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Abstract
We study the problem of recovering a function of the form f (x) = ∑

k∈Z cke−(x−k)2

from its phaseless samples | f (λ)| on some arbitrary countable set � ⊆ R. For real-
valued functions this is possible up to a sign for every separated set with Beurling
density D−(�) > 2. This result is sharp. For complex-valued functions we find all
possible solutions with the same phaseless samples.
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In many measurements only non-negative amplitudes or intensities are recorded

rather than the physical quantity itself. The problem then is to recover the underlying
object (signal, image) from these phaseless measurements, in other words, to retrieve
the phase from the magnitude. This is the problem of phase-retrieval. Particular prob-
lems concern the recovery of a function f from its phaseless Fourier measurements
| f̂ (ξ)| or the recovery of a function f from its phaseless (or unsigned) samples | f (λ)|.
For general information about the phase-retrieval problem we refer to the surveys
[13,18].

The question of phase-retrieval is usually ill-posed or even meaningless, unless
one imposes additional assumptions on the function to be reconstructed, such as a
particular signal model. In this note we consider the problem of phase-retrieval in the
particular class of shift-invariant spaces generated by a Gaussian. The prototype of a
shift-invariant space is the Paley-Wiener space of bandlimited functions { f ∈ L2(R) :
supp f̂ ⊆ [−1/2, 1/2]}. More general shift-invariant spaces serve as a substitute for
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bandlimited functions and have received wide attention in approximation theory and
sampling theory [5,11].

Given a generator g ∈ L2(R), p ∈ [1,∞], and a mesh parameter or step size
β > 0, let

V p
β (g) =

{

f =
∑

k∈Z
ckg(· − βk) : c ∈ �p(Z)

}

. (1)

One of the versions of phase-retrieval in shift-invariant spaces is the recovery of
a function f (up to a scalar) from its phaseless samples | f (λ)| on some set �. The
question then is whether the additional information that f belongs to the shift-invariant
space V p

β (g) suffices to determine f up to a sign. For the prototype of a shift-invariant
space, namely the bandlimited functions, this question was solved [21]. Recently Q.
Sun and his collaborators have developed a general theory for phase-retrieval in shift-
invariant spaces in a series of articles [7–9]. A typical result asserts that the samples
of | f | on a sufficiently dense union of shifted lattices suffice to recover real-valued
functions in some V 2(g). These papers also cover some of the numerical aspects of
phase-retrieval. The problem of phase-retrieval in shift-invariant spaces from Fourier
measurements is studied in [19].

We study the problem of phase-retrieval in the shift-invariant space generated by a
Gaussian φγ (x) = e−γ x2 . Precisely, we will assume that f is a linear combination of
shifts of a Gaussian and belongs to the shift-invariant space

V∞
β (φγ ) =

{

f ∈ L∞(R) : f (x) =
∑

k∈Z
cke

−γ (x−βk)2 c ∈ �∞(Z)

}

.

Wewill allow samples from an arbitrary separated set� ⊂ R and measure the density
of � with the standard notion of the lower Beurling density defined as

D−(�) := lim inf
r→∞ inf

x∈R
#� ∩ [x − r , x + r ]

2r
. (2)

We will first consider real-valued functions and unsigned samples | f (λ)|. For this
case we prove the following uniqueness theorem.

Theorem 1 Assume that � ⊆ R is separated and that D−(�) > 2β−1. Then phase-
retrieval is possible on � for all real-valued functions in V∞

β (φγ ). This means that an
unknown real-valued f ∈ V∞

β (φγ ) is uniquely determined up to a global sign factor
by its phaseless samples {| f (λ)| : λ ∈ �}.

Theorem 1 says that for real-valued f , g ∈ V∞
β (φγ ) satisfying | f (λ)| = |g(λ)|

for all λ ∈ � we have either g = f or g = − f , thus the only ambiguity is the
(global) sign of f . Our proof yields a reconstruction procedure (see Section 2), but
it is well-known that the phase-retrieval problem in infinite dimensions is necessarily
ill-posed [4,6,13].
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In the second part we will study complex-valued functions in V∞
β (φγ ). In this case

there is no uniqueness, instead we will classify all functions g ∈ V∞
β (φγ ) that satisfy

|g(λ)| = | f (λ)| on �.
Before proceeding, let us discuss some of the fine points of Theorem 1.

(i) Remarkably, the uniqueness holds even for bounded coefficients, and not just
for square-summable coefficients. We can therefore not rely on the Hilbert space
theory for phase-retrieval, but technically we need to rely on the Banach space
set-up of Alaifari and Grohs [4].

(ii) The density condition is sharp. For uniformdensity D(�) < 2β−1 one can produce
essentially different real-valued functions f , g with the same phaseless samples
|g(λ)| = | f (λ)|, λ ∈ �. See below.

