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Abstract
In this work we extend the theory of the classical Hardy space H1 to the rational
Dunkl setting. Specifically, let � be the Dunkl Laplacian on a Euclidean space R

N .
On the half-space R+ × R

N , we consider systems of conjugate (∂2t +�x)-harmonic
functions satisfying an appropriate uniform L1 condition. We prove that the boundary
values of such harmonic functions, which constitute the real Hardy space H1

�, can be
characterized in several different ways, namely by means of atoms, Riesz transforms,
maximal functions or Littlewood–Paley square functions.
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1 Introduction

Real Hardy spaces on R
N have their origin in the study of holomorphic functions of

one variable in the upper half-plane R
2+ = {z = x + iy ∈ C : y > 0}. The theorem of

Burkholder et al. [5] asserts that a real-valued harmonic function u on R
2+ is the real

part of a holomorphic function F(z) = u(z)+ iv(z) satisfying the L p condition

sup
y>0

∫
R

|F(x + iy)|p dx < ∞, 0 < p < ∞,

if and only if the nontangential maximal function u∗(x) = sup|x−x ′|<y |u(x ′ + iy)|
belongs to L p(R). Here 0 < p < ∞. The N -dimensional theory was then developed
in Stein andWeiss [36] and Fefferman and Stein [19], where the notion of holomorphy
was replaced by conjugate harmonic functions. To be more precise, a system of C2

functions

u(x0, x1, . . . , xN )

= (u0(x0, x1, . . . , xN ), u1(x0, x1, . . . , xN ), . . . , uN (x0, x1, . . . , xN )),

where x0 > 0, satisfies the generalized Cauchy–Riemann equations if

∂u j

∂xi
= ∂ui

∂x j
∀ 0 ≤ i �= j ≤ N and

N∑
j=0

∂u j

∂x j
= 0. (1.1)

One says that u has the L p property if

sup
x0>0

∫
RN
|u(x0, x1, . . . , xN )|p dx1 . . . dxN < ∞. (1.2)

As in the case N = 1, if 1− 1
N < p < ∞ and u0(x0, x1, . . . , xN ) is a harmonic

function, there is a system u = (u0, u1, . . . , uN ) of C2 functions satisfying (1.1) and
(1.2) if and only if

u∗0(x) = sup
‖x−x′‖<x0

|u0(x0, x′)|

belongs to L p(RN ). Here x = (x1, . . . , xN ) ∈ R
N and similarly x′ = (x ′1, . . . , x ′N ).

Then u0 has a limit f0 in the sense of distributions, as x0 ↘ 0, and u0 is the Poisson
integral of f0. It turns out that the set of all distributions obtained in this way, which
forms the so-called real Hardy space H p(RN ), can be equivalently characterized in
terms of real analysis (see [19]), namely by means of various maximal functions,
square functions or Riesz transforms. Another important contribution to this theory
lies in the atomic decomposition introduced by Coifman [7] and extended to spaces
of homogeneous type by Coifman and Weiss [8].
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The goal of this paper is to study harmonic functions, conjugate harmonic func-
tions, and related Hardy space H1 for the Dunkl Laplacian � (see Sect. 2). We shall
prove that these objects have properties analogous to the classical ones. In particular,
the related real Hardy space H1

�, which can be defined as the set of boundary values
of (∂2t +�x)-harmonic functions satisfying a relevant L1 property, can be character-
ized by appropriate maximal functions, square functions, Riesz transforms or atomic
decompositions. Apart from the square function characterization, this was achieved
previously in [3] and [13] in the one-dimensional case, as well as in the product case.

Hardy spaces associated with semigroups of linear operators have a long history.
Let us present a small and selected part of it. Muckenhoupt and Stein [26] introduced a
notion of conjugacy for the one–dimensional Bessel operator, which initiated a study
of Hardy spaces in the Bessel setting, continued subsequently in [4]. In [20] and [6],
the authors developed a theory of real Hardy spaces H p on homogeneous nilpotent
Lie groups, associated either with a sublaplacian (if the group is stratified) or with
a Rockland operator (if the group is graded). Another important contribution is the
theory of localHardy spaces in [22], which has several applications, e.g., in the study of
Hardy spaces associated with the twisted laplacian [25] or with Schrödinger operators
with certain (large) potentials [17]. Hardy spaces associated with semigroups whose
kernels satisfy Gaussian bounds were studied in [24]. There, the theory of tent spaces
[9,33] was used to produce specific atomic decompositions for Hardy spaces defined
by square functions. This theory was further enhanced in [11,37] via characterizations
by means of maximal functions.

In the one-dimensional case and in the product case considered in [3,13], the Dunkl
kernel can be expressed explicitly in terms of classical special functions (Bessel func-
tions or the confluent hypergeometric function). Thus its behavior is fully understood.
In the general case considered in the present paper, no such information is available.
Therefore an essential part of our work consists in estimating the Dunkl kernel, the
heat kernel, the Poisson kernel, and their derivatives (see Sects. 3–5). As observed
in [3], the heat kernel satisfies no Gaussian bound in the Dunkl setting. However, as
shown in Sect. 4, some Gaussian-type bounds hold provided the Euclidean distance is
replaced by the orbit distance (3.3). Similarly for the Poisson kernel, whose estimates
in terms of the orbit distance resemble the analysis on spaces of homogeneous type (see
Sect. 5). These crucial observations allow us to adapt the techniques of [11,24,37] in
order to obtain atomic, maximal function, and square function characterizations of the
Hardy space H1

�. As far as the Riesz transform characterization of H1
� is concerned,

we use the maximum principle for Dunkl–Laplace subharmonic functions, together
with estimates for the Dunkl and Poisson kernels.

Let us finally mention some further works in the continuation of the present paper.
In [14] another atomic decomposition for the Hardy H1

� space is obtained. The arti-
cle [23] provides characterizations of the Hardy space associated with the Dunkl
harmonic oscillator, while [15] is devoted to non-radial multipliers associated with
the Dunkl transform.
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1.1 Notation

• As usual, N = {0, 1, 2, . . .} denotes the set of nonnegative integers.
• The Euclidean space R

N is equipped with the standard inner product

〈x, y〉 =
∑ N

j=1 x j y j

and the corresponding norm ‖x‖= (∑ N
j=1 |x j |2

)1/2. Throughout the paper,

B (x, r) = {y∈R
N | ‖x− y‖<r }

stands for the ball with center x ∈ R
N and radius r > 0. Finally, R

N+1+ denotes
the half-space (0,∞)×R

N in R
N+1.

• In R
N , the directional derivative along ξ is denoted by ∂ξ . As usual, for every

multi-index α= (α1, α2, . . . , αN )∈N
N , we set |α|=∑ N

j=1α j and

∂ α= ∂ α1
e1 ◦ ∂ α2

e2 ◦ · · · ◦ ∂ αN
eN ,

where {e1, e2 , . . . , eN } is the canonical basis of R
N . The additional subscript x in

∂ α
x means that the partial derivative ∂ α is taken with respect to the variable x∈R

N .
• The symbol ∼ between two positive expressions f , g means that their ratio f

g is
bounded from above and below by positive constants.

• The symbol � (respectively � ) between two nonnegative expressions f , g means
that there exists a constant C>0 such that f ≤Cg (respectively f ≥Cg).

• We denote by C0(R
N ) the space of all continuous functions on R

N vanishing
at infinity, by C∞c (RN ) the space of all smooth functions on R

N with compact
support, and by S(RN ) the Schwartz class on R

N . If m ∈ N and � is an open
subset of R

N , then f is a Cm function on � if f and all partial derivatives ∂α f ,
|α| ≤ m, are continuous functions on �.

• If J is a measurable subset of R
N , then χJ denotes the characteristic function of

J , that is, χJ (x) = 1 if x ∈ J and χJ (x) = 0 otherwise.
• Throughout the paper,C ,C ′, c , etc. stand for positive constants, whose values may
vary from occurrence to occurrence.

Further notation is defined in the next two sections.

2 Statement of the Results

In this section we first collect basic facts concerning Dunkl operators, the Dunkl
Laplacian, and the corresponding heat and Poisson semigroups. For details we refer
the reader to [12,30,32]. Next we state our main results.
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In the Euclidean space R
N the reflection σα with respect to the hyperplane α⊥

orthogonal to a nonzero vector α ∈ R
N is given by

σα(x) = x − 2
〈x, α〉
‖α‖2 α.

A finite set R ⊂ R
N \ {0} is called a root system if σα(R) = R for every α ∈ R. We

shall consider normalized reduced root systems, that is, ‖α‖2 = 2 for every α ∈ R.
The finite group G generated by the reflections σα is called theWeyl group (reflection
group) of the root system. We shall denote byO(x), resp.O(B) the G-orbit of a point
x ∈ R

N , resp. a subset B ⊂ R
N . A multiplicity function is a G-invariant function

k : R → C, which will be fixed and ≥ 0 throughout this paper.
Given a root system R and a multiplicity function k, theDunkl operators Tξ are the

following deformations of directional derivatives ∂ξ by difference operators :

Tξ f (x)= ∂ξ f (x)+
∑
α∈R

k(α)

2
〈α, ξ 〉 f (x)− f (σα(x))

〈α, x〉

= ∂ξ f (x)+
∑

α∈R+
k(α)〈α, ξ 〉 f (x)− f (σα(x))

〈α, x〉 .

Here R+ is any fixed positive subsystem of R. The Dunkl operators Tξ , which were
introduced in [12], commute pairwise and are skew-symmetric with respect to the
G-invariant measure dw(x) = w(x) dx, where

w(x) =
∏
α∈R

|〈α, x〉|k(α)=
∏

α∈R+
|〈α, x〉|2k(α).

Set Tj = Te j , where {e1, . . . , eN } is the canonical basis of R
N . The Dunkl Laplacian

associated with R and k is the differential-difference operator � =∑n
j=1 T 2

j , which

acts on C2 functions by

� f (x)= �eucl f (x)+
∑
α∈R

k(α)δα f (x) = �eucl f (x)+ 2
∑

α∈R+
k(α)δα f (x),

where

δα f (x) = ∂α f (x)
〈α, x〉 − f (x)− f (σα(x))

〈α, x〉2 .

The operator � is essentially self-adjoint on L2(dw) (see for instance [2, Theorem
3.1]) and generates the heat semigroup

Ht f (x) =et� f (x) =
∫
RN

ht (x, y) f (y) dw(y). (2.1)
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Here the heat kernel ht (x, y) is aC∞ function in all variables t > 0, x ∈ R
N , y ∈ R

N ,
which satisfies

ht (x, y) = ht (y, x)> 0 and
∫
RN

ht (x, y) dw(y) = 1.

Notice that (2.1) defines a strongly continuous semigroup of linear contractions on
L p(dw), for every 1 ≤ p < ∞.

The Poisson semigroup Pt = e−t
√−� is given by the subordination formula

Pt f (x) = π−1/2
∫ ∞

0
e−u exp

( t2
4u

�
)
f (x)

du√
u

(2.2)

and solves the boundary value problem{
(∂2t +�x) u(t, x) = 0

u(0, x) = f (x)

in the half-space R
1+N+ = (0,∞) × R

N ⊂ R
1+N (see [31, Sect. 5]). Let e0 =

(1, 0, . . . , 0), e1 = (0, 1, . . . , 0),…, eN = (0, 0, . . . , 1) be the canonical basis in
R
1+N . In order to unify our notation we shall denote the variable t by x0 and set

T0 = ∂e0 .
Our goal is to study real harmonic functions of the operator

L = T 2
0 +� =

N∑
j=0

T 2
j . (2.3)

The operator L is the Dunkl Laplacian associated with the root system R, considered
as a subset of R

1+N under the embedding R ⊂ R
N ↪→ R× R

N .
We say that a system

u = (u0, u1, . . . , uN ), where u j = u j (x0, x1, . . . , xN︸ ︷︷ ︸
x

) ∀ 0 ≤ j ≤ N ,

of C1 real functions on R
1+N+ satisfies the generalized Cauchy–Riemann equations if{
Tiu j = Tjui ∀ 0 ≤ i �= j ≤ N ,∑N

j=0 Tju j = 0.
(2.4)

In this case each component u j is L-harmonic, i.e., Lu j = 0.
We say that a system u of C2 real L-harmonic functions on R

1+N+ belongs to the
Hardy space H1 if it satisfies both (2.4) and the L1 condition

‖u‖H1 = sup
x0>0

∥∥|u(x0, ·)|
∥∥
L1(dw)

= sup
x0>0

∫
RN
|u(x0, x)| dw(x) < ∞,

where |u(x0, x)| =
(∑N

j=0 |u j (x0, x)|2
)1/2

.
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We are now ready to state our first main result.

Theorem 2.1 Let u0 be a L-harmonic function in the upper half-space R
1+N+ . Then

there are L-harmonic functions u j ( j = 1, . . . , N ) such that u = (u0, u1, . . . , uN )

belongs toH1 if and only if the nontangential maximal function

u∗0(x) = sup ‖x′−x‖<x0 |u0(x0, x′)| (2.5)

belongs to L1(dw). In this case, the norms ‖u∗0‖L1(dw) and ‖u‖H1 are moreover
equivalent.

If u ∈ H1, we shall prove that the limit f (x) = limx0→0 u0(x0, x) exists in L1(dw)

and u0(x0, x) = Px0 f (x). This leads to consider the so-called real Hardy space

H1
� = { f (x) = lim

x0→0
u0(x0, x) | (u0, u1, . . . , uN ) ∈ H1},

equipped with the norm

‖ f ‖H1
�
= ‖(u0, u1, . . . , uN )‖H1 .

Let us denote by
MP f (x) = sup ‖x−x′‖<t

∣∣Pt f (x′)∣∣ (2.6)

the nontangential maximal function associated with the Poisson semigroup Pt =
e−t

√−�. According to Theorem 2.1, H1
� coincides with the following subspace of

L1(dw) :

H1
max,P = { f ∈ L1(dw) | ‖ f ‖H1

max, P
:= ‖MP f ‖L1(dw) < ∞}. (2.7)

Moreover, the norms ‖ f ‖H1
�
and ‖ f ‖H1

max, P
are equivalent.

Our task is to prove other characterizations of H1
� by means of real analysis.

A Characterization by the Heat Maximal Function

Let

MH f (x) = sup ‖x−x′‖2<t |Ht f (x′)|

be the nontangential maximal function associated with the heat semigroup Ht = et�

and set

H1
max,H = { f ∈ L1(dw) | ‖ f ‖H1

max, H
:= ‖MH f ‖L1(dw) < ∞}. (2.8)

Theorem 2.2 The spaces H1
� and H1

max,H coincide and the corresponding norms
‖ f ‖H1

�
and ‖ f ‖H1

max, H
are equivalent.
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B Characterization by Square Functions

For every 1 ≤ p ≤ ∞, the operators Qt = t
√−�e−t

√−� are uniformly bounded on
L p(dw) (this is a consequence of the estimates (4.3), (5.7) and (5.4)). Consider the
square function

S f (x) =
(∫∫

‖x−y‖<t
|Qt f (y)|2 dt dw(y)

t w(B(x, t))

)1/2

(2.9)

and the space

H1
square = { f ∈ L1(dw) | ‖S f ‖L1(dw) < ∞}.

Theorem 2.3 The spaces H1
� and H1

square coincide and the corresponding norms
‖ f ‖H1

�
and ‖S f ‖L1(dw) are equivalent.

Remark 2.4 The square function characterization of H1
� is also valid for Qt =

t2� e t
2�.

C Characterization by Riesz Transforms

The Riesz transforms, which are defined in the Dunkl setting by

R j f = Tj (−�)−1/2 f

(see Sect. 8), are bounded operators on L p(dw), for every 1 < p < ∞ (cf. [1]). In the
limit case p = 1, they turn out to be bounded operators from H1

� into H1
� ⊂ L1(dw).

This leads to consider the space

H1
Riesz = { f ∈ L1(dw) | ‖R j f ‖L1(w) < ∞, ∀ 1 ≤ j ≤ N }.

Theorem 2.5 The spaces H1
� and H1

Riesz coincide and the correspondingnorms‖ f ‖H1
�

and

‖ f ‖H1
Riesz

:= ‖ f ‖L1(dw) +
∑N

j=1 ‖R j f ‖L1(dw).

are equivalent.

D Characterization by Atomic Decompositions

Let us define atoms in the spirit of [24]. Given a Euclidean ball B in R
N , we shall

denote its radius by rB and itsG-orbit byO(B). For any positive integerM , letD(�M )

be the domain of �M as an (unbounded) operator on L2(dw).
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Definition 2.6 Let 1 < q ≤ ∞ and letM be a positive integer. A function a ∈ L2(dw)

is said to be a (1, q, M)–atom if there exist b ∈ D(�M ) and a ball B such that

• a = �Mb ,
• supp (��b) ⊂ O(B) ∀ 0 ≤ � ≤ M ,

• ‖(r2B�)�b‖Lq (dw) ≤ r2MB w(B)
1
q−1 ∀ 0 ≤ � ≤ M .

Let us remark that ‖a‖L1(dw) ≤ |G|1− 1
q , where |G| denotes the number of elements

of G. This follows easily from the above conditions (with �=M ) by using Hölder’s
inequality.

Definition 2.7 An L1(dw)–function f belongs to H1
(1,q,M) if there exist (1, q, M)–

atoms a j and λ j ∈C such that
∑

j |λ j | < ∞ and

f =
∑

j
λ j a j . (2.10)

Moreover,

‖ f ‖H1
(1,q,M)

= inf
{∑

j
|λ j |

}
,

where the infimum is taken over all representations (2.10).

Notice that the series (2.10) converges (absolutely) in L1(dw) and almost every-
where. Moreover, the results in our paper ensure that the convergence of the series
(2.10) holds in the Hardy space H1 as well.

