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Abstract
We generalize three main concepts of Gabor analysis for lattices to the setting of
model sets: fundamental identity of Gabor analysis, Janssen’s representation of the
frame operator and Wexler–Raz biorthogonality relations. Utilizing the connection
between model sets and almost periodic functions, as well as Poisson’s summations
formula for model sets we develop a form of a bracket product that plays a central role
in our approach. Furthermore, we show that, if a Gabor system for a model set admits
a dual which is of Gabor type, then the density of the model set has to be greater than
one.

Keywords Gabor frames ·Model sets · Almost periodic functions · Poisson’s
summation formula

Mathematics Subject Classification 42B05 · 42B35 · 42C15 · 43A60

1 Introduction

Oneof the central themeswithinGabor analysis for lattices is a duality theory forGabor
frames, including Wexler–Raz biorthogonality relations [28] and Janssen’s represen-
tation of a Gabor frame operator [17]. These results are closely connected with the
so-called fundamental identity of Gabor analysis, that can be derived from an applica-
tion of Poisson’s summation formula for the symplectic Fourier transform [8]. These
duality conditions allow us for example to specify whether a given Gabor system is
a tight frame or whether two Gabor systems are dual to each other. An immediate
consequence of the duality theory one can obtain necessary density conditions on a
lattice so that a given Gabor system forms a frame. In this exposition we leave the
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setting of a lattice and consider a certain type of irregular sets of time-frequency shifts,
namely model sets.

The first examples of model sets were studied by Meyer in [22]. Meyer thought of
model sets as generalizations of lattices which retain enough lattice-like structure to
be useful for studying sampling problems in harmonic analysis [20,23]. The crucial
property of model sets is that there exists a form of Poisson’s summation formula,
which in turn will allow us to derive analogous duality theory as in the case of Gabor
analysis for lattices.

First work on Gabor frames for model sets was done by Kreisel [18], where he
showed how Gabor frames for a simple model set can be made compatible with its
topological dynamics and derived existence conditions formultiwindowGabor frames
for model sets. We will use some of his results here. A constructive approach, that is a
characterization of tight and dual frames of semi-regular Gabor systems (where time
shifts come from a lattice, and frequency shifts come from a model set, or vice versa),
was recently obtained in [21].

For general irregular sets of time-frequency shifts, that are however discrete and
relatively separated, it is difficult to provide any constructive results as the tools to deal
with such sets are missing. However, certain extensions into irregular Gabor frames
were undertaken, for example in [9] or [12]. In [9], the author gave a characterization
of the weighted irregular Gabor tight frame and dual systems in L2(Rd) in terms of the
distributional symplectic Fourier transform of a positive Borel measure on R

2d in the
casewhere thewindowbelongs to the Schwartz class.More recently in [13] the authors
study nonuniform sampling in shift invariant spaces and construct semi-regular Gabor
frames with respect to the class of totally positive functions. Their results are Beurling
type results, expressed by means of density of the sampling sets.

We utilize the connection betweenmodel sets and almost periodic functions and use
harmonic analysis of the latter to develop a certain form of duality theory for Gabor
frames for model sets. We rely strongly on Poisson’s summation formula for model
sets to introduce the so-called bracket product, in analogy to the bracket product for
lattices introduced in [6] to study shift-invariant spaces, or later in multi-dimensional
setting to study frames of translates [14,19].

Almost periodic functions were recently investigated in the connection with Gabor
frames in [4,10,26]. As the space of almost periodic functions is non-separable, it
can not admit countable frames, and the problem arises in which sense frame-type
inequalities are still possible for norm estimation in this space [4,10,26]. In [4] the
authors also provide Gabor frames for a suitable separable subspaces of the space of
almost periodic functions. We, on the other hand, use almost periodic functions as a
tool to develop existence results for irregular Gabor frames for the space of square
integrable functions.

The article is organized as follows. In Sect. 2 we establish some notations and
definitions that we will use throughout the article. In Sect. 3 we derive main identities
of Gabor analysis for lattices using a different approach than the one presented in the
literature, namely by constructing a certain bracket product. We introduce model sets
in Sect. 4, and we also shortly present main facts from the theory of almost periodic
functions and point out some connections between the two. Section 5 is devoted to
developing a technical tool, that is a bracket product for model sets, that we later use
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in Sect. 6 to obtain fundamental identity of Gabor analysis, Janssen representation and
Wexler–Raz biorthogonality relations for Gabor systems for model sets.

2 Notation and Preliminaries

We will work with the Hilbert space of square integrable functions on L2(Rd). The
key element in time-frequency analysis is the time-frequency shift operator π(z),
z = (x, ω) ∈ R

2d , which acts on L2(Rd) by

π(z) f (t) = MωTx f (t) = e2π iω·t f (t − x) .

Here Mω denotes the modulation operator and Tx the translation operator which are
defined as

Tx f (t) = f (t − x) and Mω f ( f ) = e2π iω·t f (t) .

We define a Fourier transform on L2(Rd) as

̂f (ζ ) =
∫

Rd
f (t)e−2π i t ·ζ dt ,

and denote the inverse Fourier transform of f by f̌ . In the sequel we will distinguish
between Fourier transform on L2(Rd) and Fourier transform on L2(R2d) by writing
F f for the latter, f ∈ L2(R2d). The Fourier transform has a property of interchanging
translation and modulation, that is

T̂x f = M−x ̂f and M̂ω f = Tω
̂f .

The translation and modulation operators obey the following commutation relation

MωTx = e2π i x ·ωTx Mω .

Combining the last two properties, we have that

̂π(x, ω) f = e2π i x ·ωπ(ω,−x)̂f and ˇπ(x, ω) f = e2π i x ·ωπ(−ω, x) f̌ .

Given a non-zero function g ∈ L2(Rd), the short-time Fourier transform of f ∈
L2(Rd) with respect to the window g, is defined as

Vg f (x, ω) :=
∫

Rd
f (t)g(t − x)e−2π iω·t dt = 〈 f , π(z)g〉 , z = (x, ω) ∈ R

2d .

We define the modulation spaces as follows: fix a non-zero Schwartz function g ∈
S(Rd), and let

M p(Rd) := { f ∈ S ′(Rd) : Vg f ∈ L p(Rd)
}

, 1 ≤ p ≤ ∞
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with the norm ‖ f ‖M p = ‖Vg f ‖p. Different choices for g give rise to equivalent norms
on M p(Rd). For p = 2, we have M2(Rd) = L2(Rd). The space M1(Rd), known as
Feichtinger’s algebra, can also be characterized as

M1(Rd) := { f ∈ L2(Rd) : ‖V f f ‖1 <∞} .

Proposition 2.1 [11] The space M1(Rd) has the following properties:

(i) M1(Rd) is a Banach algebra under pointwise multiplication.
(ii) M1(Rd) is a Banach algebra under convolution.
(iii) M1(Rd) is invariant under time-frequency shifts.
(vi) M1(Rd) is invariant under Fourier transform.

M1(Rd) contains the Schwartz space S(Rd) and it is dense in L p(Rd), 1 ≤ p < ∞,
therefore it is a very useful space in the time-frequency analysis. This will be the space
of windows g.

Another collection of function spaces that will be useful in our calculations are the
amalgamspacesW(L p, �q)(Rd), 1 ≤ p, q ≤ ∞. The amalgamspaceW(L p, �q)(Rd)

is the space of functions f such that

‖ f ‖W(L p,�q )(Rd ) :=
⎛

⎝

∑

k∈Zd

‖ f 1k‖q
p

⎞

⎠

1/q

,

where 1k is the characteristic function of the cube [0, 1]d + k, k ∈ Z
d . Different parti-

tions of R
d give equivalent norms. The spaceW(L∞, �1)(Rd), which is a subspace of

L1(Rd), is referred to as Wiener’s algebra, and will be denoted byW(Rd). It consists
of all f ∈ L∞(Rd) such that

‖ f ‖W(Rd ) = ‖ f ‖W(L∞,�1)(Rd ) :=
∑

k∈Zd

‖ f 1k‖∞ .

Moreover, we have W(Rd) ⊆ W(L∞, �2)(Rd). The following convolution relation
will be often used:

L1 ∗W ⊆W .

For a function f ∈ M1(Rd) it follows that f ∈ W(L∞, �1)(Rd) and ̂f ∈
W(L∞, �1)(Rd), [11].

Let C0(R
d) be the space of all continuous functions that vanish at infinity. Then

the closed subspace of W(Rd) consisting of continuous functions is W(C0, �
1)(Rd).

Continuity of elements in W(L∞, �1)(Rd) allows for pointwise evaluations, and we
have (see Proposition 11.1.4 in [11]): if F ∈W(C0, �

1)(Rd), then F |� ∈ �1(�), for
� any discrete relatively separated set in R

d with the norm estimate

∑

λ∈�

|F(λ)| ≤ rel(�)‖F‖W(Rd ) .
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A discrete subset � of R
d is relatively separated if

rel(�) := sup{#{� ∩ B(x, 1)} : x ∈ R
d} <∞ ,

where B(x, 1) is a ball of radius 1 in R
d centered at x .

There are two more time frequency representations of f that we will be using. For
f , g ∈ L2(Rd), the cross-ambiguity function of f and g

A( f , g)(x, ω) =
∫

Rd
f
(

t + x

2

)

g
(

t − x

2

)

e−2π i t ·ω dt ,

and the cross-Wigner distribution of f and g

W( f , g)(x, ω) =
∫

Rd
f
(

x + t

2

)

g
(

x − t

2

)

e−2π i t ·ω dt .

The three time-frequency representations, Vg f , A( f , g) and W( f , g) are related to
each other. Before we state the relationships, we define the rotation U = UJ of a
function F on R

2d as

UF(x, ω) = UJ F(x, ω) = F(J (x, ω)T ) = F(ω,−x) with J =
(

0 I
−I 0

)

,

where I is the d × d identity matrix. Then U−1 = U−1J = U−J . In the following
two propositions we list the properties of the cross-ambiguity function and the cross-
Wigner distribution that we will be using throughout the exposition. For the proofs we
refer the reader to [11].

Proposition 2.2 For f , g ∈ L2(Rd) the cross-ambiguity function has the following
properties.

(a) A( f , g) is uniformly continuous on R
2d .

(b) A( f , g)(x, ω) = eπ i x ·ωVg f (x, ω).
(c) A( f , g)∗ = A(g, f ), where A( f , g)∗(x, ω) = A( f , g)(−x,−ω) is the involu-

tion.
(d) A(π(x, ω) f , g)(t, ζ ) = eπ i t ·ωe−π i x ·(ζ−ω)A( f , g)(t − x, ζ − ω) for (x, ω) ∈

R
2d .

(e) A( f , g) = F−1U−1W( f , g).

Moreover, if f , g ∈ M1(Rd), then A( f , g) ∈ W(C0, �
1)(R2d), and by b), also

Vg f ∈W(C0, �
1)(R2d).

Proposition 2.3 For f , g ∈ L2(Rd) the cross-Wigner distribution has the following
properties.

(a) W( f , g) is uniformly continuous on R
2d .

(b) W( f , g) =W(g, f ).
(c) W(̂f , ĝ) = U−1W ( f , g).
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(d) W( f , g) = FUA( f , g).
(e) For (x, ω) ∈ R

2d and (x ′, ω′) ∈ R
2d , we have

W(Tx Mω f ,Tx ′Mω′g)(t, ζ )

= e−π i(x+x ′)·(ω−ω′)e2π i t ·(ω−ω′)e−2π iζ ·(x−x ′)

× W( f , g)
(

t − x + x ′

2
, ζ − ω + ω′

2

)

f) Moyal’s formula: for f1, g1 ∈ L2(Rd),

〈W ( f , g), W ( f1, g1)〉L2(R2d ) = 〈 f , f1〉〈g, g1〉 .

