (xP, ξP, |IP|), where xP and ξP are the centres of IP
and ωP respectively. Each tritile is split into three tiles Pu = IP ×ωPu , u ∈ {0, 1, 2}—
i.e. rectangles of area 1 with triadic sides—all with the same time interval IP, and
to each of these tiles is associated a Walsh wave packet wPu : W → C, supported
in IP with frequency support in ωPv . The embedding E[ f ] : 3P → X3 of a function
f : W → X is given by integrating f against the three wave packets corresponding
to a given tritile P, and collecting the results in a triple

E[ f ](P) := (〈 f ;wPu 〉
)

u∈{0,1,2}. (1.7)

There are two equivalent ways of looking at this embedding: either as an X3-valued
function on tritiles, or as an X -valued function on tiles, where we write

E[ f ](P) = 〈 f ;wP 〉 = E[ f ](P)u,

where P is the unique tritile containing the tile P , and u is the index such that P = Pu .
Both viewpoints are handy, and we switch between them freely.

The main results of this paper are the following embedding bounds. The Banach
space assumptions (UMD, r -Hilbertian) are explained in Sect. 3, and the relevant outer
structures on 3P in Sect. 4. The sizes S are also defined in Sect. 4; they depend on
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the Banach space X appearing in the statement of the theorem, although this is not
apparent from the notation.

Theorem 1.1 Let X be a Banach space which is UMD and r-Hilbertian for some
r ∈ [2,∞). Then for all convex sets A ⊂ 3P of tritiles, the following embedding
bounds hold.

• For all p ∈ (r ,∞),

∥∥1A E[ f ]∥∥L p
μS

� ‖ f ‖L p(W;X) ∀ f ∈ S (W; X). (1.8)

• For all p ∈ (1,∞) and all q ∈ (min(p, r)′(r − 1),∞),

∥∥1A E[ f ]∥∥L p
ν -Lq

μS
� ‖ f ‖L p(W;X) ∀ f ∈ S (W; X). (1.9)

The implicit constants in the above bounds do not depend on A.

The set of exponents for which the embedding bounds (1.9) hold is sketched in Fig.
1; in the dotted region, the iterated embedding bounds basically correspond to the non-
iterated bounds. For p ≤ r we only have embeddings into iterated outer-L p spaces;
such behaviour ‘outside local Lr ’ necessitated the introduction of iterated outer-L p

spaces by the second author [38].
Let us now discuss Banach-valued versions of the trilinear form BHF. Consider a

triple of Banach spaces (X0, X1, X2) and a bounded trilinear form

� : X0 × X1 × X2 → C. (1.10)

With respect to this data we define

BHF�( f0, f1, f2) := p. v.
ˆ

R

ˆ
R

�( f0(x − t), f1(x + t), f2(x))
dt

t
dx

for fu ∈ S (R; Xu), u ∈ {0, 1, 2}. The first L p-bounds for BHF� were proven
by Silva, in the case X0 = �R , X1 = �∞, X2 = �R′

, for R ∈ (4/3, 4), with �

the natural product-sum map [36, Theorem 1.7]. The set of allowed Banach spaces
was extended by Benea and Muscalu using a new ‘helicoidal method’ [2,3], and by

Fig. 1 Exponents (p, q) for
which (1.9) holds

p ∈ (1,∞)

q ∈ (min(p, r) (r − 1),∞)

11
2

1
2

1
r

1
r

1
p

1
q
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Lorist and Nieraeth by Rubio de Francia-type extrapolation methods [32,33] relying
on weighted estimates for BHF as proven for example in [10,11]. One limitation of
these results is that they only hold when the spaces X0, X1, X2 are Banach lattices,
excluding interesting examples such as the Schatten classes Cp and more general
non-commutative L p spaces. It remains an open question as to whether there are any
L p-bounds for BHF� without this limitation.

As a corollary ofTheorem1.1,weprove L p-bounds for the 3-Walshmodel ofBHF�

without assuming any lattice structure. This model is the tritile form 	�, defined by

	�( f0, f1, f2) :=
∑

P∈3P

�
(
〈 f0;wP0〉, 〈 f1;wP1〉, 〈 f2;wP2〉

)
|IP|

=
∑

P∈3P

�
(
E[ f0](P0), E[ f1](P1), E[ f2](P2)

)
|IP|

(1.11)

for fu ∈ S (W; Xu), u ∈ {0, 1, 2}.4

Theorem 1.2 Let (Xu)u∈{0,1,2} be UMD Banach spaces, such that each Xu is ru-
Hilbertian for some ru ∈ [2,∞), and let � : X0 × X1 × X2 → C be a bounded
trilinear form. Given any Hölder triple of exponents (pu)u∈{0,1,2} ∈ (1,∞)3 satisfying

2∑

u=0

1

min(pu, ru)′(ru − 1)
> 1, (1.12)

we have the bound

|	�( f0, f1, f2)| �
2∏

u=0

‖ fu‖L pu (W;Xu) ∀ fu ∈ S (W; Xu).

The region of exponents (pu)2u=0 for which this theorem holds (more precisely, the
region of their reciprocals) is characterised as the interior of a polygon in Sect. 6.1. This
region is only nonempty when the Hilbertian exponents (ru)2u=0 are jointly sufficiently
close to 2, in the sense that

2∑

u=0

1

ru
> 1.

L p bounds for the Banach-valued quartile form (the 2-Walsh analogue of 	�)
were first established by Hytönen, Lacey, and Parissis [23]. Their assumptions on the
Banach spaces Xu are very similar to ours—possibly equivalent, although this is not
known—and the resulting range of exponents in their L p bounds are the same as ours

4 It is not obvious that the sum on the right hand side converges absolutely; see [23, Lemma 5.1] for a proof
of this convergence for the quartile form, which will be discussed later in the introduction. Of course, the
absolute convergence follows from our theorem.
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when restricted to the reflexive range (see Sect. 6.1).5 Banach-valued time-frequency
analysiswas initiated byHytönen andLacey in theirwork on theCarleson operator, and
continued with their work with Parissis on theWalshmodel of the variational Carleson
operator [21,22,24]. We have taken substantial inspiration from these papers.

The iterated embeddings of Theorem 1.1 imply not only L p bounds for the tritile
form, but also sparse domination. The connection between sparse domination and
Carleson embeddings into iterated outer-L p spaces was first shown by Di Plinio, Do,
and the second author [12]. A collection of intervals G in W is sparse if

‖G‖sp := sup
I⊂W

1

|I |
∑

J∈G
J⊂I

|J | < ∞

where the supremum is taken over all intervals I ⊂ W (see [31, §6] or [25] for a proof
that this is equivalent to the more familiar definition of a sparse collection).

Theorem 1.3 Let (Xu)u∈{0,1,2}, (ru)u∈{0,1,2}, and � be as in Theorem 1.2. Let
(pu)u∈0,1,2 be any triple of exponents satisfying (1.12). Then

|	�( f0, f1, f2)| � sup
‖G‖sp≤1

∑

I∈G
|I |

2∏

u=0

(  
I
‖ fu‖pu

Xu

)1/pu

∀ fu ∈ S (W; Xu)

where the supremum is taken over all sparse collections of intervals G.

The term appearing on the right of the bound of Theorem 1.3 is referred to as a
sparse form. It is straightforward to show that sparse forms satisfy the bounds

∑

I∈G
|I |

2∏

u=0

( 
I
| fu |pu

)1/pu
� ‖G‖sp

2∏

u=0

‖ fu‖L pu

for any Hölder triple of exponents (pu)u∈{0,1,2} with pu > pu . Furthermore, sparse
forms satisfy various weighted bounds, which we do not pursue here; for more infor-
mation see for example [30,31,33].

Let us return to the assumptions of Theorem 1.2: we consider three UMD Banach
spaces (Xu)u=0,1,2, each of which is ru-Hilbertian, linked with a bounded trilinear
form � : X0 × X1 × X2 → C. There are a few natural examples that one should keep
in mind:

• Let X be a UMD Banach space which is r -Hilbertian. Then the dual space X∗ is
also UMD and r -Hilbertian, and we can consider the ‘duality trilinear form’

� : X × X∗ × C → C, �(x, x∗, λ) := λx∗(x).

5 It was pointed out to us by the anonymous referee that the sparse domination obtained in Theorem 1.3
implies estimates outside the reflexive range, and fully recovers the range of estimates obtained in [23].
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Since C is UMD and 2-Hilbertian (i.e. Hilbert), the corresponding region of expo-
nents in Theorem 1.2 is nonempty provided

2

r
+ 1

2
> 1,

i.e. when r < 4.
• Consider a Hölder triple of exponents r0, r1, r2 ∈ (1,∞), so that the Lebesgue
spaces Lru (R) are UMD and max(ru, r ′

u)-Hilbertian, and there is no exponent r <

max(ru, r ′
u) such that Lru (R) is r -Hilbertian. Consider the ‘integration trilinear

form’

� : Lr0(R) × Lr1(R) × Lr2(R) → C, �( f , g, h) :=
ˆ

�

f (x)g(x)h(x) dx .

Then Theorem 1.2 would yield a nontrivial region of exponents provided that

∑

u

max(ru, r ′
u)−1 > 1.

But since
∑

u ru = 1, this occurs only if max(ru, r ′
u) < ru for some u, which is

impossible. Thus this trilinear form never fits into our framework. This is in stark
contrast with the results of Benea and Muscalu, who obtain bounds for BHF�

for this trilinear form for any Hölder triple r0, r1, r2 with r0, r1 ∈ (1,∞] and
r2 ∈ [1,∞) [2]. The reason for this discrepancy is our reliance on UMDmethods.

• On the other hand, replacing R with N in the preceding example, one can define
the integration trilinear form on �r0 × �r1 × �r2 provided that

∑
r−1

u ≥ 1. Thus
this trilinear form fits into our framework provided that

∑
r−1

u > 1 and ru ≥ 2 for
each u. The same holds when each �ru is replaced by the Schatten class Cru and �

is replaced by the ‘composition trilinear form’.

Here is a brief overview of the paper. In Sect. 2 we introduce the basics of the
Walsh group W and the associated time-frequency analysis. In Sect. 3 we discuss
various Banach space properties and their analytic consequences. In Sect. 4 we set up
the framework of outer structures and outer-L p spaces. Of particular importance are
the size-Hölder inequality (Proposition 4.12) for the ‘randomised’ sizes, and the size
domination theorem (Theorem 4.15), which lets us control the randomised sizes by
a simpler ‘deterministic’ size. Section 5 is devoted to proving Theorem 1.1. Crucial
to these arguments is a basic tile selection algorithm given in Proposition 5.1. This
is a simpler version of a more familiar ‘tree selection algorithm’ often used in time-
frequency analysis; the simplification is thanks to the aforementioned size domination
theorem. Finally, in Sect. 6, we deduce L p bounds and sparse domination for the tritile
form. Section 7.1 is an appendix, in which we sketch an alternative method using R-
bounds and the RMF property; this requires additional Banach space assumptions, but
the proof is a bit more direct.
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1.1 Notation

The letter W will always stand for the 3-Walsh group W3; we always write Wp when
we want to use a different parameter p (see Sect. 2). For a Banach space X and
p ∈ [1,∞], L p(W; X) denotes the Bochner space of strongly measurable functions
W → X such that the function x �→ ‖ f (x)‖X is in the usual Lebesgue space L p(W).
For technical details on Bochner spaces see [19, Chapter 1]. When I ⊂ W is an
interval and f ∈ L p

loc(W; X), we let

‖ f ‖-L p(I ;X) :=
(

1

|I |
ˆ

I
‖ f (x)‖p

X dx

)1/p

(1.13)

denote the L p-average, and

Mp f (x) := sup
I�x

‖ f ‖-L p(I ;X) ∀x ∈ W (1.14)

denote the triadic p-maximal function; the supremum is taken over all intervals I ∈ W

containing x . For f ∈ L1
loc(W; X) we let

〈 f 〉I := 1

|I |
ˆ

I
f (x) dx ∈ X

denote the average, of f on I . For f ∈ S (W; X) and g ∈ S (W; C) let

〈 f ; g〉 :=
ˆ

W

f (x)g(x) dx ∈ X .

We say that a triple of exponents (pu)u∈{0,1,2} with pu ∈ [1,∞] is a Hölder triple
if
∑2

u=0 p−1
u = 1.

Throughout the paper, we use (εn)n∈A to denote a sequence of independent
Rademacher variables (i.e. random variables that take the values ±1 with equal prob-
ability), indexed over some countable indexing set A. It never matters precisely which
probability space these Rademacher variables live on. We denote the expectation over
this probability space by E.

2 Walsh Time–Frequency Analysis

In this section we introduce the Walsh group W and the extended Walsh phase plane.
In particular we introduce tiles, wave packets, tritiles, trees, and strips; none of this
material is new;we include it here for the convenience of the reader, and to fix notation.
In Subsect. 2.3 we introduce the defect operator, which is an important technical tool
in our analysis.
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2.1 TheWalsh Group

Fix an integer p ≥ 2. The Walsh group Wp is

Wp :=
{

x ∈
∏

n∈Z

Z/pZ : |x | < ∞
}
, (2.1)

where |x | = max
{
pn : [x]n �= 0

}
and [x]n is the nth component (‘digit’) of x . The

group operation + is the digit-wise addition in Z/pZ, and the map (x, y) �→ |x − y|
is a translation invariant metric on Wp, giving Wp the structure of a locally compact
abelian group, and thus guaranteeing the existence of a Haar measure on Wp. We
normalise this measure so that |B1(0)| = 1, and it follows that

|Bpn (x)| = pn ∀x ∈ Wp. (2.2)

As explained in the introduction, there is a correspondence between the Walsh
group and the non-negative reals [0,∞) given by the surjective map

Wp � x �→
∑

n∈Z

[x]np
n ∈ [0,∞),

which is injective up to a set of measure zero. The pullback of the Lebesgue measure
by this map is the Haar measure on Wp, and intervals in [0,∞) correspond to balls in
Wp. Thus we often refer to Walsh balls as intervals.

