L^{p}-Estimates for Singular Oscillatory Integral Operators

Per Sjölin ${ }^{1}$

Received: 20 January 2016 / Revised: 20 September 2016 / Published online: 31 October 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract

In this paper we study singular oscillatory integrals with a nonlinear phase function. We prove estimates of $L^{2} \rightarrow L^{2}$ and $L^{p} \rightarrow L^{p}$ type.

Keywords Singular integral • Oscillatory integral • Nonlinear phase function
Mathematics Subject Classification 42B20

1 Introduction

Let K denote a singular kernel in \mathbb{R}^{n}. Singular integral operators T, defined by $T f(x)=\int_{\mathbb{R}^{n}} K(x-y) f(y) d y, x \in \mathbb{R}^{n}, f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, have been studied for a very long time. Since approximately 1970 there has also been a lot of interest in oscillatory integral operators. The following theorem describes a typical result.

Theorem 1.1 (see Stein [6], p. 377) Let $\psi_{1} \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and $\lambda>0$ and let Φ be real-valued and smooth. Set

$$
\mathcal{U}_{\lambda} f(x)=\int_{\mathbb{R}^{n}} e^{i \lambda \Phi(x, \xi)} \psi_{1}(x, \xi) f(x) d x, \xi \in \mathbb{R}^{n}
$$

[^0]and assume that $\operatorname{det}\left(\frac{\partial^{2} \Phi}{\partial x_{i} \partial \xi_{j}}\right) \neq 0$ on $\operatorname{supp} \psi_{1}$. Then one has
$$
\left\|\mathcal{U}_{\lambda} f\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C \lambda^{-n / 2}\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

We shall here consider singular oscillatory integral operators, that is operators defined by integrals containing both a singular kernel and an oscillating factor. Operators of this type have been much studied in the theory of convergence of Fourier series and also in for instance Phong and Stein [4]. We shall continue this study.

Let $\psi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{n} \times \mathbb{R}^{n-1}\right)$ and $n \geq 2$. For $f \in L^{2}\left(\mathbb{R}^{n-1}\right)$ set

$$
T_{\lambda} f(x)=\int_{\mathbb{R}^{n-1}} e^{i \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\gamma}} \psi_{0}\left(x, y^{\prime}\right) K\left(x-\left(y^{\prime}, 0\right)\right) f\left(y^{\prime}\right) d y^{\prime}
$$

for $x \in \mathbb{R}^{n}, \gamma>0$, and $\lambda \geq 2$. Here for $\gamma>1$ we set

$$
K(z)=|z|^{-(n-m-1)}, z \in \mathbb{R}^{n} \backslash\{0\},
$$

and for $0<\gamma \leq 1$ we set

$$
K(z)=|z|^{-(n-m-1)} \omega(z), z \in \mathbb{R}^{n} \backslash\{0\},
$$

where $\omega \in C^{\infty}\left(\mathbb{R}^{n} \backslash\{0\}\right), \omega$ is homogeneous of degree 0 , and $\omega(z)=0$ for all z with $|z|=1$ and $\left|z_{n}\right| \leq \varepsilon_{0}$ for some given $\varepsilon_{0}>0$. We also assume that $0<m<n-1$.

We shall study the norm of T_{λ} as an operator from $L^{p}\left(\mathbb{R}^{n-1}\right)$ to $L^{p}\left(\mathbb{R}^{n}\right)$ and denote this norm by $\left\|T_{\lambda}\right\|_{p}$. In Aleksanyan et al. [1] the following theorem was proved.

Theorem 1.2 Set $\alpha=(n-1) / 2$ and assume $\gamma \geq 1$. Then one has

$$
\left\|T_{\lambda}\right\|_{2} \leq \begin{cases}C \lambda^{-(m+1 / 2) / \gamma}, & m<\gamma \alpha-1 / 2 \\ C \lambda^{-\alpha} \log \lambda, & m=\gamma \alpha-1 / 2 \\ C \lambda^{-\alpha}, & m>\gamma \alpha-1 / 2\end{cases}
$$

The above choice of phase function is partially motivated by an application to an inhomogeneous Helmholtz equation where we give estimates for solutions. In this case we take $\gamma=1$ (see [1], p. 544). It is also possible to use T_{λ} to give L^{p}-estimates for convolution operators. This will be studied in a forthcoming paper.

In [1] it is also proved that $\left\|T_{\lambda}\right\|_{2} \geq c \lambda^{-(m+1 / 2) / \gamma}$ for $\gamma>1$, where c denotes a positive constant. We shall here prove that this also holds for $\gamma=1$ and that $\left\|T_{\lambda}\right\|_{2} \geq c \lambda^{-\alpha}$ for $\gamma \geq 1$. It follows that the results in Theorem 1.2 are essentially sharp.

In this paper we shall first study the case $n=2$ and $1<p<\infty$. We have the following theorem.

Theorem 1.3 Assume $n=2$ and $0<\gamma \leq 1$. Then $\left\|T_{\lambda}\right\|_{2} \leq C \lambda^{-1 / 2}$, and for $2<p \leq 4$ one has

$$
\left\|T_{\lambda}\right\|_{p} \leq \begin{cases}C \lambda^{-(1 / p+m) / \gamma}, & 1 / p+m<\gamma / 2, \\ C_{\varepsilon} \lambda^{\varepsilon-1 / 2}, & 1 / p+m \geq \gamma / 2,\end{cases}
$$

where ε denotes an arbitrary positive number. Also set $\beta(p)=1-1 / p$ for $1<p<2$, and $\beta(p)=2 / p$ for $4<p<\infty$. For $1<p<2$ and $4<p<\infty$ one has

$$
\left\|T_{\lambda}\right\|_{p} \leq \begin{cases}C \lambda^{-(1 / p+m) / \gamma}, & 1 / p+m<\gamma \beta(p) \\ C \lambda^{-\beta(p)} \log \lambda, & 1 / p+m=\gamma \beta(p) \\ C \lambda^{-\beta(p)}, & 1 / p+m>\gamma \beta(p)\end{cases}
$$

We shall also study the sharpness of the estimates in Theorem 1.3. We shall then estimate the operator S_{λ} given by

$$
S_{\lambda} f(x)=\int_{\mathbb{R}^{n-1}} e^{i \lambda|x-y|^{\gamma}} \psi_{0}(x, y) K(x-y) f(y) d y, x \in \mathbb{R}^{n-1},
$$

where $n \geq 2$, $\psi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{n-1} \times \mathbb{R}^{n-1}\right)$, and $K(z)=|z|^{-(n-m-1)}, z \in \mathbb{R}^{n-1} \backslash\{0\}$. We let $\left\|S_{\lambda}\right\|_{p}$ denote the norm of S_{λ} as an operator from $L^{p}\left(\mathbb{R}^{n-1}\right)$ to $L^{p}\left(\mathbb{R}^{n-1}\right)$. We shall prove the following theorem.

