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Abstract
Hardy’s inequality for Laguerre expansions of Hermite type with the index α ∈
({−1/2} ∪ [1/2,∞))d is proved in the multi-dimensional setting with the exponent
3d/4.We also obtain the sharp analogue of Hardy’s inequality with L1 norm replacing
H1 norm at the expense of increasing the exponent by an arbitrarily small value.
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1 Introduction

The well known Hardy inequality states that

∑

k∈Z

| f̂ (k)|
|k| + 1

� ‖ f ‖ReH1,

where f̂ (k) is k-th Fourier coefficient of f . Here ReH1 is the real Hardy space com-
posed of the boundary values of the real parts of functions in the Hardy space H1(D),
where D is the unit disk in the plane.
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Kanjin [5] established an analogue of Hardy’s inequality in the context of Hermite
functions {hk}k∈N and the standard Laguerre functions {Lα

k }k∈N, α ≥ 0, namely

∑

k∈N

|〈 f , hk〉L2(R)|
(k + 1)29/36

� ‖ f ‖H1(R),
∑

k∈N

|〈 f ,Lα
k 〉L2(R+)|

k + 1
� ‖ f ‖H1(R+),

where H1(R) and H1(R+) denote the real Hardy spaces on R and R+, respectively.
Hardy’s inequality in the context of Hermite functions was further intensively stud-

ied by many authors. Radha [13] proved a similar inequality in an arbitrary dimension.
In [14] an improved version of Hardy’s inequality was introduced in the multi-
dimensional case, d ≥ 2, by Radha and Thangavelu. The exponent in the denominator
was 3d/4. This led to the hypothesis that in the one-dimensional case the exponent
should be equal to 3/4. It was indeed proved in [8] by Z. Li, Y. Yu and Y. Shi. A gener-
alization of Kanjin’s results, with the spaces H p(R) and H p(R+), p ∈ (0, 1], instead
of H1(R) and H1(R+), was also considered in the context of Hermite functions (see
[2,14]) and in the context of Laguerre functions (see [14,15]).

In this paper we study multi-dimensional Hardy’s inequality in the context of
Laguerre functions of Hermite type {ϕα

n }n∈Nd . In view of the uniform boundedness of
the derivatives of functions ϕα

n and [5, Lemma] we have the one-dimensional inequal-
ity

∞∑

k=0

|〈 f , ϕα
k 〉|

(k + 1)29/36
� ‖ f ‖H1(R+).

Our aim is to obtain the analogue of this inequality with the power 3d/4, which does
not depend on α, and in dimension d ≥ 1.

The proof of one of the main results, Theorem 4.2, is based on the atomic decom-
position of functions from H1(Rd+) and relies on a uniform estimate for atoms and
an additional argument of the ”weak” continuity of certain operators. Without this
argument, which was often omitted in papers concerning this topic, the proof would
have a gap. We remark that the uniform estimate for atoms does not imply continuity
of operators that appear in analysis that involves the atomic decomposition of H1(Rd)

(see [3]).
The range of the Laguerre type multi-index α that is considered in Theorem 4.2, is

the set ({−1/2} ∪ [1/2,∞))d . This kind of restraint appeared before (see for example
[11]). Note that the one-dimensional Laguerre functions of Hermite type with the
Laguerre type multi-index equal to −1/2 or 1/2 are, up to a multiplicative constant,
the Hermite functions of even or odd degree, respectively. Therefore, it was fair to
assume that this values of α should be included. Technically, the restraint emerges
from the range of α’s for which the derivatives of the Laguerre functions of Hermite
type are uniformly bounded. It may also be related to the fact that the associated heat
semi-group is a semi-group of L p contractions precisely for this set of α’s (see [12]).

In [6] Kanjin proved that if the exponent in one-dimensional Hardy’s inequality
in the context of Hermite functions is strictly greater than 3/4, then one can replace
H1(R) norm by L1(R) norm and, moreover, the exponent 3/4 is sharp. In Theorem
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5.1 we shall prove that this is also the case in the context of Laguerre functions of
Hermite type and extend this result to an arbitrary dimension.

Weshall frequently use twobasic estimates: fora, A > 0wehave supx>0 x
ae−Ax <

∞ and (n1 + . . . + nd + 1)d ≥ (n1 + 1) · . . . · (nd + 1), where ni ∈ N, i = 1, . . . , d.

Notation

Throughout this paper we write n = (n1, . . . , nd) ∈ N
d for a multi-index and |n| =

n1 + · · · + nd for its length, where N = {0, 1, . . . .} and d ≥ 1. The Laguerre type
multi-index α = (α1, . . . , αd), unless stated otherwise, is considered in the full range,
i.e.α ∈ (−1,∞)d .We shall also use the notationR

d+ = (0,∞)d andN+ = {1, 2, . . .}.
For functions f , g ∈ L2(Rd+, dx) we denote the inner product by 〈 f , g〉. Sometimes
we shall use this notation for functions that are not in L2(Rd+, dx) but the underlying
integral makes sense.We shall use the symbol� denoting an inequality with a constant
that does not depend on relevant parameters. Also, the symbol 	 means that � and �
hold simultaneously. Moreover, we will denote asymptotic equality by ≈.

