Erratum to: Some Smooth Compactly Supported Tight Wavelet Frames with Vanishing Moments

A. San Antolín ${ }^{1}$ • R. A. Zalik ${ }^{2}$

Published online: 21 July 2017
© Springer Science+Business Media New York 2017

Erratum to: J Fourier Anal Appl DOI 10.1007/s00041-015-9442-x

The line between the displayed formulas (16) and (17) was copied incorrectly from [41, Theorem 1]. It should read as follows: "Suppose that there exist trigonometric polynomials $\widetilde{P}_{1}(\mathbf{t}), \ldots, \widetilde{P}_{M}(\mathbf{t})$ such that". In addition, in the proof of Lemma 3 we overlooked to prove that the functions $\widetilde{P}_{n, m}^{(j)}(\mathbf{t})$ are \mathbb{Z}^{n}-periodic. This makes it necessary to reformulate Lemma 3. The statement and proof of Theorem 3 remain the same, but we wish to emphasize that the polynomials $L_{0}\left(A^{T} \mathbf{t}\right)$ and $L_{1}\left(A^{T} \mathbf{t}\right)$ are generated by the algorithm described in Theorem E.
Lemma 3 Let $\Omega:=\{0,1 / 2\}^{d} \backslash \boldsymbol{\Gamma}_{A^{T}}$, let $u_{n, m}(t)$ and $h_{n, m}(t)$ be trigonometric polynomials that satisfy (19), let $P_{n, m}(\mathbf{t})$ be defined by (11), let $\mathbf{u} \in \mathbb{Z}^{d}$ be such that $r_{1}(A) \cdot \mathbf{u}=1 / 2$, let $K=2^{d}-2$, and let $\rho: \Omega \rightarrow\{d+1, \ldots, K+d\}$ be a bijection. Let

$$
\begin{aligned}
\widetilde{P}_{n, m}^{(j)}\left(A^{T} \mathbf{t}\right) & :=h_{n, m}\left(t_{j}\right) \prod_{s=j+1}^{d} u_{n, m}\left(t_{s}\right), j=1, \ldots, d-1, \\
\widetilde{P}_{n, m}^{(d)}\left(A^{T} \mathbf{t}\right) & :=h_{n, m}\left(t_{d}\right),
\end{aligned}
$$

Communicated by Stephan Dahlke.
The online version of the original article can be found under doi:10.1007/s00041-015-9442-x.

[^0]and
\[

$$
\begin{aligned}
\widetilde{P}_{n, m}^{(\rho(\mathbf{r}))}\left(A^{T} \mathbf{t}\right):= & \frac{1}{2}\left[\left(P_{n, m}(\mathbf{t}+\mathbf{r})+P_{n, m}\left(\mathbf{t}+\mathbf{r}+\mathbf{r}_{1}(A)\right)\right)\right. \\
& \left.+e^{i 2 \pi \mathbf{t} \cdot \mathbf{u}}\left(P_{n, m}(\mathbf{t}+\mathbf{r})-P_{n, m}\left(\mathbf{t}+\mathbf{r}+\mathbf{r}_{1}(A)\right)\right)\right], \quad \mathbf{r} \in \Omega,
\end{aligned}
$$
\]

then $\widetilde{P}_{n, m}^{(j)}(\mathbf{t}), j=1 \ldots, K+d$, are trigonometric polynomials and

$$
\begin{equation*}
\sum_{\mathbf{r} \in \boldsymbol{\Gamma}_{A^{T}}}\left|P_{n, m}(\mathbf{t}+\mathbf{r})\right|^{2}+\sum_{j=1}^{K+d}\left|\widetilde{P}_{n, m}^{(j)}\left(A^{T} \mathbf{t}\right)\right|^{2}=1 \tag{20}
\end{equation*}
$$

Proof We start by showing that the $\widetilde{P}_{n, m}^{(j)}(\mathbf{t})$ are \mathbb{Z}^{d}-periodic polynomials. Assume first that $1 \leq j \leq d-1$. Since $g_{n, 2 m}(t)+g_{n, 2 m}(t+1 / 2)$ has period $1 / 2$ we readily see that also the polynomials $h_{n, m}(t)$ and $u_{n, m}(t)$ have period $1 / 2$. This in turn implies that $P_{n, m}\left(A^{T} \mathbf{t}\right)$ is $(1 / 2) \mathbb{Z}^{d}$-periodic. It will therefore suffice to show that if $\mathbf{k} \in \mathbb{R}^{d}$ and $\mathbf{x}=\left(A^{T}\right)^{-1} \mathbf{k}$, then $\mathbf{x} \in(1 / 2) \mathbb{Z}^{d}$. Since the determinant of A^{T} equals ± 2 and the columns of A^{T} are in \mathbb{Z}^{d} this readily follows by an application of Cramer's rule.

