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Abstract In this paper we develop the theory of Fourier multiplier operators Tm :
L p(Rd ; X) → Lq(Rd; Y ), for Banach spaces X and Y , 1 ≤ p ≤ q ≤ ∞ and
m : R

d → L(X,Y ) an operator-valued symbol. The case p = q has been studied
extensively since the 1980s, but far less is known for p < q. In the scalar setting one
can deduce results for p < q from the case p = q. However, in the vector-valued
setting this leads to restrictions both on the smoothness of the multiplier and on the
class of Banach spaces. For example, one often needs that X and Y are UMD spaces
and that m satisfies a smoothness condition. We show that for p < q other geometric
conditions on X and Y , such as the notions of type and cotype, can be used to study
Fourier multipliers. Moreover, we obtain boundedness results for Tm without any
smoothness properties of m. Under smoothness conditions the boundedness results
can be extrapolated to other values of p and q as long as 1

p − 1
q remains constant.
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1 Introduction

Fourier multiplier operators play a major role in analysis and in particular in the theory
of partial differential equations. Such operators are of the form

Tm( f ) = F−1(mF f ),

where F denotes the Fourier transform and m is a function on R
d . Usually one is

interested in the boundedness of Tm : L p(Rd) → Lq(Rd) with 1 ≤ p ≤ q ≤ ∞ (the
case p > q is trivial by [27, Theorem 1.1]). The class of Fourier multiplier operators
coincides with the class of singular integral operators of convolution type f �→ K ∗ f ,
where K is a tempered distribution.

The simplest class of examples of Fourier multipliers can be obtained by taking
p = q = 2. Then Tm is bounded if and only if m ∈ L∞(Rd), and ‖Tm‖L(L2(Rd )) =
‖m‖L∞(Rd ). For p = q = 1 and p = q = ∞ one obtains only trivial multipliers,
namely Fourier transforms of boundedmeasures. The casewhere p = q ∈ (1,∞)\{2}
is highly nontrivial. In general only sufficient conditions onm are known that guarantee
that Tm is bounded, although also here it is necessary that m ∈ L∞(Rd).

In the classical paper [27] Hörmander studied Fourier multipliers and singular
integral operators of convolution type. In particular, he showed that if 1 < p ≤ 2 ≤
q < ∞, then

Tm : L p(Rd) → Lq(Rd) is bounded if m ∈ Lr,∞(Rd) with 1
r = 1

p − 1
q . (1.1)

Here Lr,∞(Rd) denotes the weak Lr -space. In particular, every m with |m(ξ)| ≤
C |ξ |−d/r satisfies m ∈ Lr,∞(Rd). It was also shown that the condition p ≤ 2 ≤ q
is necessary here. More precisely, if there exists a function F such that {F > 0} has
nonzero measure and for all m : R

d → R with |m| ≤ |F |, Tm : L p(Rd) → Lq(Rd)

is bounded, then p ≤ 2 ≤ q.
Hörmander also introduced an integral/smoothness condition on the kernel K which

allows one to extrapolate the boundedness of Tm from L p0(Rd) to Lq0(Rd) for some
1 < p0 ≤ q0 < ∞ to boundedness of Tm from L p(Rd) to Lq(Rd) for all 1 < p ≤
q < ∞ satisfying 1

p − 1
q = 1

p0
− 1

q0
. This led to extensions of the theory of Calderón

and Zygmund in [13]. In the case p0 = q0 it was shown that the smoothness condition
on the kernel K can be translated to a smoothness condition on the multiplierm which
is strong enough to deduce the classical Mihlin multiplier theorem. From here the
field of harmonic analysis has quickly developed itself and this development is still
ongoing. We refer to [23,24,35,53] and references therein for a treatment and the
history of the subject.

In the vector-valued setting it was shown in [6] that the extrapolation results of
Hörmander for p = q still holds. However, there is a catch:

• even for p = q = 2 one does not have Tm ∈ L(L2(Rd ; X)) for general m ∈
L∞(Rd) unless X is a Hilbert space.

In [12] it was shown that Tm ∈ L(L p(Rd; X)) for m(ξ) := sign(ξ) if X satisfies the
so-called UMD condition. In [10] it was realized that this yields a characterization of
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the UMD property. In [11,42,63] versions of the Littlewood–Paley theorem and the
Mihlin multiplier theorem were established in the UMD setting. These are very useful
for operator theory and evolution equations (see for example [18]).

In the vector-valued setting it is rather natural to allow m to take values in the
space L(X,Y ) of bounded operators from X to Y . Pisier and Le Merdy showed that
the natural analogues of the Mihlin multiplier theorem do not extend to this setting
unless X has cotype 2 and Y has type 2 (a proof was published only later on in
[4]). On the other hand there was a need for such extensions as it was realized that
multiplier theoremswith operator-valued symbols are useful in the stability theory and
the regularity theory for evolution equations (see [2,26,61]). Themissing ingredient for
a natural analogue of the Mihlin multiplier theorem turned out to be R-boundedness,
which is a strengthening of uniform boundedness (see [9,14]). In [62] it was shown
that Mihlin’s theorem holds for m : R → L(X) if the sets

{m(ξ) | ξ ∈ R \ {0}} and
{
ξm′(ξ) | ξ ∈ R \ {0}}

are R-bounded. Conversely, the R-boundedness of {m(ξ) | ξ ∈ R \ {0}} is also nec-
essary. These results were used to characterize maximal L p-regularity, and were then
used by many authors in evolution equations, partial differential equations, operator
theory and harmonic analysis (see the surveys and lecture notes [2,16,33,37]). A gen-
eralization to multipliers on R

d instead of R was given in [25,54], but in some cases
one additionally needs the so-called property (α) of the Banach space (which holds
for all UMD lattices). Improvements of the multiplier theorems under additional geo-
metric assumptions have been studied in [22,52] assuming Fourier type and in [31]
assuming type and cotype conditions.

In this article we complement the theory of operator-valued Fourier multipliers by
studying the boundedness of Tm from L p(Rd; X) to Lq(Rd; Y ) for p < q. One of

our main results is formulated under γ -boundedness assumptions on {|ξ | dr m(ξ) | ξ ∈
R
d \ {0}}. We note that R-boundedness implies γ -boundedness (see Subsection 2.4).

The result is as follows (see Theorem 3.18 for the proof):

Theorem 1.1 Let X be a Banach space with type p0 ∈ (1, 2] and Y a Banach space
with cotype q0 ∈ [2,∞), and let p ∈ (1, p0), q ∈ (q0,∞). Let r ∈ [1,∞] be such
that 1

r = 1
p − 1

q . If m : R
d \ {0} → L(X,Y ) is X-strongly measurable and

{|ξ | dr m(ξ) | ξ ∈ R
d \ {0}} ⊆ L(X,Y ) (1.2)

is γ -bounded, then Tm : L p(Rd; X) → Lq(Rd ; Y ) is bounded. Moreover, if p0 = 2
(or q0 = 2), then one can also take p = 2 (or q = 2).

The condition p ≤ 2 ≤ q cannot be avoided in such results (see below (1.1)). Note
that no smoothness onm is required. Theorem 1.1 should be compared to the sufficient
condition in (1.1) due to Hörmander in the case where X = Y = C. We will give an
example which shows that the γ -boundedness condition (1.2) cannot be avoided in
general. Moreover, we obtain several converse results stating that type and cotype are
necessary.
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We note that, in casem is scalar-valued and X = Y , the γ -boundedness assumption
in Theorem 1.1 reduces to the uniform boundedness of (1.2). Even in this setting of
scalar multipliers our results appear to be new.

In Theorem 3.21 we obtain a variant of Theorem 1.1 for p-convex and q-concave
Banach lattices, where one can take p = p0 and q = q0. In [49] we will deduce
multiplier results similar to Theorem 1.1 in the Besov scale, where one can let p = p0
and q = q0 for Banach spaces X and Y with type p and cotype q.

A vector-valued generalization of (1.1) is presented in Theorem 3.12.We show that
if X has Fourier type p0 > p and Y has Fourier type q ′

0 > q ′, then

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ C
∥∥‖m(·)‖L(X,Y )

∥∥
Lr,∞(Rd )

,

where 1
r = 1

p − 1
q . We show that in this result the Fourier type assumption is necessary.

It should be noted that for many spaces (including all Lr -spaces for r ∈ [1,∞) \ {2}),
working with Fourier type yields more restrictive results in terms of the underlying
parameters than working with type and cotype (see Sect. 2.2 for a discussion of the
differences between Fourier type and (co)type).

The exponents p and q in Theorem 1.1 are fixed by the geometry of the underlying
Banach spaces. However, Corollary 4.2 shows that under smoothness conditions on
the multiplier, one can extend the boundedness result to all pairs ( p̃, q̃) satisfying
1 < p̃ ≤ q̃ < ∞ and 1

p̃ − 1
q̃ = 1

p − 1
q = 1

r . Here the required smoothness depends on
the Fourier type of X and Y and on the number r ∈ (1,∞]. We note that even in the
case where X = Y = C, for p < q we require less smoothness for the extrapolation
than in the classical results (see Remark 4.4).

We will mainly consider multiplier theorems on R
d . There are two exceptions. In

Remark 3.11 we deduce a result for more general locally compact groups. Moreover,
in Proposition 3.4 we show how to transfer our results from R

d to the torus T
d . This

result appears to be new even in the scalar setting. As an application of the latter we
show that certain irregular Schur multipliers with sufficient decay are bounded on the
Schatten class C p for p ∈ (1,∞).

We have pointed out that questions about operator-valued Fourier multiplier the-
orems were originally motivated by stability and regularity theory. We have already
successfully applied our result to stability theory of C0-semigroups, as will be pre-
sented in a forthcoming paper [50]. In [48] the first-named author has also applied the
Fourier multiplier theorems in this article to study theH∞-calculus for generators of
C0-groups.

Other potential applications could be given to the theory of dispersive equations.
For instance the classical Strichartz estimates can be viewed as operator-valued L p-
Lq -multiplier theorems. Here the multipliers are often not smooth, as is the case in
our theory. More involved applications probably require extensions of our work to
oscillatory integral operators, which would be a natural next step in the research on
vector-valued singular integrals from L p to Lq .

This article is organized as follows. In Sect. 2 we discuss some preliminaries on
the geometry of Banach spaces and on function space theory. In Sect. 3 we introduce
Fourier multipliers and prove our main results on L p-Lq -multipliers in the vector-
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valued setting. In Sect. 4 we present an extension of the extrapolation result under
Hörmander–Mihlin conditions to the case p ≤ q.

1.1 Notation and Terminology

We write N := {1, 2, 3, . . .} for the natural numbers and N0 := N ∪ {0}.
We denote nonzero Banach spaces over the complex numbers by X and Y . The

space of bounded linear operators from X to Y is L(X,Y ), and L(X) := L(X, X).
The identity operator on X is denoted by IX .

For p ∈ [1,∞] and (�,μ) a measure space, L p(�; X) denotes the Bochner space
of equivalence classes of strongly measurable, p-integrable, X -valued functions on
�. Moreover, L p,∞(�; X) is the weak L p-space of all f : � → X for which

‖ f ‖L p,∞(�;X) := sup
α>0

αλ f (α)
1
p < ∞, (1.3)

where λ f (α) := μ({s ∈ � | ‖ f (s)‖X > α}) for α > 0. In the case where � ⊆ R
d

we implicitly assume that μ is the Lebesgue measure. Often we will use the shorthand
notations ‖ · ‖p and ‖ · ‖p,∞ for the L p-norm and L p,∞-norm.

The Hölder conjugate of p is denoted by p′ and is defined by 1 = 1
p + 1

p′ . We write
�p for the space of p-summable sequences (xk)k∈N0 ⊆ C, and denote by �p(Z) the
space of p-summable sequences (xk)k∈Z ⊆ C.

We say that a functionm : � → L(X,Y ) is X-strongly measurable if ω �→ m(ω)x
is a strongly measurable Y -valued map for all x ∈ X . We often identify a scalar
function m : R

d → C with the operator-valued function m̃ : R
d → L(X) given by

m̃(ξ) := m(ξ)IX for ξ ∈ R
d .

The class of X -valued rapidly decreasing smooth functions on R
d (the Schwartz

functions) is denoted by S(Rd ; X), and the space of X -valued tempered distributions
by S ′(Rd ; X). We write S(Rd) := S(Rd ; C) and denote by 〈·, ·〉 : S ′(Rd; X) ×
S(Rd) → X the X -valued duality between S ′(Rd ; X) and S(Rd). The Fourier trans-
form of a 	 ∈ S ′(Rd; X) is denoted by F	 or 	̂. If f ∈ L1(Rd; X) then

f̂ (ξ) = F f (ξ) :=
∫

Rd
e−2π iξ ·t f (t) dt (ξ ∈ R

d).

A standard complex Gaussian random variable is a random variable γ : � → C

of the form γ = γr+iγi√
2

, where (�, P) is a probability space and γr , γi : � → R

are independent standard real Gaussians. A Gaussian sequence is a (finite or infinite)
sequence (γk)k of independent standard complex Gaussian random variables on some
probability space.