Theorem 2.8 The spaces H1
� and H1

(1,q,M) coincide and the corresponding norms are
equivalent.

Let us briefly describe the organization of the proofs of the results. Clearly,
H1

(1,q1,M) ⊂ H1
(1,q2,M) for 1 < q2 ≤ q1 ≤ ∞. The proof (u0, u1, . . . , uN ) ∈ H1

implies u∗0 ∈ L1(dw), which is actually the inclusion H1
� ⊂ H1

max,P , is presented
in Sect. 7, see Proposition 7.6. The proof is based on L-subharmonicity of certain
function constructed from u (see Sect. 6). The converse to Proposition 7.6 is proved
at the very end of Sect. 11. Inclusions: H1

� ⊂ H1
Riesz ⊂ H1

� are shown in Sect. 8.
Further, H1

(1,q,M) ⊂ H1
Riesz for M large is proved in Sect. 9. Section 10 is devoted to

proving H1
max,H = H1

max,P. The proofs of H
1
max,H ⊂ H1

(1,∞,M) for every M ≥ 1 are

presented in Sect. 11. Inclusion: H1
(1,q,M) ⊂ H1

max,H for every M ≥ 1 is proved in

Sect. 12. Finally, H1
(1,2,M) ⊂ H1

square ⊂ H1
(1,2,M) are established in Sect. 13.

3 Dunkl Kernel, Dunkl Transform and Dunkl Translations

The purpose of this section is to collect some facts about the Dunkl kernel, the Dunkl
transform and Dunkl translations. General references are [10,12,30,32]. At the end of
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this section we shall derive estimates for the Dunkl translations of radial functions.
These estimates will be used later to obtain bounds for the heat kernel and for the
Poisson kernel, as well as for their derivatives, and furthermore upper and lower
bounds for the Dunkl kernel.

We begin with some notation. Given a root system R in R
N and a multiplicity

function k ≥ 0, let
γ =

∑
α∈R+k(α) and N = N+ 2γ. (3.1)

The number N is called the homogeneous dimension, because of the scaling property

w(B(tx, tr)) = tNw(B(x, r)).

Observe that

w(B(x, r)) ∼ r N
∏
α∈R

( |〈α, x〉| + r )k(α).

Thus the measure w is doubling, that is, there is a constant C > 0 such that

w(B(x, 2r)) ≤ C w(B(x, r)).

Moreover, there exists a constant C ≥ 1 such that, for every x ∈ R
N and for every

r2 ≥ r1 > 0,

C−1
(r2
r1

)N ≤ w(B(x, r2))
w(B(x, r1))

≤ C
(r2
r1

)N
. (3.2)

Set

V (x, y, t) = max
{
w(B(x, t)), w(B(y, t))

}
.

Finally, let
d(x, y) = min

σ∈G ‖x − σ(y)‖ (3.3)

denote the distance between two G-orbits O(x) and O(y). Obviously, O(B(x, r)) =
{y∈R

N | d(y, x) < r} and

w(B(x, r)) ≤ w(O(B(x, r))) ≤ |G|w(B(x, r)).

3.1 Dunkl Kernel

For fixed x ∈ R
N , theDunkl kernel y �−→E(x, y) is the unique solution to the system

{
Tξ f = 〈ξ, x〉 f ∀ ξ ∈ R

N ,

f (0) = 1.
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The following integral formula was obtained by Rösler [28] :

E(x, y) =
∫
RN

e〈η,y〉dμx(η), (3.4)

where μx is a probability measure supported in the convex hull convO(x) of the G-
orbit of x. The function E(x, y), which generalizes the exponential function e〈x,y〉,
extends holomorphically to C

N × C
N and satisfies the following properties :

• E(0, y) = 1 ∀ y ∈ C
N ,

• E(x, y) = E(y, x) ∀ x, y ∈ C
N ,

• E(λx, y) = E(x, λy) ∀ λ ∈ C, ∀ x, y ∈ C
N ,

• E(σ (x), σ (y)) = E(x, y) ∀ σ ∈ G, ∀ x, y ∈ C
N ,

• E(x, y) = E(x̄, ȳ) ∀ x, y ∈ C
N ,

• E(x, y)> 0 ∀ x, y ∈ R
N ,

• |E(ix, y)| ≤ 1 ∀ x, y ∈ R
N ,

• |∂α
y E(x, y)| ≤ ‖x‖|α|max σ∈G eRe 〈σ(x),y〉 ∀ α ∈ N

N , ∀ x ∈ R
N , ∀ y ∈ C

N .

3.2 Dunkl Transform

The Dunkl transform is defined on L1(dw) by

F f (ξ) = c−1k

∫
RN

f (x)E(x,−iξ) dw(x),

where

ck =
∫
RN

e−
‖x‖2
2 dw(x) > 0 .

In the limit case k ≡ 0, the Dunkl transform boils down to the classical Fourier
transform

f̂ (ξ) = (2π)−N/2
∫
RN

f (x) e− i 〈ξ,x〉 dx .

The following properties hold for the Dunkl transform (see [10,32]):

• TheDunkl transform is a topological automorphismsof theSchwartz spaceS(RN ).
• (Inversion formula) For every f ∈ S(RN ) and actually for every f ∈ L1(dw)

such that F f ∈ L1(dw), we have

f (x) = (F)2 f (−x) ∀ x ∈ R
N .

• (Plancherel Theorem) TheDunkl transform extends to an isometric automorphism
of L2(dw).

• The Dunkl transform of a radial function is again a radial function.
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• (Scaling) For λ ∈ R
∗, we have

F( fλ)(ξ) = F f (λξ), where fλ(x) = |λ|−N f (λ−1x).

• Via the Dunkl transform, the Dunkl operator Tη corresponds to the multiplication
by ±i 〈η, · 〉. Specifically,

{
F(Tη f ) = i 〈η, · 〉F f ,

Tη(F f ) = −i F(〈η, · 〉 f ).

In particular, F(� f )(ξ) = −‖ξ‖2F f (ξ).

3.3 Dunkl Translations and Dunkl Convolution

The Dunkl translation τx f of a function f ∈ S(RN ) by x ∈ R
N is defined by

τx f (y) = c−1k

∫
RN

E(iξ, x) E(iξ, y)F f (ξ) dw(ξ). (3.5)

Notice the following properties of Dunkl translations:

• each translation τx is a continuous linear map of S(RN ) into itself, which extends
to a contraction on L2(dw),

• (Identity) τ0 = I ,
• (Symmetry) τx f (y) = τy f (x) ∀ x, y ∈ R

N , ∀ f ∈ S(RN ),
• (Scaling) τx( fλ) = (τλ−1x f )λ ∀ λ > 0 , ∀ x ∈ R

N , ∀ f ∈ S(RN ),
• (Commutativity) theDunkl translations τx and theDunkl operators Tξ all commute,
• (Skew–symmetry)

∫
RN

τx f (y) g(y) dw(y)=
∫
RN

f (y) τ−xg(y) dw(y)∀x ∈ R
N ,∀ f , g ∈ S(RN ).

The latter formula allows us to define the Dunkl translations τx f in the distributional
sense for f ∈ L p(dw) with 1 ≤ p ≤ ∞. In particular,

∫
RN

τx f (y) dw(y) =
∫
RN

f (y) dw(y) ∀ x ∈ R
N , ∀ f ∈ S(RN ).

Finally, notice that τx f is given by (3.5), if f ∈ L1(dw) and F f ∈ L1(dw).
The Dunkl convolution of two reasonable functions (for instance Schwartz func-

tions) is defined by

( f ∗ g)(x) = ck F−1[(F f )(Fg)](x)
=
∫
RN

(F f )(ξ) (Fg)(ξ) E(x, iξ) dw(ξ) ∀ x ∈ R
N
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or, equivalently, by

( f ∗g)(x) =
∫
RN

f (y) τxg(−y) dw(y) ∀ x ∈ R
N .

3.4 Dunkl Translations of Radial Functions

The following specific formula was obtained by Rösler [29] for the Dunkl translations
of (reasonable) radial functions f (x) = f̃ (‖x‖) :

τx f (−y) =
∫
RN

( f̃ ◦ A)(x, y, η) dμx(η) ∀ x, y ∈ R
N . (3.6)

Here

A(x, y, η) =
√
‖x‖2 + ‖y‖2 − 2〈y, η〉 =

√
‖x‖2 − ‖η‖2 + ‖y− η‖2

andμx is the probability measure occurring in (3.4), which is supported in convO(x).
In the remaining part of this section, we shall derive estimates for the Dunkl trans-

lations of certain radial functions. Recall that d(x, y) denotes the distance of the orbits
O(x) andO(y) (see (3.3)). Let us begin with the following elementary estimates (see,
e.g., [1]), which hold for x, y ∈ R

N and η ∈ convO(x) :

A(x, y, η) ≥ d(x, y) (3.7)

and ⎧⎪⎨
⎪⎩
‖∇y{A(x, y, η)2}‖ ≤ 2 A(x, y, η),

|∂β
y {A(x, y, η)2}| ≤ 2 if |β| = 2,

∂
β
y {A(x, y, η)2} = 0 if |β| > 2.

(3.8)

Hence
‖∇yA(x, y, η)‖ ≤ 1 (3.9)

and, more generally,

|∂β
y (θ ◦ A)(x, y, η)| ≤ Cβ A(x, y, η)m−|β| ∀ β ∈ N

N ,

if θ ∈ C∞(R�{0}) is a homogeneous symbol of order m ∈ R, i.e.,

|( d
dx

)β
θ(x)

∣∣ ≤ Cβ |x |m−β ∀ x ∈ R�{0} , ∀ β ∈ N .

Similarly,

|∂β
y (θ̃ ◦ A)(x, y, η)| ≤ Cβ

{
1+A(x, y, η)

}m−|β| ∀ β ∈ N
N ,
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if θ̃ ∈ C∞(R) is an even inhomogeneous symbol of order m ∈ R, i.e.,

∣∣( d
dx

)β
θ̃(x)

∣∣ ≤ Cβ (1+|x |)m−β ∀ x ∈ R , ∀ β ∈ N .

Consider the radial function

q(x) = cM (1+‖x‖2)−M/2

onR
N , whereM>N and cM >0 is a normalizing constant such that

∫
RN q(x)dw(x)=

1. Notice that q̃(x) = cM (1+x2)−M/2 is an even inhomogeneous symbol of order
−M . The following estimate holds for the translates qt (x, y) = τxqt (−y) of qt (x) =
t−Nq(t−1x).

Proposition 3.1 There exists a constant C > 0 (depending on M) such that

0 ≤ qt (x, y) ≤ C V (x, y, t)−1 ∀ t > 0, ∀ x, y ∈ R
N .

Proof By scaling we can reduce to t = 1. Fix x, y ∈ R
N . We shall prove that

∫
RN

(1+ A(x, y, η))−Mdμx(η) ∼
∫
RN

(1+ A(x, y, η)2)−M/2dμx(η)

= q1(x, y) ≤ CV (x, y, 1)−1. (3.10)

Set B̄ = {y′ ∈ R
N | ‖y′−y‖ ≤ 1}. By continuity, the function B̄ � y′ �−→ q1(x, y′)

reaches a maximum K = q1(x, y0) ≥ 0 on the ball B̄ at some point y0 ∈ B̄. For every
y′ ∈ B̄, we have

0 ≤q1(x, y0)− q1(x, y′) =
∫
RN

{
(q̃ ◦ A)(x, y0, η)− (q̃ ◦ A)(x, y′, η)

}
dμx(η)

=
∫
RN

∫ 1

0

∂

∂s
(q̃ ◦ A)(x, y′ + s(y0 − y′)︸ ︷︷ ︸

ys

, η) ds dμx(η)

≤ ‖y0 − y′‖
∫
RN

∫ 1

0
|(q̃ ′ ◦ A)(x, ys, η)| ds dμx(η)

≤ M ‖y0 − y′‖
∫
RN

∫ 1

0
(q̃ ◦ A)(x, ys, η) ds dμx(η)

= M ‖y0 − y′‖
∫ 1

0
q1(x, ys) ds

≤ M ‖y0 − y′‖ K .

Here we have used (3.9) and the elementary estimate

|q̃ ′(x)| ≤ M q̃(x) ∀ x ∈R .
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Hence

q1(x, y′) ≥ q1(x, y0)− |q1(x, y0)− q1(x, y′)| ≥ K − K

2
= K

2
,

if y′ ∈ B̄ ∩ B(y0, r) with r = 1
2M . Moreover, as w(B̄ ∩ B(y0, r)) ∼ w(B̄), we have

1 =
∫
RN

q1(x, y′)dw(y′) ≥
∫
B̄∩B(y0,r)

q1(x, y′) dw(y′)

≥ K

2
w(B̄ ∩ B(y0, r)) ≥ K

C
w(B̄) .

Therefore

0 ≤ q1(x, y) ≤ K ≤ C w(B(y, 1))−1.

We deduce (3.10) by using the symmetry q1(x, y) = q1(y, x). ��
Consider next a radial function f satisfying

| f (x)| � (1+‖x‖)−M−κ ∀ x ∈ R
N

with M>N and κ≥0. Then the following estimate holds for the translates ft (x, y) =
τx ft (−y) of ft (x) = t−N f (t−1x).

Corollary 3.2 There exists a constant C>0 such that

| ft (x, y)| ≤ C V (x, y, t)−1
(
1+ d(x, y)

t

)−κ ∀ t > 0, ∀ x, y ∈ R
N .

Proof By scaling we can reduce to t = 1. By using (3.6), (3.7), and (3.10) we get

| f1(x, y)|�
∫
RN

(
1+A(x, y, η)

)−M(1+A(x, y, η)
)−κ

dμx(η)

≤ C V (x, y, 1)−1
(
1+ d(x, y)

)−κ
.

��
Notice that the space of radial Schwartz functions f onR

N identifies with the space
of even Schwartz functions f̃ on R, which is equipped with the norms

‖ f̃ ‖Sm = max
0≤ j≤m sup

x∈R
(1+|x |)m

∣∣∣
( d

dx

)j
f̃ (x)

∣∣∣ ∀ m ∈ N . (3.11)
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Proposition 3.3 For every κ ≥ 0, there exist C ≥ 0 and m ∈ N such that, for all
even Schwartz functions ψ̃ {1}, ψ̃ {2} and for all even nonnegative integers �1, �2, the
convolution kernel

�s,t (x, y)

= c−1k

∫
RN

(s‖ξ‖)�1 ψ {1}(s‖ξ‖) (t ‖ξ‖)�2 ψ {2}(t ‖ξ‖) E(x, iξ) E(−y, iξ)dw(ξ)

satisfies

|�s,t (x, y)| ≤ C ‖ψ {1}‖Sm+�1+�2
‖ψ {2}‖Sm+�1+�2

×min
{( s

t

)�1,( ts
)�2} V (x, y, s + t)−1

(
1+ d(x, y)

s + t

)−κ

,

for every s, t > 0 and for every x, y ∈ R
N .

Proof By continuity of the inverse Dunkl transform in the Schwartz setting, there
exists a positive even integer m and a constant C > 0 such that

sup z∈RN (1+‖z‖)M+κ |F−1 f (z)| ≤ C ‖ f̃ ‖Sm ,

for every even function f̃ ∈ Cm(R) with ‖ f̃ ‖Sm < ∞. Consider first the case 0 <

s ≤ t = 1. Then

‖(sξ)�1 ψ̃ {1}(sξ) ξ�2 ψ̃ {2}(ξ)‖Sm ≤ C ‖ψ {1}‖Sm ‖ψ {2}‖Sm+�1+�2
s�1 .

According to Corollary 3.2, we deduce that

|�s,1(x, y)| ≤ C ‖ψ {1}‖Sm+�1+�2
‖ψ {2}‖Sm+�1+�2

s�1 V (x, y, 1)−1
(
1+ d(x, y)

)−κ

≤ C ‖ψ {1}‖Sm+�1+�2
‖ψ {2}‖Sm+�1+�2

s�1 V (x, y, s+1)−1
(
1+ d(x, y)

s+1

)−κ

.

In the case s = 1 ≥ t > 0, we have similarly

|�1,t (x, y)| ≤ C ‖ψ {1}‖Sm+�1+�2
‖ψ {2}‖Sm+�1+�2

t�2 V (x, y, 1+ t)−1
(
1+ d(x, y)

1+ t

)−κ

.

The general case is obtained by scaling. ��

4 Heat Kernel and Dunkl Kernel

Via the Dunkl transform, the heat semigroup Ht = et� is given by

Ht f (x) = F−1(e−t‖ξ‖2F f (ξ)
)
(x).
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Alternately (see, e.g., [32])

Ht f (x) = f ∗ ht (x) =
∫
RN

ht (x, y) f (y) dw(y),

where the heat kernel ht (x, y) is a smooth positive radial convolution kernel. Specifi-
cally, for every t > 0 and for every x, y ∈ R

N ,

ht (x, y) = c−1k (2t)−N/2 e−
‖x‖2+‖y‖2

4t E
( x√

2t
,

y√
2t

)
= τxht (−y), (4.1)

where

ht (x) = h̃t (‖x‖) = c−1k (2t)−N/2 e−
‖x‖2
4t .

In particular,

ht (x, y) = ht (y, x) > 0,∫
RN

ht (x, y) dw(y) = 1,

ht (x, y) ≤ c−1k (2t)−N/2 e−
d(x,y)2

4t . (4.2)

4.1 Upper Heat Kernel Estimates

We prove now Gaussian bounds for the heat kernel and its derivatives, in the spirit of
spaces of homogeneous type, except that the metric ‖x − y‖ is replaced by the orbit
distance d(x, y) (see (3.3)). In comparison with (4.2), the main difference lies in the
factor tN/2, which is replaced by the volume of appropriate balls.