(iii) A similar statement for bandlimited functions was proved by Thakur [21] and
revisited in [4]. Both [21] and Theorem 1 support the intuition that the recovery
of phase from magnitude requires twice as many samples as the recovery from
the samples f (λ). This is well known for finite-dimensional frames, but in infinite
dimensions it is more subtle to formulate and prove. To our knowledge Theorem 1
is one of only twomodels for which phase-retrieval is possible with a sharp density
condition. The investigations in [7–9] require a much higher sampling rate or deal
with conditions under which phase-retrieval is not even possible.

In Section 1 we collect several statements about the shift-invariant space V∞
β (φγ )

and then prove Theorem 1. In Section 2 we study phase-retrieval for complex-valued
functions. Our main tool is a factorization of period entire functions whose proof is
postponed to Section 3.

1 Phase-Retrieval for Real-Valued Functions

We set up the proof of Theorem 1. To avoid unnecessary parameters, we set β = 1,
without loss of generality. This is possible because f (x) = ∑

k cke
−γ (x−βk)2 =

∑
k cke

−γβ2(x/β−k)2 . Thismeans that f ∈ V∞
β (φγ ), if and only if f (β·) ∈ V∞

1 (φβ2γ ).
Thus phase-retrieval on � is possible for V∞

1 (φβ2γ ), if and only if phase-retrieval on
β� is possible for V∞

β (φγ ). We note that D−(β�) = β−1D−(�). Thus it suffices to
prove Theorem 1 for β = 1.

Our first use of complex variable methods is the following lemma for Fourier series.

Lemma 2 (i) Let d be a sequence with Gaussian decay with decay parameter γ >

0, i.e., dk = cke−γ k2 for some c ∈ �∞(Z). Then the Fourier series d̂(ξ) =∑
k∈Z dke2π ikξ can be extended to an entire function D(z) = d̂(ξ + iy) with

growth of order 2, precisely, |D(ξ + iy)| = O(eπ2 y2/γ ).
(ii) Conversely, if D(z) is a periodic entire function D(z + k) = D(z) for all z ∈ C

and k ∈ Z with growth |D(ξ + iy)| = O(eπ2 y2/γ ), then the Fourier series of D(ξ)

has coefficients of Gaussian decay dk = cke−γ k2 for some c ∈ �∞(Z).

Proof For completeness we give the elementary proof.
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(i) Writing z = ξ + iy and dk = cke−γ k2 , we have

d̂(ξ + iy) =
∑

k∈Z
cke

−γ k2e2π ik(ξ+iy)

≤ ‖c‖∞
∑

k∈Z
e−γ k2e2πk|y|

= ‖c‖∞
( ∑

k∈Z
e−γ (k−π |y|/γ )2

)
eπ2 y2/γ = O(eπ2 y2/γ ) .

Clearly d̂ is entire.
(ii) If D is entire and periodic, then

D(z) =
∑

k∈Z
dke

2π ikz =
∑

k∈Z
dke

−2πkye2π ikξ .

with uniform convergence on compact sets and exponentially decaying coeffi-
cients. See, e.g., [20, Theorem 3.10.3]. Consequently the Fourier coefficients of
ξ 
→ D(ξ + iy) are dke−2πky and satisfy

|dk |e−2πky ≤
∫ 1

0
|D(ξ + iy)| dξ ≤ Ceπ2 y2/γ ,

for all k and y, where the last inequality follows from the assumption.

Setting y = − γ k
π

yields the desired estimate

|dk |eγ k2 ≤ C . ��
The analysis of phase-retrieval in V∞

1 (φγ ) involves several steps.
Step 1. From f ∈ V∞

1 (φγ ) to | f |2. We start with a simple algebraic observation.

Lemma 3 If f ∈ V∞
1 (φγ ), then | f |2 ∈ V∞

1/2(φ2γ ).

Proof We write f (x) = ∑
k∈Z cke−γ (x−k)2 with c ∈ �∞(Z). Since

(x − k)2 + (x − l)2 = 2
(
x − k + l

2

)2 − (k + l)2

2
+ k2 + l2 ,

we find that

| f (x)|2 =
∑

k,l∈Z
ckcle

−γ (k2+l2)eγ (k+l)2/2 e−2γ
(
x− k+l

2

)2

=
∑

n∈Z

(∑

k∈Z
ckcn−ke

−γ k2e−γ (n−k)2
)
eγ n2/2 e−2γ (x−n/2)2 . (3)
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This calculation shows that the function | f |2 belongs to a different shift-invariant
space generated by φ2γ with step size 1/2. Set

dk = cke
−γ k2 , (4)

rn =
∑

k∈Z
ckcn−ke

−γ k2e−γ (n−k)2 , (5)

r̃n = rne
γ n2/2 . (6)

From these definitions we see that

r = d ∗ d̄ and (7)

| f (x)|2 =
∑

n∈Z
r̃ne

−2γ (x−n/2)2 . (8)

If c ∈ �∞(Z), then r̃ ∈ �∞(Z), because

|r̃n| = ∣
∣
∑

k∈Z
ckcn−ke

−γ k2e−γ (n−k)2
∣
∣ eγ n2/2

≤ ‖c‖2∞
∑

k∈Z
e−γ (k2+(n−k)2−n2/2)

= ‖c‖2∞
∑

k∈Z
e−γ (n−2k)2/2 .