Theorem 1.4 Assume $n \geq 2,0<m<n-1, \gamma>0$, and $\gamma \neq 1$. Then

$$
\left\|S_{\lambda}\right\|_{2} \leq \begin{cases}C \lambda^{-m / \gamma}, & m<\gamma \alpha \\ C \lambda^{-\alpha} \log \lambda, & m=\gamma \alpha \\ C \lambda^{-\alpha}, & m>\gamma \alpha\end{cases}
$$

where $\alpha=(n-1) / 2$. Here the constant C depends on n, m, and γ.
We shall point out a relation between the operators T_{λ} and S_{λ}. We choose $\gamma>1$ and take $K(z)=|z|^{-(n-m-1)}, z \in \mathbb{R}^{n} \backslash\{0\}$, and let T_{λ} be defined as above. Then setting $x=\left(x^{\prime}, x_{n}\right)$, where $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ we obtain

$$
T_{\lambda} f\left(x^{\prime}, 0\right)=\int_{\mathbb{R}^{n-1}} e^{i \lambda\left|x^{\prime}-y^{\prime}\right|^{\gamma}} \psi_{0}\left(x^{\prime}, 0, y^{\prime}\right) K\left(x^{\prime}-y^{\prime}, 0\right) f\left(y^{\prime}\right) d y^{\prime},
$$

that is we obtain an operator of type S_{λ}. The reason for introducing the homogeneous function ω in the above definition of T_{λ} for $0<\gamma \leq 1$ is that we want certain determinant conditions to be satisfied. This is discussed in [1, p. 539], and in this paper after the proof of Lemma 2.2.

We shall also make some remarks on an operator which is somewhat similar to S_{λ}. Set

$$
L(x)=\frac{e^{i|x|^{a}}}{|x|^{\alpha}}, \quad x \in \mathbb{R}^{n} \backslash\{0\},
$$

where $a>0, a \neq 1$, and $\alpha<n$. Then L belongs to the space $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ of tempered distributions and we set

$$
T f=L \star f, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

We say that the operator T is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ if

$$
\|T f\|_{p} \leq C_{p}\|f\|_{p}, \quad f \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)
$$

In Sjölin [5] the following theorem is proved.
Theorem 1.5 If $\alpha \geq n(1-a / 2)$ set $p_{0}=n a /(n a-n+\alpha)$. Then T is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ if and only if $p_{0} \leq p \leq p_{0}^{\prime}$. If $\alpha<n(1-a / 2)$ then T is not bounded on any $L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$.

We finally remark that Theorem 1.1 is due to Hörmander.
In Sect. 2 we shall give the proofs of Theorems 1.3 and 1.4. In Sect. 3 we shall discuss the sharpness of the results in these theorems.

2 Proofs of Theorems 1.3 and 1.4

We shall apply the following theorem.
Theorem 2.1 (see Hörmander [3], p. 3) Let $\psi_{1} \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$, let $\varphi \in C^{\infty}\left(\mathbb{R}^{3}\right)$ be real-valued, and assume that the determinant

$$
\mathcal{J}=\left|\begin{array}{ll}
\varphi_{x t} & \varphi_{y t} \\
\varphi_{x t t} & \varphi_{y t t}
\end{array}\right| \neq 0
$$

on $\operatorname{supp} \psi_{1}$. Here $\varphi=\varphi(x, y, t)$ and $\varphi_{x t}=\frac{\partial^{2} \varphi}{\partial x \partial t}$ etc. Set

$$
\mathcal{U}_{N} f(x, y)=\int_{\mathbb{R}} e^{i N \varphi(x, y, t)} \psi_{1}(x, y, t) f(t) d t, N \geq 1
$$

for $f \in L^{1}(\mathbb{R})$ and $(x, y) \in \mathbb{R}^{2}$. It follows that

$$
\left\|\mathcal{U}_{N} f\right\|_{L^{q}\left(\mathbb{R}^{2}\right)} \leq C N^{-2 / q}(q /(q-4))^{1 / 4}\|f\|_{L^{r}(\mathbb{R})}
$$

if $q>4$ and $3 / q+1 / r=1$.

We shall need an estimate of the norm of \mathcal{U}_{N} as an operator from $L^{p}(\mathbb{R})$ to $L^{p}\left(\mathbb{R}^{2}\right)$. We denote this norm by $\left\|\mathcal{U}_{N}\right\|_{p}$. An application of Theorem 2.1 will give the inequalities in the following lemma.

Lemma 2.2 $\operatorname{Let} \mathcal{U}_{N}$ be defined as in Theorem 2.1. Then one has

$$
\left\|\mathcal{U}_{N}\right\|_{p} \leq C N^{-\beta(p)}, 1<p<\infty,
$$

where

$$
\beta(p)= \begin{cases}1-1 / p, & 1<p \leq 2 \\ 1 / 2-\varepsilon, & 2<p \leq 4 \\ 2 / p, & 4<p<\infty\end{cases}
$$

Here ε is an arbitrary positive number and C depends on φ and p, and in the case $2<p \leq 4$, also on ε.

Proof Assume that $\operatorname{supp} \psi_{1} \subset B_{2} \times B_{1}$, where B_{1} is a ball in \mathbb{R} and B_{2} a ball in \mathbb{R}^{2}. We then have $\mathcal{U}_{N} f=\mathcal{U}_{N}(\mu f)$ if $\mu \in C_{0}^{\infty}(\mathbb{R})$ and $\mu(t)=1$ for $t \in B_{1}$. Now take $q>4$ and assume that $3 / q+1 / r=1$. It follows that $1<r<4$ and using Hölder's inequality twice and Theorem 2.1 we obtain

$$
\begin{aligned}
\left\|\mathcal{U}_{N} f\right\|_{4} \leq C\left\|\mathcal{U}_{N} f\right\|_{q}=C\left\|\mathcal{U}_{N}(\mu f)\right\|_{q} & \leq \\
C N^{-2 / q}\|\mu f\|_{r} & \leq C N^{-2 / q}\|\mu f\|_{4} \leq C N^{-2 / q}\|f\|_{4} .
\end{aligned}
$$

Hence

$$
\begin{equation*}
\left\|\mathcal{U}_{N} f\right\|_{4} \leq C N^{\varepsilon-1 / 2}\|f\|_{4} \tag{2.1}
\end{equation*}
$$

for every $\varepsilon>0$, where the constant depends on ε. Then we shall obtain an L^{2}-estimate for the operator \mathcal{U}_{N}. From the condition on \mathcal{J} in Theorem 2.1 it follows that there exists a number $\delta_{0}>0$ such that

$$
\delta_{0} \leq|\mathcal{J}| \leq C_{0}\left(\left|\varphi_{x t}\right|+\left|\varphi_{y t}\right|\right)
$$

on $\operatorname{supp} \psi_{1}$, where C_{0} depends on φ.
Choose $\mu_{j} \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right), j=2,3, \ldots, M$, such that $\sum_{2}^{M} \mu_{j}(x, y, t)=1$ for $(x, y, t) \in Q$ and each μ_{j} has support in a small cube. Here Q is a cube in \mathbb{R}^{3} with center at the origin and supp $\psi_{1} \subset Q$. It follows that

