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Abstract
Localization and convergence almost everywhere of Schrödinger means are studied.
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1 Introduction

For f ∈ L2(Rn), n � 1 and a > 1 we set

̂f (ξ) =
∫

Rn

e−iξ ·x f (x)dx, ξ ∈ R
n,

and

St f (x) =
∫

Rn

eiξ ·x eit |ξ |a
̂f (ξ)dξ, x ∈ R

n, t � 0.

For a = 2 and f belonging to the Schwartz class S (Rn) we set u(x, t) =
St f (x)/(2π)n . It then follows that u(x, 0) = f (x) and u satisfies the Schrödinger
equation i∂u/∂t = �u.

We introduce Sobolev spaces Hs = Hs(R
n) by setting

Hs = { f ∈ S ′; ‖ f ‖Hs < ∞}, s ∈ R,
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where

‖ f ‖Hs =
⎛

⎝

∫

Rn

(1 + |ξ |2)s | ̂f (ξ)|2dξ

⎞

⎠

1/2

.

In the case n = 1 it is well-known (see Sjölin [7] and Vega [9] and in the case a = 2
Carleson [3] and Dahlberg and Kenig [4]) that

lim
t→0

(2π)−n St f (x) = f (x) (1)

almost everywhere if f ∈ H1/4. Also it is known that H1/4 can not be replaced by Hs

if s < 1/4.
Assuming n � 2 and a = 2 Bourgain [1] has proved that (1) holds almost every-

where if f ∈ Hs and s > 1/2 − 1/4n. On the other hand Bourgain [2] has proved
that s � n/2(n + 1) is necessary for convergence for a = 2 and all n � 2. In the case
n = 2 and a = 2, Du, Guth, and Li [5] proved that the condition s > 1/3 is sufficient.
Recently Du and Zhang [6] proved that the condition s > n/2(n + 1) is sufficient for
a = 2 and all n � 3.

In the case a > 1, n = 2, it is known that (1) holds almost everywhere if f ∈ H1/2
and in the case a > 1, n � 3, convergence has been proved for f ∈ Hs with s > 1/2
(see [7] and [9]).

If f ∈ L2(Rn) then (2π)−n St f → f in L2 as t → 0. It follows that there exists a
sequence (tk)∞1 satisfying

1 > t1 > t2 > t3 > · · · > 0 and lim
k→∞ tk = 0 (2)

such that

lim
k→∞(2π)−n Stk f (x) = f (x)

almost everywhere.
We shall here study the problem of deciding for which sequences (tk)∞1 one has

lim
k→∞(2π)−n Stk f (x) = f (x)

almost everywhere if f ∈ Hs . We have the following result.

Theorem 1 Assume n � 1 and a > 1 and s > 0. We assume that (2) holds and that
∑∞

k=1 t
2s/a
k < ∞ and f ∈ Hs(R

n). Then

lim
k→∞(2π)−n Stk f (x) = f (x)

for almost every x in Rn.
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Now assume n = 1, a > 1, and 0 � s < 1/4. In Sjölin [8] we studied the problem if
there is localization or localization almost everywhere for the above operators St and
the functions f ∈ Hs with compact support, that is, do we have

lim
t→0

St f (x) = 0

everywhere or almost everywhere in Rn\(supp f )?
It is proved in [8] that there is no localization or localization almost everywhere of

this type for 0 � s < 1/4. In fact the following theorem was proved in Sjölin [8].

Theorem A There exist two disjoint compact intervals I and J in R and a function f
which belongs to Hs for all s < 1/4, with the properties that (supp f ) ⊂ I and for
every x ∈ J one does not have

lim
t→0

St f (x) = 0.

Let ω be a continuous and decreasing function on [0,∞). Assume that ω(t) → 0 as
t → ∞. Set

Hω = { f ∈ S ′; ‖ f ‖Hω < ∞}

where

‖ f ‖Hω =
⎛

⎝

∫

R

| ̂f (ξ)|2(1 + ξ2)1/4ω(|ξ |)dξ

⎞

⎠

1/2

We have the following result.

Theorem 2 The function f in theorem A can be chosen so that f ∈ Hω.

Theorem 2 shows that the sufficient condition f ∈ H1/4 for convergence almost
everywhere and localization almost everywhere of Schrödingermeans is very sharp. In
the case a = 2Theorem2was obtained in 2009 (unpublished). After provingTheorem2
we shall use Theorem 1 to make a remark on the Schrödinger means St f (x) for the
function f which was constructed in [8] to prove Theorem A.