Setting C = max(
∑

k∈Z e−2γ k2 ,
∑

k∈Z e−γ (1−2k)2/2), we have shown that

‖r̃‖∞ ≤ C‖c‖2∞ . (9)

As a consequence | f |2 ∈ V∞
1/2(φ2γ ), as claimed. ��

Step 2. A sharp sampling theorem. Our main tool is the following sampling theorem
for shift-invariant spaces with Gaussian generator from [12, Theorem. 4.4].

Theorem 4 Let γ > 0 and 1 ≤ p ≤ ∞ and � ⊆ R be separated. If D−(�) > β−1,
then for some constants A, B > 0 depending on � and p

A‖ f ‖p
p ≤

∑

λ∈�

| f (λ)|p ≤ B‖ f ‖p
p ∀ f ∈ V p

β (φγ ) . (10)

Conversely, if (10) holds, then D−(�) ≥ β−1. This was already proved in [5] and
shows that Theorem 4 is optimal.

Applying this theorem to the function | f |2 ∈ V∞
1/2(φ2γ ), we obtain the following

consequence.
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Corollary 5 Let γ > 0 and � ⊆ R be separated with density D−(�) > 2. If f ∈
V∞
1 (φγ ) and thus | f (x)|2 = ∑

n∈Z r̃ne−2γ (x−n/2) ∈ V∞
1/2(φ2γ ), then there exist

constants A, B > 0 such that

A sup
λ∈�

| f (λ)|2 ≤ ‖r̃‖∞ ≤ B sup
λ∈�

| f (λ)|2 . (11)

Thus the coefficients r̃ of | f |2 are uniquely and stably determined by the phaseless
samples of f on �.

Note that in (11) we have used the norm equivalence supx∈R | f (x)|2 � supn∈Z |r̃n|.
Step 3. A functional equation. The sampling inequality (11) allows us to recover
the coefficients r̃ from the phaseless samples | f (λ)|2. Finally we have to recover
the coefficients c and d from the coefficients r̃ of | f |2, or equivalently from the
rn = r̃ne−γ n2/2.

Let d̂(ξ) = ∑
k∈Z dke2π ikξ be the Fourier series of d and r̂ be the Fourier series of

r . Then Eq. (7) turns into

r̂(ξ) = d̂(ξ) d̂(−ξ) . (12)

Since dk = cke−γ k2 has Gaussian decay, Lemma 2 asserts that its Fourier series can
be extended to the entire function

D(z) = d̂(z) =
∑

k∈Z
dke

2π ikz

with growth |D(ξ +iy)| = O(eπ2 y2/γ ). Likewise d̂(−ξ) extends to the entire function

D∗(z) = D(−z̄) = d̂(−z̄), and r̂ extends to R(z) = r̂(z).
Consequently, we have to find the entire function D that satisfies the identity

D(z)D(−z̄) = D(z)D∗(z) = R(z) . (13)

In other words, to every solution D of the functional Eq. (13) corresponds a function
g such that |g(λ)| = | f (λ)| for λ ∈ �.

Assuming that f is real-valued, we can now prove Theorem 1 quickly.

Proof of Theorem 1 Since f is real-valued by assumption, its coefficients are also real-
valued, c = c̄. This entails that D(−z̄) = ∑

k∈Z dke−2π ikz̄ = ∑
k∈Z dke2π ikz = D(z)

and (13) becomes the identity

R(z) = D(z)2 . (14)

The uniqueness of f up to a sign is now immediate: assume that two entire (non-zero)
functions D1 and D2 satisfy D2

1 = D2
2 = R. Then (D1 − D2)(D1 + D2) ≡ 0. Since

the ring of entire functions does not have any zero divisors, we conclude that either
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D1 = D2 or D1 = −D2 on C. Using formulas (4)–(6) we find that the coefficients c
of f , and thus f , are uniquely determined by the phaseless samples | f (λ)|, λ ∈ �,
up to a sign. Theorem 1 is therefore proved. ��

Alternatively, one could prove Theorem 1 by verifying the following criterium for
phase-retrieval [4,6]: � permits phase-retrieval, if and only if � satisfies the comple-
ment property, i.e., if S ⊆ �, then either MS = { f ∈ V∞

β (φγ ) : f (λ) = 0, ∀λ ∈
S} = {0} or M�\S = {0}. A direct proof of the complement property can be based on
Steps 1 and 2 and is then similar to the argument in [4, Thm. 2.5].

