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1 Introduction

Let K denote a singular kernel in R”. Singular integral operators 7', defined by

Tf(x) = f K(x —y)f(dy, x € R", f € C°(R"), have been studied for a very
Rn

long time. Since approximately 1970 there has also been a lot of interest in oscillatory

integral operators. The following theorem describes a typical result.

Theorem 1.1 (see Stein [6], p. 377) Let 11 € Cg°(R* x R") and A > 0 and let ® be
real-valued and smooth. Set

U f(x) = / PR Y (¢ £) f(r)dx, £ € R,

Rn
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and assume that det (%) # 0 on suppyry. Then one has

L Nl 2@y < CAT 211 F ] L2

We shall here consider singular oscillatory integral operators, that is operators
defined by integrals containing both a singular kernel and an oscillating factor. Opera-
tors of this type have been much studied in the theory of convergence of Fourier series
and also in for instance Phong and Stein [4]. We shall continue this study.

Let Yo € C°(R" x R"" 'y and n > 2. For f € L*(R"™!) set

T f(x) = / OO e YK (x — (3, 0) £y’
]Rn—l

forx € R", y > 0, and A > 2. Here for y > 1 we set
K@) =z|7"™""D, z e R" \ {0},
and for0 < y <1 we set
K@ =1lzI"" " Vo), z e R"\ {0},

where w € C°(R" \ {0}), w is homogeneous of degree 0, and w(z) = 0 for all z with
|z = 1 and |z,| < & for some given g9 > 0. We also assume that 0 < m <n — 1.

We shall study the norm of Tj, as an operator from L? (R"~1) to L? (R") and denote
this norm by ||7}|[,. In Aleksanyan et al. [1] the following theorem was proved.

Theorem 1.2 Set o« = (n — 1)/2 and assume y > 1. Then one has

CA=FIDY o < ya — 12,
[Ty ]2 < {CA™%log A, m=ya—1/2,
Ccr™7, m>yo—1/2.

The above choice of phase function is partially motivated by an application to an
inhomogeneous Helmholtz equation where we give estimates for solutions. In this
case we take y = 1 (see [1], p. 544). It is also possible to use 7), to give L?-estimates
for convolution operators. This will be studied in a forthcoming paper.

In [1] it is also proved that || 73|, > cA~"+1/2/Y for y > 1, where ¢ denotes

a positive constant. We shall here prove that this also holds for y = 1 and that
[|Th]l2 = cA=* for y > 1. It follows that the results in Theorem 1.2 are essentially
sharp.

In this paper we shall first study the case n = 2 and 1 < p < oco. We have the
following theorem.
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Theorem 1.3 Assume n = 2 and 0 < y < 1. Then ||Ty|l» < CA~'2, and for
2 < p <4 one has

T ] <{C“””+””/K 1/p+m<y/2,
Allp =

Cerf™1/2, 1/p+m=>y/2,

where ¢ denotes an arbitrary positive number. Also set B(p) = 1—1/pforl < p <2,
and B(p) =2/pford < p <oo. Forl < p <2and4 < p < oo one has

CaWprmly = 1/p+m < yB(p),
ITull, < {CA7PP logh, 1/p+m=yB(p).
CA= W), 1/p+m>yB(p).

We shall also study the sharpness of the estimates in Theorem 1.3. We shall then
estimate the operator S, given by

S.f(x) = / R (K (x — ) F(dys x € B
Rnfl

where n > 2, Y9 € CPR"™! x R"™1), and K (2) = |z|"D, z e R*™1\ {0}
We let |[S], denote the norm of S, as an operator from LP(R"™ Y to LP(R" 1. We
shall prove the following theorem.

Theorem 1.4 Assumen >2,0<m <n—1,y >0,andy # 1. Then

camly, m < ya,
[1Sill2 < 1 CA~%logh, m = ya,
C)\‘—Ol, m > ya7

where @ = (n — 1)/2. Here the constant C depends on n, m, and y.