2 Proofs

In the proof of Theorem 1 we shall need the following lemma.

Lemma 1 Assume n � 1, a > 1, 0 < s < 1, and 0 < δ < 1. Set

m(ξ) = eiδ|ξ |a − 1

(1 + |ξ |2)s/2 , ξ ∈ R
n .
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Then one has

‖m‖∞ � Cδs/a

where the constant C does not depend on δ, and ‖m‖∞ denotes the norm of m in
L∞(Rn).

Proof of Lemma 1. We shall write A � B if there is a constant C such that A � CB.
In the case |ξ | � δ−1/a one has

|ξ |s � δ−s/a and |m(ξ)| � 1

|ξ |s � δs/a .

Then assume 0 � |ξ | � 1. We obtain

|m(ξ)| � δ|ξ |a � δ � δs/a .

In the remaining case 1 < |ξ | < δ−1/a one obtains

|m(ξ)| � δ|ξ |a
|ξ |s = δ|ξ |a−s � δδ−(a−s)/a = δδ−1+s/a = δs/a

and the proof of Lemma 1 is complete. �	

We shall then give the proof of Theorem 1.

Proof of Theorem 1. We may assume 0 < s < 1. We set

hk(x) = (2π)−n Stk f (x) − f (x), x ∈ R
n, for k = 1, 2, 3, ...

We have f ∈ Hs and we define g by taking

ĝ(ξ) = ̂f (ξ)(1 + |ξ |2)s/2.

It then follows that g ∈ L2(Rn).
We have

Stk f (x) =
∫

eix ·ξ eitk |ξ |a (1 + |ξ |2)−s/2 ĝ(ξ)dξ

and

f (x) = (2π)−n
∫

eix ·ξ (1 + |ξ |2)−s/2 ĝ(ξ)dξ.



1712 Journal of Fourier Analysis and Applications (2019) 25:1708–1716

Hence

hk(x) = (2π)−n
∫

eix ·ξ (eitk |ξ |a − 1)(1 + |ξ |2)−s/2 ĝ(ξ)dξ

= (2π)−n
∫

eix ·ξm(ξ)ĝ(ξ)dξ,

where

m(ξ) = (eitk |ξ |a − 1)(1 + |ξ |2)−s/2.

According to Lemma 1 we have ‖m‖∞ � t s/ak and applying the Plancherel theorem
we obtain

‖hk‖22 = c
∫

|m(ξ)ĝ(ξ)|2dξ � ‖m‖2∞
∫

|̂g(ξ)|2dξ � t2s/ak ‖ f ‖2Hs
.

It follows that

∞
∑

1

∫

|hk |2dx � (

∞
∑

1

t2s/ak )‖ f ‖2Hs
< ∞

and applying the theorem on monotone convergence one also obtains

∫

( ∞
∑

1

|hk |2
)

dx < ∞.

Weconclude that
∑∞

1 |hk |2 is convergent almost everywhere andhence limk→∞ hk(x)
= 0 and

lim
k→∞(2π)−n Stk f (x) = f (x)

almost everywhere. �	
Now assume n = 1 and a > 1. We set

m(ξ) = ei |ξ |a , ξ ∈ R,

and let K denote the Fourier transform of m so that K ∈ S ′(R). According to Sjölin
[8] p.142, K ∈ C∞(R) and there exists a number α � 0 such that

|K (x)| � 1 + |x |α for x ∈ R

For t > 0 it is then clear that

eit |ξ |a = m(t1/aξ)
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has the Fourier transform

Kt (y) = t−1/aK (t−1/a y).

It follows that St f (x) = Kt	 f (x) for f ∈ L2(Rm) with compact support. We let qg
denote the inverse Fourier transform of g and choose g ∈ S (R) such that suppqg ⊂
(−1, 1) and qg(0) 
= 0. We set

fv(x) = e−i x/v2
qg(x/v), 0 < v < 1, x ∈ R.

According to [7], p.143, one has ̂fv(ξ) = vg(vξ + 1/v) and

‖ fv‖Hs � v1/2−2s for 0 < s < 1/4.

We shall state three lemmas from [8].

Lemma 2 There exist positive numbers c0, δ and v0 such that

|Sxv2a−2/a fv(x)| � c0

for 0 < v < v0 and 0 < x < δ.

In the remaining part of this paper δ and v0 are given by Lemma 2. We may also
assume that δ < 1.