We will use the convention that a constant C which appears multiple times in a
chain of inequalities may vary from one occurrence to the next.
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2 Preliminaries

2.1 Fourier Type

We recall some background on the Fourier type of a Banach space. For these facts and
for more on Fourier type see [19,28,45].

ABanach space X hasFourier type p ∈ [1, 2] if the Fourier transformF is bounded
from L p(Rd; X) to L p′

(Rd; X) for some (in which case it holds for all) d ∈ N. We
then write Fp,X,d := ‖F‖L(L p(Rd ;X),L p′ (Rd ;X))

.
Each Banach space X has Fourier type 1 with F1,X,d = 1 for all d ∈ N. If X

has Fourier type p ∈ [1, 2] then X has Fourier type r with Fr,X,d ≤ Fp,X,d for all
r ∈ [1, p] and d ∈ N. We say that X has nontrivial Fourier type if X has Fourier type
p for some p ∈ (1, 2]. In order to make our main results more transparent we will say
that X has Fourier cotype p′ whenever X has Fourier type p.

Let X be a Banach space, r ∈ [1,∞) and let� be a measure space. If X has Fourier
type p ∈ [1, 2] then Lr (�; X) has Fourier type min(p, r, r ′). In particular, Lr (�) has
Fourier type min(r, r ′).

2.2 Type and Cotype

We first recall some facts concerning the type and cotype of Banach spaces. For more
on these notions and for unexplained results see [1,17,29] and [40, Sect. 9.2].

Let X be a Banach space, (γn)n∈N a Gaussian sequence on a probability space
(�, P) and let p ∈ [1, 2] and q ∈ [2,∞]. We say that X has (Gaussian) type p if
there exists a constant C ≥ 0 such that for all m ∈ N and all x1, . . . , xm ∈ X ,

(
E

∥∥∥
m∑

n=1

γnxn

∥∥∥∥

2)1/2 ≤ C

( m∑

n=1

‖xn‖p
)1/p

. (2.1)

We say that X has (Gaussian) cotype q if there exists a constant C ≥ 0 such that for
all m ∈ N and all x1, . . . , xm ∈ X ,

( m∑

n=1

‖xn‖q
)1/q

≤ C

(
E

∥∥∥
m∑

n=1

γnxn
∥∥∥
2
)1/2

, (2.2)

with the obvious modification for q = ∞.
Theminimal constantsC in (2.1) and (2.2) are called the (Gaussian) type p constant

and the (Gaussian) cotype q constant and will be denoted by τp,X and cq,X . We say
that X has nontrivial type if X has type p ∈ (1, 2], and finite cotype if X has cotype
q ∈ [2,∞).

Note that it is customary to replace the Gaussian sequence in (2.1) and (2.2) by a
Rademacher sequence, i.e. a sequence (rn)n∈N of independent random variables on
a probability space (�, P) that are uniformly distributed on {z ∈ R | |z| = 1}. This
does not change the class of spaces under consideration, only the minimal constants
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in (2.1) and (2.2) (see [17, Chap. 12]). We choose to work with Gaussian sequences
because the Gaussian constants τp,X and cq,X occur naturally here.

Each Banach space X has type p = 1 and cotype q = ∞, with τ1,X = c∞,X = 1.
If X has type p and cotype q then X has type r with τr,X ≤ τp,X for all r ∈ [1, p]
and cotype s with cs,X ≤ cq,X for all s ∈ [q,∞]. A Banach space X is isomorphic
to a Hilbert space if and only if X has type p = 2 and cotype q = 2, by Kwapień’s
theorem (see [1, Theorem 7.4.1]). Also, a Banach space X with nontrivial type has
finite cotype by the Maurey–Pisier theorem (see [1, Theorem 11.1.14]).

Let X be a Banach space, r ∈ [1,∞) and let � be a measure space. If X has
type p ∈ [1, 2] and cotype q ∈ [2,∞) then Lr (�; X) has type min(p, r) and cotype
max(q, r) (see [17, Theorem 11.12]).

ABanach spacewith Fourier type p ∈ [1, 2] has type p and cotype p′ (see [29]). By
a result of Bourgain a Banach space has nontrivial type if and only if it has nontrivial
Fourier type (see [45, 5.6.30]).

2.3 Convexity and Concavity

For the theory of Banach lattices we refer the reader to [40]. We repeat some of the
definitions which will be used frequently.

Let X be a Banach lattice and p, q ∈ [1,∞]. We say that X is p-convex if there
exists a constant C ≥ 0 such that for all n ∈ N and all x1, . . . , xn ∈ X ,

∥∥∥
( n∑

k=1

|xk |p
)1/p∥∥∥

X
≤ C

( n∑

k=1

‖xk‖p
X

)1/p
, (2.3)

with the obvious modification for p = ∞. We say that X is q-concave if there exists
a constant C ≥ 0 such that for all n ∈ N and all x1, . . . , xn ∈ X ,

( n∑

k=1

‖xk‖qX
)1/q ≤ C

∥∥∥
( n∑

k=1

|xk |q
)1/q∥∥∥

X
, (2.4)

with the obvious modification for q = ∞.
Every Banach lattice X is 1-convex and ∞-concave. If X is p-convex and q-

concave then it is r -convex and s-concave for all r ∈ [1, p] and s ∈ [q,∞]. By [40,
Proposition 1.f.3], if X is q-concave then it has cotypemax(q, 2), and if X is p-convex
and q-concave for some q < ∞ then X has type min(p, 2).

If X is p-convex and p′-concave for p ∈ [1, 2] then X has Fourier type p, by
[20, Proposition 2.2]. For (�,μ) a measure space and r ∈ [1,∞), Lr (�,μ) is an
r -convex and r -concave Banach lattice. Moreover, if X is p-convex and q-concave
and r ∈ [1,∞), then Lr (�; X) is min(p, r)-convex and max(q, r)-concave.

Specific Banach lattices which we will consider are the Banach function spaces.
For the definition and details of these spaces we refer to [39]. If X is a Banach function
space over a measure space (�,μ) and Y is a Banach space, then X (Y ) consists of



590 J Fourier Anal Appl (2018) 24:583–619

all f : � → Y such that ‖ f (·)‖Y ∈ X , with the norm

‖ f ‖X (Y ) := ‖‖ f (·)‖Y ‖X ( f ∈ X (Y )).

If f ∈ X (L p(Rd)) for p ∈ [1,∞) and d ∈ N then we write (
∫
Rd | f (t)|p dt)1/p for

the element of X given by

( ∫

Rd
| f (t)|p dt

)1/p
(ω) :=

( ∫

Rd
| f (ω)(t)|p dt

)1/p
(ω ∈ �).

Note that ‖ f ‖X (L p(Rd )) = ‖(∫
Rd | f (t)|p dt)1/p‖X .

Let f = ∑n
k=1 fk ⊗ xk ∈ L p(Rd) ⊗ X , for n ∈ N, f1, . . . , fn ∈ L p(Rd)

and x1, . . . , xn ∈ X . Then f determines both an element [t �→ ∑n
k=1 fk(t)xk] of

L p(Rd ; X) and an element [ω �→ ∑n
k=1 xk(ω) fk] of X (L p(Rd)). Throughout we

will identify these and consider f as an element of both L p(Rd ; X) and X (L p(Rd)).
The following lemma, proved as in [60, Theorem 3.9] by using (2.3) and (2.4) on
simple X -valued functions and then approximating, relates the L p(Rd; X)-norm and
the X (L p(Rd))-norm of such an f and will be used later.

Lemma 2.1 Let X be a Banach function space, p ∈ [1,∞) and f ∈ L p(Rd) ⊗ X.

• If X is p-convex then

‖ f ‖X (L p(Rd )) ≤ C‖ f ‖L p(Rd ;X),

where C ≥ 0 is as in (2.3).
• If X is p-concave then

‖ f ‖L p(Rd ;X) ≤ C‖ f ‖X (L p(Rd )),

where C ≥ 0 is as in (2.4).

The proof of the following lemma is the same as in [43, Lemma 4] for simple
X -valued functions, and the general case follows by approximation.

Lemma 2.2 Let X andY beBanach function spaces, P ∈ L(X,Y )apositive operator,
p ∈ [1,∞) and f ∈ L p(Rd) ⊗ X. Then

( ∫

Rd
|P( f (t))|p dt

)1/p ≤ P

(( ∫

Rd
| f (t)|p dt

)1/p)
.

2.4 γ -Boundedness

Let X and Y be Banach spaces. A collection T ⊆ L(X,Y ) is γ -bounded if there exists
a constant C ≥ 0 such that

(
E

∥∥∥
n∑

k=1

γkTkxk
∥∥∥
2

Y

)1/2

≤ C

(
E

∥∥∥
n∑

k=1

γk xk
∥∥∥
2

X

)1/2

(2.5)
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for all n ∈ N, T1, . . . , Tn ∈ T , x1, . . . , xn ∈ X and each Gaussian sequence (γk)
n
k=1.

The smallest such C is the γ -bound of T and is denoted by γ (T ). By the Kahane-
Khintchine inequalities, we may replace the L2-norm in (2.5) by an L p-norm for each
p ∈ [1,∞).

Every γ -bounded collection is uniformly bounded with supremum bound less than
or equal to the γ -bound, and the converse holds if and only if X has cotype 2 and Y has
type 2 (see [4]). By the Kahane contraction principle, for each γ -bounded collection
T ⊆ L(X,Y ) and each λ ∈ [0,∞), the closure in the strong operator topology of the
family {zT | z ∈ C, |z| ≤ λ, T ∈ T } ⊆ L(X,Y ) is γ -bounded with

γ
(
{zT | z ∈ C, |z| ≤ λ, T ∈ T }SOT

)
≤ λγ (T ). (2.6)

By replacing the Gaussian random variables in (2.5) by Rademacher variables,
one obtains the definition of an R-bounded collection T ⊆ L(X,Y ). Each R-bounded
collection is γ -bounded. The notions of γ -boundedness and R-boundedness are equiv-
alent if and only if X has finite cotype (see [38, Theorem1.1]), but theminimal constant
C in (2.5) may depend on whether one considers Gaussian or Rademacher variables.
In this article we work with γ -boundedness instead of R-boundedness because in our
results we will allow spaces which do not have finite cotype.

2.5 Bessel Spaces

For details on Bessel spaces and related spaces see e.g. [2,8,28,56].
For X a Banach space, s ∈ R and p ∈ [1,∞] the inhomogeneous Bessel potential

space Hs
p(R

d; X) consists of all f ∈ S ′(Rd; X) such that F−1((1 + |·|)s/2 f̂ (·) ) ∈
L p(Rd ; X). Then Hs

p(R
d; X) is a Banach space endowed with the norm

‖ f ‖Hs
p(R

d ;X) := ‖F−1((1 + |·|2)s/2 f̂ (·))‖L p(Rd ;X) ( f ∈ Hs
p(R

d; X)),

and S(Rd ; X) ⊆ Hs
p(R

d ; X) lies dense if p < ∞.
In this article we will also deal with homogeneous Bessel spaces. To define these

spaces we follow the approach of [56, Chap. 5] (see also [57]). Let X be a Banach
space and define

Ṡ(Rd ; X) := { f ∈ S(Rd ; X) | Dα f̂ (0) = 0 for all α ∈ N
d
0}.

Endow Ṡ(Rd; X) with the subspace topology induced by S(Rd; X) and set Ṡ(Rd) :=
Ṡ(Rd ; C). Let Ṡ ′(Rd ; X) be the space of continuous linear mappings Ṡ(Rd) → X .
Then each f ∈ S ′(Rd ; X) yields an f�Ṡ(Rd ) ∈ Ṡ ′(Rd ; X) by restriction, and f�Ṡ(Rd )

= g�Ṡ(Rd ) if and only if supp( f̂ − ĝ) ⊆ {0}. Conversely, one can check that each f ∈
Ṡ ′(Rd; X) extends to an element of S ′(Rd ; X) (see [49] for the tedious details in the
vector-valued setting). Hence Ṡ ′(Rd ; X) = S ′(Rd; X)/P(Rd ; X) for P(Rd; X) :=
{ f ∈ S ′(Rd; X) | supp( f̂ ) ⊆ {0}}. As in [23, Proposition 2.4.1] one can show that
P(Rd; X) = P(Rd) ⊗ X , where P(Rd) is the collection of polynomials on R

d . If
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F(Rd; X) ⊆ S ′(Rd; X) is a linear subspace such that 	 = 0 if supp(	̂ ) ⊆ {0}, then
we will identify F(Rd; X) with its image in Ṡ ′(Rd; X). In particular, this is the case
if F(Rd; X) = L p(Rd; X) for some p ∈ [1,∞].

For s ∈ R and p ∈ [1,∞], the homogeneous Bessel potential space Ḣ s
p(R

d ; X) is

the space of all f ∈ Ṡ ′(Rd; X) such that F−1(|·|s f̂ (·)) ∈ L p(Rd ; X), where

〈F−1(|·|s f̂ (·)), ϕ〉 := 〈 f,F−1(|·|s ϕ̂(·))〉 (ϕ ∈ Ṡ(Rd ; X)).