Let X be a Banach space. We say that a function f : Wp → X is Schwartz, denoted
f ∈ S (Wp; X), if there exists N > 0 such that f is supported on BpN (0) and constant
on any interval I with |I | < p−N . For all p ∈ [1,∞), the Schwartz functions are dense
in L p(Wp; X).

The dual group of Wp can be identified with Wp itself, and the characters of Wp

are the Walsh exponentials

expξ (x) := (e2π i/p)
∑

j+k=−1[ξ ] j [x]k ∀x, ξ ∈ Wp. (2.3)

The Walsh–Fourier transform of a function f ∈ L1(Wp; C) is thus

f̂ (ξ) :=
ˆ

Wp

f (x)expξ (x) dx ∀ξ ∈ Wp, (2.4)

and we have the Plancherel identity

ˆ
Wp

f̂ (ξ)ĝ(ξ)dξ =
ˆ

Wp

f (x)g(x) dx ∀ f , g ∈ S (Wp; C).
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Consider the modulation, translation, and dilation operators on functions f : Wp →
C, given by

Modη f (x) := expη(x) f (x) ∀η ∈ Wp,

Try f (x) := f (x − y) ∀y ∈ Wp,

Dilpn f (x) := p−n f (p−n x) ∀n ∈ Z,

(2.5)

where [p−n x] j := [x] j+n for all n, j ∈ Z. It follows from the definition of the
Walsh–Fourier transform that

M̂odη f = Try f̂

T̂ry f = Mody f̂

D̂ilpn f = p−n Dilp−n f̂

∀ f ∈ S (Wp; C). (2.6)

Given two intervals I , I ′ ⊂ W, it holds that

I ∩ I ′ �= ∅ �⇒ I ⊆ I ′ or I ′ ⊆ I .

This is a familiar property of p-adic intervals in [0,∞). Each interval has p child
intervals {ch0(I ), ch1(I ), . . . , chp−1(I )} = ch(I ) given by

ch j (I ) = {x ∈ I : [x](logp |I |)−1 = j}. (2.7)

In the remainder of the paper we will work with the case p = 3, and we will
write W := W3.

2.2 The ExtendedWalsh Phase Plane

Strictly speaking, the extended Walsh phase plane is {(x, ξ, 3n) ∈ W×W×R
+ : n ∈

Z} where each point (x, ξ, 3n) ∈ W × W × R
+ represents the time x , the frequency

ξ , and the scale 3n . We can identify each point (x, ξ, 3n) with the rectangle B3n (x) ×
B3−n (ξ) ⊂ W × W; this provides for a more graphically intuitive way of thinking
of time-frequency localisation. This identification is not injective, but it turns out
that that this failure of injectivity correctly encodes the ‘uncertainty principle’ i.e.
the impossibility of determining both position (in time) and frequency to an arbitrary
scale.

We thus introduce the notion of a tile.

Definition 2.1 (Tiles) A tile is a rectangle P = IP ×ωP in W×W of area 1, such that
the sides IP and ωP are intervals. We call IP the time interval and ωP the frequency
interval of P . For each tile P there exist unique xP , ξP ∈ W and n ∈ Z such that

IP = B|IP |(xP ), [xP ] j = 0 for j < n,

ωP = B|IP |−1(ξP ), [ξP ] j = 0 for j < −n.
(2.8)
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We call xP the centre of the tile, and ξP the frequency of the tile. We denote the set of
all tiles by P.

To each tile P we associate a wave packet wP , which is a C-valued function
supported in IP with frequency support ωP . In the time-frequency sense, the wave
packet wP is localised to P .

Definition 2.2 (Wave packets) Given a tile P ∈ P, the wave packet associated with P
is the function

wP (x) = ModξP TrxP Dil|IP | 1B1(0)(x) = |IP |−1 expξP
(x)1IP (x). (2.9)

This is the unique function, up to multiplication by a unimodular constant, such that

sptwP = IP , ŵP = ωP , and ‖wP‖L1(W) = 1. (2.10)

Remark 2.3 It is convenient to identify wave packets with tiles, and thus to consider
the translation, dilation, and modulation operators (2.5) as acting directly on tiles, so
that for example

Modξ P = P ′ ⇐⇒ Modξ wP = c wP ′ for some |c| = 1.

We could equivalently define our wave packets with an arbitrary choice of unimodular
constant out the front; all the statements we make about wave packets will be invariant
under this transformation. In essence, what is most important is not the wave packet
itself, but the subspace of L2(W; C) that it spans.

Simple support (and Walsh–Fourier support) considerations show that two tiles
are disjoint if and only if their associated wave packets are orthogonal. More refined
statements can be made about the connection between tiles and wave packets. For
example, a union of disjoint tiles

⋃
i Pi corresponds to the subspace of L2(W; C)

spanned by the pairwise orthogonal wave packets (wPi )i , and this subspace does not
depend on the specific representation of

⋃
i Pi as a disjoint union of tiles. In particular,

if a tile P is contained in such a union, then the wave packet wP can be written as
a linear combination of the wave packets wPi . This is made precise in the following
lemma.

Lemma 2.4 (Basis expansion of wave packets) Let (Pi )i∈{1,...,N } be a finite collection
of pairwise disjoint tiles. Then for any P ⊂ ∪N

i=1Pi it holds that

wP =
N∑

i=1

〈wP ;wPi 〉wPi |IPi |. (2.11)

Proof Wemay assume that P ∩ Pi �= ∅ for all i ∈ {1, . . . , N }, for otherwise we would
have 〈wP ;wPi 〉 = 0 and Pi would not contribute to the right hand side of (2.11).
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If IPi ⊂ IP ⊂ IPj for i �= j then Pi ∩ Pj �= ∅, contradicting the assumption, so
either IP ⊃ IPi for all i ∈ {1, . . . , N } or IP ⊂ IPi for all i ∈ {1, . . . , N }. We consider
only the first case, as the proof of the second is similar. Write

N∑

i=1

〈wP ;wPi 〉wPi |IPi | = ModξP

N∑

i=1

〈Mod−ξP wP ;Mod−ξP wPi 〉Mod−ξP wPi |IPi |

= ModξP |IP |−1
N∑

i=1

〈1IP ;ModξPi −ξP |IPi |−11IPi
〉ModξPi −ξP 1IPi

= ModξP |IP |−1
N∑

i=1

〈1IP ; expξPi −ξP
(x − xPi )|IPi |−11IPi

〉 expξPi −ξP
(x − xPi )1IPi

= ModξP |IP |−1
N∑

i=1

〈1IP ; |IPi |−11IPi
〉1IPi

.

The third identity comes from the fact that ωP ⊂ ωPi and thus |ξPi − ξP | < |IP |−1,
so that by (2.3) it holds that

expξPi −ξP
(x − xPi ) = 1.

Since the intervals (IPi )i∈{1,...,N } partition IP , we have

N∑

i=1

〈1IP ; |IPi |−11IPi
〉1IPi

= 1IP ,

completing the proof when IPi ⊂ IP for all i . ��
The expression (1.11) of the tritile form involves multiplication of ‘nearby’ wave

packet coefficients of three separate functions. This ‘nearness’ of tiles is encoded by
grouping triples of frequency-adjacent tiles into tritiles.

Definition 2.5 (Tritiles) A tritile is a rectangle P = IP × ωP of area 3, such that
the sides IP and ωP are intervals. As with tiles, for every tritile P there are unique
xP, ξP ∈ W and n ∈ Z such that

IP = B3n (xP) [xP] j = 0 for j < n

ωP = B3−n+1(ξP) [ξP] j = 0 for j < −n + 1.
(2.12)

We denote the set of all tritiles by 3P. Every tritile P can be written in a unique way
as a disjoint union of 3 tiles with time interval IP; these tiles are given by

Pv := IP × chv(ωP), ∀v ∈ {0, 1, 2}. (2.13)
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P

P0

P1

P2

P↑

Fig. 2 A tritile, the horizontal splitting, and the vertical splitting

Conversely, for every tile P , there is a unique tritile P such that that P = Pv for some
v ∈ {0, 1, 2}. This splitting of P into tiles is the horizontal splitting; there is also a
vertical splitting

P↑ := {J × ωP : J ∈ ch(I )} (2.14)

that we will use less often.

The horizontal and vertical splittings are sketched in Fig. 2.

Remark 2.6 It is occasionally useful to identify the tritile P with the set of correspond-
ing tiles {P0,P1,P2}, and to consider these tiles as ‘subtiles’ ofP. Furthermore, given a
Banach space X and a triple-valued function on tritiles F : 3P → X3, we can identify
F with an X -valued function on tiles F̃ : P → X defined by

F̃(P) = F(P)u,

where P ∈ 3P and u ∈ {0, 1, 2} are uniquely determined such that Pu = P . We will
abuse notation and write F = F̃ .

We consider 3P as being the ‘correct’ representation of the extended Walsh phase
plane, and for us it plays the role that R3+ plays for time-frequency analysis on the real
line, as explained in the introduction.

One of Fefferman’s (many) innovations in his proof of Carleson’s theorem was the
introduction of a partial order on tiles. Using this order one can define trees, which
represent sets of tiles that are frequency-localised at a certain ‘top frequency’,with time
restricted to a given interval. On these subsets, time-frequency analysis is essentially
reduced to Calderón–Zygmund theory.6

Definition 2.7 (Order and trees) Given two tritiles P and P′, we say that

P′ ≤ P if IP′ ⊆ IP and ωP′ ⊇ ωP. (2.15)

The tree with top P is the collection of tritiles

T (P) := {Q ∈ 3P : Q ≤ P}. (2.16)

6 See for example Proposition 3.4, which controls L p norms of randomised sums (the Banach-valued
analogue of square functions) of projections of a function f onto a tree T in terms of ‖ f ‖p .
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Given a tree T we denote by PT the unique tritile such that T = T (PT ). We write
IT := IPT ,ωT := ωPT , xT = xPT , and ξT = ξPT . The collection of all trees is denoted
by T. For each u ∈ {0, 1, 2} the u-component of T is given by

T u := {Q ∈ T : ωT ∩ ωQu �= ∅},

so that PT ⊂ T u for all u ∈ {0, 1, 2}, and the sets T u \ {PT } partition T \ {PT }.
Remark 2.8 Given a tile P and a tree T , it will be useful to write P ∈ T to mean
that P ∈ T , where P is the unique tritile containing P as a subtile (in the horizontal
decomposition).

Another important class of subsets are the strips, which consist of tiles with time
restricted to a given interval, with no restriction on frequency. These play an important
role in the construction of iterated outer-L p quasinorms.

Definition 2.9 (Strips) Given an interval I ⊂ W, the strip D = D(I ) with top I is the
collection of tritiles

D(I ) := {P ∈ 3P : IP ⊂ I }.

Given a strip D we denote by ID the unique interval such that D = D(I ). The
collection of all strips is denoted by D.

Finally, we define the notion of convexity for sets of tritiles.

Definition 2.10 (Convex sets) A set of tritiles A ⊂ 3P is convex if P,P′ ∈ A,Q ∈ 3P,
and P ≤ Q ≤ P′ imply Q ∈ A.

Note that trees, strips, and their complements are convex, and that the intersection
of two convex sets is convex.

2.3 The Embedding and the Defect

Consider a Banach space X and a function f : W → X . Recall from the introduction
the embedding E[ f ] : P → X , defined by

E[ f ](P) = 〈 f ;wP 〉.

A general function F : P → X cannot be realised as an ‘embedded function’
F = E[ f ], as the wave packet coefficients 〈 f ;wP 〉 are not independent. This lack
of independence is codified by the relations in Lemma 2.4. We use these relations to
construct a ‘defect operator’, which measures how far a function F : P → X is from
being an embedded function.

Definition 2.11 (Defect operator) Given a Banach space X and a function F : P → X ,
the defect dF : P → X is given by

dF(P) = F(P) −
∑

Q∈P↑
F(Q)

〈
wQ;wP

〉|IQ | (P ∈ P) (2.17)
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where P ∈ 3P is the unique tritile containing P , and P↑ is the vertical splitting of P
defined in (2.14).

The defect operator satisfies

‖dF(P)‖X � ‖F(P)‖X +
∑

Q∈P↑
‖F(Q)‖X (2.18)

and, in virtue of Lemma 2.4, if F = E[ f ] for some f : W → X then dF = 0.
In the following proposition, we show how a function F : P → X can be decom-

posed as the sum of an embedded function and its defect.

Proposition 2.12 (Function reconstruction) Let T be a tree, and let P be a tile with
P ∈ T (recall from Remark 2.8 that this means P ∈ T , where P is the unique tritile
with P ∈ P). Then for all N ∈ N it holds that

F(P) = dF(P) +
〈 ∑

Q∈T
|IP |>|IQ |≥3−N |IP |

dF(Q) wQ |IQ | ; wP

〉

+
〈 ∑

Q∈T
|IQ |=3−(N+1)|IP |

F(Q)wQ |IQ | ; wP

〉
.

(2.19)

Proof We induct on N ∈ N. If N = 0 then the result follows immediately by definition
of dF , as the first sum is empty and the condition in the second sum is a rewriting of
the condition Q ∈ P↑.

Let us show that if (2.19) holds for N then it also holds for N + 1. Apply the result
with N = 0 to each tile in the second sum to obtain

∑

Q∈T
|IQ |=3−(N+1)|IP |

F(Q)〈wQ |IQ |;wP 〉

=
∑

Q∈T
|IQ |=3−(N+1)|IP |

(
dF(Q) +

∑

Q′∈T
|IQ′ |=3−(N+2)|IP |

F(Q′)〈wQ′ |IQ′ |;wQ〉
)

〈wQ |IQ |;wP 〉

= I +
〈 ∑

Q′∈T
|IQ′ |=3−(N+2)|IP |

F(Q′)wQ′ |IQ′ |;
∑

Q∈T
|IQ |=3−(N+1)|IP |

〈wP ;wQ〉wQ |IQ |
〉

= I +
〈 ∑

Q∈T
|IQ′ |=3−(N+2)|IP |

F(Q′)wQ′ |IQ′ |;wP

〉
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where

I :=
∑

Q∈T
|IQ |=3−(N+1)|IP |

dF(Q)〈wQ |IQ |;wP 〉;

where the last identity holds since the tiles Q ∈ T with |IQ | = 3−(N+1)|IP | are
disjoint and cover P . Plugging this into (2.19) for N gives the statement for N + 1 as
required. ��
Remark 2.13 We have remarked that dF = 0 if F = E[ f ] for some f : W → X . A
similar result is true if F is not precisely an embedded function, but rather a ‘cut-off’
embedded function; for this result we need to think in terms of tritiles rather than
tiles. If F = E[ f ] and A ⊂ 3P, then d(1A F)(P) �= 0 only if P happens to be on the
“boundary” of the set A; that is, if P ∈ A and there exists Q ≤ P with |IQ| = |IP|/3
such that Q /∈ A, or if P /∈ A and there exists Q ≤ P with |IQ| = |IP|/3 such that
Q ∈ A. A crucial observation is that if A is convex, then for any fixed x ∈ W there
exist at most two tritiles P on the boundary of A with x ∈ IP.