Next we show that the density condition is sharp. Let � = (λ j ) j∈Z ⊆ R be an
increasing sequencewith uniform density D(�) < 2. Thismeans that the upper Beurl-
ing density D+(�) := lim supr→∞ supx∈R #�∩[x−r ,x+r ]

2r coincides with the lower
Beurling density and D(�) = D+(�) = D−(�) < 2.

We will produce a counter-example to the complement property. Set S = {λ2 j :
j ∈ Z} and Sc = {λ2 j+1 : j ∈ Z}. Then S and Sc are disjoint and D(S) = D(Sc) =
1
2 D(�) < 1. By the necessary density condition for sampling in shift-invariant spaces,
e.g. [5], S and Sc cannot be sampling sets for V 2

1 (φγ ), but they are interpolating sets
by [12, Thm. 1.3]. These facts imply that both maps f → (

f (λ)
)
λ∈S and g →

(
g(λ)

)
λ′∈Sc are onto �2(S) with non-trivial kernel. Consequently, there exist non-zero

functions f , g ∈ V 2
1 (φγ ) ⊆ V∞

1 (φγ ) such that f (λ) = 0 for λ ∈ S and g(λ′) = 0 for
λ′ ∈ Sc. By taking the real part of f and g, we may further assume that f and g are
real-valued. Since for λ ∈ � either f (λ) = 0 or g(λ) = 0, we obtain

| f (λ) + g(λ)|2 = | f (λ)|2 + 2 f (λ)g(λ) + |g(λ)|2
= | f (λ) − g(λ)|2 .

By construction, f + g and f − g are linearly independent, and thus sign-retrieval is
not unique.

2 Complex-Valued Functions

Theorem 1 states that the unsigned samples {| f (λ)|} determine a unique real-valued
function ± f ∈ V∞

β (φγ ). To treat complex-valued functions in V∞
β (φγ ), we use a

factorization of entire periodic functions that is intermediate between the Hadamard
factorization and a Blaschke product.

Lemma 6 Let D be a non-zero entire function of order 2 satisfying the periodicity
D(z + l) = D(z) for all z ∈ C and l ∈ Z. Let W+ be the zeros of D in {x + iy �=
0 : −1/2 < x ≤ 1/2, y ≥ 0} and W− be the zeros of D in {x + iy : −1/2 <

x ≤ 1/2, y < 0}, and m ∈ N ∪ {0} the multiplicity of z = 0. Then D possesses the
factorization

D(z) = C
(
e2π i z − 1

)m
e2π ir z

∏

w∈W+

e−2π i z − e−2π iw

1 − e−2π iw

∏

w∈W−

e2π i z − e2π iw

1 − e2π iw
(15)
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for some r ∈ Z and C ∈ C. The product converges uniformly on compact sets.

We postpone the proof of this lemma to Sect. 3 and first discuss its application to
the phase-retrieval problem.

The factorization (15) serves to find all solutions D to the equation D(z)D(−z̄) =
R(z) in (13). The spirit of this argument is similar to the analysis in [1,2,15,17,21].

To avoid spelling out the product in (15), we use the notation


(W ,m, r) = (
e2π i z − 1

)m
e2π ir z

∏

w∈W+

e−2π i z − e−2π iw

1 − e−2π iw

∏

w∈W−

e2π i z − e2π iw

1 − e2π iw
. (16)

Here W = W+ ∪ W− is understood as a sequence {w j : j ∈ N} of zeros, where
elements may be repeated according to the (finite) multiplicity of the zero. Since
D is of order 2, we know that

∑
j∈N |w j |−3 < ∞. See also (21) below. With this

understanding we obtain the following convenient formulas for 
(W ,m, r).

(i) Let J z = −z̄ be the reflection of z ∈ C about the imaginary axis and D∗(z) =
D(−z̄). If φ(z) = e2π i z−e2π iw

1−e2π iw
, then φ∗(z) = φ(−z̄) = e2π i z−e−2π iw̄

1−e−2π iw̄ . Consequently


(W ,m, r)∗ = 
(JW ,m, r) . (17)

(ii) Multiplicativity: Let V ∪̇W be the concatenation {v1, w1, v2, w2, . . . } of two
sequences. Note that if the sequences are disjoint as sets, then V ∪̇W = V ∪ W .
If f = 
(V ,m, r) and h = 
(W ,m′, r ′), then

f h = 
(V ∪̇W ,m + m′, r + r ′) . (18)

Now let D = 
(W ,m, r) be given. Then

R = DD∗ = 
(W ,m, r)
(JW ,m, r) = 
(W ∪̇JW , 2m, 2r) .

