CrossMark

ERRATUM

Erratum to: Some Smooth Compactly Supported Tight Wavelet Frames with Vanishing Moments

A. San Antolín¹ · R. A. Zalik²

Published online: 21 July 2017

© Springer Science+Business Media New York 2017

Erratum to: J Fourier Anal Appl DOI 10.1007/s00041-015-9442-x

The line between the displayed formulas (16) and (17) was copied incorrectly from [41, Theorem 1]. It should read as follows: "Suppose that there exist trigonometric polynomials $\widetilde{P}_1(\mathbf{t}), \ldots, \widetilde{P}_M(\mathbf{t})$ such that". In addition, in the proof of Lemma 3 we overlooked to prove that the functions $\widetilde{P}_{n,m}^{(j)}(\mathbf{t})$ are \mathbb{Z}^n -periodic. This makes it necessary to reformulate Lemma 3. The statement and proof of Theorem 3 remain the same, but we wish to emphasize that the polynomials $L_0(A^T\mathbf{t})$ and $L_1(A^T\mathbf{t})$ are generated by the algorithm described in Theorem E.

Lemma 3 Let $\Omega := \{0, 1/2\}^d \setminus \Gamma_{A^T}$, let $u_{n,m}(t)$ and $h_{n,m}(t)$ be trigonometric polynomials that satisfy (19), let $P_{n,m}(\mathbf{t})$ be defined by (11), let $\mathbf{u} \in \mathbb{Z}^d$ be such that $r_1(A) \cdot \mathbf{u} = 1/2$, let $K = 2^d - 2$, and let $\rho : \Omega \to \{d+1, \ldots, K+d\}$ be a bijection. Let

$$\widetilde{P}_{n,m}^{(j)}(A^T\mathbf{t}) := h_{n,m}(t_j) \prod_{s=j+1}^d u_{n,m}(t_s), \ j = 1, \dots, d-1,$$

 $\widetilde{P}_{n,m}^{(d)}(A^T\mathbf{t}) := h_{n,m}(t_d),$

Communicated by Stephan Dahlke.

The online version of the original article can be found under doi:10.1007/s00041-015-9442-x.

A. San Antolín angel.sanantolin@ua.es

R. A. Zalik zalik@auburn.edu

- Departamento de Matemáticas, Universidad de Alicante, 03080 Alicante, Spain
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849–5310, USA

and

$$\widetilde{P}_{n,m}^{(\rho(\mathbf{r}))}(A^T\mathbf{t}) := \frac{1}{2} \Big[(P_{n,m}(\mathbf{t} + \mathbf{r}) + P_{n,m}(\mathbf{t} + \mathbf{r} + \mathbf{r}_1(A))) + e^{i2\pi\mathbf{t}\cdot\mathbf{u}} (P_{n,m}(\mathbf{t} + \mathbf{r}) - P_{n,m}(\mathbf{t} + \mathbf{r} + \mathbf{r}_1(A))) \Big], \quad \mathbf{r} \in \Omega.$$

then $\widetilde{P}_{n,m}^{(j)}(\mathbf{t})$, $j=1\ldots,K+d$, are trigonometric polynomials and

$$\sum_{\mathbf{r}\in\Gamma_{A^T}} |P_{n,m}(\mathbf{t}+\mathbf{r})|^2 + \sum_{j=1}^{K+d} |\widetilde{P}_{n,m}^{(j)}(A^T\mathbf{t})|^2 = 1.$$
(20)

Proof We start by showing that the $\widetilde{P}_{n,m}^{(j)}(\mathbf{t})$ are \mathbb{Z}^d -periodic polynomials. Assume first that $1 \leq j \leq d-1$. Since $g_{n,2m}(t)+g_{n,2m}(t+1/2)$ has period 1/2 we readily see that also the polynomials $h_{n,m}(t)$ and $u_{n,m}(t)$ have period 1/2. This in turn implies that $P_{n,m}(A^T\mathbf{t})$ is $(1/2)\mathbb{Z}^d$ -periodic. It will therefore suffice to show that if $\mathbf{k} \in \mathbb{R}^d$ and $\mathbf{x} = (A^T)^{-1}\mathbf{k}$, then $\mathbf{x} \in (1/2)\mathbb{Z}^d$. Since the determinant of A^T equals ± 2 and the columns of A^T are in \mathbb{Z}^d this readily follows by an application of Cramer's rule.

From the definition it is also obvious that $\widetilde{P}_{n,m}^{(d)}(\mathbf{t})$ is \mathbb{Z}^d -periodic.

We now establish the \mathbb{Z}^d -periodicity of the functions $\widetilde{P}_{n,m}^{(\rho(\mathbf{r}))}(\mathbf{t})$. Let $k \in \mathbb{Z}^d$. If $\mathbf{k} = A^T(\mathbf{k}_1)$ for some $\mathbf{k}_1 \in \mathbb{Z}^d$, then the \mathbb{Z}^d -periodicity of the polynomials $P_{n,m}(\mathbf{t})$ readily imply that $\widetilde{P}_{n,m}^{(j)}(\mathbf{t} + \mathbf{k}) = \widetilde{P}_{n,m}^{(j)}(\mathbf{t})$. On the other hand, if $\mathbf{k} = A^T(\mathbf{r}_1(A) + \mathbf{k}_2)$ for some $\mathbf{k}_2 \in \mathbb{Z}^d$, the assertion follows by observing that $2\mathbf{r}_1(A) \in \mathbb{Z}^n$ and $e^{i2\pi(\mathbf{t}+\mathbf{r}_1(A))\cdot\mathbf{u}} = -e^{i2\pi\mathbf{t}\cdot\mathbf{u}}$.