Then Ḣ s
p(R

d ; X) is a Banach space endowed with the norm

‖ f ‖Ḣ s
p(R

d ;X) := ‖F−1(|·|s f̂ (·))‖L p(Rd ;X) ( f ∈ Ḣ s
p(R

d ; X)),

and Ṡ(Rd) ⊗ X ⊆ Ḣ s
p(R

d; X) lies dense if p < ∞.

3 Fourier Multipliers Results

In this section we introduce operator-valued Fourier multipliers acting on various
vector-valued function spaces and discuss some of their properties. We start with
some preliminaries and after that in Sect. 3.2 we prove a result that will allow us
to transfer boundedness of multipliers on R

d to the torus T
d . Then in Sect. 3.3 we

present some first simple results under Fourier type conditions. We return to our main
multiplier results for spaces with type, cotype, p-convexity and q-concavity in Sects.
3.4 and 3.5.

3.1 Definitions and Basic Properties

Fix d ∈ N, let X and Y be Banach spaces, and let m : R
d → L(X,Y ) be X -strongly

measurable. We say that m is of moderate growth at infinity if there exist a constant
α ∈ (0,∞) and a g ∈ L1(Rd) such that

(1 + |ξ |)−α‖m(ξ)‖L(X,Y ) ≤ g(ξ) (ξ ∈ R
d).

For such an m, let Tm : S(Rd ; X) → S ′(Rd ; Y ) be given by

Tm( f ) := F−1(m · f̂ ) ( f ∈ S(Rd ; X)).

We call Tm theFourier multiplier operator associated withm andwe callm the symbol
of Tm .

Let p, q ∈ [1,∞]. We say that m is a bounded (L p(Rd ; X), Lq(Rd; Y ))-Fourier
multiplier if there exists a constant C ∈ (0,∞) such that Tm( f ) ∈ Lq(Rd; Y ) and

‖Tm( f )‖Lq (Rd ;Y ) ≤ C‖ f ‖L p(Rd ;X)
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for all f ∈ S(Rd ; X). In the case 1 ≤ p < ∞, Tm extends uniquely to a bounded
operator from L p(Rd ; X) to Lq(Rd ; Y ) which will be denoted by T̃m , and often just
by Tm when there is no danger of confusion. If X = Y and p = q then we simply say
that m is an L p(Rd; X)-Fourier multiplier.

We will also consider Fourier multipliers on homogeneous function spaces. Let X
and Y be Banach spaces and let m : R

d \ {0} → L(X,Y ) be X -strongly measurable.
We say that m : R

d \ {0} → L(X,Y ) is of moderate growth at zero and infinity if
there exist a constant α ∈ (0,∞) and a g ∈ L1(Rd) such that

|ξ |α(1 + |ξ |)−2α‖m(ξ)‖L(X,Y ) ≤ g(ξ) (ξ ∈ R
d).

For such an m, let Ṫm : Ṡ(Rd; X) → S ′(Rd ; Y ) be given by

Ṫm( f ) := F−1(m · f̂ ) ( f ∈ Ṡ(Rd ; X)),

where Ṫm( f ) ∈ S ′(Rd ; Y ) is well-defined by definition of Ṡ(Rd; X). We use similar
terminology as before to discuss the boundedness of Ṫm . Often we will simply write
Tm = Ṫm , to simplify notation.

In later sections we will use the following lemma about approximation of multipli-
ers, which can be proved as in [23, Proposition 2.5.13].

Lemma 3.1 Let X and Y be Banach spaces and q ∈ [1,∞]. For each n ∈ N let
mn : R

d → L(X,Y ) be X-strongly measurable, and let m : R
d → L(X,Y ) be such

that m(ξ)x = limn→∞ mn(ξ)x for all x ∈ X and almost all ξ ∈ R
d . Suppose that

there exist α > 0 and g ∈ L1(Rd) such that

(1 + |ξ |)α‖mn(ξ)‖L(X,Y ) ≤ g(ξ)

for all n ∈ N and ξ ∈ R
d . If f ∈ S(Rd ; X) is such that Tmn ( f ) ∈ Lq(Rd ; Y ) for all

n ∈ N, and if lim inf
n→∞ ‖Tmn ( f )‖Lq (Rd ;Y ) < ∞, then Tm( f ) ∈ Lq(Rd ; Y ) with

‖Tm( f )‖Lq (Rd ;Y ) ≤ lim inf
n→∞ ‖Tmn ( f )‖Lq (Rd ;Y ).

The same result holds for f ∈ Ṡ(Rd ; X) if instead we assume that there exist an
α > 0 and g ∈ L1(Rd) such that, for all n ∈ N and ξ ∈ R

d ,

|ξ |−α(1 + |ξ |)2α‖mn(ξ)‖L(X,Y ) ≤ g(ξ).

The case of positive scalar-valued kernels plays a special role. An immediate con-
sequence of [23, Proposition 4.5.10] is:

Proposition 3.2 (Positive kernels) Let m : R
d \ {0} → C have moderate growth

at zero and infinity. Suppose that Ṫm : L p(Rd) → Lq(Rd) is bounded for some
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p, q ∈ [1,∞] and that F−1m ∈ Ṡ ′(Rd) is positive. Then, for any Banach space X,
the operator Tm ⊗ IX : L p(Rd; X) → Lq(Rd ; X) is bounded of norm

‖Tm ⊗ IX‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ ‖Tm‖L(L p(Rd ),Lq (Rd )).

The Hardy–Littlewood–Sobolev inequality on fractional integration is a typical
example where Proposition 3.2 can be applied.

Example 3.3 Let X be a Banach space and 1 < p ≤ q < ∞. Let m(ξ) := |ξ |−s for
s ∈ [0, d) and ξ ∈ R

d . Then Tm : L p(Rd ; X) → Lq(Rd; X) is bounded if and only
if 1

p − 1
q = s

d . In this case F−1m(·) = Cs | · |−d+s is positive and therefore the result
follows from the scalar case (see [24, Theorem 6.1.3]) and Proposition 3.2. The same
holds for the multiplier m(·) := (1 + | · |2)−s/2 under the less restrictive condition
1
p − 1

q ≤ s
d .

3.2 Transference from R
d to T

d

Wewillmainly consider Fouriermultipliers onR
d .However,wewant to present at least

one transference result to obtain Fourier multiplier results for the torus T
d := [0, 1]d .

The transference technique differs slightly from the standard setting of de Leeuw’s
theorem where p = q (see [15, Theorem 4.5] and [28, Chap. 5]), due to the fact
that ‖Tma‖L(L p(Rd ),Lq (Rd )) = a−d/r‖Tm‖L(L p(Rd ),Lq (Rd )), where

1
r = 1

p − 1
q and

ma(ξ) := m(aξ) for a > 0.
Let ek : T

d → C be given by ek(t) := e2π ik·t for k ∈ Z and t ∈ T
d .

Proposition 3.4 (Transference) Let p, q, r ∈ (1,∞) be such that 1
r = 1

p − 1
q . Let

m : R
d → L(X,Y ) be such that m(·)x ∈ L1

loc(R
d; Y ) for all x ∈ X. Fix a > 0 and

let mkx := a−d
∫
[0,a]d m(t + ka)x dt for k ∈ Z

d . If Tm : L p(Rd; X) → Lq(Rd; Y )

is bounded, then for all n ∈ N and (xk)|k|≤n in X,

ad/r
∥∥∥

∑

|k|≤n

ekmkxk
∥∥∥
Lq (Td ;Y )

≤ Cd,p,q ′ ‖Tm‖
∥∥∥

∑

|k|≤n

ek xk
∥∥∥
L p(Td ;X)

for some Cd,p,q ′ ≥ 0. In particular, the Fourier multiplier operator with symbol
(mk)k∈Zd is bounded from L p(Td; X) to Lq(Td; Y ).

This result seems to be new even in the scalar case X = Y = C.

Proof Let P = ∑
|k|≤n ek xk . Since Lq ′

(Td; Y ∗) is norming for Lq(Td; Y ) and since

the Y ∗-valued trigonometric polynomials are dense in Lq ′
(Td; Y ∗), it suffices to show

that

ad/r
∣∣∣
〈 ∑

|k|≤n

ekmkxk, Q
〉∣∣∣ ≤ Cd,p,q ′ ‖Tm‖ ‖P‖L p(Td ;X)‖Q‖Lq′

(Td ;Y ∗) (3.1)

for Q : T
d → Y ∗ an arbitrary Y ∗-valued trigonometric polynomial. Moreover,

adding zero vectors xk or y∗
k and enlarging n if necessary, we can assume that

Q = ∑
|k|≤n e−k y∗

k .
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To prove (3.1) observe that for E := Lmin(p,q ′)(Rd) and f ∈ E ⊗ X , g ∈ E ⊗ Y ∗,
the boundedness of Tm is equivalent to

∣∣∣
∫

Rd
〈m(ξ) f̂ (ξ), ĝ(ξ)〉 dξ

∣∣∣ ≤ ‖Tm‖ ‖ f ‖L p(Rd ;X)‖g‖Lq′
(Rd ;Y ∗), (3.2)

where we have used that 〈m f̂ , ĝ〉 = 〈Tm f, g〉. Let h(t) := F−1(1[0,1]d )(t) =
eiπ(t1+...+td )

∏d
j=1

sin(π t j )
π t j

for t = (t1, . . . , tn) ∈ R
d , and

f (t) := ad/ph(at)P(at), g(t) := ad/qh(at)Q(−at).

Then f ∈ E ⊗ X , g ∈ E ⊗ Y ∗, and

f̂ (ξ) = a−d/p′ ∑

|k|≤n

1[0,a]d+ak(ξ)xk, ĝ(ξ) = a−d/q
∑

|k|≤n

1[0,a]d+ak(ξ)y∗
k

for ξ ∈ R
d . By substitution we find

‖ f ‖L p(Rd ;X) =
( ∫

Rd
|h(t)|p‖P(t)‖p

X dt
)1/p =

( ∑

j∈Zd

∫

[0,1]d+ j
|h(t)|p‖P(t)‖p

X dt
)1/p

=
( ∫

[0,1]d
|H(t)|p‖P(t)‖p

X dt
)1/p ≤ Cd,p‖P‖L p(Td ;X),

where we used the standard fact that H(t) = ∑
j∈Zd |h(t + j)|p ≤ Cd,p for t ∈ R

d ,
p ∈ (1,∞) and some Cd,p ≥ 0. Similarly, one checks that

‖g‖Lq′
(Rd ;Y ∗) ≤ Cd,q ′ ‖Q‖Lq′

(Td ;Y ∗).

Since the left-hand side of (3.2) equals the left-hand side of (3.1), the first statement
follows from these estimates.

The second statement follows from the first since the X -valued trigonometric poly-
nomials are dense in L p(Td; X). ��
Remark 3.5 Any Fourier multiplier from L p(Td; X) to Lq(Td; Y )with 1 ≤ p ≤ q ≤
∞ trivially yields a multiplier from Lu(Td; X) into Lv(Td; Y ) for all p ≤ u ≤ v ≤ q.
Indeed, this follows from the embedding La(Td; X) ↪→ Lb(Td; X) for a ≥ b. In
particular, any boundedness result from L p(Td; X) to Lq(Td; Y ) implies boundedness
from Lu(Td; X) into Lu(Td; Y ).

As an application of Proposition 3.4 and Theorem 1.1 we obtain the following:

Corollary 3.6 Let X be a Banach space with type p0 ∈ (1, 2] and Y a Banach space
with cotype q0 ∈ [2,∞), and let p ∈ (1, p0), q ∈ (q0,∞). Let r ∈ (1,∞] be such
that 1

r = 1
p − 1

q . If (mk)k∈Zd is a family of operators in L(X,Y ) and

{(|k|d/r + 1)mk | k ∈ Z
d} ⊆ L(X,Y )
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is γ -bounded, then the Fourier multiplier operator with symbol (mk)k∈Z is bounded
from L p(Td; X) to Lq(Td; Y ). Moreover, if p0 = 2 (or q0 = 2), then one can also
take p = 2 (or q = 2).

Proof Let m(ξ) := ∑
k∈Zd 1[0,1]d (ξ − k)mk for ξ ∈ R

d . Then for k ∈ Z
d and

ξ ∈ [0, 1]d + k, we have m(ξ) = mk and |ξ |d/r ≤ (|k| + √
d)d/r ≤ Cd,r (|k|d/r + 1).

Therefore, Kahane’s contraction principle yields

γ ({|ξ | dr m(ξ) | ξ ∈ R
d}) ≤ Cd,rγ ({(|k| + 1)

d
r mk | k ∈ Z

d}),

which is assumed to be finite. By Theorem 1.1, Tm : L p(Rd; X) → Lq(Rd; Y ) is
bounded. Sincemk = ∫

[0,1]d m(t+k) dt for k ∈ Z
d , Proposition 3.4 yields the required

result. ��
As an application we show how Corollary 3.6 can be used in the study of Schur

multipliers. For p ∈ [1,∞) let C p denote the Schatten p-class over a Hilbert space
H . For a detailed discussion on these spaces we refer to [17,28]. Let (e j ) j∈Z be a
countable spectral resolution of H . That is,

(1) for all j ∈ Z, e j is an orthogonal projection in H ;
(2) for all j, k ∈ Z, e j ek = 0 if j �= k;
(3) for all h ∈ H ,

∑
j∈Z e j h = h.