$$
\psi_{1}=\sum_{2}^{M} \psi_{1} \mu_{j}=\sum_{2}^{M} \psi_{j}
$$

where $\psi_{j}=\psi_{1} \mu_{j}$. Setting

$$
\mathcal{U}_{N}^{(j)} f(x, y)=\int_{\mathbb{R}} e^{i N \varphi(x, y, t)} \psi_{j}(x, y, t) f(t) d t
$$

we have

$$
\mathcal{U}_{N}=\sum_{j=2}^{M} \mathcal{U}_{N}^{(j)}
$$

and shall estimate each $\mathcal{U}_{N}^{(j)}$.
If $\left(x_{0}, y_{0}, t_{0}\right) \in \operatorname{supp} \psi_{j}$ then $\left(x_{0}, y_{0}, t_{0}\right) \in \operatorname{supp} \psi_{1}$ and $\left|\varphi_{x t}\right| \geq \delta / 2$ or $\left|\varphi_{y t}\right| \geq \delta / 2$ at $\left(x_{0}, y_{0}, t_{0}\right)$, where $\delta=\delta_{0} / C_{0}$. Say that $\left|\varphi_{x t}\right| \geq \delta / 2$. Then $\left|\varphi_{x t}\right| \geq \delta / 4$ on $\operatorname{supp} \psi_{j}$ since $\operatorname{supp} \psi_{j}$ is contained in a small cube.

Invoking Theorem 1.1 we get

$$
\left(\int\left|\mathcal{U}_{N}^{(j)} f(x, y)\right|^{2} d x\right)^{1 / 2} \leq C N^{-1 / 2}\left(\int|f(t)|^{2} d t\right)^{1 / 2}
$$

for every y. Integrating in y and summing over j we then obtain

$$
\begin{equation*}
\left\|U_{N} f\right\|_{L^{2}\left(\mathbb{R}^{2}\right)} \leq C N^{-1 / 2}\|f\|_{L^{2}(\mathbb{R})} \tag{2.2}
\end{equation*}
$$

Interpolating between the inequalities (2.1) and (2.2) one has

$$
\begin{equation*}
\left\|\mathcal{U}_{N} f\right\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leq C N^{\varepsilon-1 / 2}\|f\|_{L^{p}(\mathbb{R})}, 2<p \leq 4 \tag{2.3}
\end{equation*}
$$

for every $\varepsilon>0$.
We then assume $q>4$. Choosing μ as above we have $\mathcal{U}_{N}(f)=\mathcal{U}_{N}(\mu f)$ and it follows that

$$
\begin{equation*}
\left\|\mathcal{U}_{n} f\right\|_{q} \leq C N^{-2 / q}\|\mu f\|_{r} \leq C N^{-2 / q}\|\mu f\|_{q} \leq C N^{-2 / q}\|f\|_{q}, \tag{2.4}
\end{equation*}
$$

where we have used Hölder's inequality. It remains to study the case $1<p<2$. Interpolating between (2.2) and the trivial estimate $\left\|\mathcal{U}_{N} f\right\|_{1} \leq C\|f\|_{1}$ one obtains

$$
\begin{equation*}
\left\|\mathcal{U}_{n} f\right\|_{p} \leq C N^{-(1-1 / p)}\|f\|_{p}, 1<p<2 \tag{2.5}
\end{equation*}
$$

and Lemma 2.2 follows from (2.2), (2.3), (2.4), and (2.5).
Now let $\varphi(x, y, t)=d^{\gamma}$, where $d=\left((x-t)^{2}+y^{2}\right)^{1 / 2}$ and $0<\gamma \leq 1$. A computation shows that

$$
\mathcal{J}=\gamma^{2}(\gamma-2) y\left((\gamma-1)(x-t)^{2}-y^{2}\right)
$$

for $d=1$. Since \mathcal{J} is a homogeneous function of degree $2 \gamma-5$ of $\left(x_{0}, y\right)$ where $x_{0}=x-t$, we conclude that if $1 / 2 \leq d \leq 2$ and $|y| \geq c>0$ on $\operatorname{supp} \psi_{1}$, then $|\mathcal{J}| \geq c_{1}>0$ on $\operatorname{supp} \psi_{1}$. Hence (2.2)-(2.5) hold in this case.

We remark that in the case $\gamma=1 \mathcal{J}$ was computed in Carleson and Sjölin [2], and that in the case $\gamma=1$ (2.2) and (2.3) are proved in [2] in the case $\psi_{1}(x, y, t)=$ $\chi_{1}(t) \chi_{2}(x, y)$, where χ_{1} is the characteristic function for the interval $[0,1]$ and χ_{2} is the characteristic function for the square $[0,1] \times[2,3]$. We shall now prove Theorem 1.3.

Proof of Theorem 1.3. We shall estimate the norm of T_{λ} where

$$
T_{\lambda} f(x)=\int_{\mathbb{R}} e^{i \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\gamma}} \psi_{0}\left(x, y^{\prime}\right) K\left(x-\left(y^{\prime}, 0\right)\right) f\left(y^{\prime}\right) d y^{\prime},
$$

where $x \in \mathbb{R}^{2}$. Here $\lambda \geq 2,0<\gamma \leq 1$, and $\psi_{0} \in C_{0}^{\infty}\left(\mathbb{R}^{2} \times \mathbb{R}\right)$. Also $K(z)=$ $|z|^{m-1} \omega(z), z \in \mathbb{R}^{2} \backslash\{0\}$, where $0<m<1$ and ω is described in the introduction.

We first observe that there exists $\psi \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$, with support in $\left\{x \in \mathbb{R}^{2}\right.$: $1 / 2 \leq|x| \leq 2\}$ such that $K(z)=\sum_{k=-\infty}^{\infty} 2^{k(1-m)} \psi\left(2^{k} z\right) \omega(z)$ (see Stein [6, p. 393]). Since $\operatorname{supp} \psi_{0}$ is bounded it follows that there exists an integer k_{0} such that $K(z)=\sum_{k=k_{0}}^{\infty} 2^{k(1-m)} \psi\left(2^{k} z\right) \omega(z)$ for all $z=x-\left(y^{\prime}, 0\right)$ with $\left(x, y^{\prime}\right) \in \operatorname{supp} \psi_{0}$. We shall assume that $k_{0}=0$. The proof in the general case is the same as for $k_{0}=0$. Also choose $\chi \in C_{0}^{\infty}(\mathbb{R})$ such that supp $\chi \subset[-1 / 2-1 / 10,1 / 2+1 / 10]$ and $\sum_{j=-\infty}^{\infty} \chi(t-j)=1$.