Moreover, if f , g ∈ M1(Rd), then W( f , g) ∈W(C0, �
1)(R2d).

We note here that Moyal’s formula also holds for the cross-ambiguity function and the
short-timeFourier transform.Wealsomention the following tensor-product properties:
if Z = (z, z̃) with z ∈ R

2n , z̃ ∈ R
2d−2n and ψ1, φ1 ∈ M1(Rn), ψ2, φ2 ∈ M1(Rd−n),

then

A(ψ1 ⊗ ψ2, φ1 ⊗ φ2)(Z) = (A(ψ1, φ1)⊗A(ψ2, φ2)
)

(z, z̃)

= A(ψ1, φ1)(z)A(ψ2, φ2)(z̃) .

Similarly for the cross-Wigner distribution and short-time Fourier transform.
Before we turn to Gabor systems, we need one more result. It is originally stated for

the short-time Fourier transform, but we state it here for the cross-ambiguity function.
The proof is the same.

Lemma 2.4 [7] Let f , g ∈ M1(Rd). Then A( f , g) ∈ M1(R2d).

Themain object of our study here areGabor systems. Let� be a relatively separated
subset of R

2d . A Gabor system is a collection of time-frequency shifts of one or more
window functions gi ∈ M1(Rd), i = 1, . . . , M , with respect to � ⊂ R

2d , and it is
denoted by

G(g1, . . . , gM ;�) = {π(λ)gi : i = 1, . . . , M, λ ∈ �} .

The analysis operator and the synthesis operator for a Gabor systemG(g1, . . . , gM ;�)

are defined as

Cg,� f := (〈 f , π(λ)gi 〉)λ∈�;i=1,...,M

Dg,�c :=
M
∑

i=1

∑

λ∈�

cλπ(λ)gi

are bounded between M p(Rd) and �p(�) spaces, with estimates

‖Cg,� f ‖�p ≤ rel(�) ‖ f ‖M p max
i=1,...,M

‖gi‖M1



2576 Journal of Fourier Analysis and Applications (2019) 25:2570–2607

‖Dg,�c‖M p ≤ rel(�) ‖c‖�p max
i=1,...,M

‖gi‖M1

A Gabor system G(g1, . . . , gM ;�) with gi ∈ M1(Rd), i = 1, . . . , M , will be called
an M p-frame if Cg,� is bounded below on M p(Rd). This is equivalent to having
constants Ag, Bg > 0 so that for all f ∈ M p(Rd)

√

Ag‖ f ‖M p ≤ ‖S�
g f ‖M p ≤ √Bg‖ f ‖M p ,

where S�
g is a frame operator given by

S�
g f =

M
∑

i=1

∑

λ∈�

〈 f , π(λ)gi 〉π(λ)gi . (1)

In this case the frame operator is invertible on M p(Rd). Theorem 3.2 in [12] states
that when each gi ∈ M1(Rd), i = 1, . . . , M , then G(g1, . . . , gM ;�) is an M p-frame
for some p ∈ [1,∞], if and only if it is an M p-frame for all p. The constants Ag

and Bg are called lower and upper frame bounds, respectively. If Ag = Bg then the
frame is called a tight Gabor frame, and if Ag = Bg = 1, a normalized tight Gabor
frame.

When G(g1, . . . , gM ;�) is an M p-frame for some p ∈ [1,∞], then we have a
frame decomposition

f =
M
∑

i=1

∑

λ∈�

〈 f ,
(

S�
g

)−1
π(λ)gi 〉π(λ)gi , for all f ∈ M p(Rd). (2)

The sequence {(S�
g

)−1
π(λ)gi : i = 1, . . . , M, λ ∈ �} is also a frame for M p(Rd),

called the canonical dual frame of G(g1, . . . , gM ;�), and has upper and lower frame
bounds B−1g and A−1g , respectively. If the frame is tight, then

(

S�
g

)−1 = A−1g I , where
I is the identity operator, and the frame decomposition becomes

f = A−1g

M
∑

i=1

∑

λ∈�

〈 f , π(λ)gi 〉π(λ)gi , for all f ∈ M p(Rd) .

In order to use the representation (2) in practice, we need to be able to calculate
(

S�
g

)−1. While the existence of
(

S�
g

)−1 is guaranteed by the frame condition, it
is usually tedious to find this operator explicitly. Moreover, if � is not a lattice
in R

d , then the frame operator of S�
g does not commute with time-frequency

shifts, that is π(β)S�
g �= S�

g π(β) for β ∈ �. Indeed, let β ∈ � and f ∈ L2(Rd),
then
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S�
g π(β) f =

M
∑

i=1

∑

λ∈�

〈π(β) f , π(λ)gi 〉π(λ)gi

=
M
∑

i=1

∑

λ∈�

e−2π iβ1·(λ2−β2)〈 f , π(λ− β)gi 〉π(λ)gi ,

where β = (β1, β2) and λ = (λ1, λ2). On the other hand,

π(β)S�
g f =

M
∑

i=1

∑

λ∈�

〈 f , π(λ)gi 〉π(β)π(λ)gi =
M
∑

i=1

∑

λ∈�

e−2π iβ1·λ2 〈 f , π(λ)gi 〉π(λ+ β)gi

=
M
∑

i=1

∑

λ∈�+β

e−2π iβ1·(λ2−β2)〈 f , π(λ− β)gi 〉π(λ)gi ,

and the two expressions are not equal since � + β �= �. Therefore, the canonical
dual frame {(S�

g

)−1
π(λ)gi : i = 1, . . . , M, λ ∈ �} does not have the same structure

as G(g1, . . . , gM ;�), that is it is not a Gabor frame, and, in order to compute the
canonical dual frame we would have to apply

(

S�
g

)−1 to π(λ)gi , for all i = 1, . . . , M
and all λ ∈ �. Hence, we search for a pair of dual frames, rather than just one frame.
Let G(g1, . . . , gM ;�) and G(h1, . . . , hM ;�) be Gabor systems, then we can define
a mixed frame operator

S�
g,h f =

M
∑

i=1

∑

λ∈�

〈 f , π(λ)gi 〉π(λ)hi

which is a bounded linear operator on M p(Rd). If S�
g,h f = f for every f ∈ M p(Rd),

then we call G(h1, . . . , hM ;�) a generalized dual Gabor frame of G(g1, . . . , gM ;�).

3 Gabor Frames for Lattices: Revised

Before we turn our attention to Gabor frames for model sets, we revisit here known
results for regular Gabor frames, that is where time-frequency shifts come from a
lattice. We present a different approach then the one presented in the literature, by
constructing a bracket product for the time-frequency plane. Alternative, but in some
sense similar approaches, were also developed in [8] and more recently in [16].

Throughout this section � will be a lattice, that is a discrete subgroup of R
2d . A

lattice can be represented by an invertible matrix A ∈ GL(2d, R) and is then given by
� = AZ

2d . We define the volume of a lattice � = AZ
2d by vol(�) = |det(A)|. The

density of a lattice is given by the reciprocal of the volume, that is D(�) = vol(�)−1.
A dual lattice is defined as �∗ = A−T

Z
2d .

A tool that is heavily utilized in time-frequency analysis is the Poisson summation
formula for functions on R

d . However, we will use here Poisson summation formula
for functions on R

2d .
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Theorem 3.1 (Poisson Summation Formula for Lattices) Let � be a lattice in R
2d .

Then, for every F ∈ M1(R2d) we have

∑

λ∈�

F(λ)e−2π iλ·z = vol(�)−1
∑

λ∗∈�∗
FF(z − λ∗) ,

where �∗ is a dual lattice. The identity holds pointwise for all z ∈ R
2d , and both sums

converge uniformly and absolutely z ∈ R
2d .

Let f , g, h ∈ M1(Rd). Then, by Lemma 2.4 A( f , g) and W( f , g) belong to
M1(R2d), and by Poisson summation formula,

∑

λ∈�

A( f , g)(λ)e−2π iλ·z = vol(�)−1
∑

λ∗∈�∗
W(̂f , ĝ)(z − λ∗) , (3)

where we used the relation A( f , g) = F−1W(̂f , ĝ) derived from Proposition 2.2
and Proposition 2.3. Assume that � = AZ

2d , then we can write (3) more explicitly as

∑

n∈Z2d

A( f , g)(An)e−2π i An·z = (det A)−1
∑

n∈Z2d

W(̂f , ĝ)(z − A−T n) . (4)

We are now in the position to define a main ingredient in our approach, the bracket
product. Let f ∈ L2(Rd) and g ∈ M1(Rd). For a fixed z = (x, ω) ∈ R

2d , the
generalized �−bracket product of π(z) f and g is defined as

[

π̂(z) f , ĝ
]

�
(z̃) = vol(�)−1

∑

λ∗∈�∗
M−zW(̂f , ĝ)(z̃ − λ∗) , (5)

where Mz denotes the R
2d modulation by z. It follows from Monotone Convergence

Theorem and the fact thatW(̂f , ĝ) ∈ L1(R2d), that the series (5) converges absolutely
to a function L1(T�∗), T�∗ = R

2d/�∗. When � is represented by a matrix A, we
have T�∗ = A−1T where T is the torus in R

2d . Since
[

π̂(z) f , ĝ
]

�
∈ L1(T�∗), we

can compute the Fourier coefficients

∫

T�∗

[

π̂(z) f , ĝ
]

�
(z̃)e2π i z̃·λ dz̃

= vol(�)−1
∫

T�∗

∑

λ∗∈�∗
M−zW(̂f , ĝ)(z̃ − λ∗)e2π i z̃·λ dz̃

=
∫

R2d
M−zW(̂f , ĝ)(z̃)e2π i z̃·λ dz̃ = F−1M−zW(̂f , ĝ)(λ)

= TzF−1W(̂f , ĝ)(λ) = TzA( f , g)(λ)

= A( f , g)(λ− z) .

Then the application of thePlancherel theorem for Fourier series, gives us the following
proposition.
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Proposition 3.2 Let � be a lattice in R
2d . Fix z ∈ R

2d . Then for all g, h ∈ M1(R2d)

and f1, f2 ∈ L2(R2d), we have

∑

λ∈�

A( f1, g)(λ− z)A( f2, h)(λ− z) =
∫

T�∗

[

π̂(z) f1, ĝ
]

�
(z̃)
[

π̂(z) f2,̂h
]

�
(z̃) dz̃ ,

with the absolute convergence of the integral.

The following two results are the main ingredients in deriving Janssen represen-
tation of the Gabor frame operator S�

g,h and successive characterization of tight and
dual Gabor frames.

Proposition 3.3 Let � be a lattice in R
2d . Assume that f1, f2, g, h ∈ M1(Rd). Then

the function

F(z, z̃) = [π̂(z) f1, ĝ
]

�
(z̃)
[

π̂(z) f2,̂h
]

�
(z̃) (6)

is continuous and periodic, and coincides pointwise with its Fourier series

vol(�)−1
∑

β∗∈�∗

∑

λ∈�

〈

A( f1, g), TλMβ∗A( f2, h)
〉

L2(R2d )
e−2π iλ·z̃ e−2π i z·β∗ . (7)

Proof Let � be a lattice and f1, f2, g, h ∈ M1(Rd). Using Proposition 3.2 and a
change of index, we write explicitely

F(z, z̃) = [π̂(z) f1, ĝ
]

�
(z̃)
[

π̂(z) f2,̂h
]

�
(z̃) dz̃

= vol(�)−2
∑

λ∗,β∗∈�∗
M−zW(̂f1, ĝ)(z̃ − λ∗)M−zW(̂f2,̂h)(z̃ − β∗)

= vol(�)−2
∑

λ∗,β∗∈�∗
W(̂f1, ĝ)(z̃ − λ∗)W(̂f2,̂h)(z̃ − β∗) e−2π i z·(β∗−λ∗)

= vol(�)−2
∑

λ∗,β∗∈�∗
W(̂f1, ĝ)(z̃ − λ∗)W(̂f2,̂h)(z̃ − λ∗ − β∗) e−2π i z·β∗

= vol(�)−1
∑

β∗∈�∗

[

vol(�)−1
∑

λ∗∈�∗
W(̂f1, ĝ)(z̃ − λ∗)Tβ∗W(̂f2,̂h)(z̃ − λ∗)

]

e−2π i z·β∗ .