Using the technique of [47, Theorem 4] we deduce the following result from Corol-
lary 3.6. A similar result holds for more general noncommutative L p-spaces with a
similar proof.

Corollary 3.7 Let a ∈ (1,∞) \ {2} and let r ∈ [1,∞) be such that 1
r < | 1a − 1

2 |. Let
m : Z → C be such that Cm := sup j∈Z(1 + | j |1/r )|m j | < ∞, let f : Z → Z and

write m f
j,k := m f ( j)− f (k). Then the Schur multiplier operator Me

m, f on C
a, given by

Me
m, f v :=

∑

j,k∈Z
m f

j,ke jvek = lim
n→∞

∑

| j |,|k|≤n

m f
j,ke jvek (3.3)

for v ∈ C a, is well-defined and satisfies

‖Me
m, f ‖L(C a) ≤ Ca,rCm (3.4)

for some Ca,r ≥ 0 independent of m.

Proof By duality it suffices to consider a ∈ (1, 2), and by an approximation argument
it suffices to consider finite rank operators v ∈ C a . Let p ∈ (1, a) be such that
1
p − 1

2 = 1
r . Since C

a has type a and cotype 2 (see [29]) it follows from Theorem 3.6
that the Fourier multiplier Tm associated with (mn)n∈Z is bounded from La(T;C a)

to L2(T;C a) with
‖Tm‖L(La(T;C a),L2(T;C a)) ≤ Cp,aCm . (3.5)
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As in the proof of [47, Theorem 4] one sees that

‖Me
m, f v‖C a =

∥∥∥
∑

n∈Z
mne

2π intvn

∥∥∥
C a

= ‖Tm((vn)n∈Z)(t)‖C a ,

where vn := ∑
j,k∈Z, f ( j)− f (k)=n e jvek for n ∈ Z. Similarly,

‖v‖C a =
∥∥∥

∑

n∈Z
e2π intvn

∥∥∥
C a

.

Taking Lq and L p norms over t ∈ [0, 1] in the above identities yields

‖Me
m, f v‖C a = ‖Tm(vn)n∈Z‖Lq ([0,1];C a)

≤ ‖Tm‖L(L p(T;C a),Lq (T;C a))

∥∥∥
∑

n∈Z
e2π intvn

∥∥∥
L p([0,1];C a)

= Cp,aCm‖v‖C a ,

where we applied (3.5) in the final step. ��
Problem 3.8 Can we take 1

r = ∣∣ 1
a − 1

2

∣∣ in Corollary 3.7?

If the answer to Problem 3.8 is negative, then the limitations of Theorem 1.1 and
Corollary 3.6 are natural. Moreover, from the proof of the latter (see Theorem 3.18

below) it would then follow that the embedding H
1
a − 1

2
a (R;C a) → γ (R;C a) does

not hold for a ∈ (1, 2). Here γ (R;C a) is the C a-valued γ -space used in the proof of
Theorem 3.18.

3.3 Fourier Type Assumptions

Before turning to more advanced multiplier theorems, we start with the case where we
use the Fourier type of the Banach spaces to derive an analogue of the basic estimate
‖Tm‖L(L2(Rd )) ≤ ‖m‖∞.

Proposition 3.9 Let X be a Banach space with Fourier type p ∈ [1, 2] and Y a
Banach space with Fourier cotype q ∈ [2,∞], and let r ∈ [1,∞] be such that
1
r = 1

p − 1
q . Let m : R

d → L(X,Y ) be an X-strongly measurable map such that

‖m(·)‖L(X,Y ) ∈ Lr (Rd). Then Tm extends uniquely to a boundedmap from L p(Rd; X)

into Lq(Rd; Y ) with

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ Fp,X,d Fq ′,Y,d
∥∥‖m(·)‖L(X,Y )

∥∥
Lr (Rd )

.

In Proposition 3.15we show that this multiplier result characterizes the Fourier type
p of X for specific choices of Y , and the Fourier cotype q of Y for specific choices of
X .
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Proof Let f ∈ S(Rd ; X). By Hölder’s inequality,

‖m f̂ ‖Lq′
(Rd ;Y )

≤ ∥∥‖m(·)‖L(X,Y )

∥∥
Lr (Rd )

‖ f̂ ‖L p′ (Rd ;X)

≤ Fp,X,d
∥∥‖m(·)‖L(X,Y )

∥∥
Lr (Rd )

‖ f ‖L p(Rd ;X).

Since ‖F−1(g)‖Lq (Rd ;Y ) = ‖F(g)‖Lq (Rd ;Y ) for g ∈ Lq ′
(Rd; Y ), it follows that

‖Tm( f )‖Lq (Rd ;Y ) ≤ Fq ′,Y,d‖m f̂ ‖Lq′
(Rd ;Y )

≤ Fp,X,d Fq ′,Y,d
∥∥‖m(·)‖L(X,Y )

∥∥
Lr (Rd )

‖ f ‖L p(Rd ;X),

which concludes the proof. ��
Remark 3.10 It follows fromYoung’s inequality (see [23, Exercise 4.5.4] or [3, Propo-
sition 1.3.5]) that Tm : L p(Rd; X) → Lq(Rd ; Y ) is bounded with

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ ‖F−1m‖Lr ′ (Rd ;L(X,Y ))
(3.6)

for all X and Y , 1 ≤ p ≤ q ≤ ∞ and r ∈ [1,∞] such that 1
r = 1

p − 1
q , and all

X -measurable m : R
d → L(X,Y ) of moderate growth at infinity for which F−1m ∈

Lr ′
(Rd ;L(X,Y )). In certain cases (3.6) is stronger than the result in Proposition 3.9.

For instance, if r ∈ [1, 2] and L(X,Y ) has Fourier type r (for r > 1 this implies that
either X or Y is finite-dimensional), then

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ ‖F−1m‖Lr ′ (Rd ;L(X,Y ))
≤ C‖m‖Lr (Rd ;L(X,Y ))

for some constant C ≥ 0. Therefore we recover the conclusion of Proposition 3.9
from Young’s inequality in a very special case.

Remark 3.11 Proposition 3.9 (and Theorem 3.12 below) can also be formulated for
general abelian locally compact groups G, not just for R

d . In that case one should
assume that the Fourier transform is bounded from L p(G; X) to L p′

(Ĝ; X) for p ∈
[1, 2] and that the inverse Fourier transform is bounded from Lq ′

(Ĝ; Y ) to Lq(G; Y )

for q ∈ [2,∞]. Here Ĝ is the dual group of G. Then one works with symbols m :
Ĝ → L(X,Y )which are X -stronglymeasurable and such that [ξ �→ ‖m(ξ)‖L(X,Y )] ∈
Lr (Ĝ), where 1

r = 1
p − 1

q . In the same way as in Proposition 3.9, one then obtains a
constant C ≥ 0 independent of m such that

‖Tm‖ ≤ C
∥∥‖m(·)‖L(X,Y )

∥∥
Lr (Ĝ)

.

For G = T
d such results can also be deduced from the R

d -case by applying the
transference of Proposition 3.4.

In the scalar setting we noted in (1.1) that the conclusion of Proposition 3.9 holds
under the weaker conditionm ∈ Lr,∞(Rd). In certain cases we can prove such a result
in the vector-valued setting.
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Theorem 3.12 Let X be aBanach spacewith Fourier type p0 ∈ (1, 2] and Y aBanach
space with Fourier cotype q0 ∈ [2,∞), and let p ∈ (1, p0) and q ∈ (q0,∞). Let r ∈
[1,∞] be such that 1

r = 1
p − 1

q . Let m : R
d → L(X,Y ) be an X-strongly measurable

map such that [ξ �→ ‖m(ξ)‖L(X,Y )] ∈ Lr,∞(Rd). Then Tm extends uniquely to a
bounded map from L p(Rd ; X) into Lq(Rd; Y ) with

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ C
∥∥‖m(·)‖L(X,Y )

∥∥
Lr,∞(Rd )

,

where C ≥ 0 is independent of m.

Proof Observe that by real interpolation (see [55, 1.18.6] and [36, (2.33)]) we obtain
F : Lv′,∞(Rd ; Y ) → Lv,∞(Rd ; Y ) for all v ∈ (q0,∞).

Let p1, p2, q1, q2 ∈ (1,∞) be such that

1

p1
= 1

p
+ ε,

1

p2
= 1

p
− ε,

1

q1
= 1

q
+ ε,

1

q2
= 1

q
− ε

for ε > 0 so small that p2 < p0 and q1 > q0. Note that

1

p j
− 1

q j
= 1

p
− 1

q
= 1

r
.

Let f ∈ S(Rd ; X). By Hölder’s inequality (see [23, Exercise 1.4.19] or [44, Theorem
3.5]), for j = 1, 2,

‖m f̂ ‖
L
q′
j ,∞(Rd ;Y )

≤ C
∥∥‖m(·)‖L(X,Y )

∥∥
Lr,∞(Rd )

‖ f̂ ‖
L
p′j (Rd ;X)

≤ C
∥∥‖m(·)‖L(X,Y )

∥∥
Lr,∞(Rd )

‖ f ‖L p j (Rd ;X)

for C ≥ 0 independent of m and f , where we used the Fourier type p j of X and
‖ · ‖p′

j ,∞ ≤ ‖ · ‖p′
j
. It follows from the first observation and the estimate above that

‖Tm( f )‖Lq j ,∞(Rd ;Y ) ≤ C‖m f̂ ‖
L
q′
j ,∞(Rd ;Y )

≤ C
∥∥‖m(·)‖L(X,Y )

∥∥
Lr,∞(Rd )

‖ f ‖L p j (Rd ;X).

Hence Tm : L p j (Rd; X) → Lq j ,∞(Rd ; Y ) is bounded for j ∈ {1, 2}. By real inter-
polation (see [55, Theorem 1.18.6.2]) we find that Tm : L p(Rd; X) → Lq,p(Rd; Y ),
and the required result follows from Lq,p(Rd ; Y ) ↪→ Lq(Rd; Y ) (see [23, Proposition
1.4.10]). ��

The above result provides an analogue of [27, Theorem 1.12]. In general, we do not
know the “right” geometric conditions under which such a result holds. We formulate
the latter as an open problem.
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Problem 3.13 Let 1 < p ≤ 2 ≤ q < ∞ and let r ∈ [1,∞] be such that 1
r = 1

p − 1
q .

Classify those Banach spaces X and Y for which Tm ∈ L(L p(Rd; X), Lq(Rd; Y ))

for all X-strongly measurable maps m : R
d → L(X,Y ) such that ‖m(·)‖L(X,Y ) ∈

Lr,∞(Rd).

A similar question can be asked for the case where X = Y and m is scalar-valued.
We will now show that the Fourier multiplier result in Proposition 3.9 characterizes

the Fourier type of the underlying Banach spaces. To this end we need the following
lemma.

Lemma 3.14 Let X and Y be Banach spaces. Let p ∈ [1, 2], q ∈ [2,∞] and r ∈
[1,∞] be such that 1r = 1

p − 1
q . Assume that for all m ∈ Lr (Rd;L(X,Y )) the operator

Tm : L p(Rd; X) → Lq(Rd; Y ) is bounded. Then there is a constant C ≥ 0 such that
for all f ∈ S(Rd ; X) and g ∈ S(Rd ; Y ∗)

∥∥‖ f̂ (·)‖X‖ĝ(·)‖Y ∗
∥∥
Lr ′ (Rd )

≤ C‖ f ‖L p(Rd ;X)‖g‖Lq′
(Rd ;Y ∗). (3.7)

Proof By the closed graph theorem there exists a constant C ≥ 0 such that

|〈Tm f, g〉| ≤ C‖m‖Lr (Rd ;L(X,Y ))‖ f ‖L p(Rd ;X)‖g‖Lq′
(Rd ;Y ∗)

for all f ∈ L p(Rd; X), g ∈ Lq ′
(Rd; Y ∗) and m ∈ Lr (Rd;L(X,Y )). It follows that,

for all f ∈ S(Rd ; X) with ‖ f ‖p ≤ 1 and g ∈ S(Rd ; Y ∗) with ‖g‖q ′ ≤ 1,

|〈m f̂ , ĝ〉| = |〈Tm f, g〉| ≤ C‖m‖Lr (Rd ;L(X,Y )). (3.8)

It suffices to show (3.7) for fixed f ∈ S(Rd ; X) with ‖ f ‖p = 1 and g ∈ S(Rd; Y ∗)
with ‖g‖q ′ = 1. Let ε ∈ (0, 1) and choose simple functions ζ : R

d → X and η :
R
d → Y ∗ such that ‖ζ − f̂ ‖p′ ≤ min(ε

1
2 , ε‖ĝ‖−1

q ) and ‖η−ĝ‖q ≤ min(ε
1
2 , ε‖ f̂ ‖−1

p′ ).