3 Analysis in Banach Spaces

The harmonic analysis of functions f : W → X valued in a Banach space X exhibits
phenomena that are not present in the scalar case X = C. Generally techniques that
work for scalar-valued functions require geometric assumptions on X in order to
have X -valued extensions. The most famous of these geometric assumptions is the
UMD (UnconditionalMartingale Differences) property, which we discuss in Sect. 3.2.
We will also require the q-Hilbertian property (also referred to as the θ -Hilbertian
property in the literature). Before discussing these geometric assumptions we give
a short introduction to Rademacher sums, a crucial tool in Banach-valued analysis
without which not much can be said.

A relatively complete introduction to Banach-valued analysis is the incomplete
series [19,20]. The reader will benefit from having a copy of these references at hand
while reading this paper.

3.1 Rademacher Sums

A great deal of scalar-valued harmonic analysis is connected with square functions;
that is, functions of the form

t �→
( N∑

n=1

| fn(t)|2
)1/2

∀t ∈ R

where ( fn)n∈{1,...,N } is a sequence of C-valued functions on R (for example). If X is a
Banach lattice (or in particular, a function space), then for all finite sequences (xn)N

n=1
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in X one can make sense of the quantity

( N∑

n=1

|xn|2
)1/2

∈ X

as an element of X . However, for general Banach spaces X , this is not possible. The
correct X -valued analogue of a square function is a Rademacher sum, which is a
quantity of the form

E

∥∥∥∥
N∑

n=1

εn xn

∥∥∥∥
X

:=
ˆ

�

∥∥∥∥
N∑

n=1

εn(ω)xn

∥∥∥∥
X
dω,

where (xn)N
n=1 is afinite sequence in X , andwhere (εn)N

n=1 is a sequenceof independent
Rademacher variables on some probability space �, i.e. random variables taking the
values ±1 with probability 1/2. When X is a Banach lattice with finite cotype (for
example, if X = L p(�) for some σ -finite measure space �, with p ∈ [1,∞)), then
Rademacher sums are equivalent to norms of square functions; that is,

E

∥∥∥∥
N∑

n=1

εn xn

∥∥∥∥
X

�
∥∥∥∥

( N∑

n=1

|xn|2
)1/2∥∥∥∥

X
(3.1)

for all finite sequences (xn)n∈{1,...,N } in X . This is the Khintchine–Maurey theorem
[20, Theorem 7.2.13]. In this paper we do not work with Banach lattices, so (other
than this paragraph) we do not discuss square functions; only Rademacher sums.

Here we mention two particularly important results that allow us to manipulate
Rademacher sums. The first lets us replace the expectation in a Rademacher sum with
an L p-expectation for any p ∈ (0,∞); the second lets us pull out bounded scalar
coefficients in a Rademacher sum. We will use these results throughout the paper,
often without mention. For proofs see [20, Theorems 6.2.4 and 6.1.13].

Theorem 3.1 (Kahane–Khintchine) Let X be a Banach space. For all finite sequences
(xn)N

n=1 in X and all p ∈ (0,∞), we have the equivalence

E

∥∥∥∥
N∑

n=1

εn xn

∥∥∥∥
X

�p

(
E

∥∥∥∥
N∑

n=1

εn(ω)xn

∥∥∥∥
p

X

)1/p

(3.2)

with implicit constant independent of N .

Theorem 3.2 (Kahane’s contraction principle) Let X be a Banach space. For all finite
sequences (xn)N

n=1 in X and (an)N
n=1 in C, we have

E

∥∥∥∥
N∑

n=1

εnan xn

∥∥∥∥
X

� ‖a‖∞E

∥∥∥∥
N∑

n=1

εn xn

∥∥∥∥
X
, (3.3)
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with implicit constant independent of N .

3.2 The UMD Property

As already mentioned, the most important of our geometric assumptions is the UMD
property. It is natural to assume this property when doing Banach-valued harmonic
analysis, as a Banach space X is UMD if and only if the Hilbert transform extends
to a bounded operator on L p(R; X) for all p ∈ (1,∞) [5,6]. The classical reflexive
function spaces, for example L p-spaces, Sobolev spaces, and Triebel–Lizorkin and
Besov spaces, are all UMD. However, there are also important UMD spaces that are
not function spaces (or not even Banach lattices); in particular, non-commutative L p-
spaces, including the Schatten classes Cp (see [34, Chapter 14] and [19, Appendix
D]). For more exposition on UMD spaces see for example [7,19,34]. We recall one
possible definition of the UMD property in terms of Haar decompositions.

For every dyadic interval J = [m2n, (m + 1)2n) ⊂ R, n, m ∈ Z, define the
L1-normalised Haar function

h J := |J |−1(1J0 − 1J1), (3.4)

where J0 and J1 are the left and right halves of J = J0 ∪ J1, i.e.

J0 := [m2n, (2m + 1)2n−1), J1 := [(2m + 1)2n−1, (m + 1)2n). (3.5)

It is straightforward to see that 〈h J ; h J ′ 〉 = 0 unless J = J ′, and thus

∥∥∥∥
∑

J⊂[0,1)
aJ 〈 f ; h J 〉h J |J |

∥∥∥∥
L2(I ;C)

≤ ‖ f ‖L2([0,1);C) ∀ f ∈ L2([0, 1); C) (3.6)

for any finitely-supported sequence of signs aJ ∈ {−1, 1}, where the sum is over all
dyadic intervals J ⊂ [0, 1). When L2 is replaced with L p for some p ∈ (1,∞), the
estimate (3.6) still holds, with a constant depending on p (although naturally the proof
above, being reliant on orthogonality, does not extend to p �= 2). This motivates the
following definition.

Definition 3.3 A Banach space X has the UMD property if there exists p ∈ (1,∞)

such that for any f ∈ L p([0, 1), X) and any finitely-supported sequence (aJ )J⊂[0,1)
of signs, it holds that

∥∥∥∥
∑

J⊂[0,1)
aJ 〈 f ; h J 〉h J |J |

∥∥∥∥
L p([0,1);X)

� ‖ f ‖L p([0,1),X) (3.7)

where the sum is over all dyadic intervals J ⊂ [0, 1).
If (3.7) holds for one p ∈ (1,∞), then it holds for all p ∈ (1,∞) (with a different

constant) and with [0, 1) replaced by any dyadic interval (see [19, Theorems 4.2.7 and
4.2.12].
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The Haar functions are in fact 2-Walsh wave packets associated to T 1
(
B1(0)2

)
, so

the bound (3.7) can be interpreted as unconditionality of a tree projection operator. In
the 3-Walsh case, we use the following randomised version of (3.7); the proof is a bit
harder than the 2-Walsh case because the tree projections cannot be directly related
to martingale transforms. The idea is to reduce to the tree T (B1(0)2) by modulation,
translation, and dilation, and then to reduce matters to a result of Clément et al. [9]
which has already done the hard work of relating 3-Walsh–Fourier projections to
martingale transforms.

Proposition 3.4 Let p ∈ (1,∞) and X be a UMD Banach space. Then for all trees T
and all f ∈ L p(IT ; X) we have

E

∥∥∥∥
2∑

u,v=0
u �=v

∑

P∈T u

εPv 〈 f ;wPv 〉wPv |IP|
∥∥∥∥

L p(IT ;X)

� ‖ f ‖L p(IT ;X). (3.8)

Proof First we reduce to consideration of the tree T1 := T (B1(0)2). Fix an arbitrary
tree T . Define the ‘lacunary tiles’ associated with T to be the set of tiles

T lac :=
2⋃

u,v=0
u �=v

{Pv : P ∈ T u} =
2⋃

v=0

{Pv : P ∈ T , ξT /∈ ωPv }.

The lacunary tiles associated with T can be related to those associated with T1 by the
relation

Dil|IT |−1 Tr−xT Mod−ξT T lac = T lac
1 ,

with dilation, translation, and modulation operators acting on tiles as in Remark 2.3.
Applying these operators to the wave packets appearing in (3.8) we obtain

Dil|IT |−1 Tr−xT Mod−ξT

2∑

u,v=0
u �=v

∑

P∈T u

εPv 〈 f ;wPv 〉wPv |IP|

=
∑

P∈T lac

εP 〈 f ;wP 〉 Dil|IT |−1 Tr−xT Mod−ξT wP |IP |

=
∑

P∈T lac
1

aPεP 〈Dil|IT |−1 Tr−xT Mod−ξT f ;wP 〉wP |IP |
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for some unimodular constants aP . Supposing that (3.8) holds for T1, the contraction
principle (3.3) yields that

|IT |−1/p′
E

∥∥∥∥
2∑

u,v=0
u �=v

∑

P∈T u

εPv 〈 f ;wPv 〉wPv |IP|
∥∥∥∥

L p(IT ;X)

= E

∥∥∥∥
2∑

u,v=0
u �=v

∑

P∈T u
1

aPv εPv 〈Dil|IT |−1 Tr−xT Mod−ξT f ;wPv 〉wPv |IP|
∥∥∥∥

L p(B1(0);X)

� ‖Dil|IT |−1 Tr−xT Mod−ξT f ‖L p(B1(0);X) = |IT |−1/p′ ‖ f ‖L p(IT ;X).

Thus it suffices to show (3.8) for the tree T = T1. For this tree, only the 0-part is
nontrivial; i.e. T1 = T 0

1 . Let us show the bound restricted to the summand correspond-
ing to v = 1; the bound for the v = 2 summand is shown in the same way, and one
combines these summands using the triangle inequality. Using theKahane–Khintchine
inequality (Theorem 3.1) and Fubini one has

(
E

∥∥∥∥
∑

P∈T 0

εP1〈 f ;wP1〉wP1 |IP|
∥∥∥∥

L p(B1(0);X)

)p

� E

∥∥∥∥
∑

P∈T 0

εP1〈 f ;wP1〉wP1 |IP|
∥∥∥∥

p

L p(B1(0);X)

=
ˆ

B1(0)

ˆ
�

∥∥∥∥
∑

P∈T 0

εP1(ω)〈 f ;wP1〉wP1(x)|IP|
∥∥∥∥

p

X
dω dx

=
ˆ

B1(0)

ˆ
�

∥∥∥∥
∑

P∈T 0

ε|IP|(ω)〈 f ;wP1〉wP1(x)|IP|
∥∥∥∥

p

X
dω dx

� E

∥∥∥∥
∞∑

n=0

εn

∑

P∈T 0

|IP|=3−n

〈 f ;wP1〉wP1 |IP|
∥∥∥∥

p

L p(B1(0);X)

.

In reindexing the Rademacher variables we used that for each x ∈ B1(0) the tiles
P ∈ T 0 for which wP1(x) �= 0 are in bijective correspondence with the scales {|IP| :
P ∈ T0}, and thus the two sets of Rademacher variables

{εP1 : P ∈ T0, wP1(x) �= 0}, {ε|IP| : P ∈ T0}

are equally distributed.
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For each n ∈ N, let Sn denote the Walsh–Fourier projection onto the interval
B3−n (3−n) = {ξ ∈ W : ξ−k = δ−n(k)}, so that

E

∥∥∥∥
∑

P∈T 0

εP1〈 f ;wP1〉wP1 |IP|
∥∥∥∥

L p(B1(0);X)

� E

∥∥∥∥
∞∑

n=0

εn Sn f

∥∥∥∥
L p(B1(0);X)

.

To bound this quantity, we use a result of Clément et al. [9, Corollary 4.4]; since X is
UMD, this result implies

E

∥∥∥∥
∑

n≥1

εn Sn f

∥∥∥∥
p

� ‖ f ‖L p(B1(0);X) ∀ f ∈ L p(B1(0); X) (3.9)

and completes the proof.7 ��
Remark 3.5 With additional work, one could improve the randomised estimate (3.8)
to full unconditionality (i.e. replacing the Rademacher variables with an arbitrary
deterministic choice of signs) by working through [9, Section 4], modifying the mar-
tingale difference sequence to take into account orthogonal wave packets at the same
scale, as in the proof of unconditionality of the Haar decomposition (see [19, Theorem
4.2.13]). Since we only need the randomised estimate, we leave this to the hypothetical
interested reader.

3.3 r-Hilbertian Spaces

For p, q ∈ [1,∞] and θ ∈ [0, 1], we let [p, q]θ ∈ [1,∞] be the number defined by
the relation

1

[p, q]θ = 1 − θ

p
+ θ

q
.

Definition 3.6 Let r ∈ [2,∞). We say that a Banach space X is r -Hilbertian if there
exists a Hilbert space H and a Banach space Y , such that (H , Y ) is an interpolation
couple, and such that X is isomorphic to the complex interpolation space [H , Y ]θ ,
with [2,∞]θ = r .

Remark 3.7 In [34], r -Hilbertian spaces are referred to as θ -Hilbertian. In our compu-
tations the parameter r plays amore important role, soweprefer to use our terminology.