Theorem 4.1 (a) Time derivatives : for any nonnegative integer m, there are constants
C, c > 0 such that

∣∣∂mt ht (x, y)
∣∣ ≤ C t−m V (x, y,

√
t )−1 e−c d(x,y)2/t , (4.3)

for every t >0 and for every x, y∈R
N .

(b) Hölder bounds : for any nonnegative integer m, there are constants C, c > 0 such
that

∣∣∂mt ht (x, y)− ∂mt ht (x, y′)
∣∣ ≤ C t−m

(‖y−y′‖√
t

)
V (x, y,

√
t )−1 e−c d(x,y)2/t ,

(4.4)
for every t >0 and for every x, y, y′∈R

N such that ‖y−y′‖<
√
t .

(c) Dunkl derivative: for any ξ ∈R
N and for any nonnegative integer m, there are

constants C, c>0 such that

∣∣∣Tξ,x ∂mt ht (x, y)
∣∣∣ ≤ C t−m−1/2 V (x, y,

√
t )−1 e−c d(x,y)2/t , (4.5)
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for all t >0 and x, y∈R
N .

(d) Mixed derivatives: for any nonnegative integer m and for any multi-indices α, β,
there are constants C, c>0 such that, for every t > 0 and for every x, y ∈ R

N ,

∣∣∂mt ∂α
x ∂

β
y ht (x, y)

∣∣ ≤ C t−m−
|α|
2 − |β|

2 V (x, y,
√
t )−1 e−c d(x,y)2/t , (4.6)

for every t >0 and for every x, y∈R
N .

Proof The proof relies on the expression

ht (x, y) =
∫
RN

h̃t
(
A(x, y, η)

)
dμx(η) (4.7)

and on the properties of A(x, y, η).

(a) Consider first the casem=0. By scaling we can reduce to t=1. On the one hand,
we use (3.7) to estimate

ck 2
N/2 h1(x, y) =

∫
RN

e−A(x,y,η)2/8 e−A(x,y,η)2/8 dμx(η)

≤ e−d(x,y)2/8
∫
RN

e−A(x,y,η)2/8 dμx(η) .

On the other hand, it follows from Proposition 3.1 and Corollary 3.2 that

∫
RN

e− c A(x,y,η)2dμx(η) � V (x, y, 1)−1 ,

for any fixed c>0 . Hence

h1(x, y) � V (x, y, 1)−1 e− d(x,y)2/8 .

Consider next the case m > 0. Observe that ∂m
t h̃t (x) is equal to t−mh̃t (x) times a

polynomial in x2
t . Therefore

∣∣∂mt h̃t (x)
∣∣ ≤ Cm t−m h̃2t (x) . (4.8)

By differentiating (4.7) and by using (4.8), we deduce that

∣∣∂mt ht (x, y)
∣∣ ≤ Cm t−m h2t (x, y) .

We conclude by using the case m=0.

(b) Observe now that h̃t (x)= ∂x ∂mt h̃t (x) is equal to x
tm+1 h̃t (x) times a polynomial

in x2
t , hence ∣∣h̃t (x)∣∣ ≤ Cm t−m−1/2 h̃2t (x) . (4.9)
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By differentiating (4.7) and by using (3.9) and (4.3), we estimate

|∂mt ht (x, y)− ∂mt ht (x, y′)| =
∣∣∣
∫
RN

{
∂mt h̃t (A(x, y, η))− ∂mt h̃t (A(x, y′, η))

}
dμx(η)

∣∣∣

=
∣∣∣
∫
RN

∫ 1

0

∂

∂s
∂mt h̃t (A(x, y′+s(y−y′)︸ ︷︷ ︸

ys

, η)) ds dμx(η)

∣∣∣

≤ ‖y−y′‖
∫ 1

0

∫
RN

∣∣h̃t (A(x, ys, η))
∣∣ dμx(η) ds

≤ Cm t−m ‖y−y′‖√
t

∫ 1

0
h2t (x, ys) ds

≤ C ′
m t−m ‖y−y′‖√

t

∫ 1

0
V (x, ys,

√
2t ) e−c d(x,ys )2

2 t ds .

In order to conclude, notice that

V (x, ys,
√
2t ) ∼ V (x, y,

√
t ) (4.10)

under the assumption ‖y−y′‖<
√
t and let us show that, for every c>0, there exists

C≥1 such that

C−1 e−
3
2 c

d(x,y)2
t ≤ e−c d(x,ys )2

t ≤ C e−
1
2 c

d(x,y)2
t . (4.11)

As long as d(x, y) ≤ C
√
t , all expressions in (4.11) are indeed comparable to 1. On

the other hand, if d(x, y)≥√32 t , then

|d(x, y)2− d(x, ys)2| = |d(x, y)− d(x, ys)| {d(x, y)+ d(x, ys)}
≤ ‖y− ys‖ {2 d(x, y)+ ‖y− ys‖} ≤

√
2 t {2 d(x, y)+√2 t }

≤ √
8 t d(x, y)+ 2 t ≤ 1

2
d(x, y)2+ 2 t .

Hence
1

2
d(x, y)2/t − 2 ≤ d(x, ys)2/t ≤ 3

2
d(x, y)2/t + 2 .

(c) By symmetry, we can replace Tξ,x by Tξ,y. Consider first the contribution of the
directional derivative in Tξ,y. By differentiating (4.7) and by using (4.9) and (4.3),
we estimate as above

|∂ξ,y∂
m
t ht (x, y)| ≤ ‖ξ‖

∫
RN
|h̃t (A(x, y, η))| dμx(η)

≤ C t−m−1/2 h2t (x, y)

≤ C t−m−1/2 V (x, y,
√
t )−1 e−c d(x,y)2/t .
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Consider next the contributions

∂mt ht (x, y)− ∂mt ht (x, σα(y))
〈α, y〉 (4.12)

of the difference operators in Tξ,y. If |〈α, y〉| >
√
t/2 , we use (4.3) and estimate

separately each term in (4.12). If |〈α, y〉| ≤ √
t/2 , we estimate again

∣∣∣∂
m
t ht (x, y)− ∂mt ht (x, σα(y))

〈α, y〉
∣∣∣ ≤ √

2
∫
RN

∫ 1

0
|h̃t (A(x, ys, η))|ds dμx(η)

≤ C t−m−1/2
∫ 1

0
h2t (x, ys) ds

≤ C t−m−1/2
∫ 1

0
V (x, ys,

√
2t )−1 e−c d(x,ys )2

2 t ds

≤ C t−m−1/2 V (x, y,
√
t )−1 e−c d(x,y)2

t .

In the last step we have used (4.10) and (4.11), which hold as ‖ys−y‖≤√t .

(d) This time, we use (3.8) to estimate

∣∣∂β
y ∂mt h̃t

(
A(x, y, η)

)∣∣ ≤ Cm,β t−m−
|β|
2 h̃2t

(
A(x, y, η)

)
. (4.13)

Firstly, by differentiating (4.7) and by using (4.13), we obtain

∣∣∂mt ∂
β
y ht (x, y)

∣∣ ≤ Cm,β t−m−
|β|
2 h2t (x, y) . (4.14)

Secondly, by differentiating

ht (x, y) =
∫
RN

ht/2(x, z) ht/2(z, y) dw(z) ,

by using (4.14) and by symmetry, we get

∣∣∂mt ∂α
x ∂

β
y ht (x, y)

∣∣ ≤ Cm,α,β t−m−
|α|
2 − |β|

2 h2t (x, y) .

We conclude by using (4.3). ��

4.2 Lower Heat Kernel Estimates

We begin with an auxiliary result.

Lemma 4.2 Let f̃ be a smooth bump function on R such that 0 ≤ f̃ ≤ 1, f̃ (x) = 1 if
|x | ≤ 1

2 and f̃ (x) = 0 if |x | ≥ 1. Set as usual

f (x) = f̃ (‖x‖) and f (x, y) = τx f (−y).
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Then 0 ≤ f (x, y) ≤ 1 and f (x, y) = 0 if d(x, y) ≥ 1. Moreover, there exists a
positive constant c1 such that

sup
y∈O(B(x,1)

f (x, y) ≥ c1
w(B(x, 1))

, (4.15)

for every x ∈ R
N .

Proof All claims follow from (3.6) and (3.7). Let us prove the last one. On the one
hand, by translation invariance,

∫
RN

f (x, y) dw(y) =
∫
RN

f (y) dw(y) ≥ w(B(0, 1/2)).

On the other hand,

∫
RN

f (x, y) dw(y) =
∫
O(B(x,1))

f (x, y) dw(y) ≤ |G|w(B(x, 1)) sup
y∈O(B(x,1))

f (x, y).

This proves (4.15) with c1 = w(B(0,1/2))
|G| . ��

Proposition 4.3 There exist positive constants c2 and ε such that

ht (x, y) ≥ c2
w(B(x,

√
t ))

,

for every t > 0 and x, y ∈ R
N satisfying ‖x − y‖ ≤ ε

√
t .

Proof By scaling it suffices to prove the proposition for t = 2. According to Lemma
4.2, applied to h̃1 � f̃ , there exists c3 > 0 and, for every x ∈ R

N , there exists
y(x) ∈ O(B(x, 1)) such that

h1(x, y(x)) ≥ c3 w(B(x, 1))−1.

This estimate holds true around y(x), according to (4.4), Specifically, there exists
0 < ε < 1 (independent of x) such that

h1(x, y) ≥ c3
2 w(B(x, 1))−1 ∀ y ∈ B(y(x), ε).

By using the semigroup property and the symmetry of the heat kernel, we deduce that

h2(x, x) =
∫

h1(x, y) h1(y, x) dw(y)

≥
∫
B(y(x),ε)

h1(x, y)2 dw(y)

≥ w(B(y(x), ε) ( c32 )2 w(B(x, 1))−2.
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Byusing the fact that the balls B(y(x), ε), B(x, 1), B(x,
√
2)have comparable volumes

and by using again (4.4), we conclude that

h2(x, y) ≥ c4 w(B(x,
√
2))−1,

for all x, y ∈ R
N sufficiently close. ��

A standard argument, which we include for the reader’s convenience, allows us to
deduce from such a near on diagonal estimate the following global lower Gaussian
bound.

Theorem 4.4 There exist positive constants C and c such that

ht (x, y) ≥ C

min {w(B(x,
√
t )), w(B(y,

√
t ))} e

−c ‖x−y‖2/t , (4.16)

for every t > 0 and for every x, y ∈ R
N .

Proof We resume the notation of Proposition 4.3. For s ∈ R, we define �s� to be
the smallest integer larger than or equal to s. Assume that ‖x − y‖2/t ≥ 1 and set
n = �4‖x− y‖2/(ε2t)� ≥ 4. Let xi = x+ i(y− x)/n (i = 0, . . . , n), so that x0 = x,
xn = y, and ‖xi+1 − xi‖ = ‖x − y‖/n. Consider the balls Bi = B(xi , ε

4

√
t/n) and

observe that

‖yi+1 − yi‖ ≤ ‖yi − xi‖ + ‖xi − xi+1‖ + ‖xi+1 − yi+1‖ <
ε

4

√
t

n
+ ε

2

√
t

n
+ ε

4

√
t

n

= ε

√
t

n

if yi ∈ Bi and yi+1 ∈ Bi+1. By using the semigroup property, Proposition 4.3 and the
behavior of the ball volume, we estimate

ht (x, y) =
∫
RN

. . .

∫
RN

ht/n(x, y1)ht/n(y1, y2) . . . ht/n(yn−1, y) dw(y1) . . . dw(yn−1)

≥ cn−12

∫
B1

. . .

∫
Bn−1

w(B(x,
√
t/n))−1 . . . w(B(yn−1,

√
t/n))−1

× dw(y1) . . . dw(yn−1)

≥ cn−13 w(B(x,
√
t/n))−1 w(B1) . . . w(Bn−1)

w(B(x1,
√
t/n)) . . . w(B(xn−1,

√
t/n))

≥ cn−15 w(B(x,
√
t ))−1 = c−15 w(B(x,

√
t ))−1e−n ln c

−1
5

≥ C w(B(x,
√
t ))−1e−c

‖x−y‖2
t .

We conclude by symmetry. ��



2378 Journal of Fourier Analysis and Applications (2019) 25:2356–2418

By combining (4.3) and (4.16), we obtain in particular the following near on
diagonal estimates. Notice that the ball volumes w(B(x,

√
t )) and w(B(y,

√
t )) are

comparable under the assumptions below.

Corollary 4.5 For every c > 0, there exists C > 0 such that

C−1

w(B(x,
√
t ))

≤ ht (x, y) ≤ C

w(B(x,
√
t ))

,

for every t >0 and x, y∈R
N such that ‖x−y‖≤ c

√
t .

4.3 Estimates of the Dunkl Kernel

According to (4.1), the heat kernel estimates (4.3) and (4.16) imply the following
results, which partially improve upon known estimates for the Dunkl kernel. Notice
that x can be replaced by y in the ball volumes below.

Corollary 4.6 There are constants c ≥ 1 and C ≥ 1 such that

C−1

w(B(x, 1))
e
‖x‖2+‖y‖2

2 e−c ‖x−y‖2 ≤ E(x, y) ≤ C

w(B(x, 1))
e
‖x‖2+‖y‖2

2 e−c−1d(x,y)2 ,

for all x, y ∈ R
N . In particular,

• for every ε > 0, there exists C ≥ 1 such that

C−1

w(B(x, 1))
e
‖x‖2+‖y‖2

2 ≤ E(x, y) ≤ C

w(B(x, 1))
e
‖x‖2+‖y‖2

2 ,

for all x, y ∈ R
N satisfying ‖x − y‖ < ε ;

• there exist c > 0 and C > 0 such that

E(λx, y) ≥ C

w(B(
√

λ x, 1))
eλ(1−c ‖x−y‖2),

for all λ≥ 1 and for all x, y ∈ R
N with ‖x‖ = ‖y‖ = 1.

5 Poisson Kernel in the Dunkl Setting

The Poisson semigroup Pt = e− t
√−� is subordinated to the heat semigroup Ht = et�

by (2.2) and correspondingly for their integral kernels

pt (x, y) = π−1/2
∫ ∞

0
e−u h t2

4u
(x, y)

du√
u

. (5.1)
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This subordination formula enables us to transfer properties of the heat kernel ht (x, y)
to the Poisson kernel pt (x, y). For instance,

pt (x, y) = pt (y, x)> 0,∫
RN

pt (x, y) dw(y) = 1,

pt (x, y) = τx pt (−y), (5.2)

where
pt (x) = p̃t (‖x‖) = c′k t

(
t2+ ‖x‖2)−N+1

2 (5.3)

and

c′k =
2N/2 �(N+12 )√

π ck
> 0 .

The following global bounds hold for the Poisson kernel and its derivatives.

Proposition 5.1 (a) Upper and lower bounds : there is a constant C≥1 such that

C−1

V (x, y, t + ‖x − y‖)
t

t + ‖x − y‖ ≤ pt (x, y) ≤ C

V (x, y, t + d(x, y))
t

t + d(x, y)
(5.4)

for every t > 0 and for every x, y ∈ R
N .

(b) Dunkl gradient : for every ξ ∈ R
N , there is a constant C > 0 such that

∣∣Tξ,y pt (x, y)
∣∣ ≤ C

V (x, y, t + d(x, y))
1

t + d(x, y)
(5.5)

for all t > 0 and x, y ∈ R
N .

(c) Mixed derivatives : for any nonnegative integer m and for any multi-index β, there
is a constant C≥0 such that, for every t > 0 and for every x, y ∈ R

N ,

∣∣∂mt ∂
β
y pt (x, y)

∣∣ ≤ C pt (x, y)
(
t + d(x, y)

)−m−|β| ×
{
1 if m = 0,

1+ d(x,y)
t if m>0.

(5.6)
Moreover, for any nonnegative integer m and for any multi-indices β, β ′, there is
a constant C≥0 such that, for every t > 0 and for every x, y ∈ R

N ,

∣∣∂mt ∂
β
x ∂

β ′
y pt (x, y)

∣∣ ≤ C t−m−|β|−|β ′| pt (x, y) . (5.7)

Notice that, by symmetry, (5.5) holds also with Tξ,x instead of Tξ,y.

Proof (a) The Poisson kernel bounds (5.4) are obtained by inserting the heat kernel
bounds (4.3) and (4.16) in the subordination formula (5.1). For a detailed proof
we refer the reader to [16, Proposition 6].

(b) The Dunkl gradient estimate (5.5) is deduced similarly from (4.5).
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(c) The estimate (5.6) is proved directly. As (t, x) �−→ (t2+x2)−(N+1)/2 is a homo-
geneous symbol of order −N−1 on R

2, we have

{
|∂β

x p̃t (x)| ≤ Cβ (t+|x |)−β p̃t (x)

|∂mt ∂
β
x p̃t (x)| ≤ Cm,β t−1(t+|x |)1−m−β p̃t (x)

∀ t >0, ∀ x ∈R, (5.8)

for every positive integer m and for every nonnegative integer β. By using (3.6),
(3.7), (5.2), (5.3) and (5.8), we estimate

∣∣∂β
y pt (x, y)

∣∣≤
∫
RN

∣∣ ∂β
y p̃t (A(x, y, η))

∣∣ dμx(η)

≤ Cβ

∫
RN

(
t +A(x, y, η)

)−|β|
p̃t (A(x, y, η)) dμx(η)

≤ Cβ

(
t + d(x, y

)−|β|
pt (x, y)

and, similarly,

∣∣∂mt ∂
β
y pt (x, y)

∣∣ ≤ Cm,β t−1
(
t + d(x, y

)1−m−|β|
pt (x, y),

for every positive integer m . Finally, (5.7) is deduced from (5.6) by using the
semigroup property. More precisely, by differentiating

pt (x, y) =
∫
RN

pt/2(x, z) pt/2(z, y) dw(z) ,

by using (5.6) and by symmetry, we obtain

∣∣∂mt ∂
β
x ∂

β ′
y pt (x, y)

∣∣ � t−m−|β|−|β ′|
∫
RN

pt/2(x, z) pt/2(z, y) dw(z)

= t−m−|β|−|β ′| pt (x, y) .