For a fixed β∗ ∈ �∗, consider the series

Fβ∗(z̃) = vol(�)−1
∑

λ∗∈�∗
W(̂f1, ĝ)(z̃ − λ∗)Tβ∗W(̂f2,̂h)(z̃ − λ∗) .

Since W(̂f1, ĝ) and W(̂f2,̂h) lie in M1(R2d), their product as well. Moreover,

F−1(W(̂f1, ĝ)Tβ∗W(̂f2,̂h)
) = A( f1, g) ∗ (Mβ∗A( f2, h))∗ ∈ M1(R2d) ,



2580 Journal of Fourier Analysis and Applications (2019) 25:2570–2607

since A( f1, g),A( f2, h) ∈ M1(R2d). Therefore, by Poisson summation formula we
can write Fβ∗(z̃) as

Fβ∗(z̃) =
∑

λ∈�

(A( f1, g) ∗ (Mβ∗A( f2, h))∗
)

(λ) e−2π iλ·z̃

=
∑

λ∈�

〈

A( f1, g), TλMβ∗A( f2, h)
〉

L2(R2d )
e−2π iλ·z̃ ,

and F(z, z̃) becomes

F(z, z̃) = vol(�)−1
∑

β∗∈�∗

∑

λ∈�

〈

A( f1, g), TλMβ∗A( f2, h)
〉

L2(R2d )
e−2π iλ·z̃ e−2π i z·β∗ .

(8)
By Lemma 2.4, A( f1, g),A( f2, h) ∈ M1(R2d), and therefore,

VA( f2,h)(A( f1, g))(w, w̃) = e2π iw·w̃〈A( f1, g), π(w, w̃)A( f2, h)
〉

∈ W(C0, �
1)(R2d × R

2d) .

Hence, VA( f2,h)(A( f1, g)) restricted to �×�∗ belongs to �1(�×�∗), and as a con-
sequence, the series (8) defining F(z, z̃) is absolutely convergent. By the uniqueness
of the Fourier series, (8) is the Fourier series of F . ��

Proposition 3.4 Let � be a lattice in R
2d . Assume that gi , hi ∈ M1(R2d), for every

i = 1, . . . , M. Then for every f1, f2 ∈ M1(R2d), the function

N (z) =
M
∑

i=1

∑

λ∈�

〈π(z) f1, π(λ)gi 〉〈π(z) f2, π(λ)hi 〉 (9)

is continuous and periodic, and coincides pointwise with its Fourier series
∑

λ◦∈�◦
̂N (λ◦)e−2π iσ(λ◦,z), with

̂N (λ◦) = vol(�)−1
M
∑

i=1
〈hi , π(λ◦)gi 〉〈π(λ◦) f1, f2〉 , (10)

where �◦ = J�∗ is the adjoint lattice and σ a symplectic form defined as σ(θ, z) =
θ · J z, with θ and z seen as column vectors in R

2d .

Proof Let � be a lattice in R
2d and choose f1, f2 ∈ M1(R2d). Then the function

N (z) is well defined and can be expressed using the mixed frame operator S�
g,h

as N (z) = 〈S�
g,hπ(z) f1, π(z) f2〉. Moreover, using the relations between short time

Fourier transform and cross-ambiguity function, we can write N as
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N (z) =
M
∑

i=1

∑

λ∈�

Vgi (π(z) f1)(λ)Vhi (π(z) f2)(λ)

=
M
∑

i=1

∑

λ∈�

A(π(z) f1, gi )(λ)A(π(z) f2, hi )(λ)

=
M
∑

i=1

∑

λ∈�

A( f1, gi )(λ− z)A( f2, hi )(λ− z) .

For i = 1, . . . , M fixed, let

Ni (z) =
∑

λ∈�

A( f1, gi )(λ− z)A( f2, hi )(λ− z) ,

which is a periodic function. Using Proposition 3.2 and Proposition 3.3, we have

Ni (z) =
∫

T�∗

[

π̂(z) f1, ĝi
]

�
(z̃)
[

π̂(z) f2, ̂hi
]

�
(z̃) dz̃

= vol(�)−1
∫

T�∗

∑

β∗∈�∗

∑

λ∈�

〈

A( f1, g), TλMβ∗A( f2, h)
〉

L2(R2d )
e−2π iλ·z̃ e−2π i z·β∗ dz̃

= vol(�)−1
∑

β∗∈�∗

[

∫

T�∗

∑

λ∈�

〈

A( f1, g), TλMβ∗A( f2, h)
〉

L2(R2d )
e−2π iλ·z̃ d z̃

]

e−2π i z·β∗

= vol(�)−1
∑

β∗∈�∗

〈

A( f1, g), Mβ∗A( f2, h)
〉

L2(R2d )
e−2π i z·β∗

= vol(�)−1
∑

β∗∈�∗

〈

W(̂f1, ĝi ), Tβ∗W(̂f2, ̂hi )
〉

L2(R2d )
e−2π i z·β∗ .

The interchange of the integral and the sum is possible due to the Fubini’s Theo-

rem. Now, since
〈

A( f1, g), TλMβ∗A( f2, h)
〉

L2(R2d )
are in �1(� × �∗) by the proof

of Proposition 3.3, the coefficients
〈

W(̂f1, ĝi ), Tβ∗W(̂f2, ̂hi )
〉

L2(R2d )
are in �1(�∗).

Hence, for each i = 1, . . . , M , the functionNi is continuous, as it equals the absolutely
convergent trigonometric series

Ni (z) = vol(�)−1
∑

β∗∈�∗

〈

W(̂f1, ĝi ), Tβ∗W(̂f2, ̂hi )
〉

L2(R2d )
e−2π i z·β∗ .

The coefficients
〈

W(̂f1, ĝi ), Tβ∗W(̂f2, ̂hi )
〉

L2(R2d )
can be simplified. Let β∗

2 =
(
β∗1
2 ,

β∗2
2 ), then using Proposition 2.3 e), we have

T−β∗
2
W(̂f1, ĝi )(t, ζ ) = e−π iβ∗1 ·β∗2 e−2π i t ·β∗2 e2π iζ ·β∗1W(̂f1, T−β∗1 M−β∗2 ĝi )(t, ζ ) ,
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Tβ∗
2
W(̂f2, ̂hi )(t, ζ ) = eπ iβ∗1 ·β∗2 e−2π i t ·β∗2 e2π iζ ·β∗1W(Tβ∗1 Mβ∗2

̂f2, ̂hi )(t, ζ ) ,

and applying Moyal’s formula we obtain

〈

W(̂f1, ĝi ), Tβ∗W(̂f2, ̂hi )
〉

L2(R2d )

=
〈

T−β∗
2
W(̂f1, ĝi ), Tβ∗

2
W(̂f2, ̂hi )

〉

L2(R2d )

= e−2π iβ∗1 ·β∗2
〈

W(̂f1, T−β∗1 M−β∗2 ĝi ),W(Tβ∗1 Mβ∗2
̂f2, ̂hi )

〉

L2(R2d )

= e−2π iβ∗1 ·β∗2 〈̂f1, Tβ∗1 Mβ∗2
̂f2〉〈T−β∗1 M−β∗2 ĝi , ̂hi 〉

= 〈M−β∗1 Tβ∗2 f1, f2〉〈hi , M−β∗1 Tβ∗2 gi 〉
= 〈π(λ◦) f1, f2〉〈hi , π(λ◦)gi 〉 ,

where λ◦ = Jβ∗ ∈ J�∗ = �◦. We can then express Ni (z) as

Ni (z) = vol(�)−1
∑

λ◦∈�◦
〈π(λ◦) f1, f2〉〈hi , π(λ◦)gi 〉 e−2π iσ(λ◦,z) ,

and we have

N (z)=
M
∑

i=1
Ni (z) = vol(�)−1

∑

λ◦∈�◦

(

M
∑

i=1
〈hi , π(λ◦)gi 〉〈π(λ◦) f1, f2〉

)

e−2π iσ(λ◦,z) .

(11)
The function N is continuous since it is a finite sum of continuous functions. By the
uniqueness of the Fourier series, (26) is the Fourier series of N . ��

We are now in the position to state the three main identities in Gabor analysis.

Theorem 3.5 Let � be a lattice in R
2d with adjoint lattice �◦. Then for gi , hi ∈

M1(Rd), i = 1, . . . , M, the following hold.

(i) Fundamental identity of Gabor analysis:

M
∑

i=1

∑

λ∈�

〈 f1, π(λ)gi 〉〈π(λ)hi , f2〉 = vol(�)−1
M
∑

i=1

∑

λ◦∈�◦
〈hi , π(λ◦)gi 〉〈π(λ◦) f1, f2〉

(12)
for all f1, f2 ∈ L2(Rd).

(ii) Janssen Representation:

S�
g,h = vol(�)−1

M
∑

i=1

∑

λ◦∈�◦
〈hi , π(λ◦)gi 〉π(λ◦) , (13)

where the series converges unconditionally in the strong operator sense.
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(iii) Wexler–Raz Biorthogonality Relations:

S�
g,h = I on L2(Rd) ⇐⇒ vol(�)−1

M
∑

i=1
〈hi , π(λ◦)gi 〉 = δλ◦,0 for λ◦ ∈ �◦ .

(14)

Proof The Fundamental Identity of Gabor Analysis and Janssen representation follow
directly from Proposition 3.4. It suffices to prove the statements on a dense subspace
of L2(Rd). Let f1, f2 ∈ M1(Rd), then the left hand side of (12) equals the function
N of Proposition 3.4 evaluated at z = 0. SinceN equals its Fourier series expansion,
we have

N (0) = vol(�)−1
∑

λ◦∈�◦

M
∑

i=1
〈hi , π(λ◦)gi 〉〈π(λ◦) f1, f2〉 ,

which gives (12).
As for Janssen representation, we observed in the proof of Proposition 3.4 that

N (z) = 〈S�
g,hπ(z) f1, π(z) f2〉 for fixed f1, f2 ∈ M1(Rd). EvaluatingN at z = 0 and

using the Fourier series representation of N , we obtain

〈S�
g,h f1, f2〉 = vol(�)−1

M
∑

i=1

∑

λ◦∈�◦
〈hi , π(λ◦)gi 〉〈π(λ◦) f1, f2〉

=
〈

vol(�)−1
M
∑

i=1

∑

λ◦∈�◦
〈hi , π(λ◦)gi 〉π(λ◦) f1, f2

〉

,

which is the Janssen representation of the frame operator S�
g,h .