We have $T_{\lambda} f=\sum_{k=0}^{\infty} T_{\lambda, k} f$ where
$T_{\lambda, k} f(x)=\int_{\mathbb{R}} e^{i \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\nu}} \psi_{0}\left(x, y^{\prime}\right) 2^{k(1-m)} \psi\left(2^{k}\left(x-\left(y^{\prime}, 0\right)\right)\right) \omega\left(x-\left(y^{\prime}, 0\right)\right) f\left(y^{\prime}\right) d y^{\prime}$,
Also $T_{\lambda, k} f=\sum_{j} T_{\lambda, k} f_{j}$ where $f_{j}(t)=f(t) \chi\left(2^{k}\left(t-2^{-k} j\right)\right)$. Assuming $1<p<\infty$ and invoking Hölder's inequality we obtain

$$
\left|T_{\lambda, k} f(x)\right|^{p} \leq C \sum_{j}\left|T_{\lambda, k} f_{j}(x)\right|^{p},
$$

since the number of terms in the above sum is bounded.
Setting $y^{\prime}=2^{-k} z^{\prime}$ we get

$$
\begin{aligned}
& T_{\lambda, k} f_{j}(x) \\
& =\int_{\mathbb{R}} e^{i \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\boldsymbol{r}}} 2^{k(1-m)} \psi_{0}\left(x, y^{\prime}\right) \psi\left(2^{k}\left(x-\left(y^{\prime}, 0\right)\right)\right) \omega\left(x-\left(y^{\prime}, 0\right)\right) f_{j}\left(y^{\prime}\right) d y^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
= & 2^{-m k} \int_{\mathbb{R}} e^{i \lambda\left|x-2^{-k}\left(z^{\prime}, 0\right)\right|^{y}} \psi_{0}\left(x, 2^{-k} z^{\prime}\right) \psi\left(2^{k} x-\left(z^{\prime}, 0\right)\right) \omega\left(x-2^{-k}\left(z^{\prime}, 0\right)\right) f_{j}\left(2^{-k} z^{\prime}\right) d z^{\prime} \\
= & 2^{-m k} \int_{\mathbb{R}} e^{i \lambda 2^{-k \gamma}\left|2^{k} x-\left(z^{\prime}, 0\right)\right|^{y}} \psi_{0}\left(x, 2^{-k} z^{\prime}\right) \psi\left(2^{k} x-\left(z^{\prime}, 0\right)\right) \omega\left(2^{k} x-\left(z^{\prime}, 0\right)\right) f\left(2^{-k} z^{\prime}\right) \chi\left(z^{\prime}-j\right) d z^{\prime} \\
= & {\left[\text { with } y^{\prime}=z^{\prime}-j\right] 2^{-m k} \int_{\mathbb{R}} e^{i \lambda 2^{-k \gamma}\left|2^{k} x-\left(y^{\prime}+j, 0\right)\right|^{\gamma}} \psi_{0}\left(x, 2^{-k}\left(y^{\prime}+j\right)\right) \psi\left(2^{k} x-\left(y^{\prime}+j, 0\right)\right) } \\
& \times \omega\left(2^{k} x-\left(y^{\prime}+j, 0\right)\right) f\left(2^{-k}\left(y^{\prime}+j\right)\right) \chi\left(y^{\prime}\right) d y^{\prime}=2^{-m k} \int_{\mathbb{R}} e^{i \lambda 2^{-k \gamma}\left|2^{k}\left(x-\left(2^{-k} j, 0\right)\right)-\left(y^{\prime}, 0\right)\right|^{r}} \\
& \times \psi_{0}\left(x, 2^{-k} j+2^{-k} y^{\prime}\right) \psi\left(2^{k}\left(x-\left(2^{-k} j, 0\right)\right)-\left(y^{\prime}, 0\right)\right) \omega\left(2^{k}\left(x-\left(2^{-k} j, 0\right)\right)-\left(y^{\prime}, 0\right)\right) \\
& \times f\left(2^{-k} j+2^{-k} y^{\prime}\right) \chi\left(y^{\prime}\right) d y^{\prime} .
\end{aligned}
$$

We also have

$$
\begin{gather*}
\int_{\mathbb{R}^{2}}\left|T_{\lambda, k} f_{j}(x)\right|^{p} d x=\left[\text { with } x=u+\left(2^{-k} j, 0\right)\right] \\
\int_{\mathbb{R}^{2}}\left|T_{\lambda, k} f_{j}\left(u+\left(2^{-k} j, 0\right)\right)\right|^{p} d u=\left[\text { with } \xi=2^{k} u\right] \\
2^{-2 k} \int_{\mathbb{R}^{2}}\left|T_{\lambda, k} f_{j}\left(2^{-k} \xi+\left(2^{-k} j, 0\right)\right)\right|^{p} d \xi \tag{2.6}
\end{gather*}
$$

Now let $\tilde{\chi} \in C_{0}^{\infty}(\mathbb{R})$ be so that $\tilde{\chi}=1$ on $\operatorname{supp} \chi$ and $\operatorname{supp} \tilde{\chi} \subset[-1,1]$. We then have

$$
\begin{aligned}
T_{\lambda, k} f_{j}\left(2^{-k} \xi+\left(2^{-k} j, 0\right)\right)= & 2^{-m k} \int_{\mathbb{R}} e^{i \lambda 2^{-k \gamma}\left|\xi-\left(y^{\prime}, 0\right)\right|^{\gamma}} \psi_{0}\left(2^{-k} \xi\right. \\
& \left.+\left(2^{-k} j, 0\right), 2^{-k} j+2^{-k} y^{\prime}\right) \psi\left(\xi-\left(y^{\prime}, 0\right)\right) \\
& \times \omega\left(\xi-\left(y^{\prime}, 0\right)\right) f\left(2^{-k} j+2^{-k} y^{\prime}\right) \chi\left(y^{\prime}\right) \widetilde{\chi}\left(y^{\prime}\right) d y^{\prime} \\
= & 2^{-m k} \int_{\mathbb{R}} e^{i \lambda 2^{-k \gamma} \Phi\left(y^{\prime}, \xi\right)} \psi_{1}\left(y^{\prime}, \xi\right) g\left(y^{\prime}\right) d y^{\prime} \\
= & 2^{-m k} \mathcal{U}_{\lambda 2^{-k \gamma}} g(\xi),
\end{aligned}
$$

where

$$
\Phi\left(y^{\prime}, \xi\right)=\left|\xi-\left(y^{\prime}, 0\right)\right|^{\gamma}=\left(\left|\xi^{\prime}-y^{\prime}\right|^{2}+\xi_{2}^{2}\right)^{\gamma / 2}
$$

$\psi_{1}\left(y^{\prime}, \xi\right)=\psi\left(\xi-\left(y^{\prime}, 0\right)\right) \omega\left(\xi-\left(y^{\prime}, 0\right)\right) \psi_{0}\left(2^{-k} \xi+\left(2^{-k} j, 0\right), 2^{-k} j+2^{-k} y^{\prime}\right) \widetilde{\chi}\left(y^{\prime}\right)$, and

$$
g\left(y^{\prime}\right)=f\left(2^{-k} j+2^{-k} y^{\prime}\right) \chi\left(y^{\prime}\right) .
$$

Here $\xi=\left(\xi_{1}, \xi_{2}\right)=\left(\xi^{\prime}, \xi_{2}\right)$.

It is clear that ψ_{1} has a support which is uniformly bounded in j and k, and the derivatives of ψ_{1} can be bounded uniformly in j and k. Here we use the fact that $k \geq 0$.