��
Notice the following straightforward consequence of the upper bound in (5.4) :

MP f (x)�
∑
σ∈G

MHL f (σ (x)) , (5.9)

whereMHL denotes the Hardy–Littlewood maximal function on the space of homo-
geneous type (RN , ‖x−y‖, dw). Likewise, (4.3) yields

MH f (x)�
∑
σ∈G

MHL f (σ (x)) .

Observe that the Poisson kernel is an approximation of the identity in the following
sense.
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Proposition 5.2 Given any compact subset K ⊂ R
N , any r > 0 and any ε > 0, there

exists t0 = t0(K , r , ε) > 0 such that, for every 0 < t < t0 and for every x ∈ K,

∫
‖x−y‖>r

pt (x, y) dw(y) < ε .

Proof Let K be a compact subset of R
N and let r , ε > 0. Fix x0 ∈ K and consider

f ∈ C∞c (RN ) such that 0 ≤ f ≤ 1, f = 1 on B(x0, r/4) and supp f ⊂ B(x0, r/2).
By the inversion formula,

f (x)− Pt f (x) = c−1k

∫
RN

(1−e− t ‖ξ‖) E(iξ, x)F f (ξ) dw(ξ) ,

hence

| f (x)− Pt f (x)| ≤ c−1k

∫
RN

(
1−e− t ‖ξ‖) |F f (ξ)| dw(ξ) . (5.10)

As F f ∈S(RN ), (5.10) implies that there is t0= t0(x0,r ,ε)>0 such that

sup
x∈RN

| f (x)− Pt f (x)|<ε ∀ 0< t < t0 .

In particular, for every 0< t < t0 and for every x∈ B(x0, r/4), we have

0 ≤
∫
‖x−y‖>r

pt (x, y) dw(y) = 1−
∫
‖x−y‖≤r

pt (x, y) dw(y)

≤ f (x)−
∫
‖x−y‖≤r

pt (x, y) f (y) dw(y) ≤ | f (x)− Pt f (x)|<ε .

We easily conclude the proof by compactness. ��
The following results follow from (5.4), (5.9), and Proposition 5.2.

Corollary 5.3 Let f be a bounded continuous function onR
N . Then its Poisson integral

u(t, x) = Pt f (x) is also bounded and continuous on [0,∞)× R
N .

Corollary 5.4 Let f ∈ L p(dw) with 1 ≤ p ≤ ∞. Then for almost every x∈R
N ,

lim
t→0

sup
‖y−x‖<t

∣∣Pt f (y)− f (x)
∣∣ = 0.

Moreover, for f ∈ L p(dw), 1 ≤ p < ∞, we have limt→0 ‖Pt f − f ‖L p(dw) = 0.

Remark 5.5 The assertion of Proposition 5.2 remains valid with the same proof if
pt (x, y) is replaced by �t (x, y) = τx�t (−y), where � ∈ S(RN ) is radial, nonnega-
tive, and

∫
�(x) dw(x) = 1.
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6 Conjugate Harmonic Functions—Subharmonicity

For σ ∈ G, let f σ (x) = f (σ (x)). It is easy to check that

Tξ f
σ (x) = (Tσξ f )

σ (x), σ ∈ G, x, ξ ∈ R
N ,

(� f σ )(x) = (� f )σ (x). (6.1)

Let {σi j }Ni, j=1 denote the matrix of σ ∈ G written in the canonical basis e1, . . ., eN
of R

N . Clearly, {σi j }Ni, j=1 belongs to the group O(N , R) of the orthogonal N × N
matrices.

Lemma 6.1 Assume thatu(x0, x) = (u0(x0, x), u1(x0, x), . . ., uN (x0, x)) satisfies the
Cauchy–Riemann equations (2.4). For σ ∈ G, set

uσ,0(x0, x) = u0(x0, σ (x)), uσ, j (x0, x) =
N∑
i=1

σi j ui (x0, σ (x)), j = 1, 2, . . . , N .

(6.2)
Then uσ (x0, x) = (uσ,0(x0, x), uσ,1(x0, x), . . ., uσ,N (x0, x)) satisfies the Cauchy–
Riemann equations. Moreover,

|uσ (x0, x)| = |u(x0, σ (x))|. (6.3)

Proof Let 1 ≤ k, j ≤ N . Then

Tkuσ, j (x0, x) =
N∑
i=1

σi j Tk(ui (x0, σ ·))(x) =
N∑
i=1

σi j

N∑
�=1

σ�k(T�ui )(x0, σ (x)), (6.4)

and, similarly,

Tjuσ,k(x0, x) =
N∑
i=1

σik

N∑
�=1

σ� j (T�ui )(x0, σ (x)). (6.5)

Recall that T�ui = Tiu�. Hence, (6.5) becomes

Tjuσ,k(x0, x) =
N∑
i=1

σik

N∑
�=1

σ� j (Tiu�)(x0, σ (x)). (6.6)

Now we see that (6.4) and (6.6) are equal. The proof that Tkuσ,0 = T0uσ,k is straight-
forward. The second equality of (2.4) follows directly from (6.6) and the fact that
σ−1 = σ ∗.
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Since {σi j } ∈ O(N , R),

|uσ,0(x0, x)|2 +
N∑
j=1

|uσ, j (x0, x)|2 = |u0(x0, σ (x))|2 +
N∑
j=1

∣∣∣∣∣
N∑
i=1

σi j ui (x0, σ (x))

∣∣∣∣∣
2

= |u0(x0, σ (x))|2 +
N∑
i=1

|ui (x0, σ (x))|2, (6.7)

which proves (6.3). ��
Let

F(t, x) = {uσ (t, x)}σ∈G . (6.8)

We shall always assume that u and uσ are related by (6.2). Then, by (6.3),

|F(x0, x)|2 =
∑
σ∈G

N∑
�=0

|uσ,�(x0, x)|2 =
∑
σ∈G

|uσ (x0, x)|2 =
∑
σ∈G

|u(x0, σ (x))|2.

Observe that |F(x0, x)| = |F(x0, σ (x))| for every σ ∈ G.
Consequently, for every α ∈ R,

∑
σ∈G

N∑
�=0

(
uσ,�(x0, x)− uσ,�(x0, σα(x))

)
· uσ,�(x0, x)

= 1

2

∑
σ∈G

N∑
�=0

∣∣∣uσ,�(x0, x)− uσ,�(x0, σα(x))
∣∣∣2. (6.9)

We shall need the following auxiliary lemma.

Lemma 6.2 For every ε > 0 there is δ > 0 such that for every matrix A = {ai j }Ni, j=0
with real entries ai j one has

‖A‖2 ≤ ε
(
( trA)2 +

∑
i< j

(ai j − a ji )
2
)
+ (1− δ)‖A‖2HS,

where ‖A‖HS denotes the Hilbert–Schmidt norm of A.

Proof The lemma was proved in [13]. For the convenience of the reader we present a
short proof. The inequality is known for trace zero symmetric A (see Stein and Weiss
[36, Lemma 2.2]). By homogeneity we may assume that ‖A‖HS = 1. Assume that
the inequality does not hold. Then there is ε > 0 such that for every n > 0 there is
An = {a{n}i j }Ni, j=0, ‖An‖HS = 1 such that

‖An‖2 > ε
(
(trAn)

2 +
∑
i< j

(a{n}i j − a{n}j i )2
)
+
(
1− 1

n

)
‖An‖2HS.
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Thus there is a subsequence ns such that Ans → A, ‖A‖HS = 1 and

‖A‖2 ≥ ε

⎛
⎝(trA)2 +

∑
i< j

(ai j − a ji )
2

⎞
⎠+ ‖A‖2HS.

But then A = A∗ and trA = 0, and so, ‖A‖2 ≥ ‖A‖2HS. This contradicts the already
known inequality. ��

We now state and prove the main theorem of Sect. 6, which is the analog in the
Dunkl setting of a Euclidean subharmonicity property (see [34, Chapter VII, Sect.
3.1]) and which was proved in the product case in [13, Proposition 4.1]. Recall (2.3)
that L = T 2

0 +�.

Theorem 6.3 There is an exponent 0 < q < 1 which depends on k such that if
u = (u0, u1, . . ., uN ) ∈ C2 satisfies the Cauchy–Riemann equations (2.4), then the
function |F |q is L-subharmonic, that is, L(|F |q)(t, x) ≥ 0 on the set where |F | > 0.

Proof Observe that |F |q isC2 on the set where |F | > 0. Let · denote the inner product
in R

(N+1)·|G|. For j = 0, 1, . . ., N , we have

∂e j |F |q = q|F |q−2
(
(∂e j F) · F

)

∂2e j |F |q = q(q − 2)|F |q−4
(
(∂e j F) · F

)2 + q|F |q−2
(
(∂2e j F) · F + |∂e j F |2

)
.

Recall that |F(x0, x)| = |F(x0, σ (x))|. Hence,

L|F |q = q(q − 2)|F |q−4
⎧⎨
⎩
⎛
⎝ N∑

j=0

(
(∂e j F) · F

)2
⎫⎬
⎭

+ q|F |q−2
⎧⎨
⎩
⎛
⎝ N∑

j=0
∂2e j F + 2

∑
α∈R+

k(α)

〈α, x〉∂αF

⎞
⎠ · F +

N∑
j=0

|∂e j F |2
⎫⎬
⎭ .

(6.10)
Since Tj T� = T�Tj , we conclude from (2.4) applied to uσ that for � = 0, 1, . . . , N ,
we have

N∑
j=0

∂2e j uσ,�(x0, x)+ 2
∑

α∈R+

k(α)

〈α, x〉∂αuσ,�(x0, x)

=
∑

α∈R+
k(α)‖α‖2 uσ,�(x0, x)− uσ,�(x0, σα(x))

〈α, x〉2 .
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Thus,

⎛
⎝ N∑

j=0
∂2e j F + 2

∑
α∈R+

k(α)

〈α, x〉∂αF

⎞
⎠ · F

=
∑
σ∈G

N∑
�=0

⎛
⎝ N∑

j=0
∂2e j uσ,�(x0, x)+ 2

∑
α∈R+

k(α)

〈α, x〉∂αuσ,�(x0, x)

⎞
⎠ uσ,�(x0, x)

=
∑
σ∈G

N∑
�=0

∑
α∈R+

k(α)‖α‖2 uσ,�(x0, x)− uσ,�(x0, σα(x))
〈α, x〉2 uσ,�(x0, x)

=
∑

α∈R+

k(α)‖α‖2
〈α, x〉2

∑
σ∈G

N∑
�=0

(
uσ,�(x0, x)− uσ,�(x0, σα(x))

)
uσ,�(x0, x)

= 1

2

∑
α∈R+

k(α)‖α‖2
〈α, x〉2

∑
σ∈G

N∑
�=0

(
uσ,�(x0, x)− uσ,�(x0, σα(x))

)2
(6.11)

Thanks to (6.10) and (6.11), it suffices to prove that there is 0 < q < 1 such that

(2− q)

N∑
j=0

(
(∂e j F(x0, x)) · F(x0, x)

)2

≤ 1

2
|F(x0, x)|2

∑
σ∈G

N∑
�=0

∑
α∈R+

k(α)‖α‖2
〈α, x〉2

(
uσ,�(x0, x)− uσ,�(x0, σα(x))

)2

+ |F(x0, x)|2
⎛
⎝ N∑

j=0
|∂e j F(x0, x)|2

⎞
⎠ .

(6.12)
Set

Bσ =

⎡
⎢⎢⎣

∂e0uσ,0 ∂e0uσ,1 . . . ∂e0uσ,N

∂e1uσ,0 ∂e1uσ,1 . . . ∂e1uσ,N

. . .

∂eN uσ,0 ∂eN uσ,1 . . . ∂eN uσ,N

⎤
⎥⎥⎦ .

Let B = {Bσ }σ∈G be matrix with N +1 rows and (N +1) · |G| columns. It represents
a linear operator (denoted by B) from R

(N+1)·|G| into R
1+N . Let ‖B‖ be its norm.
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Observe that for 0 < q < 1, we have

(2− q)

N∑
j=0

(
(∂e j F) · F

)2 ≤ (2− q)|F |2‖B‖2,

|F |2
N∑
j=0

|∂e j F |2 = |F |2‖B‖2HS.

Clearly,

‖B‖2 ≤
∑
σ∈G

‖Bσ‖2, ‖B‖2HS =
∑
σ∈G

‖Bσ‖2HS.

Therefore the inequality (6.12) will be proven if we show that

(2− q)
∑
σ∈G

‖Bσ‖2 ≤
∑
σ∈G

‖Bσ‖2HS

+ 1

2

∑
σ∈G

N∑
�=0

∑
α∈R+

k(α)‖α‖2
〈α, x〉2

(
uσ,�(x0, x)− uσ,�(x0, σα(x))

)2
.

(6.13)

Recall that

γ =
N∑
j=1

∑
α∈R+

k(α)〈α, e j 〉2
‖α‖2 =

N∑
j=0

∑
α∈R+

k(α)〈α, e j 〉2
‖α‖2

(see (3.1)). By applying first the Cauchy–Riemann equations (2.4) and next the
Cauchy–Schwarz inequality, we obtain

( trBσ )2 =
⎛
⎝−

N∑
j=1

∑
α∈R+

k(α)〈α, e j 〉uσ, j (x0, x)− uσ, j (x0, σα(x))
〈α, x〉

⎞
⎠

2

≤
⎛
⎝ N∑

j=1

∑
α∈R+

k(α)〈α, e j 〉2
‖α‖2

⎞
⎠

×
⎛
⎝ N∑

j=1

∑
α∈R+

‖α‖2k(α)

(
uσ, j (x0, x)− uσ, j (x0, σα(x))

)2
〈α, x〉2

⎞
⎠

≤ γ

N∑
j=0

∑
α∈R+

‖α‖2k(α)

(
uσ, j (x0, x)− uσ, j (x0, σα(x))

)2
〈α, x〉2 . (6.14)
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Utilizing again the Cauchy–Riemann equations (2.4), we get

∑
0≤i< j≤N

(
∂ei uσ, j (x0, x)− ∂e j uσ,i (x0, x)

)2

=
N∑
j=1

⎛
⎝∑

α∈R+
k(α)〈α, e j 〉uσ,0(x0, x)− uσ,0(x0, σα(x))

〈α, x〉

⎞
⎠

2

+
∑

1≤i< j≤N

⎛
⎝∑

α∈R+
−k(α)〈α, ei 〉uσ, j (x0, x)− uσ, j (x0, σα(x))

〈α, x〉

+ k(α)〈α, e j 〉uσ,i (x0, x)− uσ,i (x0, σα(x))
〈α, x〉

)2

≤ 2

⎛
⎝ N∑

j=0

∑
α∈R+

k(α)〈α, e j 〉2
‖α‖2

⎞
⎠

×
⎛
⎝ N∑

j=0

∑
α∈R+

‖α‖2k(α)

(
uσ, j (x0, x)− uσ, j (x0, σα(x))

)2
〈α, x〉2

⎞
⎠ . (6.15)

Using the auxiliary Lemma 6.2 together with (6.14) and (6.15) we have that for every
ε > 0 there is 0 < δ < 1 such that

∑
σ∈G

‖Bσ‖2 ≤ (1− δ)
∑
σ∈G

‖Bσ‖2HS

+ 3εγ
∑
σ∈G

N∑
j=0

∑
α∈R+

‖α‖2k(α)

(
uσ, j (x0, x)− uσ, j (x0, σα(x))

)2
〈α, x〉2 .

(6.16)

Taking ε > 0 such that 3εγ ≤ 1
4 and utilizing (6.16) we deduce that (6.13) holds for

q such that (1− δ) ≤ (2− q)−1. ��

7 Harmonic Functions in the Dunkl Setting

In this sectionwe characterize certainL-harmonic functions in the half-spaceR
1+N+ by

adapting the classical proofs (see, e.g., [19,34,36]). Let us first construct an auxiliary
barrier function.
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7.1 Barrier Function

For fixed δ > 0, let v1, . . ., vs ∈ R
N be a set of vectors of the unit sphere in SN−1 =

{x ∈ R
N : ‖x‖ = 1} which forms a δ–net on SN−1. Let M, ε > 0. Define

Vm(x0, x) = 2Mεx0 + εE
(επ

4
x, vm

)
cos
(επ

4
x0
)
, m = 1, . . . , s, (7.1)

(cf. [34, Chapter VII, Sect. 1.2] in the classical setting). The functionVm isL-harmonic
and strictly positive on [0, ε−1] × R

N . Set

V(x0, x) =
s∑

m=1
Vm(x0, x).

By Corollary 4.6,

lim‖x‖→∞V(x0, x) = ∞ uniformly in x0 ∈ [0, ε−1]. (7.2)

7.2 Maximum Principle and theMeanValue Property

As we have already remarked in Sect. 2, the operator L is the Dunkl–Laplace operator
associated with the root system R as a subset of R

1+N = R × R
N . We shall denote

the element of R
1+N by x = (x0, x). The associated measure will be denoted by w.

Clearly, dw(x) = w(x) dx dx0. Moreover, E(x, y) = ex0 y0E(x, y). We shall slightly
abuse notation and use the same letter σ for the action of the group G in R

1+N , so
σ(x) = σ(x0, x) = (x0, σ (x)).

The following weak maximum principle forL-subharmonic functions was actually
proved in Theorem 4.2 of Rösler [27].