From the definition it is also obvious that $\widetilde{P}_{n, m}^{(d)}(\mathbf{t})$ is \mathbb{Z}^{d}-periodic.
We now establish the \mathbb{Z}^{d}-periodicity of the functions $\widetilde{P}_{n, m}^{(\rho(\mathbf{r}))}(\mathbf{t})$. Let $k \in \mathbb{Z}^{d}$. If $\mathbf{k}=A^{T}\left(\mathbf{k}_{1}\right)$ for some $\mathbf{k}_{1} \in \mathbb{Z}^{d}$, then the \mathbb{Z}^{d}-periodicity of the polynomials $P_{n, m}(\mathbf{t})$ readily imply that $\widetilde{P}_{n, m}^{(j)}(\mathbf{t}+\mathbf{k})=\widetilde{P}_{n, m}^{(j)}(\mathbf{t})$. On the other hand, if $\mathbf{k}=A^{T}\left(\mathbf{r}_{1}(A)+\right.$ \mathbf{k}_{2}) for some $\mathbf{k}_{2} \in \mathbb{Z}^{d}$, the assertion follows by observing that $2 \mathbf{r}_{1}(A) \in \mathbb{Z}^{n}$ and $e^{i 2 \pi\left(\mathbf{t}+\mathbf{r}_{1}(A)\right) \cdot \mathbf{u}}=-e^{i 2 \pi \mathbf{t} \cdot \mathbf{u}}$.

Let $\boldsymbol{\Gamma}=\boldsymbol{\Gamma}_{A^{T}}$. We claim that for $\mathbf{r} \in \Omega$ there exists an unique $\widetilde{\mathbf{r}} \in \Omega, \widetilde{\mathbf{r}} \neq \mathbf{r}$, such that $\mathbf{r}+\mathbf{r}_{1}(A)+\mathbf{k}_{3}=\widetilde{\mathbf{r}}$ for some $\mathbf{k}_{3} \in \mathbb{Z}^{d}$. Let us verify this assertion. Since $\mathbf{r}+\mathbf{r}_{1}(A) \in\left\{0, \frac{1}{2}, 1\right\}^{d}$, there exists an unique $\mathbf{k}_{3} \in \mathbb{Z}^{d}$ such that $\mathbf{r}+\mathbf{r}_{1}(A)+\mathbf{k}_{3} \in$ $\left\{0, \frac{1}{2}\right\}^{d}$. Let $\widetilde{\mathbf{r}}:=\mathbf{r}+\mathbf{r}_{1}(A)+\mathbf{k}_{3}$. We need to show that $\widetilde{\mathbf{r}}$ is neither $(0, \ldots, 0)$ nor $\mathbf{r}_{1}(A)$ nor r. If $\widetilde{\mathbf{r}}=(0, \ldots, 0)$ then $\mathbf{r}+\mathbf{r}_{1}(A) \in\{0,1\}^{d}$. This implies that $\mathbf{r}=\mathbf{r}_{1}(A)$, which contradicts the hypothesis that $\mathbf{r} \in \Omega$. In similar fashion we can see that $\widetilde{\mathbf{r}}$ is neither $\mathbf{r}_{1}(A)$ nor \mathbf{r}.