2 Preliminaries

The Laguerre functions of Hermite type of order α on R
d+ are the functions

ϕα
n (x) =

d∏

i=1

ϕαi
ni (xi ), x = (x1, . . . , xd) ∈ R

d+,

where ϕ
αi
ni (xi ) is the one-dimensional Laguerre function of Hermite type defined by

ϕαi
ni (xi ) =

(
2�(ni + 1)

�(ni + αi + 1)

)1/2

Lαi
ni

(
x2i

)
xαi+1/2
i e−x2i /2, xi > 0.

The functions {ϕα
n : n ∈ N

d} form an orthonormal basis in L2(Rd+, dx).
The one-dimensional standard Laguerre functions {Lα

k }k∈N of order α are

Lα
k (u) =

(
�(k + 1)

�(k + α + 1)

)1/2

Lα
k (u)uα/2e−u/2, u > 0.

Note that
ϕα
k (u) = (2u)1/2Lα

k (u2).

We shall use the pointwise asymptotic estimates (see [9, p. 435] and [1, p. 699])

|Lα
k (u)| �

⎧
⎪⎪⎨

⎪⎪⎩

(uν)α/2, 0 < u ≤ 1/ν,

(uν)−1/4, 1/ν < u ≤ ν/2,
(ν(ν1/3 + |u − ν|))−1/4, ν/2 < u ≤ 3ν/2,
exp(−γ u), 3ν/2 < u < ∞,
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where ν = ν(α, k) = max(4k + 2α + 2, 2) and with γ > 0 depending only on α.
Hence,

|ϕα
k (u)| �

⎧
⎪⎪⎨

⎪⎪⎩

uα+1/2να/2, 0 < u ≤ 1/
√

ν,

ν−1/4, 1/
√

ν < u ≤ √
ν/2,

u1/2(ν(ν1/3 + |u2 − ν|))−1/4,
√

ν/2 < u ≤ √
3ν/2,

u1/2 exp(−γ u2),
√
3ν/2 < u < ∞.

(1)

There is the known formula for the derivatives of functions ϕα
k ,

d

du
ϕα
k (u) = −2

√
kϕα+1

k−1 (u) +
(
2α + 1

2u
− u

)
ϕα
k (u), (2)

where ϕα−1 ≡ 0.
From (1) it follows that for α ≥ −1/2 we have

‖ϕα
k ‖L∞(R+) � (k + 1)−1/12, (3)

and also by (2) for α ∈ {−1, 2} ∪ [1/2,∞),

∥∥∥∥
d

d·ϕ
α
k (·)

∥∥∥∥
L∞(R+)

� (k + 1)5/12. (4)

We introduce the family of operators {Rα
r }r∈(0,1), defined spectrally for f ∈

L2(Rd+), by

Rα
r f =

∞∑

n∈Nd

r |n|〈 f , ϕα
n 〉ϕα

n .

It is easily seen by means of Parseval’s identity that for every r ∈ (0, 1), the operator
Rα
r is a contraction on L2(Rd+).
The kernel associated with Rα

r is defined by

Rα
r (x, y) =

∑

n∈Nd

r |n|ϕα
n (x)ϕα

n (y), x, y ∈ R
d+.

Note that

Rα
r (x, y) =

d∏

i=1

Rαi
r (xi , yi )

and there is also the explicit formula (compare [17, p. 102])

Rαi
r (xi , yi ) = 2(xi yi )1/2

(1 − r)rαi/2
exp

(
−1

2

1 + r

1 − r
(x2i + y2i )

)
Iαi

(
2r1/2

1 − r
xi yi

)
, (5)
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where Iαi denotes the modified Bessel function of the first kind, which is smooth
and positive on (0,∞). Notice that with r = e−4t , t > 0, r (|α|+d)/2Rα

r (x, y) is just
the kernel Gα

t (x, y), see [11, (2.3)], for a differential operator Lα associated with
{ϕα

n }-expansions.
Let H1(Rd) be the real Hardy space on R

d (see, for example, [16, III]). A measur-
able function a(x) supported in a Euclidean ball B is an H1(Rd) atom if ‖a‖L∞(Rd ) ≤
|B|−1, where |B| denotes the Lebesgue measure of B, and

∫
B a(x) dx = 0. Every

function f ∈ H1(Rd) has an atomic decomposition, namely there exist a sequence of
complex coefficients {λi }∞i=0 and a sequence of H1(Rd) atoms {ai }∞i=0 such that

f =
∞∑

i=0

λi ai ,
∞∑

i=0

|λi | � ‖ f ‖H1(Rd ), (6)

where the convergence of the first series is in H1(Rd).
The Hardy space on R

d+ is defined by

H1(
R
d+
) =

{
f ∈ L1(

R
d+
) : ∃ f̃ ∈ H1(Rd), supp( f̃ ) ⊂ [0,∞)d and f̃

∣∣
R
d+

= f

}
,

with the norm ‖ f ‖H1(Rd+) = ‖ f̃ ‖H1(Rd ). The properties of H1(Rd+) given below
follow from [4, Lemma 7.40] stated in the one-dimensional case therein, however
easily generalizable to the case of an arbitrary dimension. Every f ∈ H1(Rd+) has
an atomic decomposition as in (6) with supports of ai in [0,∞)d ; we shall call them
H1(Rd+) atoms. Note that a ball inR

d+ is a ball inR
d restricted toR

d+. We may assume
that every ball associated with an H1(Rd+) atom has its center in R

d+.
For f ∈ L1(Rd+) we define the multi-even extension fe of f by

fe(x1, . . . , xd) = f (|x1|, . . . , |xd |), x = (x1, . . . , xd) ∈ R
d .