7 We briefly show how to deduce (3.9) from [9, Corollary 4.4], assuming familiarity with the notation of
[9, Section 4]. The interval B3−n (3−n) can be identified with the set

{n ∈ W : d(n,1) ≤ n < d(n,2)},

and thus the Walsh–Fourier projection Sn can be identified with the projection �(n,1). Since X is UMD, [9,
Corollary 4.4] says that the set {�(n,v) : (n, v) ∈ N × {1, 2}} is an unconditional Schauder decomposition
of L p(W; X), and this implies (3.9) by the contraction principle.
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For an introduction to interpolation spaces, see for example [4] or [19, Appendix
C]. Note that if X is r -Hilbertian, then X is s-Hilbertian for all s > r . Every L p-space
with p ∈ [2,∞), either classical or non-commutative, is p-Hilbertian: to see this, note
that L p = [L2, L∞]θ with [2,∞]θ = p. By the same argument, replacing L∞ with
L1, L p is p′-Hilbertian when p ∈ (1, 2].

r -Hilbertian spaces enjoy the following ‘r -orthogonality’ of wave packet coef-
ficients, which should be compared to the notions of tile-type and quartile-type in
[21–24]. It shouldbenoted that this is the only consequenceof the r -Hilbertianproperty
that we actually use. Thus one could isolate this estimate as a geometric assumption,
perhaps called ‘Walsh tile-type r ’ (although that name is already taken). However, we
do not know how to establish the property without assuming the r -Hilbertian property,
so we choose not to make this definition.

Proposition 3.8 (Walsh tile-type) Let X be r-Hilbertian, then

(∑

P∈A

‖〈 f ;wP 〉‖r
X |IP |

)1/r

� ‖ f ‖Lr (W;X) ∀ f ∈ Lr (W; X), (3.10)

for any finite collection A ⊂ P of pairwise disjoint tiles, with implicit constant inde-
pendent of A.

Proof Suppose X is isomorphic to [H , Y ]θ , where H is a Hilbert space, Y is a Banach
space, and [2,∞]θ = r . Let L̊∞(W; Y ) denote the closure of the Schwartz functions
S (W; Y ) in L∞(W; Y ). A straightforward estimate yields

sup
P∈A

‖〈 f ;wP 〉‖Y ≤ ‖ f ‖L∞(W;Y ) ∀ f ∈ L̊∞(W; Y ),

while Plancherel’s theorem yields

(∑

P∈A

‖〈 f ;wP 〉‖2H |IP |
)1/2

≤ ‖ f ‖L2(W;H) ∀ f ∈ L2(W; H).

The desired inequality follows by complex interpolation, with all sequence spaces on
A weighted by P �→ |IP |,

�r (A; X) ∼= �r (A; [H , Y ]θ ) = [�2(A; H), �∞(A; Y )]θ
(see [37, §1.18.1, Remark 2] for the equality at the end, and [37, §1.18.4, Remark 3]
for interpolation between L2 and L̊∞). ��
Remark 3.9 It is natural to suspect that if a Banach space X is r -Hilbertian for some
r < ∞, then it must be UMD. This is false; a counterexample is given by Qiu’s
construction (see [19, §4.3.c] and [35]).8 For all r ∈ [2,∞], and k ∈ N, inductively

8 We thank Mark Veraar for pointing this example out to us.



53 Page 24 of 54 Journal of Fourier Analysis and Applications (2020) 26 :53

define spaces

Xr
0 := �22(�

r
2), Xr

k+1 := �22(�
r
2(Xk+1))

(here �r
2(Y ) := �r ({0, 1}; Y ), where {0, 1} is equipped with counting measure). Then

set Xr := ⊕r
n∈N

Xr
k . For all r �= 2, Xr is not UMD, while Xr = [X2, X∞]θ is

r -Hilbertian.

4 Outer-Lp Spaces

In this section we introduce outer structures and their associated outer-L p quasi-
norms. Roughly speaking, an outer structure on a topological space consists of an
outer measure on the space, a Banach space X , and a size on X -valued functions on
the topological space. Currently the standard references on this topic are the initial
work by Do and Thiele [16], and the first Banach-valued implementation by Di Plinio
and Ou [15]. However, the outer-L p concept is still quite new, and the terminology
and definitions are not fixed. Our interpretation of the theory differs slightly (but not
fundamentally) from what appears in the literature. In Sects. 4.2 and 4.3 we analyse
particular outer structures that are relevant to our problem.

4.1 Initial Definitions

For a topological spaceXwe letB(X) denote theσ -algebra ofBorel sets inX, and for a
Banach space X we letB(X; X) denote the set of strongly Borel measurable functions
X → X . Recall that a Polish space is a topological space that is homeomorphic to a
complete separable metric space. This is a technical assumption that will ultimately
play no role in this paper, as we only really care about the countable space 3P with
the discrete topology.

Definition 4.1 (Outer structure) Let X be a Polish space. An outer structure on X, or
simply an outer structure, consists of the following data:

• a collection E ⊂ B(X) of generating sets,
• a function σ : E → [0,∞), called the premeasure,
• a Banach space X ,
• an X-size (or simply a size) S on (X,E); that is, a family of maps indexed by

E ∈ E

B(X; X) : F �→ ‖F‖S(E) ∈ [0,∞] ∀E ∈ E

such that there exists a constant C ≥ 1 satisfying the following properties for all
E ∈ E and F, G ∈ B(X; X):

unconditionality: ‖1A F‖S(E) ≤ C‖F‖S(E) for all

A ∈ E∪ =
{

A : A =
⋃

n∈N

En with En ∈ E
}
.
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homogeneity: ‖λF‖S(E) = |λ|‖F‖S(E) for all λ ∈ C;
quasi-triangle inequality: ‖F + G‖S(E) ≤ C(‖F‖S(E) + ‖G‖S(E));

nondegeneracy: ‖F‖S(E) = 0 for all E ∈ E if and only if F = 0.

That is, the maps ‖ ·‖S(E) are (possibly infinite) quasinorms on E , with quasinorm
constant uniformly bounded in E ∈ E, and with an additional unconditionality
property.9

Given an outer structure on X as above, we define the induced outer measure
σ : P(X) → [0,∞] (which we denote by the same letter as the premeasure) by

σ(A) := inf
{ ∑

E∈E⊂E

σ(E) :
⋃

E∈E
E ⊃ A

}
∀A ⊂ X

where the infimum is taken over all countable covers E of A by generating sets. For
all f ∈ B(X; X) we define ‖ f ‖S := supE∈E ‖ f ‖S(E), and for all λ > 0 we define
the outer superlevel measure

σ(‖ f ‖S > λ) := inf{σ(A) : A ⊂ X, ‖1X\A f ‖S ≤ λ}.

Different choices of sizes lead to fundamentally different outer structures, even
when the outer measure and the Banach space remain fixed. Thus we consider the size
(and the underlying Banach space) as a component of the outer structure.

To each outer structure is associated a family of quasinorms, defined in a way that
mimics the so-called layer cake representation of the L p norm.

Definition 4.2 (Outer-L p quasinorms) Let X be a Polish space, and let (E, σ, X , S)

be an outer structure on X. For all p ∈ (0,∞)we define the outer-L p quasinorms and
weak outer-L p quasinorms of a function f ∈ B(X; X) by setting

‖F‖L p
σ S :=

( ˆ ∞

0
pλp−1σ(‖F‖S > λ) dλ

)1/p

∀p ∈ (0,∞),

‖F‖L p,∞
σ S := sup

λ>0
λ σ(‖F‖S > λ)1/p ∀p ∈ (0,∞),

‖F‖L∞
σ S := ‖F‖S .

It is straightforward to check that these are indeed quasinorms.

AHölder-type inequality holds for outer-L p spaces definedwith respect to different
sizes provided that it holds in a certain sense for the sizes themselves. The proof below
is a straightforward extension of that of [16, Proposition 3.4].

Proposition 4.3 (Outer Hölder inequality) Let X be a Polish space. For each u ∈
{0, 1, 2} let (E, σ, Xu, Su) be an outer structure on X, and let (E, σ, X , S) be another
outer structure on X. Note that all these outer structures have the same generating

9 The unconditionality property can be interpreted as a monotonicity property when X = C, or more
generally when X is a Banach lattice.
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sets and premeasure. Let � : X0 × X1 × X2 → X be a bounded trilinear map, and
suppose that the size-Hölder inequality

‖�(F0, F1, F2)‖S �
2∏

u=0

‖Fu‖Su ∀Fu ∈ B(X; Xu) (4.1)

holds. Then for all pu ∈ [1,∞] we have the outer Hölder inequality

‖�(F0, F1, F2)‖L p
σ S �p0,p1,p2

2∏

u=0

‖Fu‖L pu
σ Su

∀Fu ∈ B(X; Xu) (4.2)

with p−1 =∑2
u=0 p−1

u .

Proof Assume that the factors on the right hand side of (4.2) are finite and non-
zero, for otherwise there is nothing to prove. By homogeneity we may assume that
‖Fu‖pu

L pu
σ Su

= 1 for each u. For each u ∈ {0, 1, 2} and n ∈ Z let Au
n ⊂ X be such that

∑

n∈Z

2nσ(Au
n) � 1 ‖1X\Au

n
Fu‖Su � 2n/pu .

Wemay assume that Au
n ⊂ Au

n−1 by considering Ãu
n =⋃k≥n Au

n and noticing that Ãu
n

satisfies the conditions above. Let An =⋃2
u=0 Au

n . Then it holds that

∑

n∈Z

2nσ(An) �
∑

n∈Z

2∑

u=0

2nσ(Au
n) � 1,

and from (4.1) it follows that

‖1X\An �(F0, F1, F2)‖S = ‖�(1X\An F0,1X\An F1,1X\An F2)‖S � 2n/p,

which concludes the proof. ��
It is possible to control classical L1 norms by outer-L1 quasinorms, by the following

Radon–Nikodym-type domination principle. For the proof in the case X = C, which
extends to general Banach spaces, see [38, Lemma 2.2] and [16, Proposition 3.6]

Proposition 4.4 (Radon–Nikodym-type domination) Let X be a Polish space, and let
(E, σ, X , S) be an outer structure on X such that X = ⋃

i∈N
Ei for some countable

sequence of generating sets Ei ∈ E. If m is a positive Borel measure on X such that

ˆ
E

‖F(x)‖X dm(x) � ‖F‖S(E)σ (E) ∀E ∈ E, ∀F ∈ B(X; X)
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and

σ(A) = 0 ⇒ m(A) = 0 ∀A ∈ B(X),

then
ˆ

X

‖F(x)‖X dm(x) � ‖F‖L1
σ S ∀F ∈ B(X; X).

The outer-L p spaces support a useful Marcinkiewicz-type interpolation theorem,
proven in [16, Proposition 3.5] (see also [15, Propostion 7.4]). In applications we
only prove bounds for outer-L p quasinorms by establishing endpoint weak outer-L p

bounds.

Proposition 4.5 (Marcinkiewicz interpolation) Let X be a Polish space, and let
(E, σ, X , S) be an outer structure on X. Let � be a σ -finite measure space, and
let T be a quasi-sublinear operator mapping L p1(�; X) + L p2(�; X) into B(X; X)

for some 1 ≤ p1 < p2 ≤ ∞. Suppose that

‖T f ‖L
p1,∞
σ S � ‖ f ‖L p1 (�;X),

‖T f ‖L
p2,∞
σ S � ‖ f ‖L p2 (�;X)

∀ f ∈ L p1(�; X) + L p2(�; X).

Then for all p ∈ (p1, p2).

‖T f ‖L p
σ S � ‖ f ‖L p(�;X) ∀ f ∈ L p(�; X).

4.2 Particular Outer Structures

Now we move from general outer structures to those with relevance to Walsh time-
frequency analysis. Two collections of generating sets will be used: the collection T

of trees, and the collection D of strips. We will use the premeasures μ : T → [0,∞)

and ν : D → [0,∞) defined by

μ(T ) := |IT |, ν(D) := |ID|.

Two families of sizes on (3P, T), called ‘deterministic’ and ‘randomised’, will be
needed. The deterministic sizes are C-sizes, while the randomised sizes are X3-sizes,
where X is a given Banach space.

Definition 4.6 (Deterministic sizes) The C-sizes S1 and S∞ on (3P, T) are given by

‖F‖S1(T ) := 1

|IT |
∑

P∈T

|F(P)| |IP|

‖F‖S∞(T ) := sup
P∈T

|F(P)|.
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for all F ∈ B(3P; C).10 We also define the mixed deterministic C-size S(∞,1) by

‖F‖S(∞,1)(T ) :=
∥∥∥

2∑

v=0

∑

P∈T v

|F(P)|1IP(x)

∥∥∥
L∞

= sup
x∈IT

∑

P∈T
IP�x

|F(P)|.

Definition 4.7 (Randomised sizes) Let X be a Banach space. The X3-size S is given
for all F ∈ B(3P; X3) by

‖F‖S(T ) := ∥∥‖F‖X3

∥∥
S∞(T )

+ ∥∥‖dF‖X3

∥∥
S(∞,1)(T )

+
∑

u∈{0,1,2}
‖F‖Su(T ),

where

‖F‖Su(T ) :=
∑

v �=u

(
1

|IT |
ˆ

IT

E

∥∥∥∥
∑

P∈T u

εPF(Pv)1IP (x)

∥∥∥∥
2

X
dx

)1/2

. (4.3)

Remark 4.8 We do not mention the Banach space X in the notation for the randomised
size S; this should always be clear from context. Often we will refer to three functions
Fu ∈ B(3P; Xu) (u ∈ {0, 1, 2}) valued in different Banach spaces, and discuss the
three sizes ‖Fu‖S; here we have three different X3

u-sizes S, but we gain no clarity from
denoting these sizes differently.

It is almost clear that S satisfies all the conditions of a size; the only subtlety is in
showing that the component measuring dF satisfies the unconditionality property.

Proposition 4.9 Let X be a Banach space, F ∈ B(3P; X), and suppose that A ∈ T
∪

is a countable union of trees. Then

∥∥‖d(1A F)‖X3

∥∥
S(∞,1)(T )

�
∥∥‖F‖X3

∥∥
S∞(T )

+ ∥∥‖dF‖X3

∥∥
S(∞,1)(T )

. (4.4)

It follows that S satisfies the unconditionality property.