Theorem 7.1 Let � ⊂ R
1+N be open, bounded, and � ⊂ (0,∞) × R

N . Assume
that � is G-invariant, that is, (x0, σ (x)) ∈ � for (x0, x) ∈ � and all σ ∈ G. Let
f ∈ C2(�) ∩ C(�) be real-valued and L-subharmonic. Then

max
�

f = max
∂�

f .

Let f {r}(x) = χB(0,r)(x) be the characteristic function of the ball in R
1+N . Set

f (r , x, y) = τx f
{r}(− y).

Clearly, 0 ≤ f (r , x, y) ≤ 1. The following mean value theorem was proved in [21,
Theorem 3.2].

Theorem 7.2 Let� ⊂ R
1+N be an open and G-invariant set and let u be aC2 function

in �. Then u is L-harmonic if and only if u has the following mean value property:
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for all x ∈ � and ρ > 0 such that B(x, ρ) ⊂ �, we have

u(x) = 1

w(B(0, r))

∫
�

f (r , x, y)u( y)dw( y) for 0 < r < ρ/3.

7.3 Characterizations ofL-Harmonic Functions in the Upper Half-Space

Theorem 7.3 Suppose that u is a C2 function on R
1+N+ . Then u is a Poisson integral

of a bounded function on R
N if and only if u is L-harmonic and bounded.

Proof The proof is identical to that of Stein [34]. Clearly, the Poisson integral of a
bounded function is bounded and L-harmonic. To prove the converse assume that
u is L-harmonic and bounded, so |u| ≤ M . Set fn(x) = u( 1n , x) and un(x0, x) =
Px0 fn(x). Then Un(x0, x) = u(x0 + 1

n , x) − un(x0, x) is L-harmonic, |Un| ≤ 2M ,
continuous on [0,∞) × R

N , and Un(0, x) = 0. We shall prove that Un ≡ 0. Fix
(y0, y) ∈ R

1+N+ . Set

U (x0, x) = Un(x0, x)+ V(x0, x)

and consider the function U on the closure of the set � = (0, ε−1) × B(0, R), with
ε > 0 small and R large enough. Then U is L-harmonic in �, continuous on �̄, and
positive on the boundary of the ∂�. Thus, by the maximum principle,U is positive in
�̄, so

Un(y0, y) > −2Mεy0 −
s∑

m=1
εE
(επ

4
y, vm

)
cos
(επ

4
y0
)
.

Letting ε → 0 we obtain Un(y0, y) ≥ 0. The same argument applied to −u gives
−Un(y0, y) ≥ 0, so Un ≡ 0, which can be written as

u
(
x0 + 1

n
, x
)
= Px0 fn(x) =

∫
px0(x, y) fn(y) dw(y). (7.3)

Clearly | fn| ≤ M , so by the *-weak compactness, there is a subsequence n j and
f ∈ L∞(RN ) such that for ϕ ∈ L1(dw), we have

lim
j→∞

∫
ϕ(y) fn j (y) dw(y) =

∫
ϕ(y) f (y) dw(y).

So,

u(x0, x) = lim
j→∞ u

(
x0 + 1

n j
, x
)
= lim

j→∞

∫
px0(x, y) fn j (y) dw(y)

=
∫

px0(x, y) f (y) dw(y).

��
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Corollary 7.4 If u is L-harmonic and bounded in R
1+N+ then u has a nontangential

limit at almost every point of the boundary.

Theorem 7.5 Suppose that u is a C2-function on R
1+N+ . If 1 < p < ∞ then u is a

Poisson integral of an L p(dw) function if and only if u is L-harmonic and

sup
x0>0

‖u(x0, ·)‖L p(dw) < ∞. (7.4)

If p = 1 then u is a Poisson integral of a bounded measure ω if and only if u is
L-harmonic and

sup
x0>0

‖u(x0, ·)‖L1(dw) < ∞. (7.5)

Moreover, if u∗ ∈ L1(dw) (see (2.5)), then dω(x) = f (x)dw(x), where f ∈ L1(dw).

Proof Assume that either (7.4) or (7.5) holds. Then, by Theorem 7.2, for every ε > 0,

sup
x0>0

sup
x∈RN

|u(x0 + ε, x)| ≤ Cε < ∞. (7.6)

Set fn(x) = u( 1n , x). From Theorem 7.3 we conclude that u( 1n + x0, x) = Px0 fn(x).
Moreover, there is a subsequence n j such that fn j converges weakly-* to f ∈ L p(dw)

(if 1 < p < ∞) or to a measure ω (if p = 1). In both cases u is the Poisson integral
either of f or ω. If additionally u∗ ∈ L1(dw), then the measure ω is absolutely
continuous with respect to dw. ��

7.4 Proof of a Part of Theorem 2.1

Weare now in a position to prove a part of Theorem2.1, which is stated in the following
proposition. The converse is proven at the very end of Sect. 11 (see Proposition 11.5).

Proposition 7.6 Assume that u ∈ H1. Then

‖u∗‖L1(dw) ≤ C‖u‖H1 . (7.7)

Proof Fix ε > 0. Set u j,ε(x0, x) = u j (ε + x0, x), f j,ε(x) = u j (ε, x). Then, by
Theorem 7.2, the L-harmonic function u j,ε(x0, x) is bounded and continuous on the
closed set [0,∞)× R

N . In particular, f j,ε ∈ L∞ ∩ L1(dw) ∩ C2. By Theorem 7.3,

u j,ε(x0, x) = Px0 f j,ε(x).

It is not difficult to concludeusing (5.7) (withm = 0) that lim‖(x0,x)‖→∞ |u j,ε(x0, x)| =
0. Thus also lim‖x‖→∞ f j,ε(x) = 0. Set uε = (u0,ε, u1,ε, . . ., uN ,ε). Clearly,
uε ∈ H1. Let Fε(x0, x) = F(ε + x0, x), where F(x0, x) is defined by (6.8). Set
f ε(x) = |F(ε, x)|. Let 0 < q < 1 be as in Theorem 6.3 and p = q−1 > 1. Observe
that the function |Fε(x0, x)|q − Px0( f

q
ε )(x) vanishes for x0 = 0 and

lim‖(x0,x)‖→∞

(
|Fε(x0, x)|q − Px0( f

q
ε )(x)

)
= 0.
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So, by Theorem 6.3 and the maximum principle (see Theorem 7.1),

|u(ε + x0, x)|q ≤ |Fε(x0, x)|q ≤ Px0( f
q
ε )(x). (7.8)

Set u∗ε (x) = sup‖x−y‖<x0 |u(ε + x0, y)|. Then, by (7.8) and (5.9),

‖u∗ε‖L1(dw) ≤ Cp‖ f qε‖pL p(dw) = Cp‖ f ε‖L1(dw) ≤ Cp‖u‖H1 .

Sinceu∗ε (x) → u∗(x) as ε → 0 and the convergence ismonotone,we use theLebesgue
monotone convergence theorem and get (7.7). ��

From Theorem 7.5 and Proposition 7.6 we obtain the following corollary.

Corollary 7.7 If u ∈ H1, then there are f j ∈ L1(dw), j = 0, 1, . . ., N, such that
| f j (x)| ≤ u∗(x) and u j (x0, x) = Px0 f j (x). Moreover, the limit limx0→0 u j (x0, x) =
f j (x) exists in L1(dw).

8 Riesz Transform Characterization of H1
1

8.1 Riesz Transforms

The Riesz transforms in the Dunkl setting are defined by

F(R j f )(ξ) = −i ξ j

‖ξ‖ (F f )(ξ), j = 1, 2, . . ., N .

They are bounded operators on L2(dw). Clearly,

R j f = −Te j (−�)−1/2 f = − lim
ε→0+, M→∞

c
∫ M

ε

Te j e
t� f

dt√
t
,

and the convergence is in L2(dw) for f ∈ L2(dw). It follows from [1] that R j are
bounded operators on L p(dw) for 1 < p < ∞.

Our task is to define R j f for f ∈ L1(dw). To this end we set

T = {ϕ ∈ L2(dw) : (Fϕ)(ξ)(1+ ‖ξ‖)n ∈ L2(dw), n = 0, 1, 2, . . .}.

It is not difficult to check that if ϕ ∈ T , then ϕ ∈ C0(R
N ) and R jϕ ∈ C0(R

N ) ∩
L2(dw). Moreover, for fixed y ∈ R

N the function pt (x, y) belongs to T . Now R j f ,
for f ∈ L1(dw), is defined in a weak sense as a functional on T , by

〈R j f , ϕ〉 = −
∫
RN

f (x)R jϕ(x) dw(x).
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8.2 Proof of Theorem 2.5

Assume that f ∈ L1(dw) is such that R j f belong to L1(dw) for j = 1, 2, . . ., N .
Set f0(x) = f (x), f j (x) = R j f (x), u0(x0, x) = Px0 f (x), u j (x0, x) = Px0 f j (x).
Then u = (u0, u1, . . ., un) satisfies (2.4). Moreover,

sup
x0>0

∫
RN
|u j (x0, x)| dw(x) ≤ ‖ f j‖L1(dw) for j = 0, 1, . . ., N .

Thus u ∈ H1 and

‖ f ‖H1
�
= ‖u‖H1 ≤ ‖ f ‖L1(dw) +

N∑
j=1

‖R j f ‖L1(dw).

We turn to prove the converse. Assume that f0 ∈ H1
�. By the definition of H1

�

there is a system u = (u0, u1, . . ., uN ) ∈ H1 such that f0(x) = limx0→0 u0(x0, x)
(convergence in L1(dw)). Set f j (x) = limx0→0 u j (x0, x), where limits exist in
L1(dw) (see Corollary 7.7). We have u j (x0, x) = Px0 f j (x). It suffices to prove that
R j f0 = f j . To this end, for ε > 0, let f j,ε(x) = u j (ε, x), u j,ε(x0, x) = u j (x0+ε, x).
Then f j,ε ∈ L1(dw) ∩ C0(R

N ). In particular, f j,ε ∈ L2(dw). Set g j = R j f0,ε,
v j (x0, x) = Px0g j (x). Then v = (u0,ε, v1, . . ., vN ) satisfies the Cauchy–Riemann
equations (2.4). Therefore, Tju0,ε(x0, x) = T0u j,ε(x0, x) = T0v j (x0, x). Hence,
u j,ε(x0, x)− v j (x0, x) = c j (x). But limx0→∞ u j,ε(x0, x) = 0 = limx0→∞ v j (x0, x)
for every x ∈ R

N . Consequently, u j,ε(x0, x) = v j (x0, x). Thus, f j,ε = R j f0,ε. Since
limε→0 f j,ε = f j in L1(dw) and R j f0,ε → R f0 in the sense of distributions, we
have f j = R j f0.

9 Inclusion H1
(1,q,M)

⊂ H1
1

In this section we show that the atomic space H1
(1,q,M) with M > N is contained in

the Hardy space H1
� and there exists C = Ck,q,M such that

‖ f ‖H1
�
≤ C‖ f ‖H1

(1,q,M)
. (9.1)

Let f ∈ H1
(1,q,M). According to Theorem 2.5, it is enough to show that R j f ∈ L1(dw)

and ‖R j f ‖L1(dw) ≤ C‖ f ‖H1
(1,q,M)

. By the definition of the atomic space, there is a

sequence a j of (1, q, M) atoms and λi ∈ C, (λi ) ∈ �1, such that f = ∑
i λi ai

and
∑

i |λi | ≤ 2‖ f ‖H1
(1,q,M)

. Observe that the series converges in L1(dw), hence

R j f = ∑
i λ j R ja j in the sense of distributions. Therefore it suffices to prove that

there is a constant C > 0 such ‖R ja‖L1(dw) ≤ C for every a being a (1, q, M)-atom.
Our proof follows ideas of [24]. Let b ∈ D(�M ) and B(y0, r) be as in the definition of
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(1, q, M) atom. Since R j is bounded on Lq(dw), by the Hölder inequality, we have

‖R ja‖L1(O(B(y0,4r))) ≤ C .

In order to estimate R ja on the set O(B(y0, 4r))c we write

R ja = c′′k
∫ ∞

0
Tj,xe

t�a
dt√
t

= c′′k
∫ r2

0
Tj,xe

t�a
dt√
t
+ c′′k

∫ ∞

r2
Tj,xe

t�(�)Mb
dt√
t

= c′′k
∫ r2

0
Tj,xe

t�a
dt√
t
+ c′′k

∫ ∞

r2
Tj,x∂

M
t et�b

dt√
t

= R j,0a + R j,∞a.

Further, using (4.5) with m = 0 together with (3.2), we get

|R j,0a(x)| ≤ C
∫ r2

0

∫
RN

t−1w(B(y,
√
t ))−1e−cd(x,y)2/t |a(y)| dw(y)dt

≤ C
rN+1

d(x, y)N+1w(B(y0, r))
. (9.2)

To estimate R j,∞a we recall that ‖b‖L1(dw) ≤ r2M . Using (4.5) with m = M , we
obtain

|R j,∞a(x)| ≤ C
∫ ∞

r2

∫
RN

t−M−1w(B(y,
√
t ))−1e−cd(x,y)2/t |b(y)| dw(y)dt

≤ C
r2M

d(x, y)2Mw(B(y0, r))
. (9.3)

Obviously, (9.2) and (9.3) combined with (3.2) imply ‖R ja‖L1(O(B(y0,4r))c) ≤ C .

10 Maximal Functions

Let �(x) be a radial continuous function such that |�(x)| ≤ C(1 + ‖x‖)−κ−β with
κ > N. Set�t (x) = t−N�(t−1x) and�t (x, y) = τx�t (−y). Then, by Corollary 3.2,

|�t (x, y)| ≤ C V (x, y, t)−1
(
1+ d(x, y)

t

)−β

.

Set M�,a f (x) = sup‖x−y‖<at |�t f (y)|, where

�t f (x) = �t ∗ f (x) =
∫
RN

�t (x, y) f (y) dw(y).
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If a = 1, we write M� instead of M�,1. By definition a function f ∈ L1(dw)

belongs to H1
max,� if M� f ∈ L1(dw). In this case ‖ f ‖H1

max,�
:= ‖M� f ‖L1(dw).

Recall that if �(x) = p1(x) (see (5.3)), then we writeMP , H1
max,P and ‖ · ‖H1

max,P
for

the correspondingmaximal function, space and norm respectively (see (2.6) and (2.7)).

10.1 The SpaceN

The space H1
max,� is related to the following tent space N .

Definition 10.1 For a > 0, λ > N and suitable functions u(t, x), set

u∗a(x) = sup
‖x−y‖<at

|u(t, y)| and u∗∗λ (x) = sup
y∈RN , t>0

|u(t, y)|
( t

‖y− x‖ + t

)λ

.

The tent space Na is then defined by

Na = {u(t, x) : ‖u‖Na = ‖u∗a‖L1(dw) < ∞}.

If a = 1, we use the simplified notation N , ‖u‖N and u∗ (cf. (2.5)).

Obviously, if u(t, x) = �t f (x), then ‖ f ‖H1
max,�

= ‖u‖N .

Lemma 10.2 There are constants C, cλ,Cλ > 0 such that

‖u‖Na ≤ C

(
a + b

b

)N
‖u‖Nb , (10.1)

cλ‖u‖N ≤ ‖u∗∗λ ‖L1(dw) ≤ Cλ‖u‖N . (10.2)

Proof Similar to the proofs in [35, Chapter II] and [20, p. 114]. ��
If � ⊂ R

N is an open set, then the tent over � is given by

�̂ =
(
(0,∞)× R

N
)
\
⋃
x∈�c

�(x), where �(x) = {(t, y) : ‖x − y‖ < 4t}.

The space N admits the following atomic decomposition (see [35]).

Definition 10.3 A function A(t, x) is an atom for N if there is a ball B such that

• supp A ⊂ B̂,
• ‖A‖L∞ ≤ w(B)−1.

Clearly, ‖A‖N ≤ 1 for every atom A for N . Moreover, every u ∈ N can be
written as u = ∑

j λ j A j , where the functions A j are atoms for N , λ j ∈ C, and∑
j |λ j | ≤ C ‖u‖N .
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Proposition 10.4 Let u(t, x) = Pt f (x) and v(t, x) = tn dn
dtn Pt f (x). Then for f ∈

L1(dw) we have

‖v‖N ≤ Cn‖u‖N .

Proof Assume that ‖u‖N < ∞. Clearly, v(t, x) = 2nQt/2Pt/2 f (x), where Qt =
tn dn

dtn Pt . Set u
{1}(t, x) = u( t2 , x). Then

‖u{1}‖N ≤ C‖u‖N .

According to the atomic decomposition, u{1} =∑ j c j A j , where the functions A j are
atoms for N , c j ∈ C, and

∑ |c j | � ‖u‖N , (see Definition 10.3). Thus, by Lemma
10.2, we have

v(t, x) = 2n
∑
j

c j Qt/2A j (t, x),

Qt/2A j (t, x) =
∫
RN

Qt/2(x, y)A j (t, y)dw(y).

From Proposition 5.1 and Definition 10.3 we conclude that ‖Qt/2A j (t, x)‖N ≤ C . ��

10.2 Calderón Reproducing Formula

Fixm ∈ N sufficiently large. Let �̃ ∈ Cm(R) be an even function such that ‖�̃‖Sm <

∞ (see (3.11)). Set �(x) = �̃(‖x‖) and assume that
∫
RN �(x) dw(x) = 0. Write

L2
(
R
1+N+ ,

dt

t
dw(x)

)
= L2(dw dt/t).