Then, by Hölder’s inequality with 1
r + 1

p′ + 1
q = 1 and by (3.8), it follows that

|〈mζ, η〉| ≤ |〈m(ζ − f̂ ), η − ĝ〉| + |〈m(ζ − f̂ ), ĝ〉| + |〈m f̂ , η − ĝ〉| + |〈m f̂ , ĝ〉|
≤ ‖m‖r

(
‖ζ − f̂ ‖p′ ‖η − ĝ‖q + ‖ζ − f̂ ‖p′ ‖ĝ‖q + ‖ f̂ ‖p′ ‖η − ĝ‖q + C

)

≤ ‖m‖r (3ε + C) (3.9)

for allm ∈ Lr (Rd ;L(X,Y )). By considering a common refinement, we may suppose
that ζ = ∑n

k=1 1Ak xk and η = ∑n
k=1 1Ak y

∗
k for n ∈ N, x1, . . . , xn ∈ X , y∗

1 , . . . , y
∗
n ∈

Y ∗ and A1, . . . , An ⊆ R
d disjoint and of finite measure |Ak |. For 1 ≤ k ≤ n let x∗

k ∈
X∗ and yk ∈ Y of norm one be such that 〈xk, x∗

k 〉 = ‖xk‖ and 〈yk, y∗
k 〉 ≥ (1− ε)‖y∗

k ‖.
Let m : R

d → L(X,Y ) be given by
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m(ξ)x :=
n∑

k=1

ck1Ak (ξ)〈x, x∗
k 〉yk (ξ ∈ R

d , x ∈ X),

where c1, . . . , cn ∈ R. Then (3.9) implies

(1 − ε)

n∑

k=1

ck |Ak |‖xk‖ ‖y∗
k ‖ ≤ (C + 3ε)

( n∑

k=1

|ck |r |Ak |
) 1

r

,

with the obvious modification for r = ∞. By taking the supremum over all ck’s with∑n
k=1 |ck |r |Ak | ≤ 1 we find

(1 − ε)
∥∥‖ζ(·)‖X‖η(·)‖Y ∗

∥∥
Lr ′ (Rd )

= (1 − ε)

( n∑

k=1

|Ak |‖xk‖r ′ ‖y∗
k ‖r

′
) 1

r ′ ≤ (C + 3ε).

Therefore, using this estimate, the reverse triangle inequality and Hölder’s inequality
(with 1

r ′ = 1
p′ + 1

q ), we obtain

∥∥‖ f̂ (·)‖X‖ĝ(·)‖Y ∗
∥∥
Lr ′ (Rd )

≤ ∥∥‖ f̂ (·)‖X‖ĝ(·)‖Y ∗ − ‖ζ(·)‖X‖ĝ(·)‖Y ∗
∥∥
Lr ′ (Rd )

+ ∥∥‖ζ(·)‖X‖ĝ(·)‖Y ∗ − ‖ζ(·)‖X‖η(·)‖Y ∗
∥∥
Lr ′ (Rd )

+ ∥∥‖ζ(·)‖X‖η(·)‖Y ∗
∥∥
Lr ′ (Rd )

≤ ∥∥‖ f̂ (·) − ζ(·)‖X‖ĝ(·)‖Y ∗
∥∥
Lr ′ (Rd )

+ ∥∥‖ζ(·)‖X‖η(·) − ĝ(·)‖Y ∗
∥∥
Lr ′ (Rd )

+ C + 3ε

1 − ε

≤ ‖ f̂ − ζ‖p′ ‖ĝ‖q + ‖ζ‖p′ ‖η − ĝ‖q + C + 3ε

1 − ε

≤ ε + (‖ f̂ − ζ‖p′ + ‖ f̂ ‖p′)‖η − ĝ‖q + C + 3ε

1 − ε
≤ 3ε + C + 3ε

1 − ε
.

Letting ε tend to zero yields (3.7) for ‖ f ‖p = 1 = ‖g‖q ′ , as was to be shown. ��

Now we are ready to show that, by letting Y vary, the Fourier multiplier result in
Proposition 3.9 characterizes the Fourier type of X , and vice versa.

Proposition 3.15 Let X and Y be Banach spaces. Let 1
r = 1

p − 1
q with p ∈ [1, 2],

q ∈ [2,∞] and r ∈ [1,∞]. Assume that for all m ∈ Lr (Rd ;L(X,Y )) the operator
Tm : L p(Rd; X) → Lq(Rd; Y ) is bounded.

(1) If Y = C and q = 2, then X has Fourier type p.
(2) If X = C and p = 2, then Y has Fourier type q ′.
(3) If Y = X∗ and q = p′, then X has Fourier type p.
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Proof By Lemma 3.14, (3.7) holds for some C ≥ 0. Therefore in case (1) we obtain,
for fixed f ∈ S(Rd ; X) and for all ϕ ∈ S(Rd),

∥∥‖ f̂ (·)‖X |ϕ(·)|∥∥Lr ′ (Rd )
≤ C‖ f ‖L p(Rd ;X)‖ϕ‖L2(Rd ),

where we used the fact that F : L2(Rd) → L2(Rd) is an isometry. Taking the
supremum over all ‖ϕ‖L2(Rd ) ≤ 1 we see that

‖ f̂ ‖L p′ (Rd ;X)
≤ C‖ f ‖L p(Rd ;X),

and hence X has Fourier type p. In case (2) we deduce in the same way that Y ∗ has
Fourier type q ′ and thus also that Y has Fourier type q ′, by duality.

Finally, for (3) note that 1
r ′ = 2

p′ . Thus, taking f = g ∈ S(Rd ; X) in (3.7) yields

‖ f̂ ‖2
L p′ (Rd ;X)

≤ C‖ f ‖2L p(Rd ;X)
,

and the result follows. ��
Remark 3.16 An alternative proof of Proposition 3.15 can be given using the trans-
ference of Proposition 3.4. However, this yields worse bounds and it seems that the
analogue in the type-cotype setting requires the same technique as in Proposition 3.15.
The estimate which can be proved under the assumption of Lemma 3.14 is as follows.
There is a constant C ≥ 0 such that for all (xk)|k|≤n in X and (y∗

k )|k|≤n in Y ∗,

( ∑

|k|≤n

‖xk‖r ′
X‖y∗

k ‖r
′
Y

) 1
r ′ ≤ C

∥∥∥
∑

|k|≤n

ek xk
∥∥∥
L p(Td ;X)

∥∥∥
∑

|k|≤n

ek y
∗
k

∥∥∥
Lq′

(Td ;Y ∗)
.

Weend this sectionwith a simple examplewhich shows that the geometric limitation
in Theorem 3.9 is also natural in the case X = Y = �u . We will come back to this in
Example 3.30, where type and cotype will be used to derive different results.

Example 3.17 Let p ∈ (1, 2], and for q ∈ [2,∞) let r ∈ (1,∞] be such that 1
r =

1
p − 1

q . Let u ∈ [1,∞) and let X := �u . Let (e j ) j∈N0 ⊆ X be the standard basis
of X , and for k ∈ N let Sk ∈ L(X) be such that Sk(e j ) := e j+k for j ∈ N0. Let
m : R → L(�u) be given by m(ξ) := ∑∞

k=1 ck1(k−1,k](ξ)Sk for ξ ∈ R, where

ck = k− 1
r log(k + 1)−2 for k ∈ N. Observe that

∫

R

‖m(ξ)‖rL(X) dξ =
∞∑

k=1

crk < ∞,

with the obvious modification for r = ∞. If u ∈ [p, p′], then X has Fourier type p
and Fourier cotype q = p′. Thus by Proposition 3.9, in this case Tm : L p(R; X) →
Lq(R; X) is bounded.
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We show that this result is sharp in the sense that for u /∈ [p, p′] the conclusion is
false. This shows that Proposition 3.9 is optimal in the exponent of the Fourier type
of the space for X = Y = �u .

Let q ∈ [2,∞) and assume that Tm ∈ L(L p(R; X), Lq(R; X)). Let, for k ∈ N,
ϕk : R → C be such that ϕ̂k = 1(k−1,k] and let, for n ∈ N, f := ∑2n

k=n+1 ϕke0. Then

‖Tm( f )(t)‖X =
∥∥∥

2n∑

k=n+1

ckϕk(t)ek
∥∥∥

�u
=

( 2n∑

k=n+1

|ck |u |ϕk(t)|u
) 1

u

for each t ∈ R. Since |ϕk(t)| = ∣∣ sin(π t)
π t

∣∣ for all t ∈ R and k ∈ N0,

‖Tm( f )‖Lq (R;X) ≥ n
1
u |c2n|‖ϕ1‖Lq (R) ≥ C1n

1
u − 1

r log(n)−2

for some C1 ∈ (0,∞). On the other hand, ‖ f ‖L p(R;X) = ∥∥∑2n
k=n+1 ϕk

∥∥
L p(R)

. Now,
∣∣∑2n

k=n+1 ϕk(t)
∣∣ = ∣∣ sin(πnt)

π t

∣∣ for all t ∈ R, since
∑2n

k=n+1 ϕ̂k = 1(n,2n]. Therefore
there exists a constant C2 ∈ (0,∞) such that ‖ f ‖L p(R;�u) = C2n

1− 1
p . It follows that

C1n
1
u − 1

r log(n)−2 ≤ ‖Tm‖L(L p(R;X),Lq (R;X))C2n
1− 1

p .

Letting n → ∞we deduce that 1
u ≤ 1− 1

p + 1
r = 1

q ′ . Thus, in the special case q = p′,
we obtain u ≥ p. By a duality argument one sees that also u ≤ p′.

3.4 Type and Cotype Assumptions

In Proposition 3.9 and Theorem 3.12 we obtained Fourier multiplier results under
Fourier type assumptions on the spaces X and Y . In this section we will present
multiplier results under the less restrictive geometric assumptions of type p and cotype
q on the underlying spaces X and Y .

First we prove Theorem 1.1 from the Introduction.

Theorem 3.18 Let X be a Banach space with type p0 ∈ (1, 2] and Y a Banach space
with cotype q0 ∈ [2,∞), and let p ∈ (1, p0) and q ∈ (q0,∞), r ∈ (1,∞) be such
that 1

r = 1
p − 1

q . Let m : R
d \ {0} → L(X,Y ) be an X-strongly measurable map such

that {|ξ | dr m(ξ) | ξ ∈ R
d \ {0}} ⊆ L(X,Y ) is γ -bounded. Then Tm extends uniquely

to a bounded map T̃m ∈ L(L p(Rd ; X), Lq(Rd; Y )) with

‖T̃m‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ Cγ ({|ξ | dr m(ξ) | ξ ∈ R
d \ {0}}),

where C ≥ 0 is independent of m. Moreover, if p0 = 2 (or q0 = 2), then one can also
take p = 2 (resp. q = 2).

It is unknown whether Theorem 3.18 holds with p = p0 and q = q0 (see Problem
3.19 below).
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Proof We will prove the result under the condition:

Ḣ
d
p − d

2
p (Rd ; X) ↪→ γ (Rd; X) and γ (Rd ; Y ) ↪→ Ḣ

d
q − d

2
q (Rd; Y ). (3.10)

Here γ (Rd; X) is the X -valued γ -space (for more on these spaces see [59]). Note that
the assumptions imply (3.10). Indeed, this follows from the homogeneous versions of
[60, Proposition 3.5] and of [32, Theorem 1.1] (proved in exactly the same way, here
we use the assumption that X has type p0 and p < p0). Moreover, if p0 = 2, then
Ḣ0
2 (Rd; X) = L2(Rd ; X) ↪→ γ (Rd; X) (see [59, Theorem 11.6]), hence in this case

one can in fact take p = 2. The embedding for Y follows in a similar way.

Let m1(ξ) := |ξ | d2 − d
p and m2(ξ) := |ξ | dr m(ξ)m1(ξ) for ξ ∈ R

d . Let f ∈
S(Rd ; X). It follows from (3.10) that

‖Tm( f )‖Lq (Rd ;Y ) = ‖Tm2( f )‖
Ḣ

d
q − d

2
q (Rd ;Y )

≤ C‖Tm2( f )‖γ (Rd ;Y ) ≤ C1‖m2 f̂ ‖γ (Rd ;Y )

≤ Cγ ({|ξ | dr m(ξ) | ξ ∈ R
d \ {0}})‖m1 f̂ ‖γ (Rd ;X)

≤ Cγ ({|ξ | dr m(ξ) | ξ ∈ R
d \ {0}})‖Tm1 f ‖γ (Rd ;X)

≤ Cγ ({|ξ | dr m(ξ) | ξ ∈ R
d \ {0}})‖Tm1 f ‖

Ḣ
d
p − d

2
p (Rd ;X)

= Cγ ({|ξ | dr m(ξ) | ξ ∈ R
d \ {0}})‖ f ‖L p(Rd ;X),

where we have used ‖ f ‖γ (Rd ;X) = ‖ f̂ ‖γ (Rd ;X) (see [29]), the γ -multiplier Theorem
(see [34, Proposition 4.11] and [59, Theorem 5.2]) and the fact that γ (Rd; X) =
γ∞(Rd; Y ) because Y does not contain a copy of c0 (see [59, Theorem 4.3]). Since
S(Rd ; X) ⊆ L p(Rd; X) is dense, this concludes the proof. ��

In Theorem 3.21 we provide conditions under which one can take p = p0 and
q = q0. The general case we state as an open problem:

Problem 3.19 Let 1 ≤ p ≤ 2 ≤ q ≤ ∞ and r ∈ (1,∞] be such that 1
r = 1

p − 1
q .