We remark (again see [4, Lemma 7.40]) that fe ∈ H1(Rd) if and only if f ∈ H1(Rd+),
and ‖ f ‖H1(Rd+) 	 ‖ fe‖H1(Rd ), thus we have

‖ f ‖L1(Rd+) � ‖ f ‖H1(Rd+). (7)

3 One-Dimensional Kernel Estimates

We shall estimate the kernels Rαi
r (xi , yi ). For the sake of convenience we will write

x, y, α instead of xi , yi , αi .
There are known the asymptotic estimates (see [7, p. 136])

Iα(u) � uα, 0 < u < 1,

Iα(u) � u−1/2eu, u ≥ 1.
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Hence,

Rα
r (x, y)�

⎧
⎨

⎩
(1 − r)−α−1(xy)α+1/2 exp

(
− 1

2
1+r
1−r (x

2 + y2)
)

, y ≤ 1−r
2
√
r x

,

(1 − r)−1/2r−α/2−1/4 exp
(
− 1

2
1+r
1−r (y − x)2 − xy(1−r)

(1+√
r)2

)
, y ≥ 1−r

2
√
r x

.

(8)

Lemma 3.1 For α ≥ −1/2 there is

sup
x∈R+

‖Rα
r (x, ·)‖L2(R+) � (1 − r)−1/4, r ∈ (0, 1).

Proof For 0 < r ≤ 1/2 we use Parseval’s identity and (3) obtaining

sup
x∈R+

‖Rα
r (x, ·)‖L2(R+) ≤ sup

x∈R+

∥∥∥
∑

k∈N
2−kϕα

k (x)ϕα
k

∥∥∥
L2(R+)

≤
( ∑

k∈N
2−2k‖ϕα

k ‖2L∞(R+)

)1/2

� 1.

For 1/2 < r < 1 we denote y0 = (1 − r)/(2
√
r x) and estimate the integrals over

(0, y0] and (y0,∞). Thus, using the substitution u = (y
√
1 + r)/

√
1 − r we obtain

∫ y0

0
Rα
r (x, y)2 dy

�
(

x2

1−r

)α+1/2

exp

(
− 1+r

1−r
x2

)
(1−r)−α−3/2

∫ y0

0
y2α+1 exp

(
− 1 + r

1 − r
y2

)
dy

� (1 − r)−α−3/2
∫ y0

√
1+r√

1−r

0
(1 − r)α+1/2u2α+1e−u2(1 − r)1/2 du

� (1 − r)−1/2,

uniformly in x ∈ R+ and r ∈ (0, 1). Similarly,

∫ ∞

y0
Rα
r (x, y)2 dy � (1 − r)−1

∫ ∞

y0
exp

(
− 1 + r

1 − r
(y − x)2

)
dy

� (1 − r)−1
∫ ∞

−∞
exp

(
− 1 + r

1 − r
y2

)
dy

� (1 − r)−1/2,

uniformly in x ∈ R+ and r ∈ (0, 1). Combining the above gives the claim. ��
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Lemma 3.2 For α > 0 it holds

∂x R
α
r (x, y) = Rα

r (x, y)

⎛

⎝−2α − 1

2x
− (1 + r)x

1 − r
+ 2

√
r y

1 − r

Iα−1(
2
√
r xy

1−r )

Iα(
2
√
r xy

1−r )

⎞

⎠

= 2y

1 − r
Rα−1
r (x, y) −

(
2α − 1

2x
+ (1 + r)x

1 − r

)
Rα
r (x, y).

Proof It suffices to use the formula

d

du
Iα(u) = −α

u
Iα(u) + Iα−1(u)

that holds for α > 0 (see [7, p. 110]), and differentiate. ��

Lemma 3.3 For α ≥ 1/2 there is

∣∣∣∣
Iα−1(u)

Iα(u)
− 1

∣∣∣∣ ≤ 2α

u
, u > 0.

For the proof in the case α > 1/2 see [10, pp. 6–7]. If α = 1/2, then it suffices to use
the explicit formulas (see [7, p. 112])

I−1/2(u) =
( 2

πu

)1/2
cosh u, I1/2(u) =

( 2

πu

)1/2
sinh u, u > 0. (9)

Lemma 3.3 is of paramount importance in our estimates wherever the cancellations
are needed. It has been used before in the context of Laguerre functions (see for
example [11]).

Note that Lemma 3.2 works for α > 0, but we want to include the case α = −1/2
as well. Thus, using (5) and (9) we obtain

R−1/2
r (x, y) = 2√

π
(1 − r)−1/2 exp

(
− 1

2

1 + r

1 − r
(x2 + y2)

)
cosh

(
2
√
r xy

1 − r

)
.