The Plancherel theorem for the Dunkl transform implies that

‖�t ∗ f (x)‖L2(dw dt/t) ≤ C ‖ f ‖L2(dw) . (10.3)

Thus, f �→ �t ∗ f (x) is a bounded linear operator from L2(dw) into L2(dw dt/t).
By duality, for F(t, x) ∈ L2(dw dt/t), the limit

lim
ε→0+

∫ ε−1

ε

(�t ∗ F(t, ·))(x)dt
t

exists in L2(RN , dw) and defines a bounded linear operator π� from L2(dw dt/t)
into L2(RN , dw), that is,

‖π�F‖L2(dw) ≤ C ‖F‖L2(dw dt/t). (10.4)
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With the customary abuse of notation, we write

π�F(x) =
∫ ∞

0
(�t ∗ F(t, ·))(x)dt

t
=
∫ ∞

0

∫
RN

�t (x, y)F(t, y) dw(y)
dt

t
.

Let � be a radial C∞ function on R
N such that

0 ≤ � ≤ 1 , supp� ⊂ B(0, 1/4) , � = 1 on B(0, 1/8) ,

and let κ be an integer > N/2. Then

� = �2κ(� ∗�) = (�κ�) ∗ (�κ�).

is radial, real-valued and

supp� ⊂ B(0, 1/2) ,

∫
RN

�(x) dw(x) = 0 ,

F�(ξ) = ck ‖ξ‖4κ (F�)2(ξ) = ck ‖ξ‖4κ |F�(ξ)|2.

Moreover, it follows from (3.6) and (3.7) that

�t (x, y) = 0 if d(x, y) > t/4 and �t (x, y) = 0 if d(x, y) > t/2. (10.5)

Furthermore,

∫
RN

�t (x, y) dw(y) =
∫
RN

�t (x, y) dw(x) = 0 ∀ t > 0

and the following Calderón reproducing formulae hold in L2(dw), for n = 1, 2, . . . :

f = lim
ε→0+

c′n
∫ ε−1

ε

�t (t
√−�)n e−t

√−� f
dt

t
= lim

ε→0+
c′
∫ ε−1

ε

�t (−t2�) et
2� f

dt

t
.

(10.6)
Wemay think about the operator in the second equality in (10.6) as the identity operator
obtained by the composition of the bounded linear operator

L2(dw) � f �→ −t2�et
2� f (x) ∈ L2(dw dt/t)

with the linear operator c′π� , which is bounded from L2(dw dt/t) into L2(dw) (see
(10.3) and (10.4)).

Recall that m is a large positive integer. Let �{ j}(x) = �̃{ j}(‖x‖), j = 1, 2, where
�̃{ j} are even Cm-functions such that

‖�̃{ j}‖Sm < ∞ (10.7)
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and ∫
RN

�{ j}(x) dw(x) = 1 ( j = 1, 2). (10.8)

By rescaling possibly �{ j}, we may assume that

f = lim
ε→0+

c′′j
∫ ε−1

ε

�t�
{ j}
t f

dt

t
∀ f ∈ L2(dw), (10.9)

where the limit takes place in L2(dw). Moreover, by Lemma 10.2, there is a constant
Cs > 0 such that if u{ j}(t, x) = �

{ j}
t f (x) and v{ j}(t, x) = �

{ j}
ts f (x) = u{ j}(st, x),

then

C−1s ‖v{ j}‖N ≤ ‖u{ j}‖N ≤ Cs‖v{ j}‖N .

We are in a position to state the main results of this section.

Proposition 10.5 For �{1} and �{2} as above and every f ∈ L2(dw), we have

‖�{1}
t f ‖Nα

= ‖M�{1},α f ‖L1(dw) ≤ C�{1},�{2},α,α′ ‖M�{2},α′ f ‖L1(dw)

= C�{1},�{2},α,α′ ‖�{2}
t f ‖Nα′ .

Proof Let �{1} = �{1} − �{2}. Then �{1} is radial and thanks to (10.8), we have
|F�{1}(ξ)| ≤ C‖ξ‖2 for ‖ξ‖ < 1. It suffices to prove that

‖�{1}
t f ‖N ≤ C‖�{2}

t f ‖N .

Using (10.9), we obtain

�
{1}
t f = lim

ε→0+
c′′2
∫ ε−1

ε

�
{1}
t �s�

{2}
s f

ds

s
,

where the limit takes place both in L2(dw) and pointwise, because �
{1}
t (y,w) ∈

L2(dw(w)). According to Proposition 3.3, for any η, � > 0 such that � ≤ 4κ , the
integral kernel Kt,s(y, z) of the operator �

{1}
t �s satisfies

|Kt,s(y, z)| ≤ Cη,� min
(( t

s

)2
,
( s
t

)�) 1

V (y, z, s + t)

(
1+ d(y, z)

s + t

)−N−η

.

We take N < λ < η < �. Then for ‖x − y‖ < t , we have

∫
RN
|Kt,s(y, z)|

(
1+ d(x, z)

s

)λ

dw(z) ≤ C ′min
(( s

t

)�−λ

,
( t
s

)2)
. (10.10)
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Therefore, using (10.10), we obtain

sup
‖x−y‖<t

|�{1}
t f (y)| = |c′′2 | sup

‖x−y‖<t

∣∣∣∣∣ limε→0+

∫ ε−1

ε

∫
RN

Kt,s(y, z)�{2}
s f (z) dw(z)

ds

s

∣∣∣∣∣
≤ |c′′2 | sup

z,s
|�{2}

s f (z)|
(
1+ d(x, z)

s

)−λ

× sup
‖x−y‖<t

∫ ∞

0

∫
RN
|Kt,s(y, z)|

(
1+ d(x, z)

s

)λ

dw(z)
ds

s

≤ C sup
z,s
|�{2}

s f (z)|
(
1+ d(x, z)

s

)−λ

.

The proof is complete, by applying (10.2). ��
Remark 10.6 It follows from the proof of Proposition 10.5 that if� ∈ S(RN ) is radial
and

∫
RN �(x) dw(x) = 0, and �{2} is as above, then for f ∈ L2(dw), we have

‖�t f ‖N ≤ C‖�{2}
t f ‖N .

Proposition 10.7 For a function�{1} as above and α > 0 there is a constant C�{1},α >

0 such that

‖M�{1},α f ‖L1(dw) ≤ C�{1},α‖MP f ‖L1(dw), for f ∈ L1(dw) ∩ L2(dw).

Proof For a positive integer n (large), set φ(ξ) = e−‖ξ‖
(∑n+1

j=0
‖ξ‖ j
j !
)
. Then

|φ(ξ)− 1| ≤ C ‖ξ‖n+1 for ‖ξ‖ < 1.

So φ is a Cn function such that |∂βφ(ξ)| ≤ Cβ exp(−‖ξ‖/2), |β| ≤ n. Put �{2} =
c−1k F−1φ. Applying Proposition 10.5, we have

‖�{1}
t f ‖N � ‖�{2}

t f ‖N .

Notice that d j

dt j
Pt f (x) = F−1(‖ξ‖ j e− t ‖ξ‖F f (ξ))(x). Hence, from Proposition 10.4

we conclude,

‖�{2}
t f ‖N ≤ C

n+1∑
j=0

∥∥∥t j d
j

dt j
Pt f
∥∥∥N ≤ C ′‖Pt f ‖N .

��
Lemma 10.8 H1

max,H ⊂ H1
max,P and there is a constant C > 0 such that

‖MP f ‖L1(dw) ≤ C‖MH f ‖L1(dw) for f ∈ L1(dw). (10.11)
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Proof The proof is standard. Let f ∈ L1(dw). Set u(t, x) = et
2� f (x). By the subor-

dination formula (2.2) for fixed t > 0, we have

sup
‖x′−x‖<t

|Pt f (x′)| ≤ 1

2
√

π

∫ ∞

0
sup

‖x′−x‖<t
|u(ts, x′)|e− 1

4s2
ds

s2

= 1

2
√

π

∫ ∞

0
sup

‖x′−x‖<t
|u(ts, x′)|

(
ts

‖x − x′‖ + ts

)λ

×
(‖x − x′‖ + ts

ts

)λ

e
− 1

4s2
ds

s2

≤ 1

2
√

π

∫ ∞

0
u∗∗λ (x)

(1+ s

s

)λ

e
− 1

4s2
ds

s2

≤ Cu∗∗λ (x).

Now the lemma follows from (10.2). ��

Note that Propositions 10.5 and 10.7 together with Lemma 10.8 imply that

H1
max,�{1} ∩ L2(dw) = H1

max,H ∩ L2(dw) = H1
max,P ∩ L2(dw)

and for f ∈ L2(dw), we have

‖M�{1} f ‖L1(dw) ∼ ‖MH f ‖L1(dw) ∼ ‖MP f ‖L1(dw). (10.12)

Our task is to remove the assumption f ∈ L2(dw) from (10.12).

Lemma 10.9 Assume that f ∈ H1
max,P . Then Pt f ∈ L2(dw) for every t > 0 and

lim
t→0

‖Pt f − f ‖H1
max,P

= 0. (10.13)

Proof Proposition 5.1 implies that Pt f ∈ L2(dw). To prove (10.13) we follow, e.g.,
[18, proof of (6.5)].

First observe that there is a constant C > 0 such that for every A > 0 and t > 0,
we have

∥∥∥ sup
s>At, ‖x−y‖<s

|Pt+s f (y)− Ps f (y)|
∥∥∥
L1(dw(x))

≤ CA−1‖ f ‖L1(dw). (10.14)



2400 Journal of Fourier Analysis and Applications (2019) 25:2356–2418

To see (10.14) fix z ∈ R
N . For s > At , thanks to (5.4), we have

|ps+t (y, z)− ps(y, z)| =
∣∣∣∣
∫ t

0
∂u ps+u(y, z) du

∣∣∣∣
≤ C

∫ t

0

1

u + s + d(y, z)
w(B(z, s + u + d(y, z)))−1 du

≤ C
∫ t

0

1

s + d(y, z)
w(B(z, s + d(y, z)))−1 du

≤ C

A

s

s + d(y, z)
w(B(z, s + d(y, z)))−1.

Since s + d(x, z) ≤ s + d(x, y)+ d(y, z) ≤ s + ‖x− y‖ + d(y, z) ≤ 2(s + d(y, z)),
we obtain

sup
‖x−y‖<s

|ps+t (y, z)− ps(y, z)| ≤ C

A

s

s + d(x, z)
w(B(z, s + d(x, z)))−1, (10.15)

which implies (10.14).
In order to finish the proof of (10.13) assume that f ∈ H1

max,P . Using (10.14), we
get

‖Pt f − f ‖H1
max,P

≤
∥∥∥ sup
s>At, ‖x−y‖<s

|Pt+s f (y)− Ps f (y)|
∥∥∥
L1(dw(x))

+
∥∥∥ sup
s≤At, ‖x−y‖<s

|Pt+s f (y)− Ps f (y)|
∥∥∥
L1(dw(x))

≤ CA−1‖ f ‖L1(dw) +
∥∥∥ sup
s≤At, ‖x−y‖<s

|Ps+t f (y)− f (x)|
∥∥∥
L1(dw(x))

+
∥∥∥ sup
s≤At, ‖x−y‖<s

|Ps f (y)− f (x)|
∥∥∥
L1(dw(x))

≤ CA−1‖ f ‖L1(dw)

+ 2
∥∥∥ sup
s≤(A+1)t, ‖x−y‖<s

|Ps f (y)− f (x)|
∥∥∥
L1(dw(x))

.

Fix ε > 0 and take A = Cε−1. Corollary 5.4 implies

lim
t→0

sup
s≤(A+1)t, ‖x−y‖<s

|Ps f (y)− f (x)| = 0 for almost every x ∈ R
N .

Since sups≤(A+1)t, ‖x−y‖<s |Ps f (y)− f (x)| ≤ 2MP f (x) ∈ L1(dw(x)), the proof is
complete by applying the Lebesgue dominated convergence theorem. ��
Lemma 10.10 Let ϕ ∈ S(RN ) be a radial function. There is a constant C > 0 such
that for all ε > 0 and u(t, x) ∈ N if uε(t, x) = u(t, ·) ∗ ϕε(x), then

‖uε‖N ≤ C‖u‖N .
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Proof Let λ > N and M > 0 be large enough. For fixed x ∈ R
N we have

u∗ε(x) ≤ C sup
t≥ε, ‖x−y‖<t

∫
RN
|u(t, z)|

(
1+ d(z, x)

t

)−λ(
1+ d(z, y)

t

)λ|ϕε(y, z)| dw(z)

+ C sup
0<t<ε

sup
d(x,y)<t

∫
RN
|u(t, z)|

(
1+ d(x, y)

ε

)M
V (y, z, ε)−1

×
(
1+ d(x, z)

ε

)−M
dw(z)

≤ C ′λ
∑
σ∈G

u∗∗λ (σ (x))+ C ′M
∫
RN

u∗(z)w(B(z, ε))−1
(
1+ d(x, z)

ε

)−M
dw(z).

Integrating the inequality with respect to dw(x) and applying (10.2) we obtain the
lemma. ��

Theorem 10.11 Let �{1} satisfies (10.7) and (10.8). Then the spaces H1
max,�{1} ,

H1
max,H , and H1

max,P coincide and the corresponding norms are equivalent (cf.
(10.12)).

Proof Assume that f ∈ H1
max,P . Using Lemma 10.9 we take a sequence tn → 0,

n = 0, 1, . . ., such that ‖Pt0 f ‖H1
max,P

≤ 2‖ f ‖H1
max,P

, ‖Ptn+1 f − Ptn f ‖H1
max,P

≤
2−n‖ f ‖H1

max,P
. Then f = Pt0 f +

∑∞
n=1(Ptn f − Ptn−1 f ) =: g0 +

∑∞
n=1 gn , with

the convergence in L1(dw). The functions gn ∈ L2(dw) ∩ H1
max,P , so, by (10.12),

‖M�{1} f ‖L1(dw) ≤
∞∑
j=0

‖M�{1}g j‖L1(dw) ≤ C
∞∑
j=0

‖MPg j‖L1(dw) ≤ 3C‖ f ‖H1
max,P

.

We now turn to prove the converse. Suppose that f ∈ H1
max,�{1} . Then using

Lemma 10.10 and the fact that ‖ f ∗ hε‖L2(dw) ≤ ‖ f ‖L1(dw)‖hε‖L2(dw) we con-
clude that fε = f ∗ hε ∈ H1

max,�{1} ∩ L2(dw) and supε>0 ‖ fε‖H1
max,�{1}

≤
C‖ f ‖H1

max,�{1}
. Applying (10.12) we get supε>0 ‖ fε‖H1

max,H
≤ C ′‖ f ‖H1

max,�{1}
.

Observe that limε→0 MH fε(x) = MH f (x) for almost all x ∈ R
N and the con-

vergence is monotone. Hence, by the Lebesgue monotone convergence theorem, we
get ‖ f ‖H1

max,H
≤ C ′‖ f ‖H1

max,�{1}
. Finally, the inequality ‖ f ‖H1

max,P
≤ C‖ f ‖H1

max,�{1}
is obtained from Lemma 10.8. ��
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11 Atomic Decompositions; Inclusion H1
max,H ⊂ H1

(1,∞,M)

In next theorem we show that all elements in H1
max,H ∩ L2(dw) = H1

max,P ∩
L2(dw) admit atomic decompositions into (1,∞, M)-atoms. The L2(dw) condition
is removed afterwards in Theorem 11.4.
Theorem 11.1 For every positive integer M, there is a constant CM > 0 such that
every element f ∈ H1

max,H ∩ L2(dw) = H1
max,P ∩ L2(dw) can be written as

f =
∑

λ j a j ,

where a j are (1,∞, M)-atoms,
∑ |λ j | ≤ CM‖MP f ‖L1(dw). Moreover, the conver-

gence takes place in L2(dw).

Proof This result is known for Hardy spaces associated with semigroups satisfying
Gaussian bounds on spaces of homogeneous type (see [11] and [37]). The proof
presented here is a straightforward adaptation of [37] with the difference that tents are
now constructed with respect to the orbit distance d(x, y). We include details for the
convenience of readers unfamiliar with [11] and [37]. More experienced readers may
skip the proof and jump to Theorem 11.4.

Without loss of generality, we may assume that M is an even integer > 2N .
Step 1. Reproducing formulae. Let �, � be as in the Calderón reproducing for-

mula with κ = M/2 (see Sect. 10). Set

ϕ(ξ) = F(�)(ξ) = ϕ̃(‖ξ‖),
ψ(ξ) = F(�)(ξ) = ck‖ξ‖2M |ϕ(ξ)|2 = ψ̃(‖ξ‖) = ck‖ξ‖2M |ϕ̃(‖ξ‖)|2.

Then there is a constant c such that

f = lim
ε→0+

c
∫ ε−1

ε

�t (−t2�)et
2� f

dt

t
= c π�(−t2�et

2� f )

with convergence in L2(dw) (see Sect. 10.2). We have

F f (ξ) = lim
ε→0+

ckc
∫ ε−1

ε

t2‖ξ‖2ψ̃(t‖ξ‖)e−t2‖ξ‖2F f (ξ)
dt

t
.

For ξ �= 0, set

η(ξ) = ckc
∫ ∞

1
t2‖ξ‖2ψ̃(t‖ξ‖)e−t2‖ξ‖2 dt

t
= ckc

∫ ∞

‖ξ‖
t2ψ̃(t)e−t2 dt

t
.

Put η(0) = 1. Then η is a Schwartz class radial real-valued function. Set �(x) =
c−1k F−1η(x). Then � ∈ S(RN ),

∫
�(x) dw(x) = 1, and

c
∫ b

a
�t t

2�et
2� f

dt

t
= �a f −�b f . (11.1)
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Step 2. Space of orbits. Let X = R
N/G be the space of orbits equipped with

the metric d(O(x),O(y)) = d(x, y) and the measure m(A) = w
(⋃

O(x)∈A O(x)
)
.