Classify those Banach spaces X and Y for which Tm ∈ L(L p(Rd; X), Lq(Rd; Y ))

for all X-strongly measurable maps m : R
d → L(X,Y ) such that {|ξ |d/rm(ξ) : ξ ∈

R
d \ {0}} is γ -bounded.

The same problem can be formulated in case m is scalar-valued, in which case the
γ -boundedness reduces to uniform boundedness.

Remark 3.20 Assume X and Y have property (α) as introduced in [46]. (This implies
that X has finite cotype, and if X and Y are Banach lattices then property (α) is in
fact equivalent to finite cotype.) In the multiplier theorems in this paper where γ -
boundedness is an assumption, one can deduce a certain γ -boundedness result for
the Fourier multiplier operators as well. Indeed, assume for example the conditions
of Theorem 3.18. Let {m j : R

d \ {0} → L(X,Y ) | j ∈ J } be a set of X -strongly
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measurable mappings for which there exists a constant C ≥ 0 such that for each

j ∈ J , {|ξ | dr m j (ξ) | ξ ∈ R
d} ⊆ L(X,Y ) is γ -bounded by C . Note that, since X

and Y have finite cotype, γ -boundedness and R-boundedness are equivalent. Now
we claim that {̃Tm j | j ∈ J } ⊆ L(L p(Rd; X), Lq(Rd; Y )) is γ -bounded as well.
To prove this claim one can use the method of [21, Theorem 3.2]. Indeed, using their
notation, it follows from theKahane-Khintchine inequalities that Rad(X) has the same
type as X and Rad(Y ) has the same cotype as Y . Therefore, given j1, . . . , jn ∈ J
and the corresponding m j1 , . . . ,m jn , one can apply Theorem 3.18 to the multiplier
M : R

d \ {0} → L(Rad(X),Rad(Y )) given as the diagonal operator with diagonal
(m j1, . . . ,m jn ). In order to check the γ -boundedness one now applies property (α)

as in [21, Estimate (3.2)].

3.5 Convexity, Concavity and L p-Lq Results in Lattices

In this section we will prove certain sharp results in p-convex and q-concave Banach
lattices.

First of all, from the proof of Theorem 3.18 we obtain the following result with the
sharp exponents p and q.

Theorem 3.21 Let p ∈ [1, 2], q ∈ [2,∞), and let r ∈ [1,∞] be such that 1r = 1
p − 1

q .
Let X be a complemented subspace of a p-convex Banach lattice with finite cotype
and Y a Banach space that is continuously embedded in a q-concave Banach lattice.

Let m : R
d → L(X,Y ) be an X-strongly measurable map such that {|ξ | dr m(ξ) |

ξ ∈ R
d \ {0}} ⊆ L(X,Y ) is γ -bounded. Then Tm extends uniquely to a bounded map

T̃m ∈ L(L p(Rd ; X), Lq(Rd ; Y )) with

‖T̃m‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ Cγ ({|ξ | dr m(ξ) | ξ ∈ R
d \ {0}}), (3.11)

where C is a constant depending on X, Y , p, q and d.

Proof In the case where X is a p-convex and Y is a q-concave Banach lattice, the
embeddings in (3.10) can be proved in the same way as in [60, Theorem 3.9], where
the inhomogeneous case was considered. Therefore, the result in this case follows
from the proof of Theorem 3.18.

Now let X0 be a p-convex Banach lattice with finite cotype such that X ⊆ X0,
let P ∈ L(X0) be a projection with range X and let Y0 be a q-concave Banach
lattice with a continuous embedding ι : Y ↪→ Y0. Let m0 : R

d → L(X0,Y0) be
given by m0(ξ) := ι ◦ m(ξ) ◦ P ∈ L(X0,Y0) for ξ ∈ R

d . It is easily checked that
{m0(ξ) | ξ ∈ R

d} ⊆ L(X0,Y0) is γ -bounded, with

γ ({m0(ξ) | ξ ∈ R
d \ {0}}) ≤ ‖ι‖L(Y,Y0)‖P‖L(X0)γ ({|ξ | dr m(ξ) | ξ ∈ R

d \ {0}}).
(3.12)

As we have shown above, there exists a constant C ∈ (0,∞) that depends only on
X0, Y0, p, q and d such that Tm0 extends uniquely to a bounded operator T̃m0 ∈
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L(L p(Rd; X0), L(Rd ; Y0)) with
∥∥Tm0

∥∥L(L p(Rd ;X0),Lq (Rd ;Y0)) ≤ Cγ ({m0(ξ) | ξ ∈ R
d}). (3.13)

Since Tm = T̃m0 �S(R;X), the result follows from (3.12) and (3.13). ��
Remark 3.22 Note from (3.12) and (3.13) that the constant C in (3.11) depends on X
and Y as C = ‖P‖L(X0)

‖ι‖L(Y,Y0) C1, where P ∈ L(X0) is a projection with range
X on a p-convex Banach lattice X0 with finite cotype, ι ∈ L(Y,Y0) is a continuous
embedding of Y in a q-concave Banach lattice Y0 and C1 is a constant that depends
only on X0, Y0, p, q and d.

Remark 3.23 By using Theorems 3.18 and 3.21 and by multiplying in the Fourier
domain by appropriate powers of |ξ |, versions of these theorems for multipliers from
Ḣα

p (Rd ; X) to Ḣβ
q (Rd; Y ) can be derived. Similar results can be derived for the inho-

mogeneous spaces as well.

So far, in all our results about (L p, Lq)-multipliers the indices p and q have been
restricted to the range p ≤ 2 ≤ q, which is necessary when considering general
multipliers (see (1.1)). However, we have also seen in Example 3.3 that for the scalar
multiplierm(ξ) = |ξ |−s such a restriction is not necessary, as follows fromProposition
3.2 since the kernel associated withm is positive. We now show that also for operator-
valued multipliers with positive kernels on p-convex and q-concave Banach lattices,
the restriction p ≤ 2 ≤ q is not necessary and moreover γ -boundedness can be
avoided. First we state the result for multipliers between Bessel spaces.

Theorem 3.24 Let p, q ∈ [1,∞) with p ≤ q, and let r ∈ (1,∞] be such that 1
r =

1
p − 1

q . Let X be a p-convex Banach lattice with finite cotype, and let Y be a q-concave

Banach lattice. Suppose that K : R
d → L(X,Y ) is such that K (·)x ∈ L1(Rd; Y ) for

all x ∈ X, K (s) is a positive operator for all s ∈ R
d , and m : R

d → L(X,Y ) is such
that F(Kx) = mx for all x ∈ X. Then Tm ∈ L(Ḣd/r

p (Rd ; X), Lq(Rd; Y )) and

‖Tm‖L(Ḣd/r
p (Rd ;X),Lq (Rd ;Y ))

≤ C‖m(0)‖L(X,Y ) ≤ C sup
ξ∈Rd\{0}

‖m(ξ)‖L(X,Y ) (3.14)

for some C ≥ 0 independent of K .

By further approximation arguments one can often avoid the assumptions that
K (·)x ∈ L1(Rd; Y ) for all x ∈ X . It follows from [50] that the bound in Theorem
3.24 is optimal in a certain sense.

Proof The second estimate in (3.14) follows from the continuity of mx = F(Kx).
Since Ṡ(Rd) ⊗ X is dense in Ḣd/r (Rd ; X), for the first estimate in (3.14) it suffices
to fix an f ∈ Ṡ(Rd) ⊗ X and to show that Tm( f ) ∈ Lq(Rd; X) with

‖Tm( f )‖Lq (Rd ;Y ) ≤ C‖m(0)‖ ‖ f ‖
Ḣd/r

p (Rd ;X)
. (3.15)
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Since X has finite cotype, it does not contain a copy of c0.Hence, by [40, Theorem1.a.5
andProposition 1.a.7], X is order continuous.Moreover, the range of f is contained in a
separable subspace X0 of X . By [40, Proposition 1.a.9], X0 has a weak order unit. Now
[40, Theorem 1.b.14] implies that X0 is order isometric to a Banach function space.
Similarly, Y is order continuous, and the range of Tm( f ) is contained in a separable
subspace Y0 which is order isometric to a Banach function space. So henceforth we
may assume without loss of generality that X and Y are Banach function spaces.

It follows by approximation from Lemma 2.1 that

‖K ∗ f ‖Lq (Rd ;Y ) ≤ C1‖K ∗ f ‖Y (Lq (Rd )) = C
∥∥∥
( ∫

Rd
|K ∗ f (t)|q dt

)1/q∥∥∥
Y

= C
∥∥∥
( ∫

Rd

∣∣∣
∫

Rd
K (s) f (t − s) ds

∣∣∣
q
dt

)1/q∥∥∥
Y

≤ C
∥∥∥

∫

Rd

( ∫

Rd
|K (s) f (t − s)|q dt

)1/q
ds

∥∥∥
Y

for some constant C ≥ 0, where we used Minkowski’s integral inequality in the final
step. Lemma 2.2, applied to the positive operator K (s) ∈ L(X,Y ) and the function
f (· − s) ∈ L p(Rd) ⊗ X for each s ∈ R

d , yields

∫

Rd

( ∫

Rd
|K (s) f (t − s)|q dt

)1/q
ds ≤

∫

Rd
K (s)

( ∫

Rd
| f (t − s)|q dt

)1/q
ds

=
∫

Rd
K (s)

( ∫

Rd
| f (t)|q dt

)1/q
ds = m(0)x0,

where x0 :=
( ∫

Rd | f (t)|q dt
)1/q ∈ X . Therefore,

∥∥∥
∫

Rd

( ∫

Rd
|K (s) f (t − s)|q dt

)1/q
ds

∥∥∥
Y

≤ ‖m(0)‖
∥∥∥
( ∫

Rd
| f (t)|q dt

)1/q∥∥∥
X
.

The Sobolev embedding Ḣd/r
p (Rd) ↪→ Lq(Rd) yields

∥∥∥
( ∫

Rd
| f (t)|q dt

)1/q∥∥∥
X

= ‖‖ f (·)‖Lq (Rd )‖X ≤ C‖‖ f (·)‖
Ḣd/r

p (Rd )
‖X .

Finally, Lemma 2.1 yields that, for n(ξ) := |ξ |d/r IX ∈ L(X),

‖‖ f (·)‖
Ḣd/r

p (Rd )
‖X = ‖‖Tn( f )(·)‖L p(Rd )‖X ≤ C‖Tn( f )‖L p(Rd ;X)

= C‖ f ‖
Ḣd/r

p (Rd ;X)
.

Combining all these estimates yields (3.15) and concludes the proof. ��
In terms of L p-Lq -multipliers we obtain the following result. Note that below we

require that the kernel associated with the multiplicative perturbation |ξ |d/rm(ξ) ofm
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is positive, unlike in Proposition 3.2 where this positivity was required of the kernel
associated with m.

Corollary 3.25 Let p, q ∈ [1,∞) with p ≤ q, and let r ∈ (1,∞] be such that 1
r =

1
p − 1

q . Let X be a p-convex Banach lattice with finite cotype, and let Y be a q-concave

Banach lattice. Suppose that K : R
d → L(X,Y ) is such that K (·)x ∈ L1(Rd; Y ) for

all x ∈ X, K (s) is a positive operator for all s ∈ R
d , and m : R

d \ {0} → L(X,Y )

is such that F(Kx)(·) = |·|d/rm(·)x for all x ∈ X. Then Tm extends uniquely to a
bounded map T̃m ∈ L(L p(Rd ; X), Lq(Rd ; Y )) with

‖T̃m‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ C sup
ξ∈Rd\{0}

|ξ |d/r‖m(ξ)‖L(X,Y )

for some C ≥ 0 independent of m.

Proof First note that m is of moderate growth at infinity, where we use that r > 1.
Hence Tm : S(Rd) ⊗ X → S ′(Rd; Y ) is well-defined. Now the result follows by
applying Theorem 3.24 to the symbol ξ �→ |ξ |d/rm(ξ) ∈ L(X,Y ), since f �→
T|ξ |−d/r ( f ) is an isometric isomorphism L p(Rd; X) → Ḣd/r

p (Rd ; X) and Tm( f ) =
T|ξ |d/rm(ξ)(T|ξ |−d/r ( f )) for f ∈ Ṡ(Rd ; X).

3.6 Converse Results and Comparison

In the next result we show that in certain situations the type p of X (or cotype q of
Y ) is necessary in Theorems 1.1, 3.18 and 3.21. The technique is a variation of the
argument of Proposition 3.15 and in particular Lemma 3.14.