Hence,

(
∂x R

−1/2
r (x, y)

)2

= 4

π
(1 − r)−3 exp

(
− 1 + r

1 − r
(x2 + y2)

)

×
(
2
√
r y sinh

(
2
√
r xy

1 − r

)
− (1 + r)x cosh

(
2
√
r xy

1 − r

))2

.

(10)
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Using basic estimates for cosh and sinh and combining (10) with (8) and Lemma
3.2 we obtain for α ∈ {−1/2} ∪ [1/2,∞)

(
∂x R

α
r (x, y)

)2

�

⎧
⎨

⎩
(1 − r)−2α−2(xy)2α+1(Aα(x, y) + x2(1 − r)−2) exp

(
− 1+r

1−r (x
2 + y2)

)
, y ≤ 1−r

2
√
r x

,

(1 − r)−3(x2 + y2 + (1 − r)2x−2) exp
(
− 1+r

1−r (y − x)2 − 2xy(1−r)
(1+√

r)2

)
, y ≥ 1−r

2
√
r x

,

(11)

where Aα(x, y) = x−2 for α ≥ 1/2 and A−1/2(x, y) = y2(1 − r)−2.

Proposition 3.4 For α ∈ {−1/2} ∪ [1/2,∞) we have

sup
x∈R+

∥∥∂x R
α
r (x, ·)∥∥L2(R+)

� (1 − r)−3/4, r ∈ (0, 1).

Proof Fix x ∈ R+. If 0 < r ≤ 1/2, then we use (4) and Parseval’s identity obtaining

∥∥∂x R
α
r (x, ·)∥∥L2(R+)

=
∥∥∥

∑

k∈N
rk(ϕα

k )′(x)ϕα
k

∥∥∥
L2(R+)

≤
( ∑

k∈N
2−2k‖(ϕα

k )′‖2L∞(R+)

)1/2

� 1.

From now on we assume that 1/2 < r < 1. We use the notation y0 = (1 −
r)/(2

√
r x) again and split the integration over two intervals: (0, y0] and (y0,∞). In

the first case, using (11) and the substitution y = (
√
1 − r)/(

√
1 + r)u, we obtain for

α ≥ 1/2

∫ y0

0

(
∂x R

α
r (x, y)

)2
dy

� (1 − r)−2α−2x2α−1
(
1 + (1 − r)−2x4

)
exp

(
−1 + r

1 − r
x2

)

∫ y0

0
y2α+1 exp

(
−1 + r

1 − r
y2

)
dy

� (1 − r)−3/2

((
x2

1 − r

)α−1/2

+
(

x2

1 − r

)α+3/2
)
exp

(
−1 + r

1 − r
x2

)

∫ ∞

0
u2α+1e−u2du

� (1 − r)−3/2.

For α = −1/2 the corresponding computation is similar. The above estimate, as well
as the following, are uniform in x ∈ R+ and r ∈ (0, 1).
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The case of integration over (y0,∞) is more complicated. Firstly we assume that
y0 ≥ x and applying (11) and the substitution y−x = √

(1 − r)/(1 + r)t we compute

∫ ∞

y0

(
∂x R

α
r (x, y)

)2
dy � (1 − r)−3

∫ ∞

y0
y2 exp

(
− (1 + r)(y − x)2

1 − r

)
dy

� (1 − r)−5/2
∫ ∞

0

(
t2(1 − r) + x2

)
e−t2dt

� (1 − r)−3/2.

Now, we assume that y0 ≤ x , and integrate over the interval [2x,∞). Similarly,
we obtain

∫ ∞

2x

(
∂x R

α
r (x, y)

)2
dy � (1 − r)−3

∫ ∞

2x
y2 exp

(
− (1 + r)(y − x)2

1 − r

)
dy

� (1 − r)−3
∫ ∞

x
(y + x)2 exp

(
− (1 + r)y2

1 − r

)
dy

� (1 − r)−5/2
∫ ∞

0
y2(1 − r)e−y2dy

� (1 − r)−3/2.

Finally, we integrate over the interval (y0, 2x) with the restrictions 1/2 < r < 1
and x ≥ y0. Here we shall use the cancellations. Firstly we present the proof for
α ≥ 1/2. By Lemmas 3.2, 3.3, 3.1 and estimate (8) we have

∫ 2x

y0

(
∂x R

α
r (x, y)

)2
dy

�
∫ 2x

y0
Rα
r (x, y)2

(
x−2 +

(
2
√
r y

1 − r
− (1 + r)x

1 − r

)2

+ y2(1 − r)−2
(
1 −

Iα−1

(
2
√
r xy

1−r

)

Iα
(
2
√
r xy

1−r

)
)2)

dy

� x−2
∫ 2x

y0
Rα
r (x, y)2dy +

∫ 2x

y0
Rα
r (x, y)2

(
2
√
r y

1 − r
− (1 + r)x

1 − r

)2

dy

� x−2(1 − r)−1/2

+ (1 − r)−3
∫ 2x

y0
exp

(
− (1 + r)(y − x)2

1 − r
− 2xy(1 − r)

(1 + √
r)2

)

(
2y

√
r − (1 + r)x

)2
dy

� (1 − r)−3/2

+ (1 − r)−3
∫ x

y0−x
exp

(
− (1 + r)y2

1 − r
− 2x(y + x)(1 − r)

(1 + √
r)2

)
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(
2y

√
r − x(1 − r)2

(1 + √
r)2

)2
dy

� (1 − r)−3/2 + (1 − r)−3
∫ x

y0−x
y2 exp

(
− y2

1 − r

)
dy

+ (1 − r)x3 exp
(

− x2(1 − r)

(1 + √
r)2

)

� (1 − r)−3/2 + (1 − r)−3/2
∫ ∞

−∞
y2e−y2dy

� (1 − r)−3/2.