The implication ⇐� of i i i) follows trivially from the Janssen representation of
S�

g,h . For the converse, assume that S�
g,h = I . Let f1, f2 ∈ M1(Rd), then N of

Proposition 3.4 is a constant function. Indeed,

〈 f1, f2〉 = 〈π(z) f1, π(z) f2〉 = 〈S�
g,hπ(z) f1, π(z) f2〉 = N (z)

for every z ∈ R
2d . SinceN is a constant function, it equals its 0th Fourier coefficient

̂N (0) = 〈 f1, f2〉. By Proposition 3.4, we have

vol(�)−1
M
∑

i=1
〈hi , π(λ◦)gi 〉〈π(λ◦) f1, f2〉 = δλ◦,0〈 f1, f2〉 . (15)

Fix λ◦ = (λ◦1, λ◦2) ∈ �◦ and let f ∈ M1(Rd) be a nonzero function. By letting
f1 = T−λ◦1 M−λ◦2 f and f2 = f , (15) becomes

vol(�)−1
M
∑

i=1
〈hi , π(λ◦)gi 〉〈 f , f 〉 = δλ◦,0〈T−λ◦1 M−λ◦2 f , f 〉 ,
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and the right hand side of (14) holds. ��
In the subsequent sections we will turn our attention to Gabor frames for model

sets by generalizing the construction we have just presented.

4 Almost Periodic Functions, Model Sets and Local Functions

The main object of our investigation are Gabor frames for model sets, and in the treat-
ment of such frames, we naturally come across almost periodic functions. Therefore,
we begin with the review of some basic facts about almost periodic functions and
finish with a definition and some properties of model sets. For a detailed exposition
on almost periodic functions we refer to [2,3,5].

We say that a bounded and continuous function f : R
2d → C is almost periodic,

if to every ε > 0 there corresponds a relatively dense set E( f , ε) ⊆ R
2d , such that

for every τ ∈ E( f , ε),
sup

z∈R2d
| f (z + τ)− f (z)| ≤ ε .

A subset D is called relatively dense in R
2d when there exists r > 0, such that for all

z ∈ R
2d , D ∩ B(z, r) �= ∅, where B(z, r) is a ball of radius r in R

2d centered at z.
Each τ ∈ E( f , ε) is called an ε-period of f . Let AP(R2d) denote the space of almost
periodic functions. Each almost periodic function is uniformly continuous and admits
a formal Fourier series

f (z) ∼
∑

λ∈σ( f )

a(λ, f )e−2π iλ·z , (16)

where

a(λ, f ) :=Mz{ f (z)e2π iλ·z} = lim
R→∞

1

R2d

∫

B(0,R)

f (z)e2π iλ·z dz ,

are the Fourier coefficients of f , and σ( f ) is the so-called Bohr spectrum of f ,

σ( f ) := {λ ∈ R
m : a(λ, f ) �= 0

}

,

and it forms a countable set, that is only for a countable number of λ ∈ R
m , a(λ, f )

is nonzero ([5]). The 0-th Fourier coefficient of f ,

a(0, f ) :=Mz{ f (z)} ,

is called the mean value of f . If f (z, z̃), with (z, z̃) ∈ R
2d ×R

2d , is almost periodic,
then it is almost periodic with respect to each of the variables z and z̃. Moreover,
Mz̃{ f (z, z̃)} is an almost periodic function of z.

We gather the important identities of almost periodic functions, that we will use
throughout the article, in the following theorem.
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Theorem 4.1 ([5]) Let f ∈ AP(R2d) with the Fourier series given by (16). Then the
following hold.

(i) Bohr’s Fundamental Theorem: Mz{| f (z)|2} =∑λ∈σ( f )|a(λ, f )|2.

(ii) Plancherel’s Theorem: Mz{ f (z) g(z)} = ∑λ∈σ( f ) a(λ, f ) a(λ, g) for all g ∈
AP(R2d) with σ( f ) = σ(g).

(iii) If all the coefficients a(λ, f ) of f ∈ AP(Rm) are zero, then the function f ≡ 0.
(iv) When f is non-negative, then M{ f } = 0 if and only if f ≡ 0.

Throughout the expositionwewill be encountering almost periodic functionswhose
spectrums lie in model set.We state the basic definitions and theorems for even dimen-
sional model sets since only those we will use, however the same definitions and
properties apply in any dimension.

We begin with a lattice in � ⊂ R
2d × R

n , where R
2d and R

n are equipped with
Euclidean metrics and R

2d × R
n is the orthogonal sum of the two spaces. Let p1 :

R
2d × R

n → R
2d and p2 : R

2d × R
n → R

n be projection maps such that p1|� is
injective and L = p1(�) is a dense subgroup of R

2d . We impose the same properties
on p2. For the dual lattice of �, denoted by �∗, let p∗1, p∗2 be defined as p1, p2. It
holds then, that p∗1 |�∗ is injective and p∗1(�∗) is a dense subgroup of R

2d , and the
same holds for p∗2 . Moreover, for γ ∈ � and γ ∗ ∈ �∗,

Z � γ · γ ∗ = (p1(γ ), p2(γ )) · (p∗1(γ ∗), p∗2(γ ∗)) = p1(γ ) · p∗1(γ ∗)+ p2(γ ) · p∗2(γ ∗)

Let � ⊂ R
n be compact, equal to the closure of its interior and have boundary of

measure 0. We call � a window. Then a model set �(�) is defined as

�(�) := {p1(γ ) : γ ∈ �, p2(γ ) ∈ �} ⊂ L ⊂ R
2d .

If � is symmetric around the origin then 0 ∈ �(�). Model set is generic if the
boundary of � has no common points with p2(�). A model set is simple if n = 1. We
will be working only with simple model sets. We assume, without loss of generality,
that from now on � is symmetric around the origin.

Model sets are a very natural generalizations of lattices, and for n = 0 they reduce
to a lattice and, thus, the results that we develop later on in the article reduce to the
known ones for lattices. If�(�) is a model set, then it is uniformly discrete, relatively
dense, and has a well defined density

D(�(�)) = lim
R→∞

#{�(�) ∩ B(x, R)}
R2d

,

where #S denotes the cardinality of the set S and B(x, R) is a ball of radius R in R
2d

centered at x . The limit is independent of x ∈ R
2d . For a simple model set �(�), we

have D(�(�)) = vol(�)−1|�|, see [1].
Due to the underlying lattice structure of a model set, there exists a Poisson summa-

tion formula for �(�). Let C∞0 (�) be the space of all smooth, real valued functions
on R with support in �. Via the mapping p2 ◦ (p1|�)−1 : L → R we obtain a
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space C(�(�)) of functions on L , vanishing off �(�): for ψ ∈ C∞0 (�), we define
wψ ∈ C(�(�)) by

wψ : L → R , wψ(λ) := ψ(p2(γ )) for λ = p1(γ ) ∈ �(�) , (17)

and wψ(λ) = 0 for λ /∈ �(�). If ψ were the indicator function of �, we would have
wψ(λ) = 1 on �(�) and wψ(λ) = 0 if λ /∈ �(�). However, the indicator function is
not smooth. The Poisson summation formula for model sets was originally stated for
the class of Schwartz functions in [23]. However, since it relies on the original Poisson
summation formula, we can state it for a bigger space.

Theorem 4.2 (Poisson Summation Formula for Model Sets) Let �(�) be a simple
model set defined by a relatively compact set � ⊆ R of non-empty interior and a
lattice � ⊆ R

2d × R. Let ψ ∈ C∞0 (�), and the weight factors wψ(λ) on �(�) be
defined as in (17). Then, for every F ∈ M1(R2d), the following holds

∑

λ∈�(�)

wψ(λ)F(λ)e−2π iλ·z =
∑

γ ∗∈�∗
w̃ψ

(− p∗2(γ ∗)
)

̂F
(

z − p∗1(γ ∗)
)

, (18)

where
w̃ψ

(

p∗2(γ ∗)
) := vol(�)−1̂ψ

(

p∗2(γ ∗)
)

for γ ∗ ∈ �∗. (19)

The identity holds pointwise for all z ∈ R
2d , and both sums converge uniformly and

absolutely for all t ∈ R
2d .

Meyer, in [23], originally stated the Poisson summation formula for model sets for
functions in the Schwartz class S(R2d). As the Poisson summation formula for model
sets follows from the ordinary Poisson summation formula, which holds not only for
the elements from S(R2d) but also for functions in M1(R2d), we were able to extend
the former one to a bigger class of functions.

Proof Since wψ(λ) = ψ(p2(γ )) for λ = p1(γ ), one can forget about the restriction
λ ∈ �which is given for free by the support ofψ , and consider a function f = F⊗ψ .
Since ψ ∈ C∞0 (�) ⊂ M1(R), f ∈ M1(R2d × R) by the tensor product property of
Feichtinger’s algebra M1.We can now apply the ordinary Poisson summation formula,
Theorem 3.1, to the lattice �, its dual lattice �∗ and the function f and obtain

∑

γ∈�

f (γ )e−2π iγ ·z = vol(�)−1
∑

γ ∗∈�∗
F f (z − γ ∗) ,

Then (18) follows by taking z = (x, 0) ∈ R
2d × R. ��

Remark 1 Poisson summation formula for model sets gives a method for constructing
almost periodic functionswith desired spectrum. Indeed, the function on the right hand
side of (18) is almost periodic since it equals an absolutely convergent trigonometric
series. By the property of almost periodic functions, the Fourier series of this function
coincides with this trigonometric series. That means that the Fourier coefficients of
the right hand side of (18) equal wψ(λ)F(λ).
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On the collection of point sets in R
2d that are relatively dense and uniformly sep-

arated, with minimal separation greater than r , denoted by Dr (R
2d), we can put a

topology, called local topology: two sets � and �′ of Dr (R
2d) are close if, for some

large R and some small ε, one has

�′ ∩ B(0, R) = (�+ v) ∩ B(0, R) for some v ∈ B(0, ε). (20)

Thus for each point of � within the ball B(0, R), there is a point of �′ within the
distance ε of that point, and vice versa. The pairs (�,�′) satisfying (20) are called
(R, ε)-close. More formally, for ε > 0 and a ball B(x, R), define

U (ε, B(x, R)) : =
{

(�,�′) ∈ Dr (R
2d)× Dr (R

2d) :

(�+ v) ∩ B(x, R) = �′ ∩ B(x, R), for some v ∈ B(0, ε)

}

.

These sets form a fundamental system for a uniform structure on Dr (R
2d) whose

topology has the sets

U (ε, B(x, R))[�] :=
{

�′ ∈ Dr (R
2d) : (�,�′) ∈ U (ε, B(x, R))

}

as a neighbourhood basis of�. Note, all the point sets� from Dr (R
2d) have the same

relative separation rel(�).
On the set Dr (R

2d) we can put a metric. Let �,�′ ∈ Dr (R
2d), then

d(�,�′) := lim sup
R→∞

#{((� ∪�′) \ (� ∩�′)) ∩ B(0, R)}
R2d

is a pseudometric on Dr (R
2d). We obtain a metric by defining the equivalence relation

� ≡ �′ ⇐⇒ d(�,�′) = 0 .

Later in the article, wewill workwith a collection ofmodel sets. Let� be awindow,
then for each (s, t) ∈ R

2d × R we may define

��
(s,t) = s +�(�− t)

Note that �(�) and all its shifts have the same relative separation rel(�(�)).
If (s, t) ≡ (s′, t ′) mod �, then ��

(s,t) = ��
(s′,t ′), however the inverse is not neces-

sarily true. In the sequel we will write (s, t)L for the congruence class (s, t) mod �.
These model sets are parametrized by the torus T := (R2d × R)/� = (R/Z)2d+1.
There is a natural measure, Haar measure, θ on T. It is invariant under the action of
R
2d on (R2d × R)/� and it acts by

z + (s, t)L = (z + s, t)L .
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We can define an embedding R
2d → T, z �→ (z, 0)L . The image of this embedding

is dense in T.
Now, let �(�) be a model set, and we translate it by elements z ∈ R

2d

z +�(�) = z +�(�+ 0) = ��
(z,0) .