Lemma 3.26 Let X be a Banach space with cotype 2 and let Y be a Banach space with
type 2. Let p ∈ (1, 2], q ∈ [2,∞) and r ∈ (1,∞] be such that 1

r = 1
p − 1

q . Assume

that for all strongly measurable m : R
d → L(X,Y ) for which {|ξ | dr m(ξ) | ξ ∈ R

d}
is γ -bounded, the operator Tm : L p(Rd ; X) → Lq(Rd; Y ) is bounded. Then

∫

Rd
|ξ |− d

r ‖ f̂ (ξ)‖X‖ĝ(ξ)‖Y ∗ dξ ≤ C‖ f ‖L p(Rd ;X)‖g‖Lq′
(Rd ;Y ∗) (3.16)

for some C ≥ 0 and all f ∈ S(Rd ; X) and g ∈ S(Rd ; Y ∗).

At first glance it might seem surprising that we use that X has cotype 2 and Y has

type 2. This is to be able to handle the γ -bound of {|ξ | dr m(ξ) | ξ ∈ R
d} in a simple

way.

Proof Since X has cotype 2 and Y has type 2, the γ -boundedness and uniform bound-

edness of {|ξ | dr m(ξ) | ξ ∈ R
d} are equivalent. Therefore, by the closed graph theorem

there is a constant C such that for all f ∈ L p(Rd ; X) and g ∈ Lq ′
(Rd ; Y ∗)

|〈Tm f, g〉| ≤ C sup{|ξ | dr ‖m(ξ)‖L(X,Y ) | ξ ∈ R
d}‖ f ‖L p(Rd ;X)‖g‖Lq′

(Rd ;Y ∗).
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Hence, letting M(ξ) := |ξ | dr m(ξ), we see that for all f ∈ S(Rd ; X) and g ∈
S(Rd ; Y ∗),

∣∣∣
∫

Rd
〈M(ξ)|ξ |− d

r f̂ (ξ), ĝ(ξ)〉 dξ
∣∣∣

≤ C sup{‖M(ξ)‖ | ξ ∈ R
d}‖ f ‖L p(Rd ;X)‖g‖Lq′

(Rd ;Y ∗).

Taking the supremum over all strongly measurable M which are uniformly bounded
by 1, a similar approximation argument as in Lemma 3.14 yields the desired result.

��

Proposition 3.27 Let X and Y be Banach spaces. Let p ∈ (1, 2], q ∈ [2,∞) and
r ∈ (1,∞] be such that 1

r = 1
p − 1

q . Assume that for all X-strongly measurable

m : R
d → L(X,Y ) such that {|ξ | dr m(ξ) | ξ ∈ R

d} is γ -bounded, the operator
Tm : L p(Rd; X) → Lq(Rd; Y ) is bounded. Then the following assertions hold:

(1) If X has cotype 2, Y = C, and q = 2, then X has type p.
(2) If Y has type 2, X = C, and p = 2, then Y has cotype q.
(3) If Y = X∗ has type 2, and q = p′, then X has type p.

Proof First consider (1). From (3.16) we find that for all f ∈ S(Rd ; X) and g ∈
S(Rd),

∫

Rd
|ξ |− d

r ‖ f̂ (ξ)‖X |̂g(ξ)| dξ ≤ C‖ f ‖L p(Rd ;X)‖ĝ‖L2(Rd ).

Taking the supremum over all g with ‖g‖L2(Rd ) = ‖ĝ‖L2(Rd ) = 1, we obtain

‖ξ �→ |ξ |− d
r f̂ (ξ)‖L2(Rd ;X) ≤ C‖ f ‖L p(Rd ;X). (3.17)

By an approximation argument this estimate extends to all f ∈ L p(Rd; X). In par-
ticular, let f (t) := ∑

|k|≤n 1[− 1
2 , 12 )d (t + k)xk for n ∈ N, x1, . . . , xn ∈ X and t ∈ R

d .
Then

‖ f̂ (ξ)‖ = ζ(ξ)

∥∥∥
∑

|k|≤n

ek(ξ)xk
∥∥∥,

where ζ(ξ) := ∏d
j=1

|sin(πξ j )|
π |ξ j | and ek(ξ) := e2π ik·ξ for ξ ∈ R

d . Since ζ(ξ)|ξ |−d/r ≥
cd for some cd > 0 and all ξ ∈ [− 1

2 ,
1
2 ]d , it follows from (3.17) that

∥∥∥
∑

|k|≤n

ek xk
∥∥∥
L2([− 1

2 , 12 ]d ;X)
≤ Cc−1

d

( ∑

|k|≤n

‖xk‖p
) 1

p

.
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Let (γk)|k|≤n be a Gaussian sequence. Replacing xk by γk xk , and taking L2(�)-norms,
we find that

∥∥∥
∑

|k|≤n

γk xk
∥∥∥
L2(�;X)

≤ Cc−1
d

( ∑

|k|≤n

‖xk‖p
) 1

p

.

Here we used the fact that for each t ∈ [− 1
2 ,

1
2 ]d , (γkek(t))|k|≤n is identically dis-

tributed as (γk)|k|≤n . This implies that X has type p.
Case (2) can be proved in a similar way by reversing the roles of f and g. Indeed,

this gives that Y ∗ has type q ′ and hence Y has cotype q.
In case (3) we let f = g ∈ S(Rd ; X) in (3.16) and argue as below (3.17). Here we

use that X ⊆ X∗∗ has cotype 2 (see [17, Proposition 11.10]).

If X = C, then (3.17) is a special case of Pitt’s inequality (see [5] and [7]):

‖ξ �→ |ξ |−α f̂ (ξ)‖Lq (Rd ;X) ≤ C‖s �→ |s|β f (s)‖L p(Rd ;X), (3.18)

where 1 < p ≤ q < ∞, 0 ≤ α < d
q , 0 ≤ β < d

p′ and d
p + d

q + β − α = d.
Note that Theorem 3.18 and the proof of Proposition 3.27 show that (3.18) holds

if X has type p0 > p and cotype 2. Moreover, by the proof above one sees that Pitt’s
inequality with β = 0 and q = 2 implies that X has type p and X∗ has type p.
Moreover, in the case α = β = 0 and q = p′, Pitt’s inequality is equivalent to X
having Fourier type p. It seems that a vector-valued analogue of Pitt’s inequality has
never been studied in detail. This leads to the following natural open problem:

Problem 3.28 Characterize those Banach spaces X for which Pitt’s inequality (3.18)
holds.

For p-convex and q-concave Banach lattices, (3.18) can be proved by reducing to
the scalar case using the technique of [20, Proposition 2.2].

Next we show that a γ -boundedness assumption cannot be avoided in general. In
the case where p = q such a result is due Clément and Prüss (see [28, Chap. 5]). In
Proposition 3.9 and Theorem 3.12 we have seen that γ -boundedness is not needed for
certain L p-Lq -multiplier theorems. In the following result we derive the necessity of
the γ -boundedness of {m(ξ) | ξ ∈ R

d} under special conditions on m.

Proposition 3.29 Assume 1 < p ≤ q < ∞ and let 1
r = 1

p − 1
q . Assume m : R

d →
L(X,Y ) is such that there is a constant a > 0 such that m takes the constant value
mk on each of the cubes Qa,k = a([0, 1]d + k) with k ∈ Z

d . If Tm : L p(Rd; X) →
Lq(Rd ; X) is bounded, then

γ ({mk | k ∈ Z}) ≤ R({mk | k ∈ Z}) ≤ Cd,p,q ′a−d/r‖Tm‖

for some Cd,p,q ′ ≥ 0.

In Example 3.30 we will provide an example where even the γ -boundedness of
{|ξ |d/rm(ξ) | ξ ∈ R

d} is necessary. However, in general such a result does not hold
(see Remark 3.31).
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Proof From Proposition 3.4 and Remark 3.5 we obtain that

∥∥∥
∑

|k|≤n

ekmkxk
∥∥∥
L p(Td ;Y )

≤ a−d/rCd,p,q ′ ‖Tm‖
∥∥∥

∑

|k|≤n

ek xk
∥∥∥
L p(Td ;X)

. (3.19)

Now the R-boundedness follows from [4]. For convenience we include a short argu-
ment below. Let (εk)|k|≤n be a sequence of independent random variables which are
uniformly distributed on � := [0, 1]d . Replacing xk by εk xk in (3.19) and integrating
over � yields that

∥∥∥
∑

|k|≤n

εkmkxk
∥∥∥
L p(�;Y )

=
∥∥∥

∑

|k|≤n

εkekmkxk
∥∥∥
L p(�×Td ;Y )

≤ a−d/rCd,p,q ′ ‖Tm‖
∥∥∥

∑

|k|≤n

εkek xk
∥∥∥
L p(�×Td ;X)

≤ a−d/rCd,p,q ′ ‖Tm‖
∥∥∥

∑

|k|≤n

εk xk
∥∥∥
L p(�;X)

.

Here we used the fact that for each t ∈ T
d , (εkek(t))|k|≤n and (εk)|k|≤n are identically

distributed.
Finally, the estimate for the γ -bound is well-known and follows from a random-

ization argument. ��
The following example, which is similar to Example 3.17, shows that Theorem 3.21

is sharp in a certain sense. In particular, it shows that the γ -boundedness condition is
necessary in certain cases.

Example 3.30 Let p ∈ [1, 2], and for q ∈ [2,∞) let r ∈ (1,∞] be such that 1
r =

1
p − 1

q . Let X := �u for u ∈ [1,∞). Let (e j ) j∈N0 ⊆ X be the standard basis of X , and
for k ∈ N0 let Sk ∈ L(X) be such that Sk(e j ) := e j+k for j ∈ N0. Letm : R → L(�u)

be given by m(ξ) := ∑∞
k=1 ck1(k−1,k](ξ)Sk for ξ ∈ R, with ck := k−α log(k + 1)−2

for α ≥ 0 arbitrary but fixed for the moment.
Let v ∈ [2,∞] be such that 1

v
= ∣∣ 1

u − 1
2

∣∣. By (2.6) and [58, Theorem 3.1] we find
a constant C ≥ 0 such that

γ ({|ξ | 1r m(ξ) | ξ ∈ R}) ≤ γ ({k 1
r −α log(k + 1)−2Sk | k ∈ N})

≤ C‖(k 1
r −α log(k + 1)−2‖Sk‖L(X))

∞
k=1‖�v

≤ C

( ∞∑

k=1

k( 1r −α)v log(k + 1)−2v
) 1

v

(with the obvious modification for v = ∞), and the latter expression is finite if and
only if 1

r − α ≤ − 1
v
, i.e. if and only if α ≥ 1

p − 1
q + 1

v
.

If u ∈ [p, 2] then X is a p-convex and q-concaveBanach lattice for all q ≥ p, hence
by Theorem 3.21 we find that with α = 1

p − 1
q + 1

u − 1
2 , Tm : L p(R; X) → Lq(R; X)
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is bounded for all q ≥ 2. Note that for q = 2 and u > p, m is more singular
than in Example 3.17, where we used Proposition 3.9 to obtain the boundedness of
Tm : L p(R; X) → L p′

(R; X) for α = 1
p − 1

p′ > 1
p + 1

u − 1. In the special case
where u = p, both results can be combined using complex interpolation to obtain that
Tm : L p(R; X) → Lq(R; X) is bounded for all q ∈ [2, p′] if α = 2

p − 1.
Note also that the difference between Proposition 3.9 and Theorem 3.21 is most

pronounced when p = u = 1. In this case X = �1 has trivial type and trivial
Fourier type, but cotype q = 2. Hence Proposition 3.9 only yields the boundedness
of Tm : L1(R; X) → L∞(R; X) for α ≥ 1, which can also be obtained trivially since
in this case m is integrable. On the other hand, Theorem 3.21 yields the nontrivial
statement that Tm : L1(R; X) → L2(R; X) is bounded for α ≥ 1.

Now fix q ∈ [2,∞) and let u ∈ [2, q]. Then, similarly, with α = 1 − 1
q − 1

u the

operator Tm : L2(R; X) → Lq(R; X) is bounded. In the special case that u = q,
combined with Example 3.17 we find that Tm : L p(R; X) → Lq(R; X) is bounded
for all p ∈ [q ′, 2] with α = 2

q ′ − 1.

We now show that in certain cases the condition α ≥ 1
p − 1

q +
∣∣∣ 1u − 1

2

∣∣∣ for

the γ -boundedness of {|ξ |1/rm(ξ) | ξ ∈ R} from above is sharp in order for
Tm : L p(R; X) → Lq(R; X) to be bounded. First suppose that u ∈ [1, 2]. For k ∈ N

let ϕk : R → C be such that ϕ̂k = 1(k−1,k], and for n ∈ N let f := ∑2n
k=n+1 ϕke0.

Then, as in Example 3.17, we find that

‖Tm( f )‖Lq (R;X) ≥ n
1
u |c2n|‖ϕ1‖Lq (R) = Cn

1
u n−α log(n)−2

and ‖ f ‖L p(R;X) ≤ C2n
1− 1

p for p > 1. Therefore, α ≥ 1
u + 1

p − 1. This shows that
for q = 2 and u ∈ [1, 2], the condition on α which guarantees γ -boundedness is
necessary. In the case u ∈ [2,∞), a duality argument shows that α ≥ 1

u′ + 1
q ′ − 1 =

1− 1
u − 1

q , which shows that the γ -boundedness condition is also necessary if p = 2
and u ∈ [2,∞).