So (X , d,m) is the space of homogeneous type in the sense of Coifman–Weiss. The
space X can be identified with a positive Weyl chamber. Any open set in X of finite
measure admits the following easily proved Whitney type covering lemma.

Lemma 11.2 Suppose that � ⊂ X is an open set with finite measure. Then there is a
sequence of balls BX (O(x{n}), r{n}) such that r{n} = d(O(x{n}),�c),

⋃
n∈N

BX (O(x{n}), r{n}/2) = �,

the balls BX (O(x{n}), r{n}/10) are disjoint.

Step 3. Decomposition of RRR
N+1+ . Assume that f ∈ H1

max,H ∩ L2(dw). Let

F(t, x) =
(
|t2�et

2� f (x)| + |�t f (x)|
)
,

F(t, x) = sup
σ∈G

F(t, σ (x)),

and

M f (x) = sup
d(x,y)<5t

F(t, y) = sup
‖x−y‖<5t

F(t, y).

Then, by Proposition 10.5 and Remark 10.6, we have ‖M f ‖L1(dw) ≤ C‖ f ‖H1
max,H

.

Observe that M f (σ (x)) = M f (x). Therefore M f (x) can be identified with the
function M f (O(x)) on X . Moreover, ‖M f (x)‖L1(dw) = ‖M f (O(x))‖L1(m). For
an open set � ⊂ X , let

�̂ = {(t,O(x)) : BX (O(x), 4t) ⊂ �}

be the tent over �. For j ∈ Z define

� j = {O(x) ∈ X :M f (O(x)) > 2 j }, � j = {x ∈ R
N :M f (x) > 2 j }.

Then � j is open in X , � j =⋃O(x)∈� j
O(x), m(� j ) = w(� j ),

∑
j

2 jw(� j ) ∼ ‖M f ‖L1(dw) ∼ ‖ f ‖H1
max,H

.

Clearly, �̂ j = {(t, x) ∈ R
N+1+ : (t,O(x)) ∈ �̂ j }. Set T j = �̂ j \ �̂ j+1. Then,

supp F(t, x) ⊂
⋃
j∈Z

�̂ j =
⋃
j∈Z

(�̂ j \ �̂ j+1) =
⋃
j∈Z

T j (11.2)
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Let BX (O(x{n, j}), r{n, j}/2)), x{n, j} ∈ R
N , n = 1, 2, . . ., be a Whitney covering of

� j . Set

Q{n, j} = {x ∈ R
N : O(x) ∈ BX (O(x{n, j}), r{n, j}/2))} = O(B(x{n, j}, r{n, j}/2)).

Obviously, w(B(x{n, j}, r{n, j}/2)) ≤ w(Q{n, j}) ≤ |G|w(B(x{n, j}, r{n, j}/2)). We
define a cone over a G-invariant set E as

R(E) = {(t, y) : d(y, E) < 2t}.

For n = 1, 2, . . ., let

T{n, j} = T j ∩
(
R(Q{n, j}) \

n−1⋃
i=0

R(Q{i, j})
)

, R(Q{0, j}) = ∅.

Clearly, �̂ j ⊂ ⋃n∈NR(Q{n, j}), T{n, j} ∩ T{n′, j ′} = ∅ if ( j, n) �= ( j ′, n′). Thus we
have

supp F(t, x) ⊂
⋃
j∈Z

⋃
n∈N

T{n, j}. (11.3)

Step 4. Decomposition of f and L2(dw)-convergence. Set G(t, x) = −t2�et
2�

f (x), G{n, j}(t, x) = χT{n, j}(t, x)G(t, x). By our assumption f ∈ L2(dw) ∩ H1
max,H ,

hence G ∈ L2(dw dt/t) and G(t, x) = ∑
n∈N, j∈Z

G{n, j}(t, x), where the series con-

verges unconditionally in L2(dw dt/t), because the sets T{n, j} are pairwise disjoint.
Since π� is a bounded linear operator from L2(dw dt/t) into L2(dw), we get

f =
∑

j∈Z, n∈∈N
c π�

(
G{n, j}

) =: ∑
j∈Z, n∈N

f{n, j}, (11.4)

where the series converges unconditionally in L2(dw).
Step 5. What remains to be done. Let λ{n, j} = 2 jw(Q{n, j}). Then

∑
j∈Z, n∈N

|λ{n, j}| =
∑

j∈Z, n∈N
2 jw(Q{n, j}) �

∑
j∈Z

2 jw(� j ) ∼ ‖ f ‖H1
max, H

.

Our task is to prove (in Steps 6–9) that, thanks to the choice of the sets T{n, j}, the
functions a{n, j} = λ−1{n, j} f{n, j} are proportional to (1,∞, M)-atoms.Once this is done,

the series in (11.4) converges (absolutely) in L1(dw) as well. Moreover,

f =
∑

j∈Z, n∈N
f{n, j} =

∑
j∈Z, n∈N

λ{n, j}a{n, j}
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will be the desired atomic decomposition.
Step 6. Functions b{n, j}. Support of �mb{n, j} for m = 0, 1, . . . ,M. Observe that

a{n, j} = (λ{n, j})−1c lim
ε→0+

∫ r{n, j}

ε

�t

(
χT{n, j} t

2(−�)et
2� f

)dt
t

= (λ{n, j})−1c lim
ε→0+

∫ r{n, j}

ε

t2M (−�)M�t�t

(
χT{n, j} t

2(−�)et
2� f

)dt
t

.

(11.5)

Indeed, if t > r{n, j} and (t, y) ∈ R(Q{n, j}) then

d(y, (� j )
c) ≤ d(y, Q{n, j})+ 1

2
r{n, j}+d(x{n, j}, (� j )

c) ≤ 2t+ 1

2
t+t = 7

2
t . (11.6)

Hence (t, y) /∈ T{n, j}, which gives (11.5).
As a consequence of (10.5) and (11.5), we have

supp a{n, j} ⊂
{
x ∈ R

N : d(x, x{n, j}) ≤ 7

2
r{n, j}

}
= O

(
B
(
x{n, j},

7

2
r{n, j}

))
.

(11.7)
Let

b{n, j} = (λ{n, j})−1c lim
ε→0+

∫ r{n, j}

ε

t2M�t�t

(
χT{n, j} t

2(−�)et
2� f

)dt
t

. (11.8)

One can prove using the Dunkl transform that b{n, j} ∈ D(�M ) and

(−�)mb{n, j} = (λ{n, j})−1c lim
ε→0+

∫ r{n, j}

ε

t2M (−�)m�t�t

(
χT{n, j} t

2(−�)et
2� f

)dt
t

(11.9)
for m = 1, 2, . . .M , because �m is closed on L2(dw). Taking a sequence ε� → 0+
instead of ε → 0+ if necessary, wemay assume that the convergence in (11.5), (11.8),
and (11.9) holds in L2(dw) and almost everywhere. By the same arguments,

supp�mb{n, j} ⊂ O
(
B
(
x{n, j},

7

2
r{n, j}

))
. (11.10)

Note also that�mb{n, j}(x) �= 0 implies that there is (t, y) ∈ �̂ j such that d(x, y) < t .
Then O(x) ∈ BX (O(y), t) ⊂ BX (O(y), 4t) ⊂ � j . Hence,

supp�mb{n, j} ⊂ � j . (11.11)

Clearly, a{n, j} = (−�)Mb{n, j} = �Mb{n, j}, because M is an even integer.



2406 Journal of Fourier Analysis and Applications (2019) 25:2356–2418

Step 7. Size of �mb{n, j} for m = 0, 1, . . ., M − 1. Suppose that (t, y) is such that
χT{n, j}(t, y) = 1. Then (t, y) ∈ (�̂ j+1)c, so |t2�et

2� f (y)| ≤ 2 j+1. Consequently,

|�mb{n, j}(x)|
= c

λ{n, j}

∣∣∣∣ lim�→∞

∫ r{n, j}

ε�

t2M−2m(t2(−�))m�t�t (χT{n, j} t
2(−�)et

2� f )(x)
dt

t

∣∣∣∣
= c

λ{n, j}

∣∣∣∣ lim�→∞

∫ r{n, j}

ε�

∫
RN

t2M−2mKm
t (x, y)(χT{n, j}(t, y)t

2(−�)et
2� f (y))dw(y)

dt

t

∣∣∣∣ ,

where Km
t (x, y) is the integral kernel of the operator (−t2�)m�t�t . Recall that

|Km
t (x, y)| ≤ Cw(B(x, t))−1

and

Km
t (x, y) = 0 for d(x, y) > t/2

(see (10.5) and Corollary 3.2). Thus,

|�mb{n, j}(x)| ≤ C(λ{n, j})−12 j+1
∫ r{n, j}

0

∫
RN

t2M−2m |Km
t (x, y)|dw(y)

dt

t

≤ C(λ{n, j})−12 j+1
∫ r{n, j}

0
t2M−2m dt

t

= C(λ{n, j})−12 j (r{n, j})2M−2m

= Cw(Q{n, j})−1(r{n, j})2M−2m . (11.12)

Step 8. Key lemma. It remains to estimate

a{n, j}(x) = c

λ{n, j}
lim

�→∞

∫ ε−1�

ε�

∫
RN

�t (x, y)χT{n, j}(t, y)(t
2(−�)et

2� f )(y) dw(y)
dt

t
.

Let E{n, j} =⋃n
i=1 Q{i, j}. Then

χT{n, j}(t, y) = χ
�̂ j

(t, y)χ
(�̂ j+1)c (t, y)χR(E{n, j})(t, y)χ(R(E{n−1, j}))c(t, y)

= χ1(t, y)χ2(t, y)χ3(t, y)χ4(t, y). (11.13)

The following lemma (see [37, Lemma 4.2]) plays a crucial role in the remaining part
of the proof of Theorem 11.1.

Lemma 11.3 For every x ∈ � j and every functionχs , s = 1, 2, 3, 4, there are numbers
0 < δs ≤ ωs such that ωs ≤ 3δs and either �t (x, y)χs(t, y) = 0 for every 0 < t < δs
or �t (x, y)χs(t, y) = �t (x, y) for every 0 < t < δs and either �t (x, y)χs(t, y) = 0
for every t > ωs or �t (x, y)χs(t, y) = �t (x, y) for every t > ωs .
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Proof For the reader’s convenience, we include a short proof along the lines of [37].
Fix t > 0 and define χ ′1(y) = χ[4t,∞)(d(y,�c

j )), χ ′2(y) = χ(−∞,4t)(d(y,�c
j+1)),

χ ′3(y) = χ(−∞,2t)(d(y, E{n, j})), χ ′4(y) = χ[2t,∞)(d(y, E{n−1, j})). Clearly, χ ′s(y) =
χs(t, y) for s = 1, 2, 3, 4. If d(x, y) ≥ t , then �t (x, y) = �t (x, y)χs(t, y) = 0.
Therefore, to finish the proof, we assume that d(x, y) < t . Then

−t + d(A, x) < d(A, y) < t + d(A, x) for A = �c
j ,�

c
j+1, E{n, j}, E{n−1, j}.

We are in a position to define consecutively δs and ωs .

(1) If d(x,�c
j ) < 3t or d(x,�c

j ) > 5t , then χ ′1(y) = 0 and χ ′1(y) = 1 respectively,

so we put δ1 = 1
5d(x,�c

j ) and ω1 = 1
3d(x,�c

j ).
(2) If d(x,�c

j+1) < 3t or d(x,�c
j+1) > 5t , then χ ′2(y) = 1 and χ ′2(y) = 0

respectively. Hence we set δ2 = 1
5d(x,�c

j+1) and ω2 = 1
3d(x,�c

j+1) if
d(x,�c

j+1) �= 0, δ2 = ω2 = δ1 otherwise.
(3) If d(x, E{n, j}) < t or d(x, E{n, j}) > 3t , then χ ′3(y) = 1 and χ ′3(y) = 0

respectively. Thus we put δ3 = 1
3d(x, E{n, j}) and ω3 = d(x, E{n, j}) if

d(x, E{n, j}) �= 0, δ3 = ω3 = δ1 otherwise.
(4) If d(x, E{n−1, j}) < t or d(x, E{n−1, j}) > 3t , then χ ′4(y) = 0 and χ ′4(y) =

1 respectively, so we put δ4 = 1
3d(x, E{n−1, j}) and ω4 = d(x, E{n−1, j}) if

d(x, E{n−1, j}) �= 0, δ4 = ω4 = δ1 otherwise. ��
We finish Step 8 by the remark (see Case 1 of the proof of the lemma) that if

t > ω1 > 0 then

�t (x, y)χT{n, j}(t, y) = 0.

Step 9. Estimates for a{n, j}. We shall prove that

|a{n, j}(x)| ≤ Cw(Q{n, j})−1. (11.14)

Fix x ∈ � j . Recall that supp a{n, j} ⊂ � j . Let J = ⋃4
s=1[δs, ωs], I = (0,∞) \ J ,

where δs, ωs are from Lemma 11.3. Obviously, I = (a1, b1)∪ . . .∪ (am, bm), where
m ≤ 5, a1 = 0, bm = ∞, and (al , bl) are connected disjoint components of I . Clearly,

∣∣∣a{n, j}(x)
∣∣∣

≤
4∑

s=1
(λ{n, j})−1c

∫ ωs

δs

∫
RN

∣∣∣�t (x, y)χT{n, j}(t, y)(t
2(−�)et

2� f )(y)
∣∣∣ dw(y)

dt

t

+
m∑
s=1

(λ{n, j})−1c
∣∣∣∣
∫ bs

as

∫
RN

�t (x, y)χT{n, j}(t, y)(t
2(−�)et

2� f )(y) dw(y)
dt

t

∣∣∣∣ ,

where some of the integrals are understood as improper ones (see Steps 6 and 7).
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Consider the integral over [δs, ωs]. Take t ∈ [δs, ωs] and y such that the integrant∣∣∣�t (x, y)χT{n, j}(t, y)(t
2(−�)et

2� f )(y)
∣∣∣ �= 0. Then (t, y) /∈ �̂ j+1. Thus, there is

x′ such that d(y, x′) < 4t and x′ /∈ � j+1, which means that M f (x′) ≤ 2 j+1.
Consequently, |t2(−�)et

2� f (y)| ≤ 2 j+1. Hence,

(λ{n, j})−1c
∫ ωs

δs

∫
RN

∣∣∣�t (x, y)χT{n, j}(t, y)(t
2(−�)et

2� f )(y)
∣∣∣ dw(y)

dt

t

≤ (λ{n, j})−12 j+1c
∫ ωs

δs

∫
RN

∣∣∣�t (x, y)
∣∣∣ dw(y)

dt

t

≤ C ′(λ{n, j})−12 j+1c
∫ ωs

δs

dt

t

≤ Cw(Q{n, j})−1, (11.15)

because 0 < ωs ≤ 3δs .
We turn to estimate the integrals over [as, bs]. Assume that

(λ{n, j})−1c
∣∣∣∣
∫ bs

as

∫
RN

�t (x, y)χT{n, j}(t, y)(t
2(−�)et

2� f )(y) dw(y)
dt

t

∣∣∣∣ > 0.

By Lemma 11.3 for fixed x ∈ � j and s ∈ {1, 2, . . .,m}, either χT{n, j}(t, y) ≡ 0 for all
t ∈ [as, bs] and d(x, y) < t or χT{n, j}(t, y) ≡ 1 for all t ∈ [as, bs] and d(x, y) < t . So
the letter holds. This gives that for every t ∈ [as, bs] and y such that d(x, y) < t , we
have (t, y) /∈ �̂ j+1. So there is x′ (which depends on (t, y)) such that d(y, x′) < 4t
andM f (x′) < 2 j+1. Note that d(x, x′) < d(x, y)+d(y, x′) < 5t . Consequently, for
every t ∈ [as, bs], we have

2 j+1 ≥M f (x′) ≥ sup
d(x′,z)<5t

|�t f (z)| ≥ |�t f (x)|.

Finally, in our case

(λ{n, j})−1c
∣∣∣∣
∫ bs

as

∫
RN

�t (x, y)χT{n, j}(t, y)(t
2(−�)et

2� f )(y) dw(y)
dt

t

∣∣∣∣
= (λ{n, j})−1c

∣∣∣∣
∫ bs

as

∫
RN

�t (x, y)(t2(−�)et
2� f )(y) dw(y)

dt

t

∣∣∣∣
= (λ{n, j})−1

∣∣�as f (x)−�bs f (x)
∣∣

≤ Cw(Q{n, j})−1, (11.16)

where in the last equality we have used (11.1). The estimates (11.15) and (11.16)
give (11.14). Recall that w(Q{n, j}) ∼ w(B(x{n, j}, 7r{n, j}/2)). Hence, from (11.14),
(11.12), (11.7), and (11.10) we deduce Step 5. The proof of Theorem 11.1 is complete.

��
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Having Lemma 10.9 together with Theorems 11.1 and 10.11 we are in a position to
complete the proof of the atomic decomposition of H1

max,H functions. This is stated
in the theorem below.

Theorem 11.4 There is a constant C > 0 such that every function f ∈ H1
max,H can

be written as

f =
∑

λ j a j ,

where a j are (1,∞, M)-atoms,
∑ |λ j | ≤ C‖MH f ‖L1(dw).

Proof Recall that ‖ f ‖H1
max,H

∼ ‖ f ‖H1
max,P

(see Theorem 10.11). Take a sequence gn

(n = 0, 1, . . .) as in the proof of Theorem 10.11. Then gn ∈ H1
max,P ∩ L2(dw),

f =∑∞
n=0 gn , and

∑∞
n=0 ‖gn‖H1

max,P
≤ 3‖ f ‖H1

max,P
. By Theorem 11.1 the functions

gn admit atomic decompositions into (1,∞, M)-atoms, that is, gn = ∑m λn,man,m ,
where the functions an,m are (1,∞, M)-atoms, λn,m ∈ C, and

∑
m |λn,m | ≤

C‖gn‖max,P . Finally,

f =
∑
n,m

λn,man,m

is the desired atomic decomposition. ��
We are in a position to complete the proof of Theorem 2.1, by proving the following

proposition, which is the converse to Proposition 7.6.