Now, we consider α = −1/2. We denote z = (2
√
r xy)/(1− r). Equality (10) and

the estimate |(1 − coth u) sinh u| ≤ 1, u > 0, yield

(
∂x R

−1/2
r (x, y)

)2

� (1 − r)−3 exp
(

− 1 + r

1 − r
(x2 + y2)

)(
2
√
r y − (1 + r)x coth z

)2 sinh2 z

� (1 − r)−3 exp
(

− 1 + r

1 − r
(x2 + y2)

)(
x2 + (

2
√
r y − (1 + r)x

)2 sinh2 z
)
.

Note that

(1 − r)−3x2
∫ 2x

y0
exp

(
− 1 + r

1 − r
(x2 + y2)

)
dy

� (1 − r)−2 x2

1 − r
exp

(
− 1 + r

1 − r
x2

) ∫ 2x

y0
exp

(
− 1 + r

1 − r
y2

)
dy

� (1 − r)−3/2.

Moreover, using the estimate for the hyperbolic sine we obtain

(1 − r)−3
∫ 2x

y0
exp

(
− 1 + r

1 − r
(x2 + y2)

)
sinh2

(2
√
r xy

1 − r

)(
2
√
r y − (1 + r)x

)2
dy

� (1 − r)−3
∫ 2x

y0
exp

(
− 1 + r

1 − r
(y − x)2 − 2xy(1 − r)

(1 + √
r)2

)(
2
√
r y − (1 + r)x

)2
dy,

but this is the same quantity as in the corresponding estimate in the case α ≥ 1/2. ��
Now we can state the multi-dimensional corollary.

Corollary 3.5 For α ∈ ({−1/2} ∪ [1/2,∞))d and j ∈ {1, . . . , d}, we have

sup
x∈Rd+

∥∥∂x j R
α
r (x, ·)∥∥

L2(Rd+)
� (1 − r)−(d+2)/4, r ∈ (0, 1).



Journal of Fourier Analysis and Applications (2019) 25:1855–1873 1865

Proof For simplicity we can assume that j = 1. Thus,

∂x1R
α
r (x, y) = ∂

∂x1
Rα1
r (x1, y1)

d∏

i=2

Rαi
r (xi , yi ).

Hence, Lemma 3.1 and Proposition 3.4 imply

∥∥∂x1R
α
r (x, ·)∥∥L2(Rd+)

= ∥∥∂x1R
α1
r (x1, ·)

∥∥
L2(R+)

d∏

i=2

∥∥Rαi
r (xi , ·)

∥∥
L2(R+)

� (1 − r)−(d+2)/4,

uniformly in x = (x1, . . . , xd) ∈ R
d+ and r ∈ (0, 1). ��

4 Main Results

Proposition 4.1 For α ∈ ({−1/2} ∪ [1/2,∞))d there is

∫ 1

0
‖Rα

r a‖L2(Rd+)(1 − r)(d−4)/4dr � 1,

uniformly in H1(Rd+) atoms a.

Proof Let us fix an H1(Rd+) atom a supported in a ball B. Let x ′ = (x ′
1, . . . , x

′
d) ∈ R

d+
be the center of B. Note that since Rα

r are contractions on L2(Rd+) we have for every
0 < r < 1

‖Rα
r a‖L2(Rd+) ≤ ‖a‖L2(Rd+) ≤ |B|−1/2.

This finishes the proof in case |B| ≥ 1. From now on, let us assume |B| < 1.
Minkowski’s integral inequality and Corollary 3.5 imply

‖Rα
r a‖L2(Rd+)

=
( ∫

R
d+

∣∣∣
∫

B

(
Rα
r (x1, x2, . . . , xd , y) − Rα

r (x ′
1, . . . , x

′
d , y)

)
a(x)dx

∣∣∣
2
dy

)1/2

=
( ∫

R
d+

∣∣∣
∫

B

( d∑

i=1

∫ xi

x ′
i

∂xi R
α
r (x ′

1, . . . , x
′
i−1, s, xi+1, . . . , xd , y) ds

)
a(x) dx

∣∣∣
2
dy

)1/2

�
∫

B
|a(x)||B|1/d

d∑

i=1

sup
ξ∈Rd+

∥∥∂xi R
α
r (ξ, ·)∥∥L2(Rd+)

dx

� |B|1/d(1 − r)−(d+2)/4.
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Thus, using the above estimates we obtain

∫ 1

0
‖Rα

r a‖L2(Rd+)(1 − r)(d−4)/4dr

�
∫ 1−|B|2/d

0
|B|1/d(1 − r)−3/2dr +

∫ 1

1−|B|2/d
|B|−1/2(1 − r)(d−4)/4dr ,

and this quantity is bounded by a constant that does not depend on |B|. ��
Now we can state the main theorem.