Invoking (2.6) we conclude that

$$
\left(\int_{\mathbb{R}^{2}}\left|T_{\lambda, k} f_{j}(x)\right|^{p} d x\right)^{1 / p}=2^{-2 k / p} 2^{-m k}\left(\int_{\mathbb{R}^{2}}\left|\mathcal{U}_{\lambda 2^{-k \gamma}} g(\xi)\right|^{p} d \xi\right)^{1 / p}
$$

We set $d=\left(\left|\xi^{\prime}-y^{\prime}\right|^{2}+\xi_{2}^{2}\right)^{1 / 2}$. It follows from the definitions of ψ and ω that $1 / 2 \leq d \leq 2$ and $\left|\xi_{2}\right| \geq c>0$ on $\operatorname{supp} \psi_{1}$. Hence the determinant \mathcal{J} for the phase function Φ satisfies $|\mathcal{J}| \geq c>0$ on $\operatorname{supp} \psi_{1}$, as we remarked after the proof of Lemma 2.2. We can therefore apply Lemma 2.2 and one obtains

$$
\left(\int_{\mathbb{R}^{2}}\left|\mathcal{U}_{\lambda 2^{-k \gamma}} g(\xi)\right|^{p} d \xi\right)^{1 / p} \leq C\left(\lambda 2^{-k \gamma}\right)^{-\beta(p)}\|g\|_{L^{p}(\mathbb{R})}
$$

We have $g=g_{j, k}$ and

$$
\int_{\mathbb{R}}\left|g_{j, k}\right|^{p} d y^{\prime} \leq \int_{-1}^{1}\left|f\left(2^{-k} j+2^{-k} y^{\prime}\right)\right|^{p} d y^{\prime}=2^{k} \int_{\left|z^{\prime}\right| \leq 2^{-k}}\left|f\left(2^{-k} j+z^{\prime}\right)\right|^{p} d z^{\prime}
$$

and it follows that

$$
\sum_{j=-\infty}^{\infty} \int_{\mathbb{R}}\left|g_{j, k}\right|^{p} d y^{\prime} \leq C 2^{k}\|f\|_{p}^{p}
$$

Hence

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}}\left|T_{\lambda, k} f\right|^{p} d x \leq C \sum_{j} \int_{\mathbb{R}^{2}}\left|T_{\lambda, k} f_{j}\right|^{p} d x \leq C 2^{-2 k} 2^{-m k p}\left(\lambda 2^{-k \gamma}\right)^{-\beta(p) p} \\
& \sum_{j} \int_{\mathbb{R}}\left|g_{j, k}\right|^{p} d y^{\prime} \leq C 2^{-k} 2^{-m k p}\left(\lambda 2^{-k \gamma}\right)^{-p \beta(p)}\|f\|_{p}^{p}
\end{aligned}
$$

and we obtain the inequality

$$
\left\|T_{\lambda, k}\right\|_{p} \leq C 2^{-k / p} 2^{-m k}\left(\lambda 2^{-k \gamma}\right)^{-\beta(p)}
$$

Making a trivial estimate we also have

$$
\left\|T_{\lambda, k}\right\|_{p} \leq C 2^{-k / p} 2^{-m k}
$$

Invoking the inequality $\left\|T_{\lambda}\right\|_{p} \leq \sum_{0}^{\infty}\left\|T_{\lambda, k}\right\|_{p}$ we obtain

$$
\left\|T_{\lambda}\right\|_{p} \leq C \lambda^{-\beta(p)} \sum_{2^{k} \leq \lambda^{1 / \gamma}} 2^{k(-1 / p-m+\gamma \beta(p))}+C \sum_{2^{k} \geq \lambda^{1 / \gamma}} 2^{-k(1 / p+m)}=A+B .
$$

It is clear that $B \leq C \lambda^{-(1 / p+m) / \gamma}$ and in the case $1 / p+m<\gamma \beta(p)$ we get

$$
A \leq C \lambda^{-\beta(p)} \lambda^{(-1 / p-m+\gamma \beta(p)) / \gamma}=C \lambda^{-(1 / p+m) / \gamma}
$$

and

$$
\left\|T_{\lambda}\right\|_{p} \leq C \lambda^{-(1 / p+m) / \gamma}
$$

In the case $1 / p+m=\gamma \beta(p)$ we get $A \leq C \lambda^{-\beta(p)} \log \lambda$ and $\left\|T_{\lambda}\right\|_{p} \leq$ $C \lambda^{-\beta(p)} \log \lambda$.

Finally, in the case $1 / p+m>\gamma \beta(p)$ we have $A \leq C \lambda^{-\beta(p)}$ and $\left\|T_{\lambda}\right\|_{p} \leq$ $C \lambda^{-\beta(p)}$.

We remark that in the case $p=2$ only the case $1 / p+m>\gamma \beta(p)$ can occur. The proof of Theorem 1.3 is complete.

Before proving Theorem 1.4 we shall make a preliminary observation. Set $\xi=$ $\left(\xi^{\prime}, \xi_{n}\right)$ where $\xi^{\prime}=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n-1}\right)$ and $n \geq 2$. Also set $x^{\prime}=\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ and $\Phi\left(x^{\prime}, \xi\right)=d^{\gamma}$ where $\gamma>0$ and $d=\left(\left|\xi^{\prime}-x^{\prime}\right|^{2}+\xi_{n}^{2}\right)^{1 / 2}$. In [1, Section 4.1], we studied the determinant

$$
P\left(x^{\prime}, \xi^{\prime}, \xi_{n}\right)=\operatorname{det}\left(\frac{\partial^{2} \Phi}{\partial x_{i} \partial \xi_{j}}\right)_{i, j=1}^{n-1}
$$

for $1 / 2 \leq d \leq 2$. In [1] it is proved that

$$
\begin{equation*}
P\left(x^{\prime}, \xi^{\prime}, \xi_{n}\right)=\left(-\gamma d^{\gamma-2}\right)^{n-1} \frac{(\gamma-1)\left|\xi^{\prime}-x^{\prime}\right|^{2}+\xi_{n}^{2}}{d^{2}} \tag{2.7}
\end{equation*}
$$

Now let $\Phi_{1}\left(x^{\prime}, \xi^{\prime}\right)=\left|\xi^{\prime}-x^{\prime}\right|^{\gamma}=d_{1}^{\gamma}$ where $d_{1}=\left|\xi^{\prime}-x^{\prime}\right|$. We shall need the determinant

$$
P_{1}\left(x^{\prime}, \xi^{\prime}\right)=\operatorname{det}\left(\frac{\partial^{2} \Phi_{1}}{\partial x_{i} \partial \xi_{j}}\right)_{i, j=1}^{n-1}
$$

It is clear that

$$
P_{1}\left(x^{\prime}, \xi^{\prime}\right)=P\left(x^{\prime}, \xi^{\prime}, 0\right)=\left(-\gamma d_{1}^{\gamma-2}\right)^{n-1}(\gamma-1)
$$

and for $\gamma>0, \gamma \neq 1$, it follows that

$$
\begin{equation*}
\left|P_{1}\left(x^{\prime}, \xi^{\prime}\right)\right| \geq c>0 \text { for } 1 / 2 \leq d_{1} \leq 2 . \tag{2.8}
\end{equation*}
$$