The closure of the set of all translates ��
(z,0) of �(�) under the local topology (20)

forms the so-called local hull X(�(�)) of �(�), X(�(�)) = {z +�(�) : z ∈ R2d},
([25,27]).

Proposition 4.3 [27] Let �(�) be a model set. There is a continuous mapping

β : X(�(�)) → T ,

called the torus parametrization, such that (i) β is onto; (i i) β is injective almost
everywhere with respect to the Haar measure θ ; (i i i) β(z +�′) = z + β(�′) for all
z ∈ R

2d and all �′ ∈ X(�); and (iv) β(z +�(�)) = (z, 0)L for all z ∈ R
2d .

By injective almost everywhere, we mean that the set P of points z ∈ T, for which
there is more than one point set of X(λ(�)) over z, satisfies θ(P) = 0.

There is a unique R
2d -invariant measure μ on X(�(�)), with μ(X(�(�))) = 1,

and β relates the Haar measure θ andμ through: θ(P) = μ(β−1P) for all measurable
subsets P of T. Having μ we can introduce the space L2(X(�(�)), μ) of square
integrable functions on X(�(�)). Square integrable functions on X(�(�)) and square
integrable functions on T can be identified,

L2(X(�(�)), μ) � L2(T, θ) . (21)

The mapping takes a function N ∈ L2(T, θ) and creates ˜N = N ◦ β ∈
L2(X(�(�)), μ), and since β is almost everywhere injective, the map is a bijec-
tion. This allows us to analyze functions on X(�(�)) by treating them as functions
on T.

Consider a function ˜N : X(�(�)) → C. We can define from it a function N :
R
2d → C by

N (z) = ˜N (z +�(�)) .

If ˜N is continuous, then for all z1, z2 ∈ R
2d , if z1 +�(�) and z2 +�(�) are close,

then ˜N (z1 +�(�)) and ˜N (z2 +�(�)) are close, and as a consequence, N (z1) and
N (z2) are close. Thus continuity of ˜N implies continuity of N , or a certain locality.
More formally, a function N : R

2d → C is called local with respect to �(�), if for
all δ > 0 there exists R > 0 and ε > 0 so that whenever z1 +�(�) and z2 +�(�),
for z1, z2 ∈ R

2d , are (R, ε)-close, then

|N (z1)−N (z2)| < δ .

Intuitively,N looks very much the same at places where the local environment looks
the same. It can be easily verified that local functions are continuous onR

2d and almost
periodic.
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Using locality, we can go in the opposite direction. LetN be a local function with
respect to �(�). Define a function ˜N on the orbit of �(�):

˜N : {z +�(�) : z ∈ R
2d} → C by ˜N (z +�(�)) = N (z) .

Then ˜N is uniformly continuous on {z + �(�) : z ∈ R
2d} with respect to the local

topology. The reason for this is that the continuity conditionwhich defines the localness
ofN is based on the uniformity defining the local topology on {z+�(�) : z ∈ R

2d}.
It follows that ˜N lifts uniquely to a continuous function on a local hull X(�(�)).

Proposition 4.4 [24] For each local function N with respect to �(�) there is a unique
continuous function ˜N on a local hull X(�(�)), whose restriction to the orbit of �(�)

is N . Every continuous function on the local hull of �(�) arises in this way.

The spectral theory of L2(X(�(�)), μ) allows us to analyze N by analyzing its
corresponding function ˜N on L2(X(�(�)), μ). Suppose N is a local function with
respect to the model set �(�). From the locality of N we have its extension ˜N ∈
L2(X(�(�)), μ) which is continuous. Then we obtain N ∈ L2(T, θ), where

N((z, 0)L) = N(β(z +�(�))) = ˜N (z +�(�)) = N (z) ,

and since functions in L2(T, θ) have Fourier expansions, we can write

N (z) = ˜N (z +�(�)) = N((z, 0)L) =
∑

η∈�∗
̂N(η)e−2π i(z,0)·η

=
∑

η∈�∗
̂N(η)e−2π i z·p∗1 (η) , (22)

almost everywhere, with

̂N(η) =
∫

T

N((s, t)L)e2π i(s,t)·η dθ(s, t) .

However, we knowN only on (R2d , 0)L . To compute the coefficients ̂N(η) out ofN
alone, we can use the Birkhoff ergodic theorem

̂N(η) =
∫

T

N((s, t)L)e2π i(s,t)·η dθ(s, t)= lim
R→∞

1

R2d

∫

B(0,R)

N((z, 0)L)e2π i(z,0)·η dz

= lim
R→∞

1

R2d

∫

B(0,R)

N (z)e2π i z·p∗1 (η) dz ,

where we used N((z, 0)L) = N (z) and η = (p∗1(η), p∗2(η)), so

(z, 0) · η = z · p∗1(η)+ 0 · p∗2(η) .

If
∑

η∈�∗ |̂N(η)| < ∞, then the Fourier series (22) converges absolutely to N (z) for

all z ∈ R
2d .
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5 Bracket Product onModel Sets

As described in the introduction, we are interested in the charaterization of tight
and dual Gabor frames for simple model sets. We are going to imitate the approach
presented in Sect. 3 for model sets, and like in the previous Section, the Poisson
summation formula will play a crucial role.

We assume from now on that � is symmetric around the origin and that p2(�) and
p∗2(�∗) have no common points with the boundary of �. Let �(�) be a simple model
set andψ ∈ C∞0 (�). Let w̃ψ be a function defined as in Theorem 4.2. Then for a fixed
z = (x, ω) ∈ R

2d the generalized ψ-bracket product of f and g is defined as

[

π̂(z) f , ĝ
]ψ

�(�)
(z̃) :=

∑

γ ∗∈�∗
w̃ψ

(− p∗2(γ ∗)
)

M−zW(̂f , ĝ)
(

z̃ − p∗1(γ ∗)
)

. (23)

For f , g ∈ M1(Rd), we have W(̂f , ĝ) ∈ M1(R2d) and the bracket product is
well defined. Moreover, F−1M−zW(̂f , ĝ) = TzA( f , g) and is also an element of
M1(R2d), and by Remark 1,

[

π̂(z) f , ĝ
]ψ

�(�)
is an almost periodic function repre-

sented by the trigonometric series

[

π̂(z) f , ĝ
]ψ

�(�)
(z̃) =

∑

λ∈�

wψ(λ)A( f , g)(λ− z)e−2π iλ·z̃ .

The Fourier coefficients are given by

Mz̃

{

[

π̂(z) f , ĝ
]ψ

�(�)
(z̃)e2π iλ·z̃} = wψ(λ)A( f , g)(λ− z) . (24)

We make the following useful observation that is in analogy with regular shifts.

Lemma 5.1 Let �(�) be a simple model set and ψ ∈ C∞0 (�). For all functions
f1, f2, g, h ∈ M1(Rd), we have

∑

λ∈�(�)

wψ(λ)2A( f1, g)(λ− z)A( f2, h)(λ− z)

=M
{

[

π̂(z) f1, ĝ
]ψ

�(�)
· [π̂(z) f2,̂h

]ψ

�(�)

}

.

Proof The bracket products
[

π̂(z) f1, ĝ
]ψ

�(�)
and
[

π̂(z) f2,̂h
]ψ

�(�)
are almost periodic

function with Fourier coefficients given bywψ(λ)A( f1, g)(λ−z) andwψ(λ)A( f2, h)

(λ− z), respectively. Using Plancherel Theorem for Fourier series of almost periodic
functions and (24), we obtain
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∑

λ∈�(�)

wψ(λ)2 A( f1, g)(λ− z)A( f2, h)(λ− z)

=
∑

λ∈�(�)

Mz̃

{

[

π̂(z) f1, ĝ
]ψ
�(�)

(z̃)e2π iλ·z̃}Mz̃

{

[

π̂(z) f2,̂h
]ψ
�(�)

(z̃)e2π iλ·z̃
}

=M
{

[

π̂(z) f1, ĝ
]ψ
�(�)

· [π̂(z) f2,̂h
]ψ
�(�)

}

.

��
The following result concerning the bracket product will be important in many

calculations to follow.

Proposition 5.2 Let �(�) be a simple model set and ψ ∈ C∞0 (R) be non-negative.
Assume that g, h ∈ M1(Rd). Then, for f1, f2 ∈ M1(Rd),

F(z, z̃) = [π̂(z) f1, ĝ
]ψ

�(�)
(z̃) · [π̂(z) f2,̂h

]ψ

�(�)
(z̃), (z, z̃) ∈ R

2d × R
2d

is an almost periodic function.

Proof Let f1, f2 ∈ M1(Rd). Moreover, for η ∈ �∗, we define �η such that ̂�η =
̂ψ · Tp∗2(η)

̂ψ . Then each �η belongs to C∞0 (R) and is compactly supported on �+�,

and we can define w̃�η as w̃�η(p∗2(γ ∗)) = vol(�)−1̂�η(p∗2(γ ∗)), for all γ ∗ ∈ �∗, as
in (19). Then, by the change of index, we have

F(z, z̃) =
∑

μ,θ∈�∗
w̃ψ

(

− p∗2(μ)w̃ψ

(− p∗2(θ)
)

M−zW(̂f1, ĝ)(z̃ − p∗1(μ)

)

× M−zW(̂f2,̂h)(z̃ − p∗1(θ))

=
∑

μ,θ∈�∗
w̃ψ

(− p∗2(μ)
)

w̃ψ

(− p∗2(θ)
)W(̂f1, ĝ)(z̃ − p∗1(μ))

×W(̂f2,̂h)(z̃ − p∗1(θ))e−2π i
(

p∗1 (θ)−p∗1 (μ)
)

·z

=
∑

η,μ∈�∗
w̃ψ

(− p∗2(μ)
)

w̃ψ

(− p∗2(μ)− p∗2(η)
)W(̂f1, ĝ)(z̃ − p∗1(μ))

× Tp∗1 (η)W(̂f2,̂h)(z̃ − p∗1(μ))e−2π i p∗1 (η)·z

=
∑

η,μ∈�∗
vol−2(�)̂�η

(− p∗2(μ)
)W(̂f1, ĝ)(z̃ − p∗1(μ))

× Tp∗1 (η)W(̂f2,̂h)(z̃ − p∗1(μ))e−2π i p∗1 (η)·z

= vol−1(�)
∑

η∈�∗

×
⎡

⎣

∑

μ∈�∗
w̃�η

(− p∗2(μ)
)W(̂f1, ĝ)(z̃ − p∗1(μ))Tp∗1 (η)W(̂f2,̂h)(z̃ − p∗1(μ))

⎤

⎦ e−2π i p∗1 (η)·z .