This implies that the order of the zero at 0 is even and that the factor e2π i z occurswith an
even power. Furthermore, since J (iv) = iv and J (1/2+ iv) = −1/2+ iv ≡ 1/2+ iv
for v ∈ R, the zeros on the lines iR and 1/2 + iR also occur with even multiplicity
in R.

Now assume that R = 
(Z , 2m, 2r) is given so that its zero set is symmetric
Z = J Z and that the zeros on the lines iR and 1/2 + iR have even multiplicity.

Let S+ = {x + iy : 0 < x < 1/2} and S0 = iR ∪ (1/2 + iR). Let Z0 be the zeros
of R in Z ∩ S0 counted with half their multiplicity. In our notation this means that
Z0∪̇Z0 = Z ∩ S0. Next choose V ⊆ Z ∩ S+ arbitrary and set

W = V ∪̇J
(
(Z \ V ) ∩ S+

)
∪̇Z0 (19)

DV = 
(W ,m, r) . (20)
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Then

W ∪̇JW =
(
V ∪ J

(
(Z \ V ) ∩ S+

) ∪ Z0

)
∪

(
JV ∪ (

(Z \ V ) ∩ S+
) ∪ J Z0

)

=
((
V ∪ (Z \ V )

) ∩ S+
)

∪ J
((
V ∪ (Z \ V )

) ∩ S+
)

∪ Z0∪̇J Z0

= (Z ∩ S+) ∪ J (Z ∩ S+) ∪ (Z ∩ S0) = Z ,

and consequently

DV D∗
V = 
(W ,m, r)
(JW ,m, r) = 
(W ∪̇JW , 2m, 2r) = R .

Thus every choice V of zeros of R in the strip S+ with the corresponding function
DV yields a valid factorization of R. Clearly, different zeros sets V1, V2 (counting
multiplicities) yield DV1 �= DV2 .

Conversely, every factorization DD∗ = R arises in thisway, becausewe can always
write the zero set of D as W = (W ∩ S+) ∪ (W ∩ S0) ∪ (W ∩ J S+) and we may
choose V = W ∩ S+ to recover W from Z = W ∪ JW .

To summarize, we state the following lemma.

Lemma 7 Let R = R∗ = 
(Z , 2m, 2r) be a periodic entire function of order 2 with
all zeros on iR ∪ 1/2 + iR of even multiplicity. Then every solution of DD∗ = R is
given by a unimodular multiple of some DV , as defined in (19) and (20).

If |R(ξ + iy)| = O(e2π
2 y2/γ ), then |DV (ξ + iy)| = O(eπ2 y2/γ ).

Proof Since DV is entire and periodic, its growth is |DV (±ξ + iy)| = O(eψ(y)).
Therefore |DV (ξ + iy)DV (−ξ + iy)| = O(e2ψ(y)) = O(e2π

2 y2/γ ), whence the
growth of DV follows. ��

The analysis of the factorization DD∗ = R is the key tool to find all possible
solutions to the phase-retrieval problem for complex-valued functions in V∞

β (φγ ).
In contrast to the uniqueness among real-valued solutions, there are always many
substantially different solutions. In principle, these can be found by the following
procedure.

Reconstruction procedure. Let � ⊆ R with density D−(�) > 2. Let f ∈
V∞
1 (φγ ) be arbitrary and {| f (λ)| : λ ∈ �} be given. To find all functions h ∈ V∞

1 (φγ )

that recover the phaseless values |h(λ)| = | f (λ)|, λ ∈ � we proceed as follows:

(i) Find the coefficient sequence r̃ ∈ �∞(Z) solving the sampling problem

| f (λ)|2 =
∑

n∈Z
r̃ne

−2γ (λ−n/2)2 λ ∈ �,

for some function | f |2 ∈ V∞
1/2(φ2γ ).

(ii) Let Z = {z j : j ∈ N} be the zero set of R(z) = ∑
n∈Z r̃ne−γ n2/2 e2π inz in the

vertical strip S = {x + iy ∈ C : −1/2 < x ≤ 1/2}. Then R∗ = R by (13) and
R = 
(Z , 2m, 2r) for some m, r ∈ N by Lemma 6.
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(iii) Choose V ⊆ Z ∩ S+ and define DV by (20).
(iv) Determine the Fourier coefficients of DV (ξ):

dk =
∫ 1

0
DV (ξ)e−2π ikξ dξ .

and set ck = dkeγ k2 and

fV (x) = α
∑

cke
−γ (x−k)2

for some α ∈ C, |α| = 1. Since |R(ξ + iy)| = O(e2π
2 y2/γ ) by Lemma 2,

|DV (ξ + iy)| = O(eπ2 y2/γ ) by Lemma 7. By Lemma 2 the Fourier coefficients
of DV have Gaussian decay and consequently ck = dkeγ k2 is bounded. It follows
that f ∈ V∞

1 (φγ ). By construction | fV (λ)| = | f (λ)| for all λ ∈ �. Furthermore,
every function h ∈ V∞

1 (φγ ) satisfying |h(λ)| = | f (λ)|, λ ∈ �, must be of the
form fV .