Let $\Gamma = \Gamma_{A^T}$. We claim that for $\mathbf{r} \in \Omega$ there exists an unique $\widetilde{\mathbf{r}} \in \Omega$, $\widetilde{\mathbf{r}} \neq \mathbf{r}$, such that $\mathbf{r} + \mathbf{r}_1(A) + \mathbf{k}_3 = \widetilde{\mathbf{r}}$ for some $\mathbf{k}_3 \in \mathbb{Z}^d$. Let us verify this assertion. Since $\mathbf{r} + \mathbf{r}_1(A) \in \{0, \frac{1}{2}, 1\}^d$, there exists an unique $\mathbf{k}_3 \in \mathbb{Z}^d$ such that $\mathbf{r} + \mathbf{r}_1(A) + \mathbf{k}_3 \in \{0, \frac{1}{2}\}^d$. Let $\widetilde{\mathbf{r}} := \mathbf{r} + \mathbf{r}_1(A) + \mathbf{k}_3$. We need to show that $\widetilde{\mathbf{r}}$ is neither $(0, \dots, 0)$ nor $\mathbf{r}_1(A)$ nor \mathbf{r} . If $\widetilde{\mathbf{r}} = (0, \dots, 0)$ then $\mathbf{r} + \mathbf{r}_1(A) \in \{0, 1\}^d$. This implies that $\mathbf{r} = \mathbf{r}_1(A)$, which contradicts the hypothesis that $\mathbf{r} \in \Omega$. In similar fashion we can see that $\widetilde{\mathbf{r}}$ is neither $\mathbf{r}_1(A)$ nor \mathbf{r} .

Conversely, there exists an unique $\mathbf{k}_4 \in \mathbb{Z}^d$ such that $\tilde{\mathbf{r}} + \mathbf{r}_1(A) + \mathbf{k}_4 = \mathbf{r}$. Indeed, repeating the preceding argument we conclude that there exists an unique $\mathbf{k}_5 \in \mathbb{Z}^d$ such that $\tilde{\mathbf{r}} + \mathbf{r}_1(A) + \mathbf{k}_5 \in \{0, \frac{1}{2}\}^d$. Let $\mathbf{k}_4 := \mathbf{k}_5$. Since $\tilde{\mathbf{r}} = \mathbf{r} + \mathbf{r}_1(A) + \mathbf{k}_3$, it follows that $\mathbf{r} + 2\mathbf{r}_1(A) + \mathbf{k}_3 + \mathbf{k}_4 \in \{0, \frac{1}{2}\}^d$. Bearing in mind that $2\mathbf{r}_1(A) \in \mathbb{Z}^d$ and $\mathbf{r} \in \Omega$, we have $2\mathbf{r}_1(A) + \mathbf{k}_3 + \mathbf{k}_4 = \mathbf{0}$. Thus

$$\widetilde{\mathbf{r}} + \mathbf{r}_1(A) + \mathbf{k}_4 = \mathbf{r} + 2\mathbf{r}_1(A) + \mathbf{k}_3 + \mathbf{k}_4 = \mathbf{r}.$$

We have therefore shown that there exist two disjoint sets $\Omega_1, \Omega_2 \subset \Omega$, such that $\Omega = \Omega_1 \cup \Omega_2$ and for any $\mathbf{r} \in \Omega_1$ there exists an unique $\widetilde{\mathbf{r}} \in \Omega_2$ such that $\widetilde{\mathbf{r}} = \mathbf{r} + \mathbf{r}_1(A) + \mathbf{k}$ and $\mathbf{r} = \widetilde{\mathbf{r}} + \mathbf{r}_1(A) + \mathbf{m}$ for some $\mathbf{k}, \mathbf{m} \in \mathbb{Z}^d$. Since, moreover, $\widetilde{P}_{n,m}^{(\rho(\mathbf{r}))}(A^T\mathbf{t})$ and $\widetilde{P}_{n,m}^{(\rho(\mathbf{r}))}(A^T\mathbf{t})$ are complex conjugates of each other, we readily see

that

$$|\widetilde{P}_{n,m}^{(\rho(\mathbf{r}))}(A^T\mathbf{t})|^2 + |\widetilde{P}_{n,m}^{(\rho(\widetilde{\mathbf{r}}))}(A^T\mathbf{t})|^2 = |P_{n,m}(\mathbf{t} + \mathbf{r})|^2 + |P_{n,m}(\mathbf{t} + \mathbf{r} + \mathbf{r}_1(A))|^2.$$

Therefore

$$\sum_{j=d+1}^{K+d} |\widetilde{P}_{n,m}^{(j)}(A^T\mathbf{t})|^2$$

$$= \sum_{\mathbf{r}\in\Omega} |\widetilde{P}_{n,m}^{(\rho(\mathbf{r}))}(A^T\mathbf{t})|^2 = \sum_{\mathbf{r}\in\Omega_1} |\widetilde{P}_{n,m}^{(\rho(\mathbf{r}))}(A^T\mathbf{t})|^2 + \sum_{\widetilde{\mathbf{r}}\in\Omega_2} |\widetilde{P}_{n,m}^{(\rho(\widetilde{\mathbf{r}}))}(A^T\mathbf{t})|^2$$

$$= \sum_{\mathbf{r}\in\Omega} |P_{n,m}(\mathbf{t}+\mathbf{r})|^2.$$

The remainder of the proof is a repetition of the argument used in the original version of this lemma. \Box