Lemma 3 For 0 < v < min(v0, δ/4), 0 < t < 1, and δ/2 < x < δ one has

|St fv(x)| � v

tγ

where γ = (1 + α)/a > 0.

Lemma 4 For 0 < v < min(v0, δ/4), 0 < t < 1, and δ/2 < x < δ one has

|St fv(x)| � t

vβ

where β = 2a.

We shall use these lemmas to prove Theorem 2.

Proof of Theorem 2. Now let v1 satisfy 0 < v1 < min(v0, δ/4) and set εk = 2−k ,
k = 1, 2, 3, ...

We also set μ = max((2a − 2)γ, β/(2a − 2)) and choose vk , k = 2, 3, 4, ..., such
that 0 < vk � εkv

μ
k−1 and

∞
∑

k=1

√

ω(1/v1/2k ) < ∞.
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We then set f = ∑∞
k=1 fvk and shall prove that f ∈ Hω.

Arguing as in [8, pp. 145–147], it follows from Lemmas 2, 3, and 4 that with
tk(x) = xv2a−2

k /a one has

|Stk(x) f (x)| � c0 > 0

for δ/2 < x < δ and k � k0. Hence we do not have limt→0 St f (x) = 0 in the interval
(δ/2, δ). Taking I = [−v1, v1] and J ⊂ (δ/2, δ) we have supp f ⊂ I and for every
x ∈ J one does not have limt→0 St f (x) = 0. Thus Theorem 2 follows. It remains to
prove that f ∈ Hω.

We have

‖ fv‖2Hω
=

∫

| ̂fv(ξ)|2(1 + ξ2)1/4ω(|ξ |)dξ � I1 + I2,

where

I1 =
∫ 1

−1
| ̂fv(ξ)|2dξ � Cv2

and

I2 =
∫

| ̂fv(ξ)|2|ξ |1/2ω(|ξ |)dξ.

It follows that

I2 =
∫

v2|g(vξ + 1/v)|2|ξ |1/2ω(|ξ |)dξ

=
∫

v1/2|g(η + 1/v)|2|η|1/2ω(
|η|
v

)dη =

= v1/2
∫

|g(ξ)|2|ξ − 1/v|1/2ω(
|ξ − 1/v|

v
)ξ � Cv1/2

×
∫

|ξ−1/v|�v1/2

|g(ξ)|2v1/4dξ

+Cv1/2
∫

|ξ−1/v|�v1/2

|g(ξ)|2(|ξ |1/2 + v−1/2)ω(v−1/2)dξ

� Cv3/4 + Cω(v−1/2).

Hence

‖ fv‖2Hω
� v3/4 + ω(v−1/2), 0 < v < 1,
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and

‖ fv‖Hω � v3/8 +
√

ω(v−1/2).

We have f = ∑∞
1 fvk and it follows that

‖ f ‖Hω �
∞
∑

1

‖ fvk‖Hω �
∞
∑

1

v
3/8
k +

∞
∑

1

√

ω(v
−1/2
k ) < ∞

since vk � εk .
We conclude that f ∈ Hω and the proof of Theorem 2 is complete. �	

Remark 1 In Sjölin [8] the function f in Theorem A is given by the formula

f =
∞
∑

1

fvk ,

where vk is defined by taking 0 < v1 < min(v0, δ/4) and vk = εkv
μ
k−1 for k =

2, 3, 4, ... Here εk = 2−k and μ > 0 is given in the proof of Theorem 2. Also let the
intervals I and J bedefined as in the proof ofTheorem2.We then set tk(x) = xv2a−2

k /a
for x ∈ J and k = 1, 2, 3, ...

It is proved in [8] that for every x0 ∈ J

one does not have lim
k→∞ Stk (x0) f (x0) = 0. (3)

We now fix x0 ∈ J and shall use Theorem 1 to prove that although (3) holds one
also has

lim
k→∞ Stk (x0) f (x) = 0 for almost every x ∈ J . (4)

We have vk < εk and it follows that

0 < tk(x0) � ε2a−2
k

and

∞
∑

1

(tk(x0))
2s/a �

∞
∑

1

2−k(2a−2)2s/a < ∞

for 0 < s < 1/4. Also f ∈ Hs for 0 < s < 1/4 and (4) follows from an application
of Theorem 1.
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Remark 2 In the case a = 2 one has μ = 2 and vk = εkv
2
k−1, and we also have

0 < v1 < 1/4. It can be proved that it follows that

vk = 4 · 2k−d2k

where d is a constant and d > 2.
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