Proof of Theorem 1.4. We shall use the method in the proof of Theorem 1.3 and omit some details. We assume that

$$
K(z)=\sum_{k=0}^{\infty} 2^{k(n-1-m)} \psi\left(2^{k} z\right)
$$

where $\operatorname{supp} \psi \subset\left\{x \in \mathbb{R}^{n-1}, 1 / 2 \leq|x| \leq 2\right\}$. One obtains

$$
S_{\lambda} f=\sum_{k=0}^{\infty} S_{\lambda, k} f
$$

where

$$
S_{\lambda, k} f(x)=\int_{\mathbb{R}^{n-1}} e^{i \lambda|x-y|^{\gamma}} \psi_{0}(x, y) 2^{k(n-1-m)} \psi\left(2^{k}(x-y)\right) f(y) d y
$$

We also have

$$
f=\sum_{j \in \mathbb{Z}^{n-1}} f_{j}
$$

where

$$
f_{j}(t)=f(t) \chi\left(2^{k}\left(t-2^{-k} j\right)\right), j \in \mathbb{Z}^{n-1}, t \in \mathbb{R}^{n-1}
$$

and $\chi \in C_{0}^{\infty}\left(\mathbb{R}^{n-1}\right)$ is like χ in the proof of Theorem 1.3.
The Schwarz inequality gives the estimate

$$
\left|S_{\lambda, k} f(x)\right|^{2} \leq C \sum_{j}\left|S_{\lambda, k} f_{j}(x)\right|^{2}
$$

and arguing as in the proof of Theorem 1.3 we get

$$
\begin{aligned}
& S_{\lambda, k} f_{j}(x)=2^{-m k} \int_{\mathbb{R}^{n-1}} e^{i \lambda 2^{-k \gamma}\left|2^{k}\left(x-2^{-k} j\right)-y\right|^{\gamma}} \psi_{0}\left(x, 2^{-k} j+2^{-k} y\right) \\
& \quad \psi\left(2^{k}\left(x-2^{-k} j\right)-y\right) \times f\left(2^{-k} j+2^{-k} y\right) \chi(y) d y
\end{aligned}
$$

and

$$
\int_{\mathbb{R}^{n-1}}\left|S_{\lambda, k} f_{j}(x)\right|^{2} d x=2^{-k(n-1)} \int_{\mathbb{R}^{n-1}}\left|S_{\lambda, k} f_{j}\left(2^{-k} \xi+2^{-k} j\right)\right|^{2} d \xi
$$

It follows that

$$
\begin{aligned}
S_{\lambda, k} f_{j}\left(2^{-k} \xi+2^{-k} j\right)= & 2^{-m k} \int_{\mathbb{R}^{n-1}} e^{i \lambda 2^{-k \gamma}|\xi-y|^{\gamma}} \psi_{0}\left(2^{-k} \xi+2^{-k} j, 2^{-k} j+2^{-k} y\right) \\
& \times \psi(\xi-y) f\left(2^{-k} j+2^{-k} y\right) \chi(y) \widetilde{\chi}(y) d y \\
= & 2^{-m k} \mathcal{U}_{\lambda 2^{-k \gamma}} g(\xi) \\
= & 2^{-m k} \int_{\mathbb{R}^{n-1}} e^{i \lambda 2^{-k \gamma} \Phi_{1}(y, \xi)} \psi_{1}(y, \xi) g(y) d y
\end{aligned}
$$

where $\Phi_{1}(y, \xi)=|\xi-y|^{\gamma}, \psi_{1}(y, \xi)=\psi(\xi-y) \psi_{0}\left(2^{-k} \xi+2^{-k} j, 2^{-k} j+2^{-k} y\right) \tilde{\chi}(y)$, and $g(y)=f\left(2^{-k} j+2^{-k} y\right) \chi(y)$.

Invoking the determinant condition (2.8) and Theorem 1.1 we conclude that

$$
\left\|\mathcal{U}_{\lambda 2^{-k \gamma}} g\right\|_{L^{2}\left(\mathbb{R}^{n-1}\right)} \leq C\left(\lambda 2^{-k \gamma}\right)^{-\alpha}\|g\|_{L^{2}\left(\mathbb{R}^{n-1}\right)}
$$

where $\alpha=(n-1) / 2$. Arguing as in the proof of Theorem 1.3 we then obtain

$$
\left\|S_{\lambda, k}\right\|_{2} \leq C 2^{-m k} \lambda^{-\alpha} 2^{k \gamma \alpha}
$$

and $\left\|S_{\lambda, k}\right\|_{2} \leq C 2^{-m k}$.
Hence

$$
\left\|S_{\lambda}\right\|_{2} \leq C \lambda^{-\alpha} \sum_{2^{k} \leq \lambda^{1 / \gamma}} 2^{(\gamma \alpha-m) k}+\sum_{2^{k} \geq \lambda^{1 / \gamma}} 2^{-m k}
$$

and Theorem 1.4 follows easily from this inequality.

3 Counter-examples

Assume $\gamma>0,1<p<\infty$, and

$$
T_{\lambda} f(x)=\int_{\mathbb{R}^{n-1}} e^{i \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\gamma}} \psi_{0}\left(x, y^{\prime}\right) K\left(x-\left(y^{\prime}, 0\right)\right) f\left(y^{\prime}\right) d y^{\prime}
$$

where $x \in \mathbb{R}^{n}, n \geq 2$, and $K(z)=|z|^{m-n+1}$ with $0<m<n-1$. We shall estimate the norm $\left\|T_{\lambda}\right\|_{p}=\left\|T_{\lambda}\right\|_{L^{p}\left(\mathbb{R}^{n-1}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)}$ from below. We take $y_{0}^{\prime} \in \mathbb{R}^{n-1}$ and set $E=B\left(y_{0}^{\prime} ; c_{0} \lambda^{-\rho}\right)$ where $B(x ; R)$ denotes a ball with center x and radius R. Also let F denote a cube in \mathbb{R}^{n} with center $\left(y_{0}^{\prime}, 100 c_{0} \lambda^{-\rho}\right)$ and side length $c_{0} \lambda^{-\rho}$. We assume that $\psi_{0}\left(x, y^{\prime}\right)=1$ for $x \in F$ and $y^{\prime} \in E$.