Theorem 4.2 Let α ∈ ({−1/2} ∪ [1/2,∞))d . Then

∑

n∈Nd

|〈 f , ϕα
n 〉|

(|n| + 1)3d/4 � ‖ f ‖H1(Rd+),

uniformly in f ∈ H1(Rd+).

Proof Firstly we prove that

∑

n∈Nd

|〈a, ϕα
n 〉|

(|n| + 1)3d/4 � 1,

uniformly in H1(Rd+) atoms a.
We shall employ the same argument that is used in [8]. For the Beta function there

is the known asymptotic B(k,m) ≈ �(m)k−m for large k and fixed m. Let a be an
H1(Rd+) atom. Using Hölder’s inequality and Proposition 4.1 we obtain

∑

n∈Nd

|〈a, ϕα
n 〉|

(|n| + 1)3d/4 �
∑

n∈Nd

∫ 1

0
r2|n|(1 − r)(3d−4)/4|〈a, ϕα

n 〉|dr

≤
∫ 1

0
(1 − r)(3d−4)/4

⎛

⎝
∑

n∈Nd

r2|n|
⎞

⎠
1/2 ⎛

⎝
∑

n∈Nd

r2|n||〈a, ϕα
n 〉|2

⎞

⎠
1/2

dr

�
∫ 1

0
(1 − r)(3d−4)/4(1 − r)−d/2‖Rα

r a‖L2(Rd+)dr

� 1.

Now, we define T ( f ) = {〈 f , ϕα
n 〉}n∈Nd for f ∈ H1(Rd+). Our aim is to prove that

T : H1(Rd+) → �1((|n| + 1)−3d/4), is bounded. Note that (3) and (7) yield

|〈 f , ϕα
n 〉| ≤ ‖ϕα

n ‖L∞(Rd+)‖ f ‖L1(Rd+) �
d∏

i=1

(ni + 1)−1/12‖ f ‖H1(Rd+)

≤ (|n| + 1)−1/12‖ f ‖H1(Rd+).
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Thus, T : H1(Rd+) → �1((|n| + 1)−d) is bounded. Note also that

‖ · ‖�1((|n|+1)−d ) ≤ ‖ · ‖�1((|n|+1)−3d/4). (12)

Let us take f ∈ H1(Rd+) and f = ∑∞
i=0 λi ai be an atomic decomposition of

f . Denote fm = ∑m
i=0 λi ai and note that T ( fm) is a Cauchy sequence in �1((|n| +

1)−3d/4). Indeed, we have for l < m,

‖T ( fm) − T ( fl)‖�1((|n|+1)−3d/4) ≤
m∑

i=l+1

|λi |‖T (ai )‖�1((|n|+1)−3d/4) �
m∑

i=l+1

|λi |.

Hence, T ( fm) converges to a sequence g in �1((|n| + 1)−3d/4) and, by (12), also
in �1((|n| + 1)−d). Since T : H1(Rd+) → �1((|n| + 1)−d) is bounded we have
T ( fm) → T ( f ) in �1((|n| + 1)−d), therefore g = T ( f ). To obtain the bound-
edness of T : H1(Rd+) → �1((|n| + 1)−3d/4) we fix ε > 0 and take m such that
‖T ( f − fm)‖�1((|n|+1)−3d/4) < ε and calculate

‖T ( f )‖�1((|n|+1)−3d/4) ≤ ‖T ( f − fm)‖�1((|n|+1)−3d/4) + ‖T ( fm)‖�1((|n|+1)−3d/4)

≤ ε +
m∑

i=0

|λi |‖T (ai )‖�1((|n|+1)−3d/4)

� ε + ‖ f ‖H1(Rd+).

This finishes the proof. ��

5 L1 Result

In this section we shall prove that the inequality in Theorem 4.2 holds also with
L1(Rd+) norm replacing H1(Rd+) norm provided that the exponent in the denominator
is strictly greater than 3d/4. Our reasoning is similar to Kanjin’s in [6]. The main tool
in the proof of this fact is the asymptotic estimate for functions ϕα

n .

Theorem 5.1 Let ε > 0 and α ∈ [−1/2,∞)d . Then

∑

n∈Nd

|〈 f , ϕα
n 〉|

(|n| + 1)
3d
4 +ε

� ‖ f ‖L1(Rd+), (13)

uniformly in f ∈ L1(Rd+). The result is sharp in the sense that there is f ∈ L1(Rd+)

such that ∑

n∈Nd

|〈 f , ϕα
n 〉|

(|n| + 1)3d/4 = ∞. (14)
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Proof Given ε > 0 and α ∈ [−1/2,∞)d , for the proof of (13) it suffices to verify
that

∑

n∈Nd

|ϕα
n (x)|

(|n| + 1)
3d
4 +ε

� 1, x ∈ R
d+.

We shall prove this estimate in the one-dimensional case. This is indeed sufficient,
since

∑

n∈Nd

|ϕα
n (x)|

(|n| + 1)
3d
4 +ε

≤
d∏

i=1

∞∑

ni=0

|ϕαi
ni (xi )|

(ni + 1)
3
4+ε/d

.