Remark 1. If f is real-valued, then D∗ = D, and its zero set is symmetric,W = JW ,
consequently the zero set Z = W ∪̇JW contains all zeros of D with double
multiplicity. Since every zero has even multiplicity, we can set Z ∩ S+ = V ∪̇V ,
where V are the zeros of R in S+ with half the multiplicity. Equation (19) then
yields W = V ∪ JV ∪ Z0 = JW . The corresponding function DV satisfies
DV = D∗

V , and fV is the real-valued solution of the phase-retrieval problem.
We note that other choices of V yield complex-valued functions fV such that
| fV (λ)| = | f (λ)|.
For real-valued f the steps (i) — (iv) constitute a reconstruction procedure of
f from its unsigned samples | f (λ)|, λ ∈ �. Whereas Theorem 1 only asserts
the uniqueness up to a sign, the factorization of Lemma 6 also implies a (rather
theoretical) reconstruction.

2. If f ∈ V∞
1 (φγ ) is real-valued and even, then ck = ck = c−k . Consequently,

d̂(ξ) = ∑
k∈Z cke−γ k2e2π ikξ = d̂(−ξ) is real-valued, even, and smooth, and

r̂(ξ) = d̂(ξ)2 ≥ 0. Thus r̂ ≥ 0, and the only smooth solutions are d̂ = ±r̂1/2. In
this case we can obtain the coefficients ck directly as the Fourier coefficients of
r̂1/2 via

cke
−γ k2 =

∫ 1

0
r̂(ξ)1/2 e−2π ikξ dξ .

Of course, for the boundedness of these coefficients we still need the analysis that
led to Lemma 7.

3. Stability. The procedure in steps (i) — (iv) is only of theoretical interest, because
it is well-known that phase-retrieval in infinite dimensions is inherently unstable
[3,4,6]. This is completely obvious in the reconstruction procedure in the shift-
invariant space V∞

1 (φγ ): numerically, the transition from the relevant coefficient

sequence c to d, given by dk = cke−γ k2 amounts to the truncation of c to a finite
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sequence. Once the sequence d has been obtained (steps (iii) and (iv) above), the
transition ck = dkeγ k2 leads to an amplification of all accumulated errors. Yet,
despite the inherent instability, several steps in the above reconstruction of f are
stable. The relevant estimate is (11), for the reconstruction of r̃ from the phaseless
samples | f (λ)|. For coefficient sequences c with small support the reconstruction
promises to be reasonably effective, which is consistent with the arguments in [3]
and [14].

3 Proof of the Factorization Lemma

Aswe do not know a precise citation for the statement, we include a proof of Lemma 6.
We need to show that every periodic entire function D of order 2 (more generally, of
finite order) can be factored into a product with factors of the form

e−2π i z − e−2π iw

1 − e−2π iw or
e2π i z − e2π iw

1 − e2π iw
,

where w is a zero of D in the vertical strip S = {x + iy ∈ C : −1/2 < x ≤ 1/2}.
The choice of the signs depends on the sign of Imw. As we will see in part (vi) of the
proof, the sign is determined by the asymptotic behavior of cot πw as Imw → ±∞.

Proof (i) Since D is periodic, its zero set is periodic and, by definition ofW± the zero
set is

⋃
w∈W+∪W−(w + Z). Since D is entire of order 2, the convergence exponent of

its zeros is > 2 [20]. This implies that

∑

w∈W ,w �=0

∑

k∈Z

1

|w + k|3 < ∞ . (21)

(ii) Let

D̃(z) = (
e2π i z − 1

)m ∏

w∈W+

e−2π i z − e−2π iw

1 − e−2π iw

∏

w∈W−

e2π i z − e2π iw

1 − e2π iw

be the main part of the right-hand side of (15). We first check the convergence of the
product. For this we need to verify that

MR := sup
|z|≤R

∑

w∈W−

∣
∣e

2π i z − e2π iw

1 − e2π iw
− 1

∣
∣
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is finite for every R > 0. This expression is simply

MR = sup
|z|≤R

|e2π i z − 1|
∑

w∈W−

1

|1 − e2π iw|

≤ sup
|z|≤R

|e2π i z − 1|
∑

w∈W−

1

e2π |Imw| − 1
. (22)

Since for w ∈ W−, e−Imw ≥ 1 + |Imw|3/6 and |Rew| ≤ 1/2, the sum in (22)
converges by (21). Thus

∏
w∈W− converges uniformly on compact sets. By a similar

argument the product
∏

w∈W+
e−2π i z−e−2π iw

1−e−2π iw converges uniformly on compact sets.