For a fixed η ∈ �∗, consider the series

Fη(z̃) =
∑

μ∈�∗
w̃�η

(− p∗2(μ)
)

(

W(̂f1, ĝ) · Tp∗1 (η)W(̂f2,̂h)
)

(z̃ − p∗1(μ)) .
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Since W(̂f1, ĝ) and W(̂f2,̂h) lie in M1(R2d), their product as well. Moreover,

F−1(W(̂f1, ĝ)Tp∗1(η)W(̂f2,̂h)
) = A( f1, g) ∗ (Mp∗1(η)A( f2, h))∗

which is in M1(R2d) since A( f1, g),A( f2, h) ∈ M1(R2d). Therefore, by Poisson
summation formula for model sets we can write Fη(z̃) as

Fη(z̃) =
∑

γ∈�

�η(p2(γ ))
(A( f1, g) ∗ (Mp∗1(η)A( f2, h))∗

)(

p1(γ )
)

e−2π i p1(γ )·z̃

=
∑

γ∈�

�η(p2(γ ))
〈

A( f1, g), Tp1(γ )Mp∗1 (η)A( f2, h)
〉

L2(R2d )
e−2π i p1(γ )·z̃ ,

and F(z, z̃) becomes

F(z, z̃)

= vol−1(�)
∑

η∈�∗

∑

γ∈�

�η(p2(γ ))

×
〈

A( f1, g), Tp1(γ )Mp∗1 (η)A( f2, h)
〉

L2(R2d )
e−2π i p1(γ )·z̃ e−2π i p∗1 (η)·z

= vol−1(�)
∑

η∈�∗

∑

γ∈�

〈ψ, Tp2(γ )Mp∗2(η)ψ〉

×
〈

A( f1, g), Tp1(γ )Mp∗1 (η)A( f2, h)
〉

L2(R2d )
e−2π i p1(γ )·z̃ e−2π i p∗1 (η)·z

= vol−1(�)
∑

η∈�∗

∑

γ∈�

×
〈

ψ ⊗A( f1, g), Tγ Mη

(

ψ ⊗A( f2, h)
)

〉

L2(R×R2d )
e−2π i p1(γ )·z̃ e−2π i p∗1 (η)·z .

The coefficients in the series defining F(z, z̃) are in �1(�×�∗), becauseψ⊗A( f1, g)

and ψ ⊗A( f2, h) lie in M1(R× R
2d), and hence

V(
ψ⊗A( f2,h)

)

(

ψ ⊗A( f1, g)
) ∈W(C0, �

1)
((

R× R
2d)× (R× R

2d)).

That means that F equals a generalized trigonometric polynomial, and therefore is
almost periodic. ��

We need one more result that will be an important tool in the characterization of
tight frames and dual frames.

Proposition 5.3 Let �(�) be a simple model set and ψ ∈ C∞0 (�) non-negative
function. Assume that gi , hi ∈ M1(Rd) for every i = 1, . . . , M. Then, for every
f1, f2 ∈ M1(Rd), the function
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Nψ(z) =
M
∑

i=1

∑

λ∈�(�)

wψ(λ)2 〈π(z) f1, π(λ)gi 〉〈π(λ)hi , π(z) f2〉 (25)

is almost periodic and coincides pointwise with its Fourier series
∑

η∈�∗
̂Nψ(η)e−2π i p∗1 (η)·z , with

̂Nψ(η) = vol(�)−1̂ψ2(−p∗2(η))
〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

,

where η ∈ �∗ and J is the symplectic matrix.

Proof Let f1, f2 ∈ M1(Rd). Using the relationship between short time Fourier trans-
form and cross-ambiguity function, we can express Nψ as

Nψ(z) =
M
∑

i=1

∑

λ∈�(�)

wψ(λ)2 〈π(z) f1, π(λ)gi 〉〈π(λ)hi , π(z) f2〉

=
M
∑

i=1

∑

λ∈�(�)

wψ(λ)2A( f1, gi )(λ− z)A( f2, hi )(λ− z) .

For i = 1, . . . , M fixed, let

Nψ
i (z) =

∑

λ∈�(�)

wψ(λ)2A( f1, gi )(λ− z)A( f2, hi )(λ− z) .

By Lemma 5.1, we have

Nψ
i (z) =Mz̃

{

[

π̂(z) f1, ĝi
]ψ

�(�)
(z̃) · [π̂(z) f2, ̂hi

]ψ

�(�)
(z̃)
}

. ,

and by Proposition 5.2 and properties of almost periodic functions of two variables,
Nψ

i (z) is almost periodic. Moreover, using functions Fη and �η defined in the proof
of Proposition 5.2, we have

Nψ
i (z) = vol(�)−1

∑

η∈�∗
Mz̃

{

Fη(z̃)
}

e−2π i z·p∗1 (η)

= vol(�)−1
∑

η∈�∗
�η(0)

〈

A( f1, gi ), Mp∗1(η)A( f2, hi )
〉

L2(R2d )
e−2π i z·p∗1 (η)

= vol(�)−1
∑

η∈�∗
̂ψ2(−p∗2(η))

〈

π
(

J p∗1(η)
)

f1, f2
〉 〈

hi , π
(

J p∗1(η)
)

gi

〉

e−2π i z·p∗1 (η) ,

where the last equality follows from relations between cross-ambiguity function, cross-
Wigner distribution and Moyal’s formula, as in the proof of Proposition 3.4.
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Now, sinceN is a finite sum of almost periodic functions, it is almost periodic and
it equals a generalized trigonometric series

Nψ(z) = vol(�)−1

×
∑

η∈�∗

(

̂ψ2(−p∗2(η))
〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

)

e−2π i z·p∗1 (η) .

(26)

By the uniqueness of the Fourier series, (26) is the Fourier series of Nψ(z). ��

6 Gabor Analysis for Model Sets

We first begin with weighted Gabor frames and characterize normalized tight and
dual weighted Gabor frames. The characterization follows directly from the bracket
product defined in the previous section. Next, we move to the non-weighted scenario,
where we develop Fundamental Identity of Gabor Analysis for model sets, Janssen
representation and Wexler–Raz orthogonality relations.

6.1 Weighted Gabor Systems

Let �(�) be a simple model set, ψ ∈ C∞0 (�) non-negative function and the
windows g1, . . . , gM ∈ M1(Rd). Then, a weighted Gabor system, denoted by
Gψ(g1, . . . , gM ;�(�)), is a collection of elements wψ(λ)π(λ)gi , where λ ∈ �(�),
i = 1, . . . , M and wψ as defined in (17). The system Gψ(g1, . . . , gM ;�(�)) is a
frame for L2(Rd) if there exist constants Ag, Bg > 0 such that

Ag‖ f ‖22 ≤
M
∑

i=1

∑

λ∈�(�)

wψ(λ)2 |〈 f , π(λ)gi 〉|2 ≤ Bg‖ f ‖22 (27)

holds for all f ∈ L2(Rd). Gψ(g1, . . . , gM ;�(�)) is a normalized weighted tight
Gabor frame if Ag = Bg = 1. As in the case of non-weighted Gabor systems,
Gψ(g1, . . . , gM ;�(�)) is a Bessel sequence (only the right hand side of (27) holds) if
all gi ∈ M1(Rd), i = 1, . . . , M . Equipped with this notions, we can now characterize
weighted tight Gabor frames.

Proposition 6.1 Let �(�) be a simple model set and ψ ∈ C∞0 (�) non-negative
function. Then the family Gψ(g1, . . . , gM ;�(�)), with gi ∈ M1(Rd) for every
i = 1, . . . , M, is a normalized weighted tight Gabor frame for L2(Rm), that is

M
∑

i=1

∑

λ∈�(�)

wψ(λ)2 |〈 f , π(λ)gi 〉|2 = ‖ f ‖22 for all f ∈ L2(Rm) (28)
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if and only if

vol(�)−1̂ψ2
(

p∗2(η)
)

M
∑

i=1

〈

gi , π
(

J p∗1(η)
)

gi

〉

= δη,0 , (29)

for each η ∈ �∗, where δ is the Kronecker delta.

Proof By [15], it is sufficient to prove the theorem when f ∈ M1(Rd). Assume
that Gψ(g1, . . . , gM ;�(�)) is a normalized weighted tight Gabor frame. Since gi ∈
M1(Rd) for every i = 1, . . . , M , by Proposition 5.3 with gi = hi for all i = 1, . . . , M
and f1 = f2 = f , we can define a function Oψ(z) as

Oψ(z) =
M
∑

i=1

∑

λ∈�(�)

wψ(λ)2 |〈π(z) f , π(λ)gi 〉|2 . (30)

By (28), this function is constant and equals ‖ f ‖22. Let Eψ(z) = Oψ(z)−‖ f ‖22. Then,
Eψ(z) is almost periodic and Eψ = 0. By the property of almost periodic function, it
implies that the Fourier coefficients of Eψ(z),

̂Eψ(η) =
{

̂Oψ(η)− ‖ f ‖22, η = 0
̂Oψ(η), η �= 0

are zero. By Proposition 5.3, we have then

vol(�)−1̂ψ2
(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f , f
〉

M
∑

i=1

〈

gi , π
(

J p∗1(η)
)

gi

〉

= δη,0‖ f ‖22 , (31)

with η ∈ �∗, for every f ∈ M1(Rd).
Let f ∈ M1(Rd) \ {0}. Consider first η = 0. Then (31) becomes

vol(�)−1̂ψ2(0) 〈 f , f 〉
M
∑

i=1
〈gi , gi 〉 = δη,0‖ f ‖22 ,

and (29) follows. Now, let η �= 0 be fixed and take f (x) = e−πx2 , a Gausian. Then
(31) implies

vol(�)−1̂ψ2
(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f , f
〉

M
∑

i=1

〈

gi , π
(

J p∗1(η)
)

gi

〉

= 0,

and since
〈

π
(

J p∗1(η)
)

f , f
〉

�= 0, (29) is satisfied.

Conversely, assume that (29) holds. Since gi ∈ M1(Rd) for every i = 1, . . . , M ,
by Proposition 5.3 with f1 = f2 = f and gi = hi for every i = 1, . . . , M , we
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can define function Oψ(z) as in (30). Then, by Proposition 5.3 and relation (29), the
function Oψ(z) is given by the trigonometric series

∑

η∈�∗
̂Oψ(η)e−2π i z·p∗1 (η) = Oψ(z) ,

for every z ∈ R
d , with

̂Oψ(η) = δη,0

〈

π
(

J p∗1(η)
)

f , f
〉

.

Hence, Oψ(z) is constant and Oψ(z) = ‖ f ‖22. Evaluating Oψ(z) at z = 0, gives the
claim. ��

We know state conditions for a weighted Gabor system Gψ(h1, . . . , hM ;�(�)) to
be a dual system of Gψ(g1, . . . , gM ;�(�)).

Proposition 6.2 Let �(�) be a simple model set and ψ ∈ C∞0 (�) non-negative
function. Let gi ∈ M1(Rd) and hi ∈ M1(Rd), for every i = 1, . . . , M. Then
Gψ(g1, . . . , gM ;�(�)) andGψ(h1, . . . , hM ;�(�)) are weighted dual Gabor frames,
that is

M
∑

i=1

∑

λ∈�(�)

wψ(λ)2 〈 f , π(λ)gi 〉〈π(λ)hi , f 〉 = ‖ f ‖22 for all f ∈ L2(Rm) , (32)

if and only if

vol(�)−1̂ψ2(p∗2(η))

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

= δη,0 , (33)

for each η ∈ �∗, where δ is the Kronecker delta.

Proof The proof is analogous to the proof of Proposition 6.1 with obvious
adjustments. ��

Based on the last proposition we can also derive density condition for weighted
Gabor frames.

Proposition 6.3 Let �(�) be a simple model set and ψ ∈ C∞0 (�) a non-negative
function such that ‖ψ‖2 = 1. If the Gabor frame Gψ(g;�(�)), with g ∈ M1(�(�))

admits a weighted dual that is also a Gabor system, then D(�(�)) ≥ 1.

Proof Let g ∈ M1(Rd) and assume that the Gabor frame Gψ(g;�(�)) admits a dual
Gψ(h;�(�)) with h ∈ M1(Rd). Let Bg be the upper frame bound of Gψ(g;�(�)),
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and we can assume without loss of generality that ‖h‖22 = |�|B−1g . Then, by polar-
ization, we have the frame decomposition

〈 f1, f2〉 =
∑

λ∈�(�)

〈 f1, π(λ)g〉wψ(λ)2 〈π(λ)h, f2〉 for all f1, f2 ∈ L2(Rm),

If we set f1 = h and f2 = g, by the Bessel property of Gψ(g;�(�)), we obtain

〈h, g〉 =
∑

λ∈�(�)

wψ(λ)2 |〈h, π(λ)g〉|2 ≤ Bg‖h‖22 = |�| .