Conversely, there exists an unique $\mathbf{k}_{4} \in \mathbb{Z}^{d}$ such that $\widetilde{\mathbf{r}}+\mathbf{r}_{1}(A)+\mathbf{k}_{4}=\mathbf{r}$. Indeed, repeating the preceding argument we conclude that there exists an unique $\mathbf{k}_{5} \in \mathbb{Z}^{d}$ such that $\widetilde{\mathbf{r}}+\mathbf{r}_{1}(A)+\mathbf{k}_{5} \in\left\{0, \frac{1}{2}\right\}^{d}$. Let $\mathbf{k}_{4}:=\mathbf{k}_{5}$. Since $\widetilde{\mathbf{r}}=\mathbf{r}+\mathbf{r}_{1}(A)+\mathbf{k}_{3}$, it follows that $\mathbf{r}+2 \mathbf{r}_{1}(A)+\mathbf{k}_{3}+\mathbf{k}_{4} \in\left\{0, \frac{1}{2}\right\}^{d}$. Bearing in mind that $2 \mathbf{r}_{1}(A) \in \mathbb{Z}^{d}$ and $\mathbf{r} \in \Omega$, we have $2 \mathbf{r}_{1}(A)+\mathbf{k}_{3}+\mathbf{k}_{4}=\mathbf{0}$. Thus

$$
\widetilde{\mathbf{r}}+\mathbf{r}_{1}(A)+\mathbf{k}_{4}=\mathbf{r}+2 \mathbf{r}_{1}(A)+\mathbf{k}_{3}+\mathbf{k}_{4}=\mathbf{r} .
$$

We have therefore shown that there exist two disjoint sets $\Omega_{1}, \Omega_{2} \subset \Omega$, such that $\Omega=\Omega_{1} \cup \Omega_{2}$ and for any $\mathbf{r} \in \Omega_{1}$ there exists an unique $\widetilde{\mathbf{r}} \in \Omega_{2}$ such that $\widetilde{\mathbf{r}}=\mathbf{r}+\mathbf{r}_{1}(A)+\mathbf{k}$ and $\mathbf{r}=\widetilde{\mathbf{r}}+\mathbf{r}_{1}(A)+\mathbf{m}$ for some $\mathbf{k}, \mathbf{m} \in \mathbb{Z}^{d}$. Since, moreover, $\widetilde{P}_{n, m}^{(\rho(\mathbf{r}))}\left(A^{T} \mathbf{t}\right)$ and $\widetilde{P}_{n, m}^{(\rho(\widetilde{\mathbf{r}}))}\left(A^{T} \mathbf{t}\right)$ are complex conjugates of each other, we readily see
that

$$
\left|\widetilde{P}_{n, m}^{(\rho(\mathbf{r}))}\left(A^{T} \mathbf{t}\right)\right|^{2}+\left|\widetilde{P}_{n, m}^{(\rho(\widetilde{\mathbf{r}}))}\left(A^{T} \mathbf{t}\right)\right|^{2}=\left|P_{n, m}(\mathbf{t}+\mathbf{r})\right|^{2}+\left|P_{n, m}\left(\mathbf{t}+\mathbf{r}+\mathbf{r}_{1}(A)\right)\right|^{2}
$$

Therefore

$$
\begin{aligned}
& \sum_{j=d+1}^{K+d}\left|\widetilde{P}_{n, m}^{(j)}\left(A^{T} \mathbf{t}\right)\right|^{2} \\
& =\sum_{\mathbf{r} \in \Omega}\left|\widetilde{P}_{n, m}^{(\rho(\mathbf{r}))}\left(A^{T} \mathbf{t}\right)\right|^{2}=\sum_{\mathbf{r} \in \Omega_{1}}\left|\widetilde{P}_{n, m}^{(\rho(\mathbf{r}))}\left(A^{T} \mathbf{t}\right)\right|^{2}+\sum_{\widetilde{\mathbf{r}} \in \Omega_{2}}\left|\widetilde{P}_{n, m}^{(\rho(\widetilde{\mathbf{r}})}\left(A^{T} \mathbf{t}\right)\right|^{2} \\
& =\sum_{\mathbf{r} \in \Omega}\left|P_{n, m}(\mathbf{t}+\mathbf{r})\right|^{2} .
\end{aligned}
$$

The remainder of the proof is a repetition of the argument used in the original version of this lemma.

[^0]: \boxtimes A. San Antolín
 angel.sanantolin@ua.es
 R. A. Zalik
 zalik@auburn.edu
 1 Departamento de Matemáticas, Universidad de Alicante, 03080 Alicante, Spain
 2 Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849-5310, USA