Recall from the last part of Example 3.17 that if u ∈ [1,∞) and α = 2
p − 1

and Tm : L p(R; X) → L2(R; X) is bounded, then 1
u ≤ 1 − 1

p + α = 1
p and thus

u ≥ p. Similarly, if Tm : L2(R; X) → Lq(R; X) is bounded with α = 1 − 2
q , then

1
u′ ≤ 1 − 1

q ′ + α = 1
q ′ , and thus u ≤ q.

By considering mn(ξ) := ∑n
k=1 1(k−1,k](ξ)Sk a similar argument yields that for

X = �p with p ∈ [1, 2] and 1
r = 1

p − 1
2 , one has

‖Tmn‖L(L p(R;X),L2(R;X)) �p γ ({|ξ | 1r mn(ξ) | ξ ∈ R}).

In particular this shows that the γ -bound provides the right factor in certain cases.

In the following remark we show that one cannot prove the γ -boundedness, or even
the uniform boundedness, of {|ξ |d/rm(ξ) | ξ ∈ R

d} in general.
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Remark 3.31 Letm : R
d \ {0} → L(X,Y ) be X -strongly measurable. If r < ∞, then

one cannot prove

sup{|ξ |σ ‖m(ξ)‖ | ξ ∈ R
d \ {0}} ≤ C‖Tm‖

for any σ ∈ R. Indeed, σ ≤ 0 is not possible for the multiplierm(ξ) := |ξ |−d/r which
is unbounded near zero. For σ > 0, one can use the same multiplier and a translation
argument to deduce a contradiction. Moreover, for any nonzero multiplier m one can
consider mh = m(· − h) for h ∈ R

d . Then ‖Tm‖ = ‖Tmh‖ and it follows that

|ξ0 + h|σ ‖m(ξ0)‖ = sup{|ξ |σ ‖m(ξ − h)‖ | ξ ∈ R
d \ {0}} ≤ C‖Tmh‖ = C‖Tm‖

for all ξ0 ∈ R
d . Letting |h| → ∞ yields a contradiction whenever m(ξ0) �= 0.

In the next remark we compare the results obtained in this section with the ones
obtained by Fourier type methods.

Remark 3.32 (i) Consider the case of scalar-valued multipliers m. If X = Y has
Fourier type p0 > p, then Theorem 3.12 states that Tm ∈ L(L p(Rd ; X),

L p′
(Rd); X)) for all m ∈ Lr,∞(Rd), where 1

r = 1
p − 1

p′ . This class of multi-
pliers is larger than the one obtained in Theorem 3.18 since

sup{|ξ | dr m(ξ) | ξ ∈ R
d} ≤ Cd‖m‖Lr,∞(Rd ).

On the other hand, the geometric conditions in Theorem 3.18 are less restrictive.
Indeed, Fourier type p0 implies that X has type p0 and cotype p′

0, but the converse
is false.

(ii) An important difference betweenProposition 3.9 andTheorem3.12 and the results
obtained in Subsections 3.4 and 3.5 is that the former do not require any γ -
boundedness condition. Of course the assumptions on type and cotype are less
restrictive, and furthermore by [30] the γ -boundedness can be avoided if X has

cotype u and Y has type v and | · | dr m(·) ∈ B
d
w

w,1(R
d;L(X,Y )) for 1

w
= 1

u − 1
v
.

In this case

γ ({|ξ | dr m(ξ) | ξ ∈ R
d}) ≤ ‖| · | dr m(·)‖

B
d
w
w,1(R

d ;L(X,Y ))
.

4 Extrapolation

In this sectionwe briefly discuss an extension of the extrapolation results ofHörmander
in [27].

Let m : R
d \ {0} → L(X,Y ) be a strongly measurable map of moderate growth

at zero and infinity. For r ∈ [1,∞), � ∈ [1,∞) and n ∈ N, consider the following
variants of the Mihlin–Hörmander condition:
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(M1)r,�,n There exists a constant M1 ≥ 0 such that for all multi-indices |α| ≤ n,

R|α|+ d
r − d

�

( ∫

R≤|ξ |<2R
‖∂αm(ξ)x‖� dξ

)1/� ≤ M1‖x‖ (x ∈ X, R > 0).

(M2)r,�,n There exists a constant M2 ≥ 0 such that for all multi-indices |α| ≤ n

R|α|+ d
r − d

�

( ∫

R≤|ξ |<2R
‖∂αm(ξ)∗y∗‖� dξ

)1/� ≤ M2‖y∗‖ (y∗ ∈ Y ∗, R > 0).

In the case � = 2, r = 1, X = Y = R, condition (M1)r,�,n reduces to the classical
Hörmander condition in [27, Theorem 2.5] (see also [23, Theorem 5.2.7]).

Now we can formulate the main result of this section. It extends [27, Theorem 2.5]
to the vector-valued setting and to general exponents p, q ∈ (1,∞).

Theorem 4.1 [Extrapolation] Let p0, q0, r ∈ [1,∞] with r �= 1 be such that 1
p0

−
1
q0

= 1
r . Let m : R

d \ {0} → L(X,Y ) be a strongly measurable map of moderate

growth at zero and infinity. Suppose that Tm : L p0(Rd ; X) → Lq0(Rd; Y ) is bounded
of norm B.

(1) Suppose that p0 ∈ (1,∞], Y has Fourier type � ∈ [1, 2] with � ≤ r , and
(M1)r,�,n holds for n := � d

�
− d

r � + 1. Then Tm ∈ L(L p(Rd; X), Lq(Rd; Y ))

and

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ Cp0,q0,p,d(M1 + B) (4.1)

for all (p, q) such that p ∈ (1, p0] and 1
p − 1

q = 1
r , where Cp0,q0,p,d ∼ (p−1)−1

as p ↓ 1.
(2) Suppose that q0 ∈ (1,∞), X has Fourier type � ∈ [1, 2] with � ≤ r , and

(M2)r,�,n holds for n := � d
�

− d
r � + 1. Then Tm ∈ L(L p(Rd; X), Lq(Rd; Y ))

and

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ Cp0,q0,q,d(M2 + B), (4.2)

for all (p, q) satisfying q ∈ [q0,∞) and 1
p − 1

q = 1
r , where Cp0,q0,q,d ∼ q as

q ↑ ∞.

The proof will be presented in [49]. It is based on the classical argument in the case
p = q (see [23, Theorem 5.2.7]). One of the other ingredients is an operator-valued
analogue of [27, Theorem 2.2].

As a consequence we obtain the following extrapolation result:

Corollary 4.2 Let p0, q0, r ∈ [1,∞]with q0 �= 1 andr �= 1 be such that 1
p0

− 1
q0

= 1
r .

Let X and Y both have Fourier type � ∈ [1, 2] for � ≤ r and let n := � d
�

− d
r � + 1.

Let m : R
d \ {0} → L(X,Y ) be such that, for all multi-indices |α| ≤ n,

‖∂αm(ξ)‖ ≤ C |ξ |−|α|− d
r (ξ ∈ R

d \ {0}). (4.3)
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Suppose that Tm : L p0(Rd; X) → Lq0(Rd ; Y ) is bounded of norm B. Then, for all
exponents p and q satisfying 1 < p ≤ q < ∞ and 1

p − 1
q = 1

q , Tm : L p(Rd; X) →
Lq(Rd ; Y ) is bounded and

‖Tm‖L(L p(Rd ;X),Lq (Rd ;Y )) ≤ Cp,q,d(B + C)

for some constant Cp,q,d ≥ 0.

In particular, one can always take � = 1 and n = � d
r ′ � + 1 in the above results.

Proof Note that, for ξ ∈ R
d , x ∈ X and y∗ ∈ Y ∗, ‖m(ξ)x‖Y ≤ ‖m(ξ)‖L(X,Y ) ‖x‖X

and ‖m∗y∗‖X∗ ≤ ‖m(ξ)‖L(X,Y ) ‖y∗‖Y ∗ , and similarly for the derivatives ofm. There-
fore, the result follows from Theorem 4.1(1) and (2). Indeed,

(i) p0, q0 ∈ (1,∞): apply (1) and (2).
(ii) p0 ∈ (1,∞], q0 = ∞: apply (1).
(iii) p0 = 1, q0 ∈ (1,∞): apply (2).
(iv) p0 = 1, q0 = ∞ is not possible, since r �= 1.
(v) p0 = 1, q0 = 1 is not possible, since q0 �= 1. ��
If p0 = q0 = 1, then Theorem 4.1 and Corollary 4.2 are true with � = 1 (see [49]).
Next we consider several applications of these extrapolation results.
In [41] an L p-Lq -Fourier multiplier result was proved assuming differentiability

up to order d. Moreover, in [51] an extension is discussed in the case d = 1. We
prove a similar result in the Hilbert space case in arbitrary dimensions assuming less
differentiability.

Example 4.3 Let X and Y be Hilbert spaces. First consider r ∈ (2,∞] and let n :=
�d( 12 − 1

r )� + 1 and assume that m : R
d \ {0} → C is such that for all |α| ≤ n

|∂αm(ξ)| ≤ C |ξ |−|α|− d
r (ξ ∈ R

d \ {0}). (4.4)

Then Tm : L p(Rd ; X) → Lq(Rd ; X) is bounded for all 1 < p ≤ q < ∞ such that
1
p − 1

q = 1
r . Indeed, we first prove the boundedness of Tm in special cases. If r = ∞,

then one can take p0 = q0 = 2 and the boundedness of Tm from L2(Rd ; X) into
L2(Rd; Y ) follows from Plancherel’s isometry and the uniform boundedness of m. If
r < ∞, then we can find p0 ∈ (1, 2) and q0 ∈ (2,∞) such that 1

p0
− 1

q0
= 1

r . Since X

and Y have Fourier type 2 the boundedness of Tm from L p0(Rd ; X) into Lq0(Rd; Y )

follows from Theorem 3.12. Now Corollary 4.2 can be applied to extrapolate the
boundedness to the remaining cases.

Next let r ∈ (1, 2]. Then all p, q ∈ (1,∞) satisfying 1
p − 1

q = 1
r are such that

p ∈ (1, 2) and q ∈ (2,∞). Hence each m satisfying (4.4) for α = 0 yields a bounded
operator Tm : L p(Rd ; X) → Lq(Rd; Y ) for all such p, q by Theorem 3.12.

Remark 4.4 Even in the case where X = Y = C (or X and Y are Hilbert spaces) the
result in Corollary 4.2withρ = 2was only known for r = ∞. The point is thatwe only
need derivatives up to order �d( 12 − 1

r )� + 1 if r > 2, whereas the classical condition
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requires derivatives up to �d/2�+1. However, ifm would have derivatives up to order
n := �d/2� + 1 for which (4.3) holds, then the multiplier M(ξ) := |ξ |d/rm(ξ) would
satisfy the classical Mihlin condition: for all |α| ≤ n

‖∂αM(ξ)‖ ≤ C |ξ |−|α| (ξ ∈ R
d \ {0}).

Therefore, TM ∈ L(L p(Rd), L p(Rd)) for all p ∈ (1,∞). Consequently we find that,
for any 1 < p ≤ q < ∞ with 1

p − 1
q = 1

r ,

‖Tm‖L(L p(Rd ),Lq (Rd )) ≤ ‖TM‖L(L p(Rd ),L p(Rd ))‖T|ξ |−d/r ‖L(L p(Rd ),Lq (Rd )) < ∞,

where we used the Hardy-Littlewood-Sobolev inequality (see Example 3.3). For r ≤ 2
we have already observed in Example 4.3 that in the Hilbertian setting no derivatives
are required.

Thus in the scalar or Hilbertian setting we emphasize that the only new point is that
less derivatives are required of the multiplier for p < q.

In the case where X and Y are general Banach spaces, the assertion about T|ξ |−d/r

remains true. However, the boundedness of TM is not as simple to obtain and in general
requires geometric conditions on X (even ifm is scalar-valued) and an R-boundedness
version of the Mihlin condition (see [37]).

Another application ofCorollary 4.2 is thatwe can extrapolate the result of Theorem
3.18 to other values of p and q. A similar result holds for Theorem 3.21.

Corollary 4.5 Let X be a Banach space with type p0 ∈ (1, 2] and Y a Banach space
with cotype q0 ∈ [2,∞), and let p1 ∈ (1, p0) and q1 ∈ (q0,∞), r ∈ [1,∞] be
such that 1

r = 1
p1

− 1
q1
. Let m : R

d \ {0} → L(X,Y ) be such that {|ξ | dr m(ξ) | ξ ∈
R
d \ {0}} ⊆ L(X,Y ) is γ -bounded.
Assume that X and Y both have Fourier type � ∈ [1, 2] with � ≤ r and let

n := �d( 1
�

− 1
r )� + 1. Assume for all multi-indices |α| ≤ n

‖∂αm(ξ)‖ ≤ C |ξ |−|α|− d
r (ξ ∈ R

d \ {0}). (4.5)

Then Tm extends uniquely to a bounded map T̃m ∈ L(L p(Rd; X), Lq(Rd; Y )) for all
1 < p ≤ q < ∞ satisfying 1

p − 1
q = 1

r .

Proof The case where p = p1 and q = q1 follows from Theorem 3.18. The result for
the remaining values of p and q follows from Corollary 4.2. ��
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