Setting $f=\chi_{E}$ and taking $x \in F$ we obtain

$$
\begin{aligned}
T_{\lambda} f(x) & =\int_{E} K\left(x-\left(y^{\prime}, 0\right)\right) d y^{\prime}+\int_{E}\left(e^{i \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\gamma}}-1\right) K\left(x-\left(y^{\prime}, 0\right)\right) d y^{\prime} \\
& =P(x)+R(x) .
\end{aligned}
$$

Setting $\rho=1 / \gamma$ we have

$$
\left|e^{i \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\gamma}}-1\right| \leq \lambda\left|x-\left(y^{\prime}, 0\right)\right|^{\gamma} \leq C c_{0} \lambda \lambda^{-\rho \gamma}=C c_{0}, y^{\prime} \in E,
$$

and

$$
|R(x)| \leq C c_{0} \int_{E} K\left(x-\left(y^{\prime}, 0\right)\right) d y^{\prime}
$$

Now taking c_{0} small we obtain

$$
\left|T_{\lambda} f(x)\right| \geq c \int_{E} K\left(x-\left(y^{\prime}, 0\right)\right) d y^{\prime} \geq c \int_{E} \lambda^{-\rho(m-n+1)} d y^{\prime}=C \lambda^{-\rho m}
$$

and

$$
\int_{F}\left|T_{\lambda} f(x)\right|^{p} d x \geq c \lambda^{-\rho m}\left(\lambda^{-\rho n}\right)^{1 / p}=c \lambda^{-m / \gamma} \lambda^{-n / \gamma p} .
$$

On the other hand

$$
\|f\|_{p}=\left(\int_{E} d y^{\prime}\right)^{1 / p}=C \lambda^{-\rho(n-1) / p}=C \lambda^{-(n-1) / \gamma p}
$$

and we have

$$
\begin{equation*}
\left\|T_{\lambda}\right\|_{p} \geq c \frac{\lambda^{-m / \gamma} \lambda^{-n / \gamma p}}{\lambda^{-(n-1) / \gamma p}}=c \lambda^{-m / \gamma} \lambda^{-1 / \gamma p}=c \lambda^{-(1 / p+m) / \gamma} . \tag{3.1}
\end{equation*}
$$

The same proof works also in the case $K(z)=|z|^{m-n+1} \omega(z)$.
In Theorems 1.2 and 1.3 we proved estimates of the type

$$
\left\|T_{\lambda}\right\|_{p} \leq C \lambda^{-(1 / p+m) / \gamma}
$$

and the inequality (3.1) shows that these estimates are sharp.
In Theorem 1.4 we proved the estimate

$$
\begin{equation*}
\left\|S_{\lambda}\right\|_{2} \leq C \lambda^{-m / \gamma} \tag{3.2}
\end{equation*}
$$

We shall now prove that also this estimate is sharp. We shall use the same method as in the above counter-example.

We take x_{0} and y_{0} in \mathbb{R}^{n-1} with $\left|x_{0}-y_{0}\right|=100 c_{0} \lambda^{-\rho}$ and set $E=B\left(y_{0} ; c_{0} \lambda^{-\rho}\right)$ and $F=B\left(x_{0} ; c_{0} \lambda^{-\rho}\right)$. Here E and F are balls in \mathbb{R}^{n-1}. Setting $f=\chi_{E}$ and arguing as above one obtains

$$
\left|S_{\lambda} f(x)\right| \geq c \lambda^{-\rho m} \text { for } x \in F .
$$

It follows that

$$
\left\|S_{\lambda} f\right\|_{2} \geq c \lambda^{-m / \gamma} \lambda^{-(n-1) / 2 \gamma}
$$

and

$$
\|f\|_{2}=C \lambda^{-(n-1) / 2 \gamma}
$$

We conclude that

$$
\left\|S_{\lambda}\right\|_{2} \geq c \lambda^{-m / \gamma}
$$

and it follows that (3.2) is sharp.
In Theorems 1.2 and 1.3 we have

$$
T_{\lambda} f(x)=\int_{\mathbb{R}^{n-1}} e^{i \lambda \varphi\left(x, y^{\prime}\right)} \psi_{0}\left(x, y^{\prime}\right) K\left(x-\left(y^{\prime}, 0\right)\right) f\left(y^{\prime}\right) d y^{\prime}
$$

where $x=\left(x^{\prime}, x_{n}\right)$ and $\varphi\left(x, y^{\prime}\right)=\left(\left|x^{\prime}-y^{\prime}\right|^{2}+x_{n}^{2}\right)^{\gamma / 2}$.
We let a denote the point $(0,1)=(0,0, \ldots, 0,1)$ in \mathbb{R}^{n}. We assume that $\psi_{0}\left(x, y^{\prime}\right)=1$ in a neighbourhood of $(a, 0)$ and let $f=\chi_{B}$ where $B=B\left(0 ; c_{0} \lambda^{-1}\right)$ is a ball in \mathbb{R}^{n-1}. For x in a neighbourhood of a one obtains

$$
T_{\lambda} f(x)=\int_{B} e^{i \lambda \varphi\left(x, y^{\prime}\right)} K\left(x-\left(y^{\prime}, 0\right)\right) d y^{\prime}
$$

It follows from the mean value theorem that

$$
\left|\varphi\left(x, y^{\prime}\right)-\varphi(x, 0)\right| \leq C c_{0} \lambda^{-1} \text { for } y^{\prime} \in B
$$

and choosing c_{0} small we obtain

$$
\left|\lambda \varphi\left(x, y^{\prime}\right)-\lambda \varphi(x, 0)\right| \leq c_{1} \text { for } y^{\prime} \in B,
$$

where c_{1} is small. It follows that there is no cancellation in the above integral and we get

$$
\left|T_{\lambda} f(x)\right| \geq c_{2} \lambda^{-(n-1)}
$$

in a neighbourhood of a. Hence

$$
\left\|T_{\lambda} f\right\|_{2} \geq c_{3} \lambda^{-(n-1)}
$$

We have $\|f\|_{2}=c_{4} \lambda^{-(n-1) / 2}$ and we obtain

$$
\frac{\left\|T_{\lambda}\right\|_{2}}{\|f\|_{2}} \geq \frac{c_{3} \lambda^{-(n-1)}}{c_{4} \lambda^{-(n-1) / 2}}=c_{5} \lambda^{-(n-1) / 2}
$$

Hence

$$
\begin{equation*}
\left\|T_{\lambda}\right\|_{2} \geq c_{5} \lambda^{-(n-1) / 2} \tag{3.3}
\end{equation*}
$$

and thus the estimates $\left\|T_{\lambda}\right\|_{2} \leq C \lambda^{-(n-1) / 2}$ in Theorems 1.2 and 1.3 are sharp.
We shall then construct a similar counter-example for the operator S_{λ} in Theorem 1.4. Here we have

$$
S_{\lambda} f(x)=\int_{\mathbb{R}^{n-1}} e^{i \lambda \varphi(x, y)} \psi_{0}(x, y) K(x-y) f(y) d y, x \in \mathbb{R}^{n-1}
$$

where $\varphi(x, y)=|x-y|^{\gamma}$. Take $a=(0,0, \ldots, 0,1)$ and assume that $\psi_{0}(x, y)=1$ in a neighbourhood of $(a, 0)$. Also let $f=\chi_{B}$ where B is as in the previous counterexample. The same argument as above then gives the estimate $\left\|S_{\lambda}\right\|_{2} \geq c \lambda^{-(n-1) / 2}$ and it follows that the estimate $\left\|S_{\lambda}\right\|_{2} \leq C \lambda^{-(n-1) / 2}$ in Theorem 1.4 is sharp.