Proof Notice that for all tritiles P,

‖d(1A F)(P)‖X3 ≤ ‖d(F)(P)‖X3 +
∑

Q≤P
|IQ|=|IQ|/3

(
‖F(P)‖X3 + ‖F(Q)‖X3

)∣∣∣1A(P) − 1A(Q)

∣∣∣

(4.5)

by (2.18) and since d(1A F)(P) = dF(P) unless P /∈ A and Q ∈ A, where Q is a
tritile with Q ≤ P and |IQ| = |IP|/3. Since A ∈ T

∪ , for any x ∈ IT it holds that

10 Note that every function on 3P is Borel, since 3P is countable.
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there is at most one P ∈ 3P such that
∑

Q≤P
|IQ|=|IQ|/3

∣∣∣1A(P) − 1A(Q)

∣∣∣ �= 0 and x ∈ IP;

writing out the definition of S(∞,1), one sees that this gives the required estimate. ��
We make use of the two premeasures μ and ν on 3P by iterating this construction

to obtain ‘iterated’ outer structures.

Definition 4.10 (Iterated outer structures) Let X be a Banach space. Given an X -size
S on (3P, T), for all q ∈ (0,∞) we define an X -size -Lq

μS on (3P, D) by

‖F‖-Lq
μS(D) := |ID|−1/q‖1D F‖Lq

μS ∀D ∈ D. (4.6)

It is straightforward to verify that this is indeed an X -size on (3P, D), and thus
(D, ν, X , -Lq

μS) is an iterated outer structure on 3P, inducing iterated outer-L p quasi-
norms ‖ · ‖L p

ν -Lq
μS for all p ∈ (0,∞].

The following iterated outer Hölder inequality is a straightforward consequence of
the ‘non-iterated’ outer Hölder inequality of Proposition 4.3.

Corollary 4.11 (Hölder inequality for iterated outer-L p spaces) Let X0, X1, X2, X be
Banach spaces, and let �′ : X0 × X1 × X2 → X be a bounded trilinear form.11 Let
S be a X-size on (3P, T), and for each u ∈ {0, 1, 2}, let Su be an Xu-size on (3P, T)

such that the size-Hölder inequality

‖�′(F0, F1, F2)‖S �
2∏

u=0

‖Fu‖Su ∀Fu ∈ B(3P; X3
u)

holds. Then for all pu, qu ∈ [1,∞],

‖�′(F0, F1, F2)‖L p
ν -Lq

μS �pu ,qu

2∏

u=0

‖Fu‖L pu
ν -Lqu

μ Su
∀Fu ∈ B(3P; X3

u)

where p−1 =∑2
u=0 p−1

u and q−1 =∑2
u=0 q−1

u .

We return to consideration of our trilinear form � : X0 × X1 × X2 → C. Define
an ‘extended’ trilinear form �∗ : X3

0 × X3
1 × X3

2 → C by

�∗((x0,0, x0,1, x0,2), (x1,0, x1,1, x1,2), (x2,0, x2,1, x2,2)
)

:= �(x0,0, x1,1, x2,2).

The most important result of this section is the following size-Hölder inequality for
the randomised sizes and the deterministic size S1.

11 Here we write �′ to emphasise that this is not the trilinear form that we consider in the introduction,
and throughout most of the paper; in practise �′ will be an extension of the aforementioned �.
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Proposition 4.12 (Size-Hölder) Let X0, X1, X2, �, and �∗ be as above. Then

‖�∗(F0, F1, F2)‖S1(T ) ≤
2∏

u=0

‖Fu‖S(T ) ∀T ∈ T, ∀Fu ∈ B(3P; X3
u).

Proof First note that

∑

P∈T

∣∣∣�∗(F0(P), F1(P), F2(P)
)∣∣∣ |IP| =

∑

P∈T

∣∣∣�
(
F0(P0), F1(P1), F2(P2)

)∣∣∣ |IP|

≤
2∑

u=0

∑

P∈T u

∣∣∣�
(
F0(P0), F1(P1), F2(P2)

)∣∣∣ |IP|,

so it suffices to fix u ∈ {0, 1, 2} and deal with the summands in the last entry individ-
ually. We concentrate on the case u = 0; the other cases are analogous. We restrict
the sum over P to

3PN =
{
P ∈ 3P : |IP| > 2−N

}

and we look for a bound independent of N , allowing us to conclude by standard
limiting arguments. For ease of notation we set F N

0 (P) := 13P
N (P)F0(P).

Fix a normalised sequence a ∈ �∞(T u; C) and estimate by duality

∑

P∈T 0

∣∣∣�
(
F N
0 (P0), F1(P1), F2(P2)

)∣∣∣ |IP|

=
∑

P∈T 0

aP�
(
F N
0 (P0), F1(P1), F2(P2)

) |IP|

≤
ˆ

IT

∑

P∈T 0

aP�
(
dF N

0 (P0), F1(P1), F2(P2)
)
1IP (x) dx

+
∑

P∈T 0

aP�
(〈 2∑

v=0

∑

Q∈T v

|IP|>|IQ|

dF N
0 (Qv)wQv |IQ|;wP0

〉
, F1(P1), F2(P2)

)
|IP|.

We bound the first summand as follows:

ˆ
IT

∑

P∈T 0

aP�
(
dF0(P0), F1(P1), F2(P2)

)
1IP (x) dx

� |IT | ∥∥‖dF0‖X3
0

∥∥
S(∞,1)

∥∥‖F1‖X3
1

∥∥
S∞
∥∥‖F2‖X3

2

∥∥
S∞ .
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As for the second summand,

∑

P∈T 0

aP�
(〈 2∑

v=0

∑

Q∈T v

|IP|>|IQ|

dF N
0 (Qv)wQv |IQ|;wP0

〉
, F1(P1), F2(P2)

)
|IP|

=
∑

P∈T 0

aP
〈 2∑

v=0

∑

Q∈T v

|IP|>|IQ|

�
(
dF N

0 (Qv), F1(P1), F2(P2)
)
wQv |IQ|;wP0

〉
|IP|

=
2∑

v=0

∑

Q∈T v

∑

P∈T 0

IP�IQ

�
(
dF N

0 (Qv), F1(P1), F2(P2)
)

aP bP,Q |IQ|

where the coefficients bP,Q := 〈wQv ;wP0〉 |IP| satisfy |bP,Q| < 1. Letting εP be
independent Rademacher variables, we have

2∑

v=0

∑

Q∈T v

∑

P∈T 0

IP�IQ

�
(
dF N

0 (Qv), F1(P1), F2(P2)
)

aP bP,Q |IQ|

=
2∑

v=0

∑

Q∈T v

ˆ
IT

∑

P∈T 0

IP�IQ

�
(
dF N

0 (Qv), aP bP,QF1(P1)1IP (x), F2(P2)1IP (x)
)
1IQ(x) dx

=
2∑

v=0

∑

Q∈T v

ˆ
IT

E �

(
dF N

0 (Qv),
∑

P∈T 0

IP�IQ

εPaP bP,QF1(P1)1IP (x),

∑

P′∈T 0

IP′�IQ

εP′ F2(P′
2)1IP′ (x)

)
1IQ(x) dx

�
2∑

v=0

∑

Q∈T v

ˆ
IT

‖dF N
0 (Qv)‖X0

∏

u=1,2

(
E‖

∑

P∈T 0

IP�IQ

εPFu(Pu)1IP (x)‖2Xu

)1/2
1IQ(x) dx

�
2∑

v=0

ˆ
IT

( ∑

Q∈T v

‖dF N
0 (Qv)‖X01IQ(x)

) 2∏

u=1

sup
Q∈T v

(
E

∥∥∥
∑

P∈T 0

IP�IQ

εPFu(Pu)1IP (x)

∥∥∥
2

Xu

)1/2
dx .
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Finally, applying Cauchy–Schwartz to the last entry we obtain

∑

P∈T 0

aP�
(〈 2∑

v=0

∑

Q∈T v

|IP|>|IQ|

dF N
0 (Qv)wQv |IQ|;wP0

〉
, F1(P1), F2(P2)

)
|IP|

�
∥∥‖dF0‖X3

0

∥∥
S(∞,1)(T )

‖F1‖S(T )‖F2‖S(T )

concluding the proof. ��
This Hölder inequality, combined with Radon–Nikodym domination, leads to the

following result.

Corollary 4.13 Let X0, X1, X2, �, and �∗ be as above. Let (p0, p1, p2) and
(q0, q1, q2) be Hölder triples of exponents. Then

∑

P∈3P

|�∗(F0(P), F1(P), F2(P))||IP| �
2∏

v=0

‖Fv‖L pv
μ S

and

∑

P∈3P

|�∗(F0(P), F1(P), F2(P))||IP| �
2∏

v=0

‖Fv‖L pv
ν -Lqv

μ S
(4.7)

for all Fv ∈ B(3P; X3
v).

Proof The first estimate follows from combining the outer Hölder inequality (Proposi-
tion 4.3) with Radon–Nikodym domination (Proposition 4.4), using Proposition 4.12.
For the second, we have

‖�∗(F0, F1, F2)‖L1
μS1 �

2∏

v=0

‖Fv‖Lqv
μ Sv

as a consequence of the outer Hölder inequality. By multiplying by characteristic
functions of strips this implies

‖�∗(F0, F1, F2)‖-L1
μS1 �

2∏

v=0

‖Fv‖-Lqv
μ Sv

. (4.8)

For each F : 3P → C and each strip D ∈ D, Radon–Nikodym domination yields

∑

P∈3P

|1D F(P)| |IP| ≤ ‖1DF‖L1
μS1 = ν(D)‖F‖-L1

μS1(D),
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so that

1

ν(D)

∑

P∈D

|F(P)| |IP| ≤ ‖ f ‖-L1
μS1(D).

Applying Radon–Nikodym domination and the iterated outer Hölder inequality
(Corollary 4.11) completes the proof. ��

Remark 4.14 The tritile form associated to � : X0 × X1 × X2 → C can be written as

	�( f0, f1, f2) =
∑

P∈3P

�∗(E[ f0](P), E[ f1](P), E[ f2](P)
)
,

so by Corollary 4.13 we have

|	�( f0, f1, f2)| �
2∏

u=0

‖E[ fu]‖L pu
ν -Lqu

μ S
.

Thus given a Hölder triple (pu)2u=0, in order to prove the L p-bounds

|	�( f0, f1, f2)| �
2∏

u=0

‖ fu‖L pu (W;Xu) ∀ fu ∈ S (W; Xu),

it suffices to find a Hölder triple (q0, q1, q2) such that

‖E[ f ]‖L pu
ν -Lqu

μ S
� ‖ f ‖L pu (W;Xu) ∀ f ∈ S (W; Xu)

for all u ∈ {0, 1, 2}.

4.3 Size Domination

In this section we prove a ‘size domination’ theorem, which allows us to control the
randomised size S of an embedded function E[ f ] by the deterministic size S∞. This
uses the UMD property of the Banach space under consideration; this property is not
used anywhere else. Thus in proving Theorem 1.1 we may replace the S with S∞,
which makes life easier.

Theorem 4.15 Let X be a UMD Banach space. Then for all convex A ⊂ 3P,

∥∥1AE[ f ]∥∥
S

�
∥∥1A‖E[ f ]‖X3

∥∥
S∞ , ∀ f ∈ S (W; X)

with implicit constant independent of A.
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Convexity of a set of tritiles is defined in Definition 2.10. Any of the standard norms
on X3 will do the job here, but we use the �∞-norm

‖(x0, x1, x2)‖X3 = sup
u∈{0,1,2}

‖xu‖X .

Wewill prove Theorem 4.15 later in the section. First we show how it implies outer-L p

quasinorm bounds. The argument is standard, but we include it to show the role played
by convexity.

Corollary 4.16 Let X be a UMD Banach space. Then for all convex A ⊂ 3P, all
u ∈ {0, 1, 2}, and all p, q ∈ (1,∞], we have the bounds

∥∥1A E[ f ]∥∥L p
μS

�
∥∥1A‖E[ f ]‖X3

∥∥
L p

μS∞ ∀ f ∈ S (W; X) (4.9)

and

∥∥1A E[ f ]∥∥L p
ν -Lq

μS
�
∥∥1A‖E[ f ]‖X3

∥∥
L p

ν -Lq
μS∞ ∀ f ∈ S (W; X). (4.10)

Proof Let us show that (4.9) holds. Assume that the right hand side of the inequality
is finite. Then for each n ∈ Z there exists a countable union of trees En = ⋃i∈N

Tn,i

such that

∑

n∈Z

μ(En)2pn �p ‖1A‖E[ f ]‖X3‖p
L p

μS∞ and ‖1A\En ‖E[ f ]‖X3‖S∞ ≤ 2n .

For each n and i the set 3P\ Tn,i is convex, and thus so is 3P\ En =⋂i∈N

(
3P\ Tn,i

)
.

Theorem 4.15 implies that

‖1A\EnE[ f ]‖S � 2n,

so by the definition of the outer-L p quasinorms it holds that

‖1A\EnE[ f ]‖p
L p

μS
�
∑

n∈Z

μ(En)2pn

as required. Similar reasoning yields the iterated bounds (4.10); it suffices to recall
that strips and their complements are convex. ��

The proof of Theorem 4.15 relies on the following lemma.

Lemma 4.17 Let X be a Banach space and f ∈ S (W; X). Let T be a tree and A

a finite convex set. Then there exists a function g ∈ S (W; X) supported on IT such
that

E[g](P) = E[ f ](P) ∀P ∈ T ∩ A (4.11)
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and

‖g‖L∞(IT ;X) � ‖1A‖E[ f ]‖X3‖S∞(T ). (4.12)

Proof The set A ∩ T can be assumed to be non-empty, otherwise we can take g = 0.
We first reason under the assumption that PT ∈ A. Let

J :=
⋃

P∈A

ch(IP),

where we recall that ch(J ) denotes the set of triadic children of the interval J . By
convexity of A, the set J satisfies

J ∈ J, J ⊂ J ′
� IT �⇒ J ′ ∈ J. (4.13)

Let J be the partition of IT generated by J, i.e. the elements of J are the maximal
triadic subintervals of IT , ordered by inclusion, that do not contain any interval of J
as a proper subset. The set J can also be characterised as the set of minimal elements
of J with respect to inclusion. It follows that for any J ∈ J there exists a unique
P(J ) such that J ∈ ch(IP(J )). Furthermore, for any P ∈ A, the elements of J cannot
contain IP, and thus {J ∈ J : J ⊂ IP} partitions IP.