On the other hand, by Proposition 6.2 with M = 1, vol(�)−1̂ψ2(0) 〈h, g〉 = 1, and
therefore D(�(�)) = vol(�)−1|�| ≥ 1 because ̂ψ2(0) = ‖ψ‖22 = 1. ��

Gabardo, in [9], gave a characterization of theweighted irregularGabor tight frames
and dual systems in terms of the distributional symplectic Fourier transform of a
positiveBorelmeasurewhere thewindowsbelong to theSchwartz class. It is possible to
derive his results in the setting of model sets, using the characterization just presented.

6.2 (Nonweighted) Gabor Systems

Let gi , hi ∈ M1(Rd), i = 1, . . . , M , and �(�) a simple model set. At the beginning
of Sect. 2, we showed that the frame operator S�(�)

g of G(g1, . . . , gM ;�) does not
commutewith the time-frequency shifts taken from�(�). The sameholds in particular
for any � ∈ X(�(�)) and a time-frequency shift by z ∈ R

2d . Let S�−z
g,h denote the

mixed frame operator associated to G(g1, . . . , gM ;�− z) and G(h1, . . . , hM ;�− z).
Then there is a covariance relation relating S�

g,h and S�−z
g,h . The following result was

obtained by Kreisel in [18]. We state it here for the mixed frame operators.

Proposition 6.4 [18] If G(g1, . . . , gM ;�) and G(h1, . . . , hM ;�) ,are Gabor systems
for �, and, G(g1, . . . , gM ;�− z) and G(h1, . . . , hM ;�− z) are Gabor systems for
�− z, then the mixed frame operators S�

g,h and S�−z
g,h satisfy

S�
g,h π(z) = π(z) S�−z

g,h .

Moreover, the following continuity property holds.

Proposition 6.5 [18] Suppose �n → � in X(�(�)) and the window functions gi , hi

lie in M1(Rd), for each i = 1, . . . , M. Then S�n
g,h → S�

g,h in the strong operator

topology on B(M1(Rd)).

Even though the mapping � → S�
g , � ∈ X(�(�)) is not continuous when

B(M1(Rd)) is given the norm topology, all the frames G(g1, . . . , gM ;�) have the
same optimal frame bounds.
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Proposition 6.6 [18] Suppose G(g1, . . . , gM ;�) is a frame for each � ∈ X(�(�))

and each gi ∈ M1(Rd). For any � ∈ X(�(�)) the optimal upper and lower frame
bounds for G(g1, . . . , gM ;�) are the same as those for G(g1, . . . , gM ;�(�)). As
a result, ‖S�

g ‖M1 = ‖S�(�)
g ‖M1 and ‖(S�

g )−1‖M1 = ‖(S�(�)
g )−1‖M1 , where ‖·‖M1

denotes the operator norm on B(M1(Rd)).

As a result of the continuity property, we have the following Corollary.

Corollary 6.7 [18] Suppose g1, . . . , gM ∈ M1(Rd) and G(g1, . . . , gM ;�(�)) is an
M1-frame. Then for any � ∈ X(�(�)), G(g1, . . . , gM ;�) is also an M1-frame.

Now, let f1, f2 ∈ M1(Rd) be fixed and let gi , hi ∈ M1(Rd) for i = 1, . . . , M . We
define a function ˜N : X(�(�)) → C through the mixed frame operator, as

˜N (�) = 〈S�
g,h f1, f2〉.

Since, by Proposition 6.5, S�
g,h is continuous, in the strong operator topology, over

X(�(�)), the function ˜N is continuous. As was presented in Sect. 4, we can define
from ˜N a function N : Rm → C, by

N (z) = ˜N (�(�)− z) , (34)

and since ˜N is continuous,N is local with respect to �(�). As was shown in Sect. 4,
it has a Fourier expansion

N (z) =
∑

η∈�∗
̂N(η)e−2π i p∗1 (η)·z

where
̂N(η) = lim

R→∞
1

R2d

∫

B(0,R)

N (z)e2π i z·p∗1 (η) dz . (35)

Applying the tools developed in Sect. 5, we will be able to compute the Fourier
coefficients ̂N(η) of N .

Before we proceed further we introduce a sequence of auxiliary functions that will
be crucial in proving our results. The following Lemma is a particular case of Prop 3.6
in [1].

Lemma 6.8 Let 0 < ε < 1, � be a compact subset of R,˜� = (1−ε)� and fs = 1εs˜�
|εs˜�|

for s ∈ N. Then,

(i) the infinite convolution product ∗∞
s=0 fs converges in L1(R) and defines a

non-negative smooth function ψ = ∗∞
s=0 fs compactly supported on �, with

‖ψ‖1 = 1;
(ii) the Fourier transform of ψ is the smooth function ̂ψ = ∏∞s=0 ̂fs , with uniform

convergence of the product, where ̂fs(t) = sinc(t |εs
˜�|) and sinc(t) = sin(π t)

π t .
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Now, for 0 < ε < 1 and� a compact subset ofR, we define a sequence of compact
sets �n = (1 − εn)�. The sets �n are increasing and

⋃

n �n = �. Let ψn be an
infinite convolution product

ψn =
∞∗

s=0
1εns�n

|εns�n| =
1�n

|�n| ∗
( ∞∗

s=1
1εns�n

|εns�n|

)

. (36)

Then, by Lemma 6.8, each ψn is well defined and forms a sequence of C∞0 (�) non-
negative functions, with Fourier transform of ψn being

̂ψn(t) =
∞
∏

s=0
sinc
(

t |εns�n|
) = sinc(t |�n|) ·

∞
∏

s=1
sinc
(

t |εns�n|
)

. (37)

Lemma 6.9 With the above notation,

(i) the sequence {ψn}∞n=1 converges pointwise to 1�|�| on � \ ∂�, where ∂� is the
boundary of �;

(ii) the sequence of Fourier transforms, {̂ψn}∞n=1, converges uniformly.

Proof Let t0 ∈ � \ ∂� and δ > 0. By the properties of the sets �n we have: �m ⊂
�n ⊂ � and εns�n ⊂ εms�m for n ≥ m and εns�n ⊂ εn(s+1)�n for all n and s.
Then, there exists N ≥ 0, such that for all n ≥ N , |� \ �n| < δ|�|2 and t0 ∈ �n .
That means, for n ≥ N

[( ∞
∑

s=1
supp

1εns�n

|εns�n|

)

− t0

]

∩�n =
[( ∞
∑

s=1
εns�n − t0

)]

∩�n �= ∅ .

Then, for all n ≥ N ,

∣

∣

∣

∣

ψn(t0)− 1�(t0)

|�|
∣

∣

∣

∣

=
∣

∣

∣

∣

∣

[

1�n

|�n| ∗
( ∞∗

s=1
1εns�n

|εns�n|

)]

(t0)− 1

|�|

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

1

|�n|
∫

�n

( ∞∗
s=1

1εns�n

|εns�n|

)

(t0 − x) dx − 1

|�|

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

|�n|

∥

∥

∥

∥

∥

∞∗
s=1

1εns�n

|εns�n|

∥

∥

∥

∥

∥

1

− 1

|�|

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

1

|�n| −
1

|�|
∣

∣

∣

∣

= |� \�n|
|�n||�|

<
δ

(1− εN )
,

and claim (i) follows.
For (i i) it suffices to show that the sequence of Fourier transformŝψn is uniformly

Cauchy. By (i) and Lemma 6.8, {ψn}∞n=1 is a sequence of L1 functions converging
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pointwise almost everywhere to 1�|�| . Then by the L1 Dominated Convergence The-

orem, {ψn}∞n=1 converges to 1�|�| in L1, and it follows that {ψn}∞n=1 is an L1 Cauchy
sequence. Meaning, for δ > 0 there exists N > 0 such that ‖ψn − ψm‖1 < δ for all
n, m ≥ N . Let n, m ≥ N , then

‖̂ψm −̂ψn‖∞ ≤ ‖ψm − ψn‖1 < δ ,

and {̂ψn}∞n=1 is uniformly Cauchy. By the completeness of L∞(R), it converges uni-
formly. ��

Let, � denote the uniform limit of the sequence defined in (37). To make things
more convenient later, we normalize �, and define a new function

� = |�| · (� ∗ �) . (38)

Note that �(0) = 1.
The following observation will be the main ingredient in our approach. It is anal-

ogous to the results for lattices developed in Sect. 3. With the above notation we
have

Proposition 6.10 Let �(�) be a simple generic model set. Assume that gi , hi ∈
M1(Rd) for every i = 1, . . . , M. Then, for every f1, f2 ∈ M1(Rd), the function

N (z) =
M
∑

i=1

∑

λ∈�(�)

〈

π(z) f1, π(λ)gi

〉〈

π(λ)hi , π(z) f2
〉

is continuous and coincides pointwise with its Fourier series
∑

η∈�∗ ̂N (η)e−2π i p∗1(η)·z ,
with

̂N (η) = D(�(�))�
(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

.

where η ∈ �∗, � defined in (38).

We can approximate function N with the desired accuracy by an almost peri-
odic function whose spectrum lies in a ’dual’ model set. Let ε > 0 and C =
max ‖Vgi hi‖W(L∞,�2). The function � decays rapidly outside its essential support,
hence, for the essential support, we can choose a compact interval ˜�ε , depending on
the windows gi , hi , such that

∥

∥

∥�1
˜�εc

∥

∥

∥

W(R)
<

ε

D(�(�)) rel(�∗) C M
(39)

where
∣

∣�
∣

∣

∗
(x) = ∣∣�∣∣(−x) is the involution and˜�c

ε a complement of˜�ε . Let us define
an ε−dual model set �∗(˜�ε) originating from �∗ and ˜�ε by

�∗(˜�ε) =
{

β = p∗1(η) : η ∈ �∗, p∗2(η) ∈ ˜�ε

}

(40)
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We note here, that the concept of an ε-dual model set defined here differs from the
original ε-dual model set definition by Meyer. Then, the function Nε , given by the
series

Nε(z) :=
∑

β∈�∗(˜�ε)

̂N (β)e−2π iβ·z,

defines an almost periodic function with spectrum in �∗(˜�ε). Moreover, by Cauchy-
Schwarz inequality, we have

∥

∥N −Nε

∥

∥∞ ≤ D(�(�))

M
∑

i=1

∑

η∈�∗; p∗2 (η)/∈˜�ε

∣

∣

∣�
(− p∗2(η)

)

〈

π
(

J p∗1(η)
)

f1, f2
〉 〈

hi , π
(

J p∗1(η)
)

gi

〉∣

∣

∣

≤ D(�(�))

M
∑

i=1

⎡

⎣

∑

η∈�∗

((

∣

∣�
∣

∣

∗
1
˜�c

ε

)

⊗ U ∣∣Vgi hi
∣

∣

2
)

(η)

⎤

⎦

1/2

×
⎡

⎣

∑

η∈�∗

((

∣

∣�
∣

∣

∗
1
˜�c

ε

)

⊗ U ∣∣V f1 f2
∣

∣

2
)

(η)

⎤

⎦

1/2

≤ D(�(�)) rel(�∗)
M
∑

i=1

∥

∥

∥

(

∣

∣�
∣

∣

∗
1
˜�c

ε

)

⊗ U ∣∣Vgi hi
∣

∣

2
∥

∥

∥

1/2

W(R×R2d )

∥

∥

∥

(

∣

∣�
∣

∣

∗
1
˜�c

ε

)

⊗ U ∣∣V f1 f2
∣

∣

2
∥

∥

∥

1/2

W(R×R2d )
.