But ϕα
0 (u) � 1 uniformly in u ∈ R+, so given α ∈ [−1/2,∞) we are reduced to

proving
∞∑

k=1

|ϕα
k (u)|

k3/4+ε
� 1, u ∈ R+. (15)

Denote k̃ = 4k + 2α + 2 and for u ∈ R+ define

Nu =
{
k ∈ N+ : k̃/2 ≤ u2 ≤ 3k̃/2

}
.

We have ∞∑

k=1

|ϕα
k (u)|

k3/4+ε
=

∑

k /∈Nu

|ϕα
k (u)|

k3/4+ε
+

∑

k∈Nu

|ϕα
k (u)|

k3/4+ε
.

Note that by (1), if k /∈ Nu , then |ϕα
k (u)| � k−1/4 uniformly in u and k, and hence the

sum over the complement of Nu is bounded uniformly in u ∈ R+. We claim that the
same is true for the sum over Nu .

Assume Nu �= ∅ and let k0 = k0(u) = min{k ∈ N+ : k ∈ Nu}. Definition of Nu

implies that Nu ⊂ [k0, k∗
0 ], where k∗

0 = 3k0 + 1 + �α�. Thus, (1) yields

∑

k∈Nu

|ϕα
k (u)|

k3/4+ε
�

k∗
0∑

k=k0

√
u

k3/4+ε k̃1/4(k̃1/3 + |u2 − k̃|)1/4

�
k∗
0∑

k=k0

(3k̃0/2)1/4

k1+ε
0 (k̃1/3 + |u2 − k̃|)1/4

� k−3/4−ε
0

k∗
0∑

k=k0

1

(1 + |u2 − k̃|)1/4 ,

uniformly in u. Note that |u2 − k̃| increases in k provided k̃ ≥ u2. Since u2 ≤ 3k̃0/2,
we have for k̃ ≥ 3k̃0/2 or, equivalently, for k ≥ k∗∗

0 := �3k0/2 + α/4 + 1/4�, that
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|u2 − k̃| increases in k. Hence,

k∗
0∑

k=k0

1

(1 + |u2 − k̃|)1/4 �
k∗
0∑

k=k∗∗
0

1

(1 + |u2 − k̃|)1/4

�
∫ k∗

0

k∗∗
0

dt

(1 + 4t + 2α + 2 − u2)1/4

� (4k∗
0 + 2α + 3 − u2)3/4

	 k3/40 ,

uniformly in u. This completes the proof of the claim and hence the justification of
(15) and thus finishes the verification of (13).

Now we pass to the proof of (14). Assume a contrario that the sum in (14) is finite
for every f ∈ L1(Rd+). The uniform boundedness principle implies that

∑

n∈Nd

|〈 f , ϕα
n 〉|

(|n| + 1)3d/4 � ‖ f ‖L1(Rd+),

uniformly in f ∈ L1(Rd+). Hence, by an obvious adaptation of [6, Lemma 1] we
obtain ∑

n∈Nd

|ϕα
n (x)|

(|n| + 1)3d/4 � 1, x ∈ R
d+.

But, as we shall see, it does not hold. In fact, we shall prove that for any x ∈ R
d+

we have ∑

n∈Nd+

|ϕα
n (x)|

|n|3d/4 = ∞. (16)

Notice that using the asymptotic estimate for Laguerre polynomials (see [7,
(4.22.19)]) and the known asymptotic for the Gamma function, �(k+a)/�(k+b) ≈
ka−b, k → ∞, where a, b ≥ 0 are fixed, we obtain for u ∈ R+ and β ≥ −1/2

ϕ
β
k (u) ≈ π−1/2k−1/4 cos

(
2
√
ku − π(2β + 1)

4

)
, k → ∞.

Hence, we reduce verifying (16) to checking that

∑

n∈Nd+

∣∣∣∣
∏d

i=1 cos
(
2
√
ni xi − π(2αi+1)

4

)∣∣∣∣
|n|d = ∞. (17)
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We first prove the one-dimensional case. Fix u ∈ R+ and notice that, for d = 1,
the corresponding sum in (17) is greater than

∞∑

k=1

cos2
(
2
√
ku − π(2β+1)

4

)

k

=
∞∑

k=1

1 + cos 4
√
ku cos π(2β+1)

2 + sin 4
√
ku sin π(2β+1)

2

2k
.

Thus, (17) holds, since for any t ∈ R � {0} each of the two series

∞∑

k=1

{
sin
cos

} (
t
√
k
)

k

converges. Since we could not find a proof of this fact in the literature, we offer a short
argument (for the cosine series and t = 1).

Let H(k) = ∑k
j=1 1/ j denote the k-th harmonic number. Applying summation by

parts, for any K ∈ N+ we obtain

K∑

k=1

cos
√
k

k
= H(K ) cos

√
K +

∫ K

1
H(�u�) sin

√
u

2
√
u

du.

We use the asymptotic H(k) = log k + γ + r(k), where r(k) = O(1/k) and γ is the
Euler-Mascheroni constant, and plug it into the both summands on the right hand side
of the above formula. The terms resulting from the error parts, namely r(K ) cos

√
K

and

∫ K

1
r(�u�) sin

√
u

2
√
u

du

are easily seen to converge with K → ∞. This is also true for

∫ K

1
log�u� sin

√
u√

u
du −

∫ K

1
log u

sin
√
u√

u
du =

∫ K

1
log

(
1 + �u� − u

u

) sin
√
u√

u
du.