For every J ∈ J let Q J be the unique tile such that ξT ∈ ωQ J and IQ J = J , and
set

g :=
∑

J∈J
〈 f ;wQ J 〉wQ J |J |.

Let us show that (4.11) holds. Given any P ∈ A the intervals {J ∈ J : J ⊂ IP}
partition IP, and since any such J does not properly contain any of the triadic children
of IP, it holds that |J | ≤ |IP|/3 and thus |ωP| = 3/|IP| ≤ |ωQ J |. Since ξT ∈ ωPJ ∩ωP
this implies that

P ⊂
⋃

J∈J, J⊂IP

Q J .

By Lemma 2.4, for any u ∈ {0, 1, 2} it holds that

wPu =
∑

J∈J, J⊂IP

〈wPu ;wQ J 〉wQ J |J |.

It follows that

〈 f ;wPu 〉 =
∑

J∈J, J⊂IP

〈 f ;wQ J (x)〉〈wQ J ;wPu 〉|J |
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= 〈g;wPu 〉 −
∑

J∈J, J �⊂IP

〈 f ;wQ J (x)〉〈wQ J ;wPu 〉|J |

= 〈g;wPu 〉,

where the last equality holds bymaximality ofJ: if J ∈ J and J �⊂ IP then J ∩ IP = ∅.
Now we prove the bound (4.12). The wave packets wQ J for J ∈ J have disjoint

time support so it suffices to show that

‖〈 f ;wQ J 〉‖X � sup
P∈A

u∈{0,1,2}

∥∥Eu[ f ](P)
∥∥

X

for all such J . Notice that Q J ⊂⋃2
u=0 P(J )u withP(J ) as above, so using Lemma 2.4

we obtain that

‖〈 f ;wQ J 〉‖X ≤
∑

u∈{0,1,2}
‖〈 f ;wP(J )u 〉‖X

∣∣〈wQ J ;wP(J )u 〉
∣∣ |IP(J )u |

≤
∑

u∈{0,1,2}
‖〈 f ;wP(J )u 〉‖X � sup

P∈A
u∈{0,1,2}

∥∥Eu[ f ](P)
∥∥

X

as required.
Finally, suppose that PT /∈ A. Let (Oi )i be the maximal elements of T ∩ A with

respect to the order≤. The intervals IOi are pairwise disjoint, and T ∩A can be written
as a union of disjoint sets ∪i T (Oi ) ∩ A. Applying the above reasoning to each T (Oi )

we obtain a set of disjointly supported functions gi satisfying

E[gi ](P) = E[ f ](P) ∀P ∈ T (Oi ) ∩ A

‖gi‖L∞(IT ;X) � ‖1A‖E[ f ]‖X3‖S∞(T (Oi )).

Setting g =∑i gi completes the proof. ��
Recall that the randomised size S is the sum of three types of terms,

‖1AE[ f ]‖S(T ) = ∥∥1A‖E[ f ]‖X3
∥∥

S∞(T )
+ ∥∥‖d(1AE[ f ])‖X3

∥∥
S(1,∞)(T )

+
∑

u∈{0,1,2}
‖E[ f ]‖Su(T ).

The first summand need not be estimated; we handle the remaining summands sepa-
rately.

Proposition 4.18 (Defect size domination) Let X be a Banach space and A ⊂ 3P a
convex set. Then for all trees T and all f ∈ S (W; X),

∥∥‖d(1AE[ f ])‖X3

∥∥
S(∞,1)(T )

�
∥∥1A‖E[ f ]‖X3

∥∥
S∞(T )

. (4.14)
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Proof Using the estimate (4.5) and the fact that dE[ f ] = 0, for all tritiles P we have

‖d(1AE[ f ])(P)‖X3 �
∑

Q≤P
|IQ|=|IQ|/3

(
‖1AE[ f ](P)‖X3 + ‖1AE[ f ](Q)‖X3

)∣∣∣1A(P) − 1A(Q)

∣∣∣.

Since A is convex, for each x ∈ IT there are at most two tritiles P such that x ∈ IP
and

∑

Q≤P
|IQ|=|IQ|/3

∣∣∣1A(P) − 1A(Q)

∣∣∣ �= 0

It follows that

∥∥‖d(1AE[ f ])(P)‖X3

∥∥
S(∞,1)

�
∥∥‖1AE[ f ]‖X3

∥∥∥
S∞(T )

∥∥∥P �→
∑

Q≤P
|IQ|=|IQ|/3

∣∣∣1A(P) − 1A(Q)

∣∣∣
∥∥∥

S(∞,1)(T )

�
∥∥‖1AE[ f ]‖X3

∥∥
S∞(T )

as required. ��
Proposition 4.19 (Lacunary size domination) Let X be a UMD Banach space and
A ⊂ 3P a convex set. Then for all trees T , all f ∈ S (W; X), and all u ∈ {0, 1, 2},

‖1AE[ f ]‖Su(T ) �
∥∥1A‖E[ f ]‖X3

∥∥
S∞(T )

. (4.15)

Proof Let 3PN = {P ∈ 3P : 3−N < |IP | < 3N }. We show that

‖1A∩3PN E[ f ]‖Su(T ) � sup
P∈A∩T ∩3PN

v∈{0,1,2}
‖〈 f ;wPv 〉‖X

for fixed N ; the theorem follows by passing to the limit N → ∞. Since A ∩ T ∩ 3PN

is finite and convex, by Lemma 4.17 there exists a function g ∈ S (W; X) supported
on IT such that

‖g‖L∞(IT ;X) � sup
P∈T ∩A∩3PN

v∈{0,1,2}
‖〈 f ;wPv 〉‖X

〈g;wPv 〉 = 〈 f ;wPv 〉 ∀P ∈ T ∩ A ∩ 3PN , v ∈ {0, 1, 2}.

Now fix v ∈ {0, 1, 2} \ {u}. Since X is UMD we have by Proposition 3.4

|IT |−1/2
E

∥∥∥∥
∑

P∈T u∩A∩3PN

εP〈 f ;wPv 〉wPv |IP|
∥∥∥∥

L2(IT ;X)
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� |IT |−1/2
E

∥∥∥∥
∑

P∈3PN ∩T u

εP〈g;wPv 〉wPv |IP|
∥∥∥∥

L2(IT ;X)

� |IT |−1/2‖g‖L2(IT ;X) ≤ ‖g‖L∞(IT ;X),

Summing this over v �= u and using the L∞-bound on g yields (4.15). ��
Theorem 4.15 follows immediately from Propositions 4.18 and 4.19.

5 Proofs of the Embedding Bounds

In this section we prove Theorem 1.1: modulation invariant Carleson embedding
bounds into iterated and non-iterated outer-L p spaces. Before getting to the proofs
themselves, we isolate a tile selection algorithm that appears multiple times in the
proofs. Thanks to the size domination theorem (Theorem 4.15), we only need this
simple tile selection procedure, rather than a more complicated tree selection proce-
dure (as used for example in [23]).

Proposition 5.1 (Tile selection) Let F ∈ B(3P; C). For any λ > 0 there exists a (pos-
sibly empty) set Bλ of pairwise disjoint tritiles such that, if we set Eλ :=⋃B∈Bλ

T (B),

• for each B ∈ Bλ,
∣∣F(B)

∣∣ > λ,
• for all P ∈ 3P \ Eλ,

∣∣F(P)
∣∣ ≤ λ.

Proof Let Mλ := {P ∈ 3P : ∣∣F(P)
∣∣ > λ}. If Mλ = ∅ then just set Bλ = ∅. Otherwise

let Bλ ⊂ Mλ be the subset of tritiles in Mλ that are maximal with respect to ≤. Then
Bλ satisfies the first required condition, and to see the second one simply notes that
Mλ ⊂ Eλ. To see that Bλ consists of pairwise disjoint tritiles, suppose that P,Q ∈ Bλ

with P ∩ Q �= ∅. Then either P ≤ Q or Q ≤ P, and by maximality of P and Q in Mλ

we must have that P = Q. ��
We are ready to prove our modulation invariant Carleson embedding bounds. We

prove these with respect to the deterministic size S∞, under an r -Hilbertian assump-
tion; we will obtain Theorem 1.1 as a corollary of the size domination theorem. First
we consider embeddings into non-iterated outer-L p spaces. These are easier to prove,
but they only hold for p > r .

Theorem 5.2 Let X be a Banach space which is r-Hilbertian for some r ∈ [2,∞).12

Then the bounds

∥∥‖E[ f ]‖X3

∥∥
L p

μS∞ � ‖ f ‖L p(W;X) ∀p ∈ (r ,∞],
∥∥‖E[ f ]‖X3

∥∥
Lr ,∞

μ S∞ � ‖ f ‖Lr (W;X)

hold for all f ∈ S (W; X).

12 Alternatively, one can suppose that X satisfies the ‘Walsh tile-type’ bounds (3.10).
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Proof By interpolation (i.e. by Proposition 4.5) it suffices to establish weak endpoint
bounds for p = ∞ and p = r . The p = ∞ endpoint follows immediately from the
definition of S∞:

∥∥‖E[ f ]‖X3

∥∥
L∞

μ S∞ = sup
P∈3P

u∈{0,1,2}
‖〈 f ;wPu 〉‖X ≤ ‖ f ‖L∞(W;X).

For the weak outer-Lr endpoint, we need to show that for every λ > 0 there exists a
set Eλ ⊂ 3P such that

μ(Eλ) � λ−r‖ f ‖r
r and

∥∥13P\Eλ
‖E[ f ]‖X3

∥∥
S∞ � λ. (5.1)

Apply the tile selection (Proposition 5.1) at level λ to the function F(P) =
‖E[ f ](P)‖X3 to get a disjoint collection of tritiles Bλ such that

∥∥13P\Eλ
‖Ev[ f ]‖X3

∥∥
S∞ = sup

P∈T ∩3P\Eλ
u∈{0,1,2}

‖〈 f ;wPu 〉‖X ≤ λ

with Eλ :=⋃B∈B
T (B). It remains to show the bound on μ(Eλ).

For each B ∈ Bλ there exists a tile PB ∈ B of the tritile B such that ‖〈 f ;wPB〉‖X >

λ. The tritiles B are pairwise disjoint and thus so are the tiles PB; therefore we have

μ(Eλ) ≤
∑

B∈Bλ

|IB| ≤ λ−r
∑

B∈Bλ

‖〈 f ;wPB〉‖r
X |IPB | � λ−r‖ f ‖r

r

where the last estimate follows from Proposition 3.8 applied to all finite subsets of Bλ.
��

Now we prove the embeddings into iterated outer-L p spaces, which hold for all
p > 1, but which are much harder to prove.

Theorem 5.3 Let X be a Banach space which is r-Hilbertian for some r ∈ [2,∞).13

Then for all p ∈ (1,∞) and q ∈ (min(p, r)′(r − 1),∞] the bound

∥∥‖E[ f ]‖X3

∥∥
L p

ν -Lq
μS∞ � ‖ f ‖L p(W;X)

holds for all f ∈ S (W; X).

Proof Fix p ∈ (1,∞). We will establish various endpoints depending on the position
of p relative to r ; interpolation will then yield the estimates that we claim. In all cases,
we will first fix λ > 0 and utilise the set Kλ ⊂ 3P defined (dependent on p) as follows:
write

{
x ∈ W : Mmin(p,r)(‖ f ‖X )(x) > λ

} =
⋃

n∈N

In,λ

13 Again, one could alternatively suppose that X satisfies the bounds (3.10).
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as a disjoint union of (maximal) triadic intervals, and then define

Kλ :=
⋃

n∈N

D(In,λ),

where D(In,λ) is the strip generated by In,λ. Since the min(p, r)-maximal function
Mmin(p,r) is of weak type (p, p), we then have

ν(Kλ) ≤
∑

n∈N

|In| � λ−p‖ f ‖L p(W;X).

In each case it remains to show for an appropriate exponent q that

∥∥13P\Kλ
‖E[ f ]‖X3

∥∥
-Lq,∞

μ S∞ � λ (5.2)

for all λ > 0.
Endpoint 1: p < ∞, q = ∞. Here we need to show that

∥∥13P\Kλ
‖E[ f ]‖X3

∥∥
-L∞

μ S∞ = ∥∥13P\Kλ
‖E[ f ]‖X3

∥∥
S∞ � λ.

This follows from the definition of Kλ:

∥∥13P\Kλ
‖E[ f ]‖X3

∥∥
S∞ = sup

P : IP �⊂⋃n∈N
In,λ

u∈{0,1,2}

‖〈 f ;wPu 〉‖X ≤ sup
I �⊂⋃n∈N

In,λ

‖ f ‖-L1(I ;X) ≤ λ.

Endpoint 2: p ≥ r , q = r . We must show that for every strip D ∈ D and every
τ > 0 there exists Eτ ⊂ 3P such that

μ(Eτ ) � (λ/τ)r |ID| and
∣∣1(D\Kλ)\Eτ

‖E[ f ]‖X3

∣∣
S∞ � τ. (5.3)

It suffices to assume that τ < λ, for otherwise we can take Eτ = ∅ and the result
follows from Endpoint 1.

Fix a strip D. We may assume ID �⊂ In,λ for all n ∈ N, since otherwise D \ Kλ = ∅
and there is nothing to prove. It thus holds that

‖ f ‖-Lr (ID;X) ≤ ‖ f ‖-L p(ID;X) � λ. (5.4)

ForP ∈ D wehave that 〈 f ;wPv 〉 = 〈 f 1ID ;wPv 〉 for all v ∈ {0, 1, 2}. The non-iterated
version of the embedding, i.e. Theorem 5.2, then guarantees that

∥∥1D\Kλ‖E[ f ]‖X3

∥∥r
-Lr ,∞S∞ � ‖ f 1ID ‖Lr � λr |ID|

and we are done.
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‘Endpoint’ 3: p < r and q > p′(r − 1). We will show that for every strip D ∈ D

and every τ > 0 there exists Eτ ⊂ 3P such that

μ(Eτ ) � (λ/τ)q |ID| and
∥∥1(D\Kλ)\Eτ

‖E[ f ]‖X3

∥∥
S∞ � τ. (5.5)

for any q > p′(r − 1). The result of Endpoint 1 allows us to consider only q close
to p′(r − 1) and extend the result to all q by interpolation. Furthermore it suffices to
assume that τ < λ, for otherwise we can take Eτ = ∅ and the result follows from the
s = ∞ bound.