Consequently D̃ is an entire function. Clearly D̃ is periodic with period 1, and its zero
set in the strip S is precisely W− ∪ W+ (∪{0}, if 0 is a zero). By construction, D and
D̃ possess the same zero set with the same multiplicities.

(iii) Next we use the Hadamard factorization theorem to factorize D with respect
to its zeros as follows:

D(z) =
(
z

∏

k∈Z,k �=0

(
1 − z

k

)
e

z
k + z2

2k2
)m ∏

w∈W

∏

k∈Z

(
1 − z

w + k

)
e

z
w+k + z2

2(w+k)2 ep(z),

where m is the order of the zero at 0 and p is a quadratic polynomial.
We note right away that the first factor is a power of

G(z, 0) := z
∏

k∈Z,k �=0

(
1 − z

k

)
e

z
k + z2

2k2 = 1
π
sin π z eπ2z2/6

by the factorization of the sine-function. See [20], Section 9.2, or [16], Lecture 4.
(iv) For the factors with w �= 0 we introduce

G(z, w) =
∏

k∈Z

(
1 − z

w + k

)
exp

( z

w + k
+ z2

2(w + k)2

)
. (23)

Then G(z, w) has simple zeros at w + Z, as does the function sin(π(z − w)). Using
the identities,

∑

k∈Z

1

w + k
= lim

n→∞
∑

|k|≤n

1

w + k
= π cot πw (24)

∑

k∈Z

1

(w + k)2
= π2

sin2 πw
, (25)

for w �= 0, e.g., [10,20], we identify G(z, w) as

G(z, w) = sin π(z − w)

sin(−πw)
exp

(
π z cot πw + π2z2

2 sin2 πw

)
. (26)
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This is easily seen by calculating G(z, w)
sin(−πw)
sin π(z−w)

with the factorization of sin π z.
The quadratic polynomial in the exponent is obtained by substituting (24) and (25) in
(23).

(v) Now consider the ratio of corresponding factors in D and D̃ and simplify the
expression. We argue only for w ∈ W+.

G(z, w)(1 − e−2π iw)

e−2π i z − e−2π iw = sin π(z − w)

sin(−πw)

eiπw − e−iπw

e−iπ(z−w) − eiπ(z−w)

e−iπw

e−iπ ze−iπw

eπ z cot πw e
π2z2

2 sin2 πw

= eπ z(cot πw+i)eπ2z2/(2 sin2 πw) ,

whereas for w ∈ W− we have

G(z, w)(1 − e2π iw)

e2π i z − e2π iw
= eπ z(cot πw−i)eπ2z2/(2 sin2 πw) .

Next we take the product overw ∈ W− and assume for now that the product converges.
Then we obtain

∏

w∈W+

G(z, w)(1 − e−2π iw)

e−2π i z − e−2π iw

= exp
(
π z

∑

w∈W+
(cot πw + i) + π2z2

∑

w∈W+

1

2 sin2 πw

)
= eq+(z) (27)

for some quadratic polynomial q+. Likewise

∏

w∈W−

G(z, w)(1 − e2π iw)

e2π i z − e2π iw
= eq−(z)

for a quadratic polynomial q−, and G(z, 0)/
(
e2π i z − 1

) = (2π i)−1 exp
(

− iπ z +
π2z2/6

)
= eq0(z). We therefore obtain that

D(z)

D̃(z)
= ep(z)+q+(z)+q−(z)+q0(z) . (28)

The left-hand side is an entire function with period 1, whereas the right-hand side is
the exponential of a quadratic polynomial. It is now easy to see that eP is periodic
for a polynomial P , if and only if P(z) = 2π ir z for some r ∈ Z. We conclude that
D(z) = D̃(z)e2π ir z , and this is precisely (15).
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(vi) It remains to be shown that the product in (27) converges. First,

∑

w∈W+
| cot πw + i | =

∑

w∈W+

∣
∣
∣i
eiπw + e−iπw

eiπw − e−iπw
+ i

∣
∣
∣

= 2
∑

w∈W+

|eiπw|
|eiπw − e−iπw| = (∗) . (29)

Since |eiπw| = e−π Imw and |eiπw −e−iπw| ≥ |e−iπw|−|eiπw| ≥ eπ Imw −e−π Imw ≥
1
2e

π Imw for Imw ≥ 1, say, we obtain

(∗) ≤ C
∑

w∈W+
e−2π Imw .