Thus we are left with

(log K + γ ) cos
√
K +

∫ K

1
(log u + γ )

sin
√
u

2
√
u

du = γ cos 1 +
∫ K

1

cos
√
u

u
du.

The latter integral, after a change of variable, is also easily seen to converge with
K → ∞. This finishes the proof of the convergence of the investigated series.
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Now we continue and prove (17) in the multi-dimensional setting. Given x ∈ R
d+

and proceeding similarly as before we reduce justifying (17) to verifying that each of
the 3d − 1 iterated series

∞∑

n1=1

. . .

∞∑

nd=1

|n|−d
∏

j∈J

{
sin
cos

}(
t j

√
n j

)
(18)

converges, where J is any non-empty subset of {1, . . . , d} and t j �= 0, j ∈ J . We shall
use the induction over the dimension. Suppose that every series of the form as in (18)
converges. We will prove that also the analogous series in dimension d + 1 converge.
Fix such a series and consider the associated set J ⊂ {1, . . . , d + 1}. We distinguish
two cases depending on whether d + 1 ∈ J or not.

If d + 1 /∈ J , then the investigated series is of the form

∞∑

n1=1

. . .

∞∑

nd=1

∏

j∈J

{
sin
cos

}(
t j

√
n j

) ∞∑

k=1

(|n| + k)−d−1.

It now suffices to use the asymptotic

∞∑

k=1

(|n| + k)−d−1 = |n|−d + O(|n|−d−1)

and the inductive assumption.
The case d + 1 ∈ J is more involved. We simplify matters, without any loss o

generality, assuming t j = 1. The considered series is of the form

∞∑

n1=1

. . .

∞∑

nd=1

�(J , n)

∞∑

k=1

cos
√
k

(|n| + k)d+1

(or with the sine in place of the cosine, but this is not an obstacle), where �(J , n) is a
product of the sines or the cosines taken at

√
n j , j ∈ J , respectively. In fact, we shall

prove the slightly stronger result that

∑

n∈Nd+

∣∣∣
∞∑

k=1

cos
√
k

(|n| + k)d+1

∣∣∣ < ∞. (19)

We remark that the cancellation provided by one trigonometric functions are sufficient
in our estimates. Note that we cannot use the triangle inequality in the innermost series,
because the resulting series would diverge.

To verify (19) we check the convergence of the innermost series with a control of
the decrease of its sum in |n|. We will use the following asymptotic estimate
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�u�∑

k=1

1

|n| + k
= log

(
1 + u

|n|
)

+ ru(|n|),

where ru(|n|) = O(|n|−1) uniformly in u ∈ R+. Summation by parts and the above
asymptotic yield

K∑

k=1

1

|n| + k

cos
√
k

(|n| + k)d

=
(

K∑

k=1

1

|n| + k

)
cos

√
K

(|n| + K )d
−

∫ K

1

⎛

⎝
�u�∑

k=1

1

|n| + k

⎞

⎠
(

cos
√
u

(|n| + u)d

)′
du

= log
(
1 + K

|n|
) cos

√
K

(|n| + K )d
−

∫ K

1
log

(
1 + u

|n|
)(

cos
√
u

(|n| + u)d

)′
du

+ rK (|n|) cos
√
K

(|n| + K )d
−

∫ K

1
ru(|n|)

(
cos

√
u

(|n| + u)d

)′
du.

The term with the error part rK (|n|) converges to zero with K → ∞, while the
integral term of the error part ru(|n|) is absolutely convergent with proper decrease in
|n|, namely

∫ K

1

∣∣∣ru(|n|)
(

cos
√
u

(|n| + u)d

)′∣∣∣ du � |n|−1
∫ ∞

1

1√
u(|n| + u)d

du � |n|−(d+1/4).

On the other hand, for the main terms, using integration by parts twice we obtain

log
(
1 + K

|n|
) cos

√
K

(|n| + K )d
−

∫ K

1
log

(
1 + u

|n|
)(

cos
√
u

(|n| + u)d

)′
du

= log
(
1 + 1

|n|
) cos 1

(|n| + 1)d
+

∫ K

1

cos
√
u

(|n| + u)d+1 du

= log
(
1 + 1

|n|
) cos 1

(|n| + 1)d
+ 2

√
K sin

√
K

(|n| + K )d+1 − 2 sin 1

(|n| + 1)d+1

+
∫ K

1

sin
√
u ((2d + 1)u − |n|)√
u(|n| + u)d+2

du.

Thus, combining the above and passing to the limit with K → ∞ we get

∣∣∣
∞∑

k=1

cos
√
k

(|n| + k)d+1

∣∣∣ � |n|−d−1 +
∫ ∞

1

(2d + 1)u + |n|√
u(|n| + u)d+2

du + |n|−d−1/4

� |n|−d−1/4.
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This finishes the justification of the convergence of the considered series and thus
the verification of (17). The validation of (14) is completed and also the proof of the
whole theorem is finished. ��
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