By the property of tensor product and (39), we obtain

∥

∥N −Nε

∥

∥∞ ≤ D(�(�)) rel(�∗)
∥

∥

∥�1
˜�c

ε

∥

∥

∥

W(R)

M
∑

i=1

∥

∥|Vgi hi |2
∥

∥

W(R2d )

∥

∥|V f1 f2|2
∥

∥

W(R2d )

≤ D(�(�)) rel(�∗)
∥

∥

∥�1
˜�c

ε

∥

∥

∥

W(R)

M
∑

i=1

∥

∥Vgi hi
∥

∥

W(L∞,�2)(R2d )

∥

∥V f1 f2
∥

∥

W(L∞,�2)(R2d )

< ε
∥

∥V f1 f2
∥

∥

W(L∞,�2)(R2d )
.

Proof of Proposition 6.10 Let f1, f2 ∈ M1(Rd). Let ψn be a sequence of C∞0 (�) non-
negative functions defined in (36). By Proposition 5.3, for each n ∈ N, the functions

Nψn (z) =
M
∑

i=1

∑

λ∈�(�)

wψn (λ)2
〈

π(z) f1, π(λ)gi

〉〈

π(λ)hi , π(z) f2
〉

are well defined almost periodic functions that are pointwise equal to their Fourier
series

∑

η∈�∗ ̂Nψn (η)e−2π i p∗1(η)·z , where ̂Nψn (η) are given by

̂Nψn (η) = vol(�)−1̂ψ2
n

(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

.
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On the other hand, the series
∑

η∈�∗ ̂N (η)e−2π i p∗1(η)·z converges absolutely (by
a similar argument as in the proof of Proposition 5.3) and gives rise to a uniformly
continuous function. By the uniform convergence of ̂ψ2

n to � ∗ �, it can be eas-
ily verified that Nψn converges uniformly to |�|−2 ∑η∈�∗ ̂N (η)e−2π i p∗1 (η)·z , since
D(�(�)) = vol(�)−1|�| and � = |�| · (� ∗ �).

Now, since �(�) is genereic, that is the boundary ∂� of � has no common points
with p2(�), and ψn converges pointwise to 1�|�| on � \ ∂�, by Lemma 6.8, we show

that N (z) is a pointwise limit of |�|2Nψn (z). Indeed, by the Lebesgue Dominated
Convergence Theorem, we can move the limit inside the sum, and for every z ∈ R

2d ,
we have

lim
n→∞Nψn (z) =

M
∑

i=1

∑

λ∈�(�)

lim
n→∞w2

ψn
(λ)
〈

π(z) f1, π(λ)gi

〉〈

π(λ)hi , π(z) f2
〉

=
M
∑

i=1

∑

λ∈�(�)

lim
n→∞ψ2

n (p2(γ ))
〈

π(z) f1, π(λ)gi

〉〈

π(λ)hi , π(z) f2
〉

(λ = p1(γ ), γ ∈ �)

=
M
∑

i=1

∑

λ∈�(�)

|�|−2[1�(p2(γ ))
]2
〈

π(z) f1, π(λ)gi

〉〈

π(λ)hi , π(z) f2
〉

= |�|−2N (z) .

By the uniqueness of the the limits, we must have N (z) =∑η∈�∗ ̂N (η)e−2π i p∗1(η)·z ,
and by the uniqueness of the Fourier series, (26) is the Fourier series of N (z). ��

For gi , hi ∈ M1(Rd) with i = 1, . . . , M , the function N (z) of Proposition 6.10
coincides with the function N (z) defined in (34). Indeed, using Proposition 6.4, we
can write N (z) from (34) explicitly as

N (z) = ˜N (�(�)− z) =
〈

S�(�)−z
g,h f1, f2

〉

=
〈

S�(�)
g,h π(z) f1, π(z) f2

〉

=
M
∑

i=1

∑

λ∈�(�)

〈

π(z) f1, π(λ)gi

〉〈

π(λ)hi , π(z) f2
〉

.

By the uniqueness of the Fourier coefficients, ̂N(η) in (35) equal ̂N (η) from Propo-
sition 6.10, for all η ∈ �∗.

We are now in the position to state the main results.

Theorem 6.11 Let �(�) be a simple generic model set. Then for gi , hi ∈ M1(Rd),
i = 1, . . . , M the following hold.

(i) Fundamental Identity of Gabor Analysis for Model Sets:
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M
∑

i=1

∑

λ∈�(�)

〈 f1, π(λ)gi 〉〈π(λ)hi , f2〉

= D(�(�))
∑

η∈�∗
�
(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

(41)

for all f1, f2 ∈ M1(Rd).
(ii) Janssen representation:

S�(�)
g,h = D(�(�))

M
∑

i=1

∑

η∈�∗
�
(

p∗2(η)
)

〈

hi , π
(

J p∗1(η)
)

gi

〉

π
(

J p∗1(η)
)

, (42)

where the series converges unconditionally in the strong operator topology.
(iii) Wexler–Raz Biorthogonality Relations:

S�(�)
g,h = I on M1(Rd ) ⇐⇒ D(�(�))

M
∑

i=1
�
(

p∗2(η)
)

〈

hi , π
(

J p∗1(η)
)

gi

〉

= δη,0 (43)

for η ∈ �∗.

The relation (41), as well as (42), can be written using dual model sets, and giving
a better understanding of the above relations to the ones for regular lattices. Let ˜� be
a compact subset of R, equal closure of its interior and with measure of the boundary
equal to zero. We define a sequence of dual model sets as

�∗m(˜�) = {β = p∗1(η) : η ∈ �∗, p∗2(η) ∈ m˜� \ (m − 1)˜�
}

.

Then, the right hand side of (41) equals

D(�(�))
∑

η∈�∗
�
(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

= D(�(�))

∞
∑

m=1

∑

β∈�∗m (˜�)

w�(β)
〈

π
(

Jβ
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

Jβ
)

gi

〉

,

where w� is defined as in (17) for the function �. Since � is well concentrated, with
rapid decay outside its essential support, the sum over m has only a finite number of
relevant terms, and we can approximate (41) as
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M
∑

i=1

∑

λ∈�(�)

〈 f1, π(λ)gi 〉〈π(λ)hi , f2〉

≈ D(�(�))

M
∑

m=1

∑

β∈�∗m (˜�)

w�(β)
〈

π
(

Jβ
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

Jβ
)

gi

〉

.

Approximation depends on M and˜�.We can choose˜� to be an ε−essential support
of � in the sense of (39), that is ˜� = ˜�ε and we have �∗1(˜�) = �∗(˜�ε) as in (40).
Then we obtain a good approximation already for M = 1

(i) Fundamental Identity of Gabor Analysis for Model Sets becomes

M
∑

i=1

∑

λ∈�(�)

〈 f1, π(λ)gi 〉〈π(λ)hi , f2〉

≈ D(�(�))
∑

β∈�∗(˜�ε)

w�(β)
〈

π(Jβ) f1, f2
〉

M
∑

i=1

〈

hi , π(Jβ)gi

〉

.

(ii) Janssen Representation gives us an approximation of the frame operator in the
form of

S�(�)
g,h ≈ D(�(�))

M
∑

i=1

∑

β∈�∗(˜�ε)

w�(β)
〈

hi , π(Jβ)gi

〉

π(Jβ) .

(iii) Wexler–Raz Biorthogonality Relations provide an approximation to the identity
operator:

S�(�)
g,h ≈ I on M1(Rd) ⇐⇒ D(�(�))

M
∑

i=1
w�(β)

〈

hi , π(Jβ)gi

〉

= δβ,0

for β ∈ �∗(˜�ε).

These relations resemble the relations of Gabor systems for lattices, where there is a
connection between a lattice and its dual (or symplectic dual). Here �(�) takes the
place of a lattice, and an ε−dual model set�∗(˜�ε) takes the place of a dual lattice, and
depends on the desired accuracy of the approximation and window functions gi , hi .

Proof The Fundamental Identity of Gabor Analysis and Janssen representation follow
directly from Proposition 6.10. Let f1, f2 ∈ M1(Rd), then the left hand side of (41)
equals the function N of Proposition 6.10 evaluated at z = 0. Since N equals its
Fourier series expansion, we have

N (0) = D(�(�))
∑

η∈�∗
�
(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

.
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which gives (41).
As for Janssen representation, we observe that N (z) = 〈S�(�)

g,h π(z) f1, π(z) f2〉
for fixed f1, f2 ∈ M1(Rd). Evaluating N at z = 0 and using the Fourier series
representation of N , we obtain

〈S�(�)
g,h f1, f2〉 = D(�(�))

∑

η∈�∗
�
(

p∗2(η)
)

〈

π
(

J p∗1(η)
)

f1, f2
〉

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

=
〈

D(�(�))
∑

η∈�∗
�
(

p∗2(η)
)

M
∑

i=1

〈

hi , π
(

J p∗1(η)
)

gi

〉

π
(

J p∗1(η)
)

f1, f2
〉

,

which is the Janssen representation of the frame operator S�(�)
g,h .

The implication ⇐� of i i i) follows trivially from the Janssen representation of
S�(�)

g,h . For the converse, assume that S�(�)
g,h = I . Let f1, f2 ∈ M1(Rd), then N of

Proposition 3.4 is a constant function. Indeed,

〈 f1, f2〉 = 〈π(z) f1, π(z) f2〉 = 〈S�(�)
g,h π(z) f1, π(z) f2〉 = N (z)

for every z ∈ R
2d . SinceO = N−〈 f1, f2〉 is a zero function, all its Fourier coefficients

̂O(η) =
{

̂N (η)− 〈 f1, f2〉, η = 0
̂N (η), η �= 0

are zero. By Proposition 6.10, we have then

D(�(�))

M
∑

i=1
�
(

p∗2(η)
)

〈

hi , π
(

J p∗1(η)
)

gi

〉 〈

π
(

J p∗1(η)
)

f1, f2
〉

= δη,0〈 f1, f2〉 .
(44)

Fix J p∗1(η) ∈ R
2d and let f be a Gausian, that is f (x) = e−πx2 . Then

〈

π
(

J p∗1(η)
)

f1, f2
〉

=
〈

π
(

J p∗1(η)
)

f , f
〉

�= 0 and the right hand side of (43)

holds. ��
As a consequence of the Wexler–Raz biorthogonality relations we obtain a density

result for Gabor systems for model sets.

Proposition 6.12 Let �(�) be a simple generic model set. If the Gabor frame
G(g;�(�)), with g ∈ M1(�(�)) admits a dual that is also a Gabor system, then
D(�(�)) ≥ 1.

Proof Let g ∈ M1(Rd) and assume that the Gabor frame G(g;�(�)) admits a dual
G(h;�(�)) with h ∈ M1(Rd). Let Bg be the upper frame bound of G(g;�(�)), and
we can assume without loss of generality that ‖h‖22 = B−1g . Then we have the frame
decomposition

〈 f1, f2〉 =
∑

λ∈�(�)

〈 f1, π(λ)g〉〈π(λ)h, f2〉 for all f1, f2 ∈ L2(Rm),
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If we set f1 = h and f2 = g, by the Bessel property of G(g;�(�)), we obtain

〈h, g〉 =
∑

λ∈�(�)

|〈h, π(λ)g〉|2 ≤ Bg‖h‖22 = 1 .

On the other hand, by Theorem 6.11 i i i) with L = 1, D(�(�))〈h, g〉 = 1, and
therefore D(�(�)) ≥ 1. ��
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