Fix a strip D. As before wemay assume ID �⊂ In,λ for all n ∈ N, so if In,λ intersects
ID , we must have In,λ � ID . Henceforth we consider only those indices n ∈ N for
which In,λ � ID , and we drop λ from the notation. For each k ∈ N let (Jn,k,m)m∈N

denote the maximal subintervals of In on which Mp(‖ f ‖X ) > 2kλ.
Let us decompose f by setting

f 1ID = f−1 +
∞∑

k=0

fk,

f−1 = f 1ID\⋃n∈N
In fk :=

∑

n∈N

∑

m∈N

f 1�Jn,k,m ∀k ∈ N,

with

�Jn,k,m = Jn,k,m \
( ⋃

m′∈N

⋃

k′>k

Jn,k′,m′
)
.

We have bounds

‖ fk‖L∞(W;X) ≤ 2kλ ∀k ∈ {−1} ∪ N,
∑

m∈N

|�Jn,k,m | ≤
∑

m∈N

|Jn,k,m | � 2−kp|In| ∀n, k ∈ N
′ (5.6)

the latter follows from the weak L p boundedness of Mp.
This decomposition induces the following decomposition of the embedded function

E[ f 1ID ]:

E[ f 1ID ] =
∞∑

k=−1

Fk, Fk := E[ fk] ∀k ∈ {−1} ∪ N. (5.7)

Now fix ε > 0, and for each k ≥ −1 apply the tile selection of Proposition 5.1 to Fk

at level 2−εkτ , yielding sets Bk and Ẽk :=∑B∈Bk
T (B) of tritiles such that

∥∥1(D\Kλ)\Ẽk
‖Fk‖X3

∥∥
S∞ � 2−εkτ (5.8)
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and

μ(Ẽk) ≤
∑

B∈Ẽk

|IB| ≤ (2−εkτ)−r‖ fk‖r
Lr (W;X)

≤ τ−r2krε‖ fk‖r
L∞(W;X)

∣∣spt( fk)
∣∣ �

(λ

τ

)r
2k(r(1+ε)−p)|ID|.

(5.9)

On the other hand for any P ∈ D \ Kλ one has that

‖Fk(P)‖X3 = sup
P∈D\Kλ
u∈{0,1,2}

∣∣〈 fk;wPu 〉
∣∣ � 2k(1−p)λ ∀k ∈ {−1} ∪ N.

For k = −1 this is a trivial consequence of (5.6),while for k ∈ N notice that In∩IP �= ∅
only if In ⊂ IP so

∣∣〈 fk;wPu 〉
∣∣ ≤ ‖ fk‖L∞

∑

n : In⊂IP

∣∣spt fk ∩ In
∣∣

|IP| � ‖ fk‖L∞(W;X)

∑

n : In⊂IP

∑

m∈N

|�Jn,m,k |
|IP|

� 2kλ
∑

n : In⊂IP

2−kp|In|
|IP| ≤ 2k(1−p)λ.

It follows that Ẽk is empty when 2k(p−1−ε) � λ
τ
, i.e. when k ≥ kλ/τ with 2kλ/τ �

(λ/τ)
1

p−1−ε

We conclude by setting Eτ :=⋃kλ/τ

k=−1 Ẽk . Since r(1 + ε) − p > 0, estimate (5.9)
gives that

μ(Eτ ) ≤
kλ/τ∑

k=−1

μ(Ẽk) �
(λ

τ

)r
2kλ/τ (r(1+ε)−p)|ID| �

(λ

τ

)(r−1) p
p−1−ε |ID| �

(λ

τ

)q |ID|

where the last inequality holds since ε > 0 is arbitrary and τ � λ. On the other hand

∥∥1(D\Kλ)\Eτ
‖F‖X3

∥∥
S∞ �

∞∑

k=−1

∥∥1(D\Kλ)\Ẽk
‖Fk‖X3

∥∥
S∞ �

∞∑

k=−1

2−εkτ � τ

and this concludes the proof. ��
Proof of Theorem 1.1 The argument is identical for the iterated and non-iterated
embeddings, so we only show the iterated case. By Corollary 4.16, using that X
is UMD, for any convex A ⊂ 3P it holds that

‖1AE[ f ]‖L p
ν -Lq

μS
�
∥∥1A ‖E[ f ]‖X3

∥∥
L p

ν -Lq
μS∞ ∀ f ∈ S (W; X),
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and by the iterated embeddings for S∞ (Theorem 5.3), using that X is r -Hilbertian,

∥∥1A ‖E[ f ]‖X3
v

∥∥
L p

ν -Lq
μS∞ �

∥∥‖E[ f ]‖X3
v

∥∥
L p

ν -Lq
μS∞ � ‖ f ‖L p(W;X) ∀ f ∈ S (W; X).

The first inequality above follows by the unconditionality property of sizes and thus
of outer-L p quasi-norms. This completes the proof. ��

6 Applications to the Tritile Form

Again we consider three Banach spaces X0, X1, X2 and a bounded trilinear form
� : X0 × X1 × X2 → C. Each Xu is assumed to be UMD and ru-Hilbertian for some
ru ∈ [2,∞). Recall that the tritile form is the trilinear form	� : ∏2

u=0 S (W; Xu) →
C defined by

	�( f0, f1, f2) :=
∑

P∈3P

�
(
〈 f0;wP0〉, 〈 f1;wP1〉, 〈 f2;wP2〉

)
|IP|.

Using the embedding theorems from the previous section, wewill establish L p-bounds
and sparse domination for 	�.

6.1 Lp Bounds

Proof of Theorem 1.2 The condition (1.12) guarantees the existence of a Hölder triple
(q0, q1, q2) such that

qu > min(pu, ru)′(ru − 1)

for all u ∈ {0, 1, 2}, and then by Theorem 1.1 we have

‖E[ fu]‖L pu
ν -Lqu

μ S
� ‖ fu‖L pu (W;Xu) ∀ fu ∈ S (W; Xu) (6.1)

for all u. By Remark 4.14 this suffices to prove the theorem. ��
The set of exponents (pu)u∈{0,1,2} to which Theorem 1.2 applies (more precisely,

the set of reciprocals (1/pu)u∈{0,1,2}) can be characterised as the interior of a polygon.
Let βu = 1/pu and γu := 1/ru . Say that (p0, p1, p2) is admissible if

2∑

u=0

1

min(pu, ru)′(ru − 1)
> 1.

We rewrite the left hand side of this condition as

2∑

u=0

1

min(pu, ru)′(ru − 1)
=

2∑

u=0

1

max(p′
u, r ′

u)( 1
γu

− 1)
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=
2∑

u=0

min(1 − βu, 1 − γu)
γu

1 − γu
.

It follows that an admissible exponent (p0, p1, p2) exists only if

ρ :=
( 2∑

u=0

γu

)
− 1 > 0, (6.2)

and we assume this condition in what follows. Consider the set of exponents

S :=
{
β ∈ (−∞, 1]3 :

2∑

u=0

βu = 1,
2∑

u=0

min(1 − βu, 1 − γu)
γu

1 − γu
> 1

}
.

This set is the interior of a polygon; the vertices of this polygon may be found by
choosingw ∈ {0, 1, 2}\{u} arbitrarily, setting βu = γu , and making βw > γw as large
as possible. Let v be the single element of {0, 1, 2}\{u, w}, so that 1−βv = βu +βw =
γu + βw. Then the second condition in the definition of S, for βw > 1 − γv − γu ,
becomes

γu + (1 − βw)
γw

1 − γw

+ γv > 1.

Rearranging this gives

βw < γw + ρ

(
1

γw

− 1

)
,

so the vertices of ∂S are given by the 6 points β in the Hölder triangle determined by
their (u, w)-components

(βu, βw) = (κu, γw + ρ(γ −1
w − 1)) (u �= w ∈ {0, 1, 2}). (6.3)

The region of exponents (βu) = (p−1
u ) to which Theorem 1.2 applies is thus the

interior of the convex hull of the 6 points in (6.3), intersected with the cube (0, 1)3

(noting that S generally contains some exponents with nonpositive entries).
Thus, comparing our result with that of Hytönen, Lacey, and Parissis [23], we see

that we obtain the same L p bounds for the tritile operator as they do for the quartile
operator when restricted to the reflexive range pu ∈ (1,∞).14

14 As mentioned in the introduction, the sparse domination obtained in Theorem 1.3 implies the range of
estimates corresponding to those obtained in [23]. Once more we thank the anonymous referee for this
observation.
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6.2 Sparse Domination

Proof of Theorem 1.3 We follow the argument in [39, §1.4.3].
We will show the following abstract sparse domination result: for any Hölder triple

(qu)u∈{0,1,2} and any triple of exponents pu ∈ [1,∞), we have the bound

∑

P∈3P

∣∣∣�∗(F0(P), F1(P), F2(P)
)∣∣∣ |IP|

� sup
‖G‖sp≤1

∑

I∈G
|I |

2∏

u=0

|I |−1/pu ‖1D(I )Fu‖L pu
ν -Lqu

μ S
.

(6.4)

for any Fu ∈ B(3P; X3
u). This result suffices to prove the theorem; to see this, let

Fu = E[ fu] and notice that Fu = E[ fu1I ] on D(I ). Thus by Theorem 1.1, choosing
the Hölder triple (qu)u∈{0,1,2} such that qu > min(pu, ru)′(ru − 1) for each u (such a
choice is possible by condition (1.12)), the bound

|I |−1/pu ‖1D(I )Fu‖L pu
ν -Lqu

μ S
� ‖ fu‖-L pu (I ;X)

holds. Since |	�( f0, f1, f2)| ≤ ∑
P∈3P

∣∣∣�∗(F0(P), F1(P), F2(P)
)∣∣∣ |IP| this implies

the conclusion of the theorem.
It remains to show that (6.4) holds. The definition of the iterated outer-L p quasi-

norms implies that for every strip D, there exists a subset K D ⊂ D such that

‖1D\K D Fu‖-Lqu
μ S

� ν(D)−1/pu ‖1D Fu‖L pu
μ -Lqu S

∀u ∈ {0, 1, 2}, (6.5)

ν(K D) ≤ ν(D)/2. (6.6)

Without loss of generality we may assume that K D is a union of strips, i.e. K D =⋃
I∈J(ID) D(I ), and that these strips are pairwise disjoint. Set G0 = {I0} for some

initial interval. Proceed iteratively: having defined a collection of intervals Gn , define

Gn+1 :=
⋃

I∈Gn

J(I )

where J(I ) is the set of intervals defined by (6.5) and (6.6) (with D = D(I )). The
bound (6.6) guarantees, by induction, that

max
I∈Gn

|I | ≤ 2−n|I0|
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and thus
⋂

n∈N

⋃
I∈Gn

I = ∅. Let (qu)u∈{0,1,2} be any Hölder triple; using the Hölder
inequality for Lqu

μ S gives us

∑

P∈D(I0)

∣∣∣�∗(F0(P), F1(P), F2(P)
) |IP|

∣∣∣

=
∞∑

n=0

∑

I∈Gn

∑

P∈3P

∣∣∣1D(I )\K D(I )�
∗(F0(P), F1(P), F2(P)

)∣∣∣ |IP|

�
∞∑

n=0

∑

I∈Gn

2∏

u=0

‖1D(I )\K D(I ) Fu‖Lqu
μ S

�
∞∑

n=0

∑

I∈Gn

|I |
2∏

u=0

|I |−1/pu ‖1D(I )Fu‖L pu
ν -Lqu

μ S
.

(6.7)

Recall that for any I ∈ G we have set K D(I ) =⋃I ′∈J(I ) D(I ′) so that (6.5) holds and
guarantees the last bound.

We now show that G = ⋃
n∈N

Gn is sparse with ‖G‖sp ≤ 1. The intervals of G are
nested in the sense that if J ∈ Gn+1 then there exists J ′ ⊃ J with J ′ ∈ Gn . First
suppose I ∈ Gn0 for some n0 ∈ N; it follows by induction from (6.6) that

∑

J⊂I
J∈Gn0+k

|J | ≤ |I |/2k .

and thus

∑

J⊂I
J∈G

|J | =
∞∑

k=1

∑

J⊂I
J∈Gn0+k

|J | ≤
∞∑

k=0

|I |/2k = |I |.

If I /∈ G, then there exists n0 ∈ N and disjoint intervals Im ⊂ I , I ∈ Gn0 such that

{J ⊂ I : J ∈ G} =
⋃

m∈N

{J ⊂ Im : J ∈ G}.

Thus ‖G‖sp ≤ 1.
For any Fu ∈ B(3P; X3

u) with u ∈ {0, 1, 2} we can write

∑

P∈3P

∣∣∣�∗(F0(P), F1(P), F2(P)
)∣∣∣|IP| ≤ sup

D0∈D

∑

P∈D0

∣∣∣�∗(F0(P), F1(P), F2(P)
)∣∣∣|IP|.

Estimating the sum over D0 via (6.7) and using that ‖G‖sp ≤ 1 for the collections G
that we constructed shows that (6.4) holds, and completes the proof. ��
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7 Appendix: Arguing via R-Bounds and RMF

In this appendix we present an alternative approach to our main results. In this
approach, the randomised sizes are simplified; the defect operator does not appear,
and the sizes resemble more closely the sizes used in [23] and [15] or in earlier scalar-
valued proofs. For this simplicity we pay the price of having to manipulate R-bounds,
which leads to the assumption of the RMF property on the trilinear form �. The same
technical difficulty occured in [15]; a new method of obtaining these results without
RMF was recently given in [14].