Since the sum in (29) is over the terms with Imw > 0 with |Rew| ≤ 1/2 and∑
w∈W |w|−3 < ∞, it is finite. For the terms in W− our choice of the signs yields the

same conclusion. Finally
∑

w∈W | 1
2 sin2 πw

| is finite by the same reason. ��

Acknowledgements Open access funding provided by University of Vienna. The author would like to
thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during
the programme “Approximation, sampling and compression in data science” where work on this paper was
undertaken. Special thanks go to Felix Voigtländer for his critical reading and his detailed comments that
led me to correct and expand Sect. 2.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Akutowicz, E.J.: On the determination of the phase of a Fourier integral. I. Trans. Am. Math. Soc. 83,
179–192 (1956)

2. Akutowicz, E.J.: On the determination of the phase of a Fourier integral. II. Proc. Am. Math. Soc. 8,
234–238 (1957)

3. Alaifari, R., Daubechies, I., Grohs, P., Thakur, G.: Reconstructing real-valued functions from unsigned
coefficients with respect to wavelet and other frames. J. Fourier Anal. Appl. 23(6), 1480–1494 (2017)

4. Alaifari, R., Grohs, P.: Phase retrieval in the general setting of continuous frames for Banach spaces.
SIAM J. Math. Anal. 49(3), 1895–1911 (2017)

5. Aldroubi, A., Gröchenig, K.: Beurling-Landau-type theorems for non-uniform sampling in shift invari-
ant spline spaces. J. Fourier Anal. Appl. 6(1), 93–103 (2000)

6. Cahill, J., Casazza, P.G., Daubechies, I.: Phase retrieval in infinite-dimensional Hilbert spaces. Trans.
Am. Math. Soc. Ser. B 3, 63–76 (2016)

7. Chen, Y., Cheng, C., Sun, Q., Wang, H.: Phase retrieval of real-valued signals in a shift-invariant space.
Appl. Comput. Harmon. Anal. 49(1), 56–73 (2020)

http://creativecommons.org/licenses/by/4.0/


Journal of Fourier Analysis and Applications (2020) 26 :52 Page 15 of 15 52

8. Cheng, C., Jiang, J., Sun, Q.: Phaseless sampling and reconstruction of real-valued signals in shift-
invariant spaces. J. Fourier Anal. Appl. 25(4), 1361–1394 (2019)

9. Cheng, C., Sun, Q.: Stable Phaseless Sampling and Reconstruction of Real-Valued Signals with Finite
Rate of Innovations. (2018) Preprint, arXiv:1801.05538

10. Conway, J.B.: Functions of One Complex Variable, second edn. Springer, New York (1978)
11. deBoor, C., DeVore, R.A., Ron,A.: The structure of finitely generated shift-invariant spaces in L2(Rd ).

J. Funct. Anal. 119(1), 37–78 (1994)
12. Gröchenig, K., Romero, J., Stöckler, J.: Sampling theorems for shift-invariant spaces, Gabor frames,

and totally positive functions. Invent. Math. 211(3), 1119–1148 (2018)
13. Grohs, P., Koppensteiner, S., Rathmair, M.: Phase retrieval: uniqueness and stability. SIAMRev. 62(2),

301–350 (2020)
14. Grohs, P., Rathmair, M.: Stable Gabor phase retrieval and spectral clustering. Commun. Pure Appl.

Math. 72(5), 981–1043 (2019)
15. Jaming, P., Kellay, K., Perez III, R.: Phase retrieval for wide band signals. J. Fourier. Anal. Appl.

(2020). https://doi.org/10.1007/s00041-020-09767-1
16. Levin, B.Y.: Lectures on entire functions. American Mathematical Society, Providence, RI. In collab-

oration with and with a preface by Yu. Lyubarskii, M. Sodin and V. Tkachenko, Translated from the
Russian manuscript by Tkachenko (1996)

17. McDonald, J.N.: Phase retrieval and magnitude retrieval of entire functions. J. Fourier Anal. Appl.
10(3), 259–267 (2004)

18. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N., Miao, J., Segev, M.: Phase retrieval with
application to optical imaging: a contemporary overview. IEEE Signal Process. Mag. 32(3), 87–109
(2015)

19. Shenoy, B.A., Mulleti, S., Seelamantula, C.S.: Exact phase retrieval in principal shift-invariant spaces.
IEEE Trans. Signal Process. 64(2), 406–416 (2016)

20. Simon, B.: Basic Complex Aanalysis A Comprehensive Course in Analysis, Part 2A. American Math-
ematical Society, Providence, RI (2015)

21. Thakur, G.: Reconstruction of bandlimited functions from unsigned samples. J. Fourier Anal. Appl.
17(4), 720–732 (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://arxiv.org/abs/1801.05538
https://doi.org/10.1007/s00041-020-09767-1

	Phase-Retrieval in Shift-Invariant Spaces with Gaussian Generator
	Abstract
	1 Phase-Retrieval for Real-Valued Functions
	2  Complex-Valued Functions
	3 Proof of the Factorization Lemma
	Acknowledgements
	References