We shall then again consider the operator T_{λ} in Theorem 1.3. Here we have $n=2$ and the above counter-example also gives

$$
\left\|T_{\lambda}\right\|_{p} \geq \frac{\left\|T_{\lambda} f\right\|_{p}}{\|f\|_{p}} \geq c \frac{\lambda^{-1}}{\lambda^{-1 / p}}=c \lambda^{-(1-1 / p)}
$$

for $1 \leq p<2$. It follows that the estimate

$$
\left\|T_{\lambda}\right\|_{p} \leq C \lambda^{-\beta(p)}
$$

for $1<p<2$ in Theorem 1.3 is sharp $($ since $\beta(p)=1-1 / p)$.
In Theorem 1.3 we have

$$
T_{\lambda} f(x, y)=\int_{\mathbb{R}} e^{i \lambda \varphi(x, y, t)} \psi_{0}(x, y, t) K(x-t, y) f(t) d t,(x, y) \in \mathbb{R}^{2}
$$

where $\varphi(x, y, t)=\left((x-t)^{2}+y^{2}\right)^{\gamma / 2}$ and $K(z)=|z|^{m-1} \omega(z)$.
Setting

$$
T_{\lambda}^{*} g(t)=\int_{\mathbb{R}^{2}} e^{-i \lambda \varphi(x, y, t)} \overline{\psi_{0}(x, y, t)} K(x-t, y) g(x, y) d x d y, t \in \mathbb{R}
$$

we get

$$
\left(T_{\lambda} f, g\right)_{2}=\left(f, T_{\lambda}^{*} g\right)_{1}, f \in C_{0}^{\infty}(\mathbb{R}), g \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)
$$

where $(,)_{2}$ and $(,)_{1}$ denote the inner products in $L^{2}\left(\mathbb{R}^{2}\right)$ and $L^{2}(\mathbb{R})$. It follows that

$$
\left\|T_{\lambda}\right\|_{p}=\left\|T_{\lambda}\right\|_{L^{p}(\mathbb{R}) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)} \geq\left\|T_{\lambda}^{*}\right\|_{L^{r}\left(\mathbb{R}^{2}\right) \rightarrow L^{r}(\mathbb{R})}
$$

where $1 / p+1 / r=1$. We shall use this inequality for $4 \leq p<\infty$.
Let B denote a disc in \mathbb{R}^{2} with center $(0,1)$ and radius $c_{0} \lambda^{-1}$. Take $g \in C_{0}^{\infty}\left(\mathbb{R}^{2}\right)$ with support in $B, 0 \leq g \leq 1$, and $g=1$ in $\frac{1}{2} B$. Then

$$
\|g\|_{r} \leq\left(\iint_{B} d x d y\right)^{1 / r}=c \lambda^{-2 / r}
$$

and choosing ψ_{0} such that $\psi_{0}(x, y, t)=1$ in a neighbourhood of $(0,1,0)$ we get

$$
\left|T_{\lambda}^{*} g(t)\right| \geq c \lambda^{-2}
$$

in a neighbourhood of 0 . Hence

$$
\left\|T_{\lambda}^{*} g\right\|_{r} \geq c \lambda^{-2}
$$

and

$$
\left\|T_{\lambda}^{*}\right\|_{r} \geq \frac{\left\|T_{\lambda}^{*} g\right\|_{r}}{\|g\|_{r}} \geq c \frac{\lambda^{-2}}{\lambda^{-2 / r}}=c \lambda^{-2(1-1 / r)}
$$

Since $1-1 / r=1 / p$ we conclude that

$$
\left\|T_{\lambda}\right\|_{p} \geq c \lambda^{-2 / p}, 4 \leq p<\infty
$$

and it follows that the estimate

$$
\left\|T_{\lambda}\right\|_{p} \leq C \lambda^{-\beta(p)}, 4<p<\infty
$$

in Theorem 1.3 is sharp $($ since $\beta(p)=2 / p)$.
In Theorem 1.3 we also have an estimate of the type

$$
\left\|T_{\lambda}\right\|_{p} \leq C \lambda^{-1 / 2+\varepsilon}
$$

for $2<p<4$. We shall finally discuss the sharpness of this estimate in the case $\gamma=1$. We shall study the statement

$$
\begin{equation*}
\left\|T_{\lambda}\right\|_{p} \leq C \lambda^{-1 / 2-\delta} \text { for some } p \text { with } 2<p<4 \text { and some } \delta>0 \tag{3.4}
\end{equation*}
$$

Omitting details we shall describe how (3.4) leads to a contradiction.
Following Stein [6], p. 393, we have

$$
\frac{1}{|x|^{3 / 2}}=u(x)+\sum_{k=1}^{\infty} 2^{-3 k / 2} \psi\left(\frac{x}{2^{k}}\right), x \in \mathbb{R}^{2} \backslash\{0\},
$$

where $u \in L^{1}\left(\mathbb{R}^{2}\right), \psi$ is smooth, and $\operatorname{supp} \psi \subset\left\{x \in \mathbb{R}^{2} ; 1 / 2 \leq|x| \leq 2\right\}$. We set

$$
K_{0}(x)=\frac{e^{i|x|}}{|x|^{3 / 2}}=e^{i|x|} u(x)+\sum_{k=1}^{\infty} 2^{-3 k / 2} e^{i|x|} \psi\left(x / 2^{k}\right), x \in \mathbb{R}^{2} \backslash\{0\}
$$

and $S_{0} f=K_{0} \star f$. We define the operator V_{k} by setting

$$
\begin{aligned}
V_{k} f=2^{-3 k / 2} 2^{2 k}\left(e^{i 2^{k}|x|} \psi\right) \star f & = \\
2^{k / 2}\left(e^{i 2^{k}|x|} \psi\right) \star f & =\lambda^{1 / 2}\left(e^{i \lambda|x|} \psi\right) \star f
\end{aligned}
$$

where $\lambda=2^{k}$. Using (3.4) we can prove that

$$
\left\|V_{k}\right\|_{p}=\left\|V_{k}\right\|_{L^{p}\left(\mathbb{R}^{2}\right) \rightarrow L^{p}\left(\mathbb{R}^{2}\right)} \leq C \lambda^{-\delta}=C 2^{-k \delta}
$$

and the inequality

$$
\sum_{k=1}^{\infty}\left\|V_{k}\right\|_{p}<\infty
$$

implies that S_{0} is a bounded operator on $L^{p}\left(\mathbb{R}^{2}\right)$. It follows that the characteristic function of the unit disc is a Fourier multiplier for $L^{p}\left(\mathbb{R}^{2}\right)$. This contradicts Fefferman's multiplier theorem.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Aleksanyan, H., Shahgholian, H., Sjölin, P.: L^{2}-estimates for singular oscillatory integral operators. J. Math. Anal. Appl. 441, 529-548 (2016)
2. Carleson, L., Sjölin, P.: Oscillatory integrals and a multiplier problem for the disc. Stud. Math. 44, 287-299 (1972)
3. Hörmander, L.: Oscillatory integrals and multipliers on $F L^{p}$. Ark. Mat. 11, 1-11 (1973)
4. Phong, D., Stein, E.: Hilbert integrals, singular integrals, and Radon transforms I. Acta Math. 157, 99-157 (1986)
5. Sjölin, P.: Convolution with oscillating kernels. Indiana Univ. Math. J. 30, 47-55 (1981)
6. Stein, E.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

[^0]: Communicated by Krzysztof Stempak.
 \boxtimes Per Sjölin
 persj@kth.se
 1 Department of Mathematics, KTH Royal Institute of Technology, 10044 Stockholm, Sweden