7.1 R-Bounds and the RMF Property

First we recall the definition of K -convexity of a Banach space. All the spaces that we
consider, being UMD spaces, are K -convex [19, Proposition 4.3.10].

Definition 7.1 A Banach space X is K -convex if for all finite sequences (xn)N
n=1 in

X ,

E

∥∥∥∥
N∑

n=1

εn xn

∥∥∥∥
X

� sup
(x∗

n )

∣∣∣∣
N∑

n=1

x∗
n (xn)

∣∣∣∣

where the supremum is taken over all sequences (x∗
n )N

n=1 in X∗ such that

E

∥∥∥∥
N∑

n=1

εn x∗
n

∥∥∥∥
X∗

= 1,

with implicit constant independent of N .

As a technical tool, we use a strong notion of boundedness of a set of operators
known as R-boundedness. For a short history of this concept see [20, §8.7].

http://creativecommons.org/licenses/by/4.0/
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Definition 7.2 Let X and Y beBanach spaces, and let T ⊂ L(X , Y ) be a set of bounded
operators from X to Y . We say that the set T is R-bounded if there exists a constant
C > 0 such that for all finite sequences (xn)N

n=1 in X and (Tn)N
n=1 in T, the estimate

E

∥∥∥∥
N∑

n=1

εnTn xn

∥∥∥∥
Y

≤ CE

∥∥∥∥
N∑

n=1

εn xn

∥∥∥∥
X

(7.1)

holds. The smallest allowableC in this estimate is called the R-bound ofT, and denoted
by R(T).

If T is R-bounded, then T is uniformly bounded in norm (consider N = 1 in (7.1)).
If Y is K -convex, then T is R-bounded if and only if

∣∣∣∣
N∑

n=1

y∗
n (Tn xn)

∣∣∣∣ ≤ C E

∥∥∥∥
N∑

n=1

εn xn

∥∥∥∥
X
E

∥∥∥∥
N∑

n=1

εn y∗
n

∥∥∥∥
Y ∗

for all sequences (xn) in X , (y∗
n ) in Y ∗, and (Tn) in T, and the smallest admissible

constant C here is equivalent to R(T ). This is analogous to the Hölder inequality

∣∣∣∣
∑

n∈N

f (n)g(n)h(n)

∣∣∣∣ ≤ ‖ f ‖�∞‖g‖�2‖h‖�2

for sequences f , g, h : N → C, keeping in mind the analogy between Rademacher
sums and square functions.

The concept of R-boundedness applies to sets of operators, but we can apply it to
sets of vectors by viewing them as operators. This relies on the additional information
of an identification of vectors with operators.

Definition 7.3 Let X be a Banach space, and consider an embedding (i.e. a bounded
linear injectivemap) ι : X ↪→ L(Y , Z), whereY and Z areBanach spaces andL(Y , Z)

is the Banach space of bounded linear operators from Y to Z . Then for all subsets
V ⊂ X we define the R-bound of V with respect to the embedding ι by

Rι(V ) := R(ι(V )).

This definition leads to an analogue of the Doob (or dyadic Hardy–Littlewood)
maximal function, with R-bounds replacing norm bounds.

Definition 7.4 Let X be a Banach space, and consider an embedding ι : X → L(Y , Z)

for some Banach spaces Y and Z . Let (Fn)n∈N be a filtration on a σ -finite measure
space (�,F, μ). The Rademacher maximal operator Mι with respect to ι is defined
on F-measurable functions f : � → X by

Mι f (x) := Rι({E[ f |Fn](x) : n ∈ N}) ∀x ∈ �,

where E[ f |Fn] is the conditional expectation of f on Fn .
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The L p-boundedness of thismaximal function is a geometric property of the embed-
ding ι (and thus of the Banach spaces X , Y , Z ), which may or may not hold. Thus it
is given a name.

Definition 7.5 Let X be a Banach space, and ι : X → L(Y , Z) an embedding of X
into the bounded linear operators between some Banach spaces Y and Z . We say that ι
has the RMF property if for all filtrations andmeasure spaces as above,Mι is bounded
from L p(�; X) to L p(�) for all p ∈ (1,∞). More concisely, we say that ι is an RMF
embedding of X , without making explicit reference to the spaces Y and Z .

The RMF property is independent of the choice of filtratonFn and σ -finite measure
space (�,F, μ) [27, Theorem 5.1]. Furthermore, if ι is RMF, then Z is K -convex by
[27, Proposition 4.2] (using the equivalence of K -convexity and non-trivial type [20,
Theorem 7.4.23]).

We say that a Banach space X has the RMF property (without reference to an
embedding) if the natural embedding ι : X → L(X∗, C) has the RMF property. In
this case, for a function f : R → X on the line equipped with the dyadic filtration, we
have

Mι f (x) = sup

{
E

∥∥∥∥
∑

I�x

εI λI 〈 f 〉I

∥∥∥∥
X

}
∀x ∈ R

where the sum is over all dyadic intervals I containing x , and where the supremum
is taken over all normalised sequences λ ∈ �2(D) on the set D of dyadic intervals in
R. This form of the RMF property was first introduced by Hytönen, McIntosh, and
Portal [18],15 who proved that the following classes of Banach spaces are RMF:

• all spaces of type 2,
• all UMD Banach lattices (including L p-spaces with p ∈ (1,∞)),
• all noncommutative L p spaces with p ∈ (1,∞), and in particular the Schatten
classes Cp with p ∈ (1,∞).

They also proved that �1 does not have the RMF property. It is not known whether the
UMD property implies the RMF property. The converse fails: there exists a space of
type 2 (and therefore with the RMF property) which is not reflexive, and therefore not
UMD [26].

Now consider a triple of Banach spaces X0, X1, X2 and a bounded trilinear form
� : X0 × X1 × X2 → C. Indexing {0, 1, 2} = {u, v, w} arbitrarily, the trilinear
form induces natural embeddings ιu� : Xu → L(Xv, X∗

w). Thus for a set of vectors
V ⊂ Xu we have an R-bound R�(V ) := Rιu�

(V ) and aRademachermaximal operator
M� := Mιu�

. We generally omit ι and u in our notation, and observe that the indexing
{0, 1, 2} \ {u} does not affect these quantities, as R-bounds are preserved under taking
adjoints. We say that � has the RMF property if each embedding ιu� is RMF.

15 The form we use here, in which the Banach space X is identified with a space of operators via an
embedding, seems to have been introduced by Kemppainen [27].
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If each Xu is K -convex (as is the case when each Xu is UMD) then for all subsets
V ⊂ Xu , the R-bound R�(V ) is equivalent to the smallest constant C such that

∣∣∣∣
N∑

n=1

�(x0,n, x1,n, x2,n)

∣∣∣∣ ≤ C
∏

v �=u

E

∥∥∥∥
N∑

n=1

εn xv,n

∥∥∥∥
Xv

(7.2)

for all finite sequences (xu,n)N
n=1 ⊂ V , and (xv,n)N

n=1 ⊂ Xv , v ∈ {0, 1, 2} \ {u}.

Remark 7.6 Although all known UMD spaces have the RMF property, this does not
tell us that a trilinear form � : X0 × X1 × X2 → C automatically has the RMF
property when each Xu is UMD. If each Xu is a UMD Banach function space and
� is the pointwise product, then by the Khintchine–Maurey theorem (3.1) one can
reduce matters to boundedness of the lattice maximal function, which follows from
UMD, and so � has the RMF property. However, a natural trilinear form is given
by composing the composition map on Schatten classes Cp × Cq × Cr → C1 (when
p−1 + q−1 + r−1 = 1 with the trace map C1 → C; here each of the Banach spaces is
UMD (and each has RMF, as an individual Banach space) but it is not known whether
the constructed trilinear form has the RMF property.

7.2 Randomised Sizes with R-Bounds

We can use the notion of R-boundedness in the previous section to define new ran-
domised sizes. The key difference between these sizes and those defined in Sect. 4 are
that the defect operator is not used, and that R-bounds appear in the overlapping sizes.

In this section we always assume that X0, X1, and X2 are K -convex Banach spaces,
and � : X0 × X1 × X2 → C is a bounded trilinear form.

Definition 7.7 (Randomised sizes) For u ∈ {0, 1, 2} the Xu-size Su is given by

‖F‖Su(T ) :=
∑

v∈{0,1,2}
‖F‖Su,v(T ) ∀F ∈ B(3P; Xu),

where

‖F‖Su,v(T ) :=

⎧
⎪⎪⎨

⎪⎪⎩

( ffl
IT

R�({F(P)1IP(x) : P ∈ T u})3 dx

)1/3

(v = u)

( ffl
IT

E

∥∥∥∥
∑

P∈T v εPF(P)1IP(x)

∥∥∥∥
3

X
dx

)1/3

(v �= u).

(7.3)

Given Fu ∈ B(3P; Xu), define the function �(F0, F1, F2) : 3P → C by

�(F0, F1, F2)(P) := �(F0(P), F1(P), F2(P)).
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Proposition 7.8 For all Fu ∈ B(3P; Xu),

‖�(F0, F1, F2)‖S1(T ) ≤
2∏

u=0

‖Fu‖Su(T ) ∀T ∈ T.

A corresponding Hölder inequality for outer-Lebesgue spaces follows as in Sect. 4.

Proof First note that

∑

P∈T

|�(F0(P), F1(P), F2(P))||IP| ≤
2∑

u=0

∑

P∈T u

|�(F0(P), F1(P), F2(P))||IP|,

so it suffices to fix u ∈ {0, 1, 2} and deal with the summands individually. Fix a
normalised sequence a ∈ �∞(T u; C) and estimate by duality

∣∣∣∣
∑

P∈T u

a(P)�(F0(P), F1(P), F2(P))|IP|
∣∣∣∣

≤
ˆ

IT

∣∣∣∣
∑

P∈T u

a(P)�(F0(P)1IP (x), F1(P)1IP (x), F2(P)1IP (x))

∣∣∣∣ dx

�
ˆ

IT

R�({Fu(P)1IP (x) : P ∈ T u})
∏

v �=u

E

∥∥∥∥
∑

P∈T u

εPFv(P)1IP(x)

∥∥∥∥
Xv

dx

≤ |IT |
2∏

v=0

‖Fv‖Sv(T )

using (7.2). ��
The key ingredient that we need is a size domination result for these sizes. This

uses the deterministic size S∞ from Sect. 4.

Theorem 7.9 For all u ∈ {0, 1, 2} and all f ∈ S (W; Xu), and all convex A ⊂ 3P,

∥∥1AEu[ f ]∥∥
Su

�
∥∥1A‖E[ f ]‖X3

u

∥∥
S∞ ,

with implicit constant independent of A.

Corresponding outer-Lebesgue estimates as in Corollary 4.16 follow immediately.

Proof of Theorem 7.9 As in the proof of Proposition 4.19, it suffices to replace 3P with
3PN = {P ∈ 3P : 3−N < |IP | < 3N }. Fix a tree T . Since A ∩ T ∩ 3PN is finite and
convex, by Lemma 4.17 there exists a function g ∈ S (W; Xu) supported on IT such
that

‖g‖L∞(IT ;Xu) � sup
P∈T ∩A∩3PN

v∈{0,1,2}
‖〈 f ;wPv 〉‖Xu
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〈g;wPv 〉 = 〈 f ;wPv 〉 ∀P ∈ T ∩ A ∩ 3PN , v ∈ {0, 1, 2}.

It suffices to bound each of the summands in

‖1A∩3PN Eu[ f ]‖Su(T ) = ‖1A∩3PN Eu[ f ]‖Su,u(T ) +
∑

v �=u

‖1A∩3PN Eu[ f ]‖Su,v(T )

by ‖g‖L∞(IT ;Xu). The lacunary parts Su,v (v �= u) are already handled in the proof
of Proposition 4.19, using the UMD property (one need only replace the exponent 2
by the exponent 3). It remains to treat the overlapping part, Su,u . Since ξT ∈ wPu , we
have

exp(ξPu −ξT )(x − xP) = 1 ∀x ∈ IP

and so

wPu = exp(ξPu −ξT )(xP) expξT
(x)|IP|−11IP .

Writing out the size and using the RMF property of � gives

‖1A∩3PN Eu[ f ]‖3
Su,u(T )

≤
 

IT

R�

({〈g;wPu 〉1IP (x) : P ∈ T u ∩ A ∩ 3PN
})3

dx

=
 

IT

R�

({
exp(ξP−ξT )(xP)〈exp−ξT

g〉IP : P ∈ T u ∩ A ∩ 3PN , x ∈ IP
})3

dx

�
 

IT

M�(exp−ξT
g)(x)3 dx

� |IT |−1‖ exp−ξT
g‖3L3(IT ;X)

≤ ‖g‖L∞(IT ;X)

where M� is the Rademacher maximal operator with respect to �, and we used the
contraction principle to remove the unimodular coefficients exp(ξP−ξT )(xP). ��

Having proven this size domination result, we are reduced to the situation of Sect. 5,
where embedding bounds are proven with respect to the deterministic size S∞, which
is the same in this formulation. Thus we obtain an alternative version of our main
theorem, with different sizes and an additional RMF assumption.

Theorem 7.10 Let X0, X1, and X2 be UMD Banach spaces, such that each Xu is ru-
Hilbertian for some ru ∈ [2,∞). Let � : X0 × X1 × X2 → C be a bounded trilinear
form with the RMF property. Then for all u ∈ {0, 1, 2} and all convex sets A ⊂ 3P of
tritiles, the following embedding bounds hold.

• For all p ∈ (ru,∞),

∥∥1A Eu[ f ]∥∥L p
μSu

� ‖ f ‖L p(W;Xu) ∀ f ∈ S (W; Xu). (7.4)
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• For all p ∈ (1,∞) and all q ∈ (min(p, ru)′(r − 1),∞),

∥∥1A Eu[ f ]∥∥L p
ν -Lq

μSu
� ‖ f ‖L p(W;Xu) ∀ f ∈ S (W; X). (7.5)

The implicit constants in the above bounds do not depend on A.

As the sizesSu satisfy aHölder inequality (Proposition 7.8),we obtain an alternative
proof of our results on the tritile operator (Theorems 1.2 and 1.3) under the additional
assumption that � has the RMF property.
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