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Abstract
Localization and convergence almost everywhere of Schrodinger means are studied.
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1 Introduction

For f € LZ(R"), n>1landa > 1 we set
GE / e f(x)dx, & R,

and

Sif(x) = / 5T E FeydE, x e R, 1 >0.
Rn
For a = 2 and f belonging to the Schwartz class . (R") we set u(x,t) =
S; f(x)/(2m)". 1t then follows that u(x,0) = f(x) and u satisfies the Schrodinger

equation i du /0t = Au.
We introduce Sobolev spaces H; = H(R") by setting

Hy={f e flu, <o}, seR,
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where
1/2

I flla, = /(1 +EP) 1 (&) PdE

In the case n = 1 it is well-known (see Sjolin [7] and Vega [9] and in the case a = 2
Carleson [3] and Dahlberg and Kenig [4]) that

}iir%)(Zn)_”S,f(x) = f(x) (D

almost everywhere if f € Hy,4. Also it is known that Hj /4 can not be replaced by H;
ifs < 1/4.

Assuming n > 2 and a = 2 Bourgain [1] has proved that (1) holds almost every-
where if f € Hy and s > 1/2 — 1/4n. On the other hand Bourgain [2] has proved
that s > n/2(n + 1) is necessary for convergence for a = 2 and all n > 2. In the case
n =2 and a = 2, Du, Guth, and Li [5] proved that the condition s > 1/3 is sufficient.
Recently Du and Zhang [6] proved that the condition s > n/2(n + 1) is sufficient for
a=2andalln > 3.

In the case a > 1, n = 2, it is known that (1) holds almost everywhere if f € Hj
and in the case a > 1, n > 3, convergence has been proved for f € H; withs > 1/2
(see [7] and [9]).

If f € L2(R") then 27)"S, f — f in L? as ¢ — 0. It follows that there exists a
sequence (#){° satisfying

l>t1>tp>t3>--->0and lim 4 =0 2)

k—00
such that

kliygo(Zﬂ)_"Szk fx) = fx)

almost everywhere.
We shall here study the problem of deciding for which sequences (#;){° one has

klirrgo(Zﬂ)_"Szk fx) = fx)

almost everywhere if f € H;. We have the following result.

Theorem 1 Assumen > 1 and a > 1 and s > 0. We assume that (2) holds and that
hayadt t,?s/a < ooand f € Hy(R"). Then

lim 27)™"S;, f(x) = f(x)
k—o00
for almost every x in R".
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Now assume n = 1, a > 1,and 0 < s < 1/4. In Sjolin [8] we studied the problem if
there is localization or localization almost everywhere for the above operators S; and
the functions f € H with compact support, that is, do we have

lim S, f(x) =0
t—0

everywhere or almost everywhere in R"\(supp f)?
It is proved in [8] that there is no localization or localization almost everywhere of
this type for 0 < s < 1/4. In fact the following theorem was proved in Sj6lin [8].

Theorem A There exist two disjoint compact intervals I and J in R and a function f
which belongs to Hy for all s < 1/4, with the properties that (supp f) C I and for
every x € J one does not have

lim S; f(x) = 0.
t—0

Let w be a continuous and decreasing function on [0, 00). Assume that w(t) — 0 as
t —> 00. Set

Hy,={f € flln, < oo}

where
1/2

1 f s, = /|f<s>|2<1 +£2) () de
R

We have the following result.
Theorem 2 The function f in theorem A can be chosen so that f € H,.

Theorem 2 shows that the sufficient condition f € Hj,4 for convergence almost
everywhere and localization almost everywhere of Schrodinger means is very sharp. In
the case a=2 Theorem 2 was obtained in 2009 (unpublished). After proving Theorem 2
we shall use Theorem 1 to make a remark on the Schrodinger means S; f (x) for the
function f which was constructed in [8] to prove Theorem A.

2 Proofs

In the proof of Theorem 1 we shall need the following lemma.
Lemmal Assumen > 1,a >1,0<s <1,and0 < § < 1. Set
eSIEI 1

S arEpa

m(§)
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Then one has
Imlloe < €8/

where the constant C does not depend on §, and ||m| s denotes the norm of m in
L (R").

Proof of Lemma 1. We shall write A < B if there is a constant C such that A < CB.
In the case |€] > 8~ /% one has

< 8%/,

€ =57/ and Im(§)| < TR

Then assume 0 < |£| < 1. We obtain

Im(€)] S 81&1° <8 <87

1/a

In the remaining case 1 < |§] < 6~ /¢ one obtains

851
&1°

Im(&)| S/ — 8|E|a—s 5 ss—a=s)/a _ gs—l+s/a _ gs/a

and the proof of Lemma 1 is complete. O
We shall then give the proof of Theorem 1.

Proof of Theorem 1. We may assume 0 < s < 1. We set
he(x) = Q) "Sy f(x) — f(x), xeR" fork=1,2,3,..
We have f € H; and we define g by taking
86 = FOA+ P

It then follows that g € L>(R").
We have

S f (x) = f TEGHEL (1 4 £ )8 dE
and

£ = @) / FVE(L 4 £ )25 (6 )dE.
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Hence
hi(x) = Q2m) ™" / eVE(MET — 1) (1 4 (&) PR (€)dE
= [ v emepeds,
where
m(E) = (" — 1+ 537

According to Lemma 1 we have ||m| s < t,f/ “ and applying the Plancherel theorem
we obtain

hell3 = ¢ / m§)8©)12de < llml% / 8@&)Pde <71

It follows that

o o
Z/ hilPdx < O 5 DI fI13, < 0
1 1

and applying the theorem on monotone convergence one also obtains

/ (i |hk|2> dx < oo.