Proposition 11.5 Assume that u0 is L-harmonic and satisfies u∗0 ∈ L1(dw). Then
there is a system u = (u0, u1, . . ., uN ) ∈ H1 such that ‖u‖H1 ≤ C‖u∗0‖L1(dw).

Proof By Theorem 7.5 we have u0(t, x) = Pt f0(x), where f0 ∈ L1(dw). So f0 ∈
H1
max, P and ‖ f0‖H1

max, P
= ‖u∗0‖L1(dw). Using Theorem 11.4 and then (9.1) we obtain

that f0 ∈ H1
� and ‖ f0‖H1

�
≤ C‖u∗0‖L1(dw). ��

12 Inclusion H1
(1,q,M)

⊂ H1
max,H

In this section we shall prove that, for every integer M ≥ 1 and for every 1 < q ≤ ∞,
we have H1

(1,q,M) ⊂ H1
max,H and

‖ f ‖H1
max,H

≤ CM,q‖ f ‖H1
(1,q,M)

.

It suffices to establish that there is a constant CM,q > 0 such that

‖a‖H1
max,H

≤ CM,q ,
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for every (1, q, M)-atom a. Since every (1, q, M)-atom is a (1, q, 1)-atom, we may
reduce to M = 1.

Assume that a is a (1, q, 1)-atom associated with a set B = ⋃
σ∈G B(σ (y0), r).

Then there is a function b ∈ D(�) such that a = �b, supp� j b ⊂ B, ‖� j b‖Lq (dw) ≤
r2−2 jw(B)

1
q−1, j = 0, 1. Set u(t, x) = et

2�a(x). Observe that

‖u∗‖Lq (dw) ≤ Cq‖a‖Lq (dw) ≤ w(B)
1
q−1

(see (2.5) for the definition of u∗). Thus, by the doubling property of the measure
dw(x) dx and the Hölder inequality,

∫
d(x,y0)≤8r

u∗(x) dw(x) ≤ C ′q .

We turn to estimate u∗(x) on d(x, y0) > 8r . Clearly,

u∗(x) ≤ sup
0<t<d(x,y0)/4, d(x′,x)<t

|et2��b(x′)| + sup
t>d(x,y0)/4, d(x′,x)<t

|et2��b(x′)|

= J1(x)+ J2(x). (12.1)

Recall that ‖b‖L1(dw) ≤ r2 and note that

et
2�� = �et

2� = d

ds
es�
∣∣
s=t2 .

To deal with J1 we note that if d(x′, x) < t ≤ d(x, x0)/4, d(x, y0) > 4r , and
d(y, y0) < r , then d(x′, y) ∼ d(x, y0). So, using (4.3), we have

∣∣∣ d
ds

hs(x′, y)
∣∣∣∣∣s=t2 ≤

C

t2w(B(y0, d(y0, x)))
e−c′d(y0,x)2/t2 .

Hence,

J1(x) � w(B(y0, d(x, y0)))−1
r2

d(x, y0)2
.

In order to estimate J2, we observe from (4.3) that for t > d(x, y) and d(y, y0) < r <

t , we have

∣∣∣ d
ds

hs(x′, y)
∣∣∣∣∣s=t2 ≤

C

t2w(B(y0, d(y0, x)))
.

Consequently,

J2(x) � w(B(y0, d(x, y0)))−1
r2

d(x, y0)2
.
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Now

∫
d(x,y0)>8r

u∗(x) dw(x) �
∞∑
j=3

∫
2 j r<d(x,y0)≤2 j+1r

r2

w(B(y0, d(x, y0)))d(x, y0)2
dw(x)

�
∞∑
j=3

2−2 j = C .

13 Square Function Characterization

In this section we prove Theorem 2.3. More precisely we show that the atomic Hardy
space H1

(1,2,M) coincides with the Hardy space defined by the square function (2.9)

with Qt = t
√−� e− t

√−�. This is achieved by mimicking arguments in [24]. The
proof for Qt = t2 (−�) e t2� is similar.

13.1 Tent Spaces Tp2 on Spaces of Homogeneous Type

The square function characterization of the Hardy space H1
(1,2,M) can be related with

the so called tent space T 1
2 . The tent spaces on Euclidean spaces were introduced in

[9] and then extended on spaces of homogeneous type (see, e.g. [33]). For more details
we refer the reader to [35].

For a measurable function F(t, x) on (0,∞)× R
N , let

AF(x) :=
(∫ ∞

0

∫
‖y−x‖<t

|F(t, y)|2 dw(y)
w(B(x, t))

dt

t

)1/2

.

Definition 13.1 For 1 ≤ p < ∞ the tent space T p
2 is defined to be

T p
2 = {F : ‖F‖T p

2
:= ‖AF‖L p(dw) < ∞}.

Clearly, by the doubling property,

‖F‖2
T 2
2
= ‖AF‖2L2(dw)

∼
∫ ∞

0

∫
RN
|F(t, y)|2 dw(y)dt

t
. (13.1)

Remark 13.2 Let� be as in (10.6). Recall that, by (10.4) and (13.1), the linear operator
π� is bounded from L2(dw dt/t) into L2(dw). Furthermore, by using the Dunkl
transform, one can easily prove that, if F(t, x) = Qt f (x) with f ∈ L2(dw), then

‖F‖T 2
2
= ‖S f ‖L2(dw) ∼ ‖ f ‖L2(dw)

and f = c1π�(F).
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The tent space T 1
2 on the space of homogeneous type admits the following atomic

decomposition (see, e.g., [33]).

Definition 13.3 Ameasurable function A(t, x) is a T 1
2 -atom if there is a ball B ⊂ R

N

such that

• supp A ⊂ B̂
• ∫∫

(0,∞)×RN |A(t, x)|2 dw(x) dt
t ≤ w(B)−1.

A function F belongs to T 1
2 if and only if there are sequences A j of T 1

2 -atoms and
λ j ∈ C such that

∑
j

λ j A j = F,
∑
j

|λ j | ∼ ‖F‖T 1
2
,

where the convergence is in T 1
2 norm and almost everywhere.

The Hölder inequality immediately gives that there is a constant C > 0 such that
for every function A(t, x) being a T 1

2 -atom one has

‖A‖T 1
2
≤ C .

Observe that for f ∈ L1(dw), the function F(t, x) = Qt f (x) is well defined.
Moreover, AF(x) = S f (x) and ‖S f ‖L1(dw) = ‖F‖T 1

2
.

Remark 13.4 According to the proof of atomic decomposition of T 1
2 presented in [33],

the function λ j A j can be taken of the form λ j A j (t, x) = χS j (t, x)F(t, x), where S j

are disjoint, RN+1+ =⋃ S j , and S j is contained in a tent B̂ j .
So, if F ∈ T 1

2 ∩ T 2
2 , then F can be decomposed into atoms such that F(t, x) =∑

j λ j A j (t, x) and the convergence is in T 1
2 , T

2
2 , and pointwise.

Lemma 13.5 The map (Ps F)(t, x) = ∫ ps(x, y)F(t, y) dw(y) is bounded on T 1
2 .

Moreover, there is a constant C > 0 independent of s > 0 such that ‖Ps F‖T 1
2
≤

C‖F‖T 1
2
.

Proof Let F(t, x) = ∑
j λ j A j (t, x) be an atomic decomposition of F ∈ T 1

2 as
described above. Since ps(x, y) ≥ 0, it suffices to prove that there is a constant
C > 0 such that

∥∥∥Ps |A|
∥∥∥
T 1
2

≤ C

for every atom A of T 1
2 . To this end let B = B(x0, r) be a ball associated with A.

Obviously, Ps |A|(t, x′) = 0 for t > r .
Case 1 s > r . Then, by (5.4) and the Hölder inequality,

Ps |A|(t, x′) ≤ Cs

s + d(x0, x′)
w(B(x0, r))1/2

w(B(x0, s + d(x0, x′)))

(∫
|A(t, y)|2dw(y)

)1/2

.
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If ‖x − x′‖ < t ≤ r , then s + d(x0, x′) ∼ s + d(x0, x), because, by our assumption,
s > r . Hence,

∥∥∥Ps |A|
∥∥∥
T 1
2

≤ C
∫

s

s + d(x0, x)
w(B(x0, r))1/2

w(B(x0, s + d(x0, x)))

×
(∫ r

0

∫
‖x−x′‖<t

∫
|A(t, y)|2dw(y)

dw(x′)dt
w(B(x, t))t

)1/2

dw(x)

≤ C
∫

s

s + d(x0, x)
dw(x)

w(B(x0, s + d(x0, x)))
≤ C,

where to get the second to last inequality we first integrated with respect to dw(x′)
and then used the definition of T 1

2 -atom.
Case 2 s ≤ r . Recall that Ps is a contraction on L2(dw). Hence,

‖APs |A|‖L1(O(B(x0,4r)), dw) ≤ Cw(B(x0, r))1/2‖APs |A|‖L2(dw)

≤ Cw(B(x0, r))1/2‖Ps |A|‖T 2
2

≤ Cw(B(x0, r))1/2‖|A|‖T 2
2
≤ C . (13.2)

If d(x, x0) > 4r , ‖x′−x‖ < t < r , and ‖x0−y‖ < r , then s+d(x′, y) ∼ s+d(x, x0).
Now we proceed as in Case 1 to get the required bound on O(B(x0, 4r))c. ��
Lemma 13.6 The family Ps forms an approximation of the identity in T 1

2 , that is,

lim
s→0

‖Ps F − F‖T 1
2
= 0.

Proof According to Lemma 13.5, it suffices to establish that for every A being a
T 1
2 -atom, we have

lim
s→0

‖Ps A − A‖T 1
2
= lim

s→0
‖A(Ps A − A)‖L1(dw) = 0. (13.3)

Let A be such an atom and let B = B(x0, r) be its associated ball. To prove (13.3) it
suffices to consider 0 < s < r .

If d(x, x0) > 4r , ‖y−x0‖ < r , and ‖x−x′‖ < t < r , then s+d(x′, y) ∼ d(x, x0),
so

|Ps A(t, x′)| ≤ Cs

s + d(x0, x)
w(B(x0, r))1/2

w(B(x0, s + d(x0, x)))

(∫
|A(t, y)|2dw(y)

)1/2
.

Since supp A ∩ {(t, x′) : ‖x′ − x‖ < t < r} = ∅, we have

|A(Ps A − A)(x)| = |A(Ps A)(x)| ≤ Cs

s + d(x0, x)
1

w(B(x0, s + d(x0, x)))
.
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Hence,

lim
s→0

∫
d(x,x0)>4r

|A(Ps A − A)(x)| dw(x) = 0.

We now turn to estimate ‖A(Ps A − A)‖L1(O(B(x0,4r)),dw). Observe that

|(Ps A − A)(t, x′)| ≤ 2MP A(t, x′) and ‖MP A(t, x′)‖L2(dw(x′))
≤ C‖A(t, x′)‖L2(dw(x′)).

Moreover, lims→0 ‖Ps A(t, x′) − A(t, x′)‖L2(dw(x′)) = 0 for almost every t > 0.
Therefore, applying the Hölder inequality and (13.1), we have

lim sup
s→0

‖A(Ps A − A)‖L1(O(B(x0,4r)))

≤ lim sup
s→0

Cw(B)1/2‖A(Ps A − A)‖L2(O(B(x0,4r)))

≤ lim sup
s→0

Cw(B)1/2
(∫ r

0

∫
|Ps A(t, x)− A(t, x)|2 dw(x) dt

t

)1/2

= 0,

where in the last equality we have used the Lebesgue dominated convergence theorem.
��

13.2 Proof of Theorem 2.3

The inclusion H1
(1,2,M) ⊂ H1

square will be established once we prove the following
lemma.

Lemma 13.7 For every positive integer M, there exists a constant CM > 0 such that,
for every (1, 2, M)-atom a, we have

‖F(t, x)‖T 1
2
≤ CM , where F(t, x) = Qta(x).

Proof Let a be a (1, 2, M)–atom, M ≥ 1, associated with a ball B = B(x0, r). By
definition a = �Mb with ��b (for � = 0, 1, . . ., M) satisfying relevant support and
size conditions (see Definition 2.6). By the Hölder inequality,

‖Sa‖L1(O(8B)) � ‖Sa‖L2(O(8B))w(O(8B))1/2 � 1.

If d(x, x0) > 8r then choose n ≥ 3 such that 2nr ≤ d(x, x0) < 2n+1r and split the
integral as below

Sa(x)2 =
∫ ∫

t>‖x−y‖
|Qta(y)|2w(B(y, t))−1 dw(y)

dt

t

=
∫ 2nr/4

0

∫
t>‖x−y‖

+
∫ ∞

2nr/4

∫
t>‖x−y‖

= I1 + I2.
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Define a1 = �M−1b. Then by the definition of the atom ‖a1‖L1(w) ≤ r2. Note that

Qt (a) = Qt (�a1) = (�Qt )(a1) = t(∂t Qt )
3(a1).

Estimation for I1. If z ∈ O(B) and ‖x − y‖ < t ≤ 2nr/4, then 2nr � d(z, y).
Therefore, thanks to (5.4) and (5.7) with m = 3, we have

|Qta(y)|2 =
∣∣∣∣
∫

t(∂3t )(pt (y, z))a1(z) dw(z)

∣∣∣∣
2

�
(∫

d(z, y)−2 t

t + d(z, y)
V (z, y, t + d(z, y))−1|a1(z)| dw(z)

)2

� (2nr)−4 t2

(2nr)2
w(B(x0, 2nr))−2‖a1‖2L1(dw)

.

Consequently,

I1 �
(∫ 2nr

0
t dt

)
w(B(x0, 2nr))−2‖a1‖2L1(dw)

(2nr)−4(2nr)−2

� 2−4nw(B(x0, 2nr))−2.

Estimation for I2. In this case t ≥ 2nr/4, so thanks to (5.7) with m = 3 we have

|Qta(y)|2 =
(∫

t(∂3t )(pt (y, z))a1(z) dw(z)
)2

�
(∫

t−2 t

t + d(z, y)
V (z, y, t + d(z, y))−1|a1(z)| dw(z)

)2

� t−4w(B(x0, 2nr))−2‖a1‖2L1(dw)
.

Consequently,

I2 �
(∫ ∞

2nr/4
t−5 dt

)
w(B(x0, 2nr))−2‖a1‖2L1(dw)

� 2−4nw(B(x0, 2nr))−2.

Finally,

‖Sa‖L1(O(8B)c) �
∑
n≥3

∫
2nr<d(x,x0)≤2n+1r

2−2nw(B(x0, 2nr))−1dw(x) � 1.

��
Theopposite inclusion H1

square ⊂ H1
(1,2,M) is contained in the followingproposition.
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Proposition 13.8 Let M be a positive integer. Assume that for f ∈ L1(dw) the function
F(t, x) = Qt f (x) belongs to T 1

2 . Then there are λ j ∈ C and a j being (1, 2, M)-atoms
such that

f =
∑
j

λ j a j and
∑
j

|λ j | ≤ C‖F‖T 1
2
.

The constant C depends on M but it is independent of f .

Proof We start our proof under the additional assumption f ∈ L2(dw). Then
F(t, x) = Qt f (x) ∈ T 1

2 ∩ T 2
2 . The proof in this case is the same as that of [24,

Theorem 4.1]. The only difference is to control support of functions �sb j . For the
convenience of the reader we provide its sketch.

Let F = ∑
j λ j A j be a T 1

2 atomic decomposition of the function Qt f (x) as it

is described in Remark 13.4. In particular,
∑

j |λ j | ≤ C‖S f ‖L1(dw). Let �{1} be a

radial C∞ function supported by B(0, 1/4) such that
∫∞
0 �t Qt

dt
t forms a Calderón

reproducing formula, where � = �M+1�{1}. By (10.4), Remarks 13.2 and 13.4, we
have

f = π�F =
∑
j

λ jπ� A j (13.4)

and the series converges unconditionally in L2(dw). Then supp A j ⊂ B̂ j . Let Bj =
B(y j , r j ) be a ball associated with A j . Recall that �m is closed on L2(dw) for every
positive integer m. Set a j = π�(A j ). We have a j = �Mb j , where

b j = lim
ε→0+

∫ r j /4

ε

t2M
(
t2��

{1}
t A j

)dt
t

.

Clearly, supp b j ⊂ O(B(y j , 2r j )). The same argument as in the proof of Lemma 4.11.
in [24] shows that for every s = 0, 1, 2, . . ., M , the function

b j,s = �sb j = lim
ε→0+

∫ r j /4

ε

t2M
(
�s t2��

{1}
t A j

)dt
t

is supported byO(B(y j , 2r j )) and its L2(w)-norm is bounded by r2M−2sw(Bj )
−1/2.

Thus a j are proportional to (1, 2, M)-atoms. In particular, ‖a j‖L1(dw) ≤ C and,
consequently, the series (13.4) converges (absolutely) in L1(dw).

To remove the additional assumption f ∈ L2(dw)we recall that the Poisson kernel
is an approximation of the identity in L1(dw) and in H1

square (this is actually Lemma

13.6). Moreover, Pt f ∈ L2(dw) for t > 0 and f ∈ L1(dw). Thus, for f ∈ H1
square,

we can write f =∑n gn , where the series converges in L1(dw), gn ∈ L2(dw), and∑
n ‖gn‖H1

square
≤ 3‖ f ‖H1

square
. Further we continue as in the proof of Theorem 11.20

to obtain the desired atomic decomposition. ��
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