We conclude that Z‘]’O |y |2 is convergent almost everywhere and hence limy_, o0 /4 (X)
=0and

klirrgo(Zn)_"S,kf(x) = f(x)
almost everywhere. O
Now assume n = 1 and a > 1. We set
mE) =" £ eR,

and let K denote the Fourier transform of m so that K € .%/(R). According to Sj6lin
[8] p.142, K € C*°(R) and there exists a number & > 0 such that

IKx)| <14 |x|*forx eR
For ¢t > 0 it is then clear that
STEI — m(tl/as)

Birkhauser



Journal of Fourier Analysis and Applications (2019) 25:1708-1716 1713

has the Fourier transform
K (y) =17k @ V).
It follows that S; f(x) = K;xf(x) for f € L2(R™) with compact support. We let g

denote the inverse Fourier transform of g and choose g € .%(R) such that suppg C
(=1, 1) and g(0) # 0. We set

folx) = e‘“‘/”zg(x/v), 0O<v<l1, xeR.
According to [7], p.143, one has ﬁ(&) = vg(v€ + 1/v) and
I folla, S 1272 for0 < s < 1/4.
We shall state three lemmas from [8].
Lemma 2 There exist positive numbers co, § and vy such that
|Syp2a-24 fo(X)| Z co

forO <v<vgand0 < x <.

In the remaining part of this paper § and vg are given by Lemma 2. We may also
assume that § < 1.

Lemma3 For0 < v < min(vg, §/4),0 <t < 1, and §/2 < x < § one has
v
<
151/ £

where y = (1 +a)/a > 0.

Lemma4 For(0 < v < min(vp, §/4),0 <t < 1, and §/2 < x < § one has

t
1S fo(O1 S =
v

where B = 2a.
We shall use these lemmas to prove Theorem 2.

Proof of Theorem 2. Now let v; satisfy 0 < v; < min(vp, §/4) and set ¢, = 27K,
k=1,2,3,..

We also set © = max((2a — 2)y, B/(2a — 2)) and choose vg, k = 2,3, 4, ..., such
that 0 < vy < ekv,’:fl and

Y Vou/m'? < .
k=1
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We then set f = > ;2 fy, and shall prove that f € H,,.
Arguing as in [8, pp. 145-147], it follows from Lemmas 2, 3, and 4 that with
f(x) = xv,%“fz/a one has

[Si o) f(xX)] = co >0

for§/2 < x < §and k > ko. Hence we do not have lim;_,o S; f (x) = 0 in the interval
(6/2,68). Taking I = [—vi, vi]and J C (§/2, ) we have suppf C I and for every
x € J one does not have lim;_.o S; f (x) = 0. Thus Theorem 2 follows. It remains to
prove that f € H,,.

We have
I follZ, =/|ﬁ(s>|2(1+52>1/4w<|5|)ds <+ D,
where
I = /_]1 |Fo®)1Pds < Cv?
and

12=f|ﬁ<s>|2|5|”2w(|s|>ds.
It follows that

L= / Vg (g + 1/0) 7151w (& ])dE
1

_ / Vg + 1/ Pl oM =

= v‘”/ lg©)*1E — 1/v|‘”w<@>s < Ccv!'?

x / 1g(&) 12! *de

6= 1/0]<0!/2

vol [ P 4 P s
|E—1/v|>v1/2

< Cv* + Co(w™17?).
Hence
Ifulld, SV +oe™), 0<v<l,
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and
I foller, S8 +o@=1/2).

We have f = > {° f,, and it follows that

o0
3/8 1
1 fla, < §:||ka|yw§:v/+ \/ww ?) < o0
1

since v < €.
We conclude that f € H,, and the proof of Theorem 2 is complete. O

Remark 1 In Sjolin [8] the function f in Theorem A is given by the formula

f= vak’
1

where vy is defined by taking 0 < v; < min(vg, §/4) and v = ekv,’(ﬂl for k =
2,3,4,...Here ¢, = 2 % and u > 01is given in the proof of Theorem 2. Also let the
intervals I and J be defined as in the proof of Theorem 2. We then set . (x) = xv,%“ 2 /a
forx e Jandk =1,2,3, ...

It is proved in [8] that for every xg € J

one does not have lim §;, () f (x0) = 0. 3)
k—o00

We now fix xo € J and shall use Theorem 1 to prove that although (3) holds one
also has

lim Sy, (xy) f(x) = 0 for almost every x € J. 4)
k—o00

We have v, < ¢ and it follows that

2a 2

0 < fr(xg) <

and
ad 00
Z(lk(xo))Zs/a < szk(25172)25/a - 00
! 1

for0 <s < 1/4. Also f € H; for 0 < s < 1/4 and (4) follows from an application
of Theorem 1.
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Remark 2 In the case a = 2 one has u = 2 and v, = ekv%_l, and we also have
0 < v1 < 1/4. It can be proved that it follows that

ok
v = 42642

where d is a constant and d > 2.
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