We shall point out a relation between the operators 7 and S,. We choose y > 1
and take K (z) = |z|~"D, z € R"\ {0}, and let T}, be defined as above. Then
setting x = (x', x,,), where x’ = (x, x2, ..., x,—1) We obtain

DAL 0 = [ T g 0.5)K G = L0 £ ()
Rn-1
that is we obtain an operator of type S,. The reason for introducing the homogeneous
function w in the above definition of 7, for 0 < y < 1 is that we want certain

determinant conditions to be satisfied. This is discussed in [1, p. 539], and in this
paper after the proof of Lemma 2.2.
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We shall also make some remarks on an operator which is somewhat similar to ;.
Set

, x € R"\ {0},

ETC

where @ > 0,a # 1, and @ < n. Then L belongs to the space S’(R") of tempered
distributions and we set

Tf=Lxf fe€CPMRY.
We say that the operator T is bounded on L? (R") if

NTfllp < Cpllfllp. f € CGTRM.

In Sjolin [5] the following theorem is proved.

Theorem 1.5 If @ > n(1 — a/2) set po = na/(na —n + «). Then T is bounded on
LP(R") if and only if po < p < py. Ifa < n(1 —a/2) then T is not bounded on any
LP(R"), 1 < p < oc.

We finally remark that Theorem 1.1 is due to Hormander.
In Sect. 2 we shall give the proofs of Theorems 1.3 and 1.4. In Sect. 3 we shall
discuss the sharpness of the results in these theorems.

2 Proofs of Theorems 1.3 and 1.4

We shall apply the following theorem.
Theorem 2.1 (see Hormander [3], p. 3) Let y; € CO(R), let ¢ € C®(R3) be

real-valued, and assume that the determinant

Pxt Pyt
Pxtt Pytt

2
on suppyri. Here ¢ = @(x, y, t) and @y = gx—g; etc. Set

Uy f(x,y) = /eiN‘/’(x’y’t)wl(x,y,t)f(t)dt, N > 1,
R

for f € LY(R) and (x, y) € R2. It follows that

Wy fllLa@ey < CN"29(q/(q — DI fllrw)

ifq>4and3/q+1/r = 1.
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We shall need an estimate of the norm of U/, as an operator from L? (R) to L” (R?).
We denote this norm by ||l || ,. An application of Theorem 2.1 will give the inequal-
ities in the following lemma.

Lemma 2.2 Let Uy be defined as in Theorem 2.1. Then one has
Unll, < CNTPP 1 < p < o0,
where

1—-1/p, 1<p<2,
Bp)=11/2—¢ 2<p=4,
2/p, 4 < p<oo.

Here ¢ is an arbitrary positive number and C depends on ¢ and p, and in the case
2<p<4 alsoone.

Proof Assume that suppy; C B> x By, where Bj is a ball in R and B; a ball in R2.
We then have Uy f = Un(uf) if u € CG°(R) and u(t) = 1 fort € By. Now take
q > 4 and assume that 3/q + 1/r = 1. It follows that | < r < 4 and using Holder’s
inequality twice and Theorem 2.1 we obtain

U flla < CllUn fllg = ClUN)llg <
CN=24|ufl, < CN~24|ufls < CN24)| f|s.
Hence
U flla < CNEV2| £l (2.1)

forevery & > 0, where the constant depends on . Then we shall obtain an L>-estimate
for the operator {y. From the condition on J in Theorem 2.1 it follows that there
exists a number 8o > 0 such that

So = |T1 = Collgxe| + loy:l)

on suppy;, where Cq depends on ¢.
M
Choose u; € CSO(R3), j = 2,3,..., M, such that Z;Lj(x,y,t) = 1 for
2

(x,y,1) € Q and each u; has support in a small cube. Here Q is a cube in R3
with center at the origin and suppyr; C Q. It follows that

M M
ZEDIRVTEDIN IS
2 2
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where ¥; = 1. Setting

Uy fx,y) = /eiN(p(x’y’t)‘P/(x’y’t)f(t)dt
R

we have

M
= 3 )
j=2
and shall estimate each U/ ,(\f ).
If (x0, yo, to) € suppyr; then (xo, yo, f0) € suppyr1 and |@y | > §/2 or @y | > §/2
at (xo, Yo, fo), where § = 8o/ Co. Say that |¢,,| > 6/2. Then |@y,| > 5/4 on suppy;

since suppy/; is contained in a small cube.
Invoking Theorem 1.1 we get

) 1/2 1/2
( / |u}v”f(x,y>|2dx) <CNV2 ( / If(t)lzdt)

for every y. Integrating in y and summing over j we then obtain

NUN fll2@ey < CNT21F 1 2wy (2.2)
Interpolating between the inequalities (2.1) and (2.2) one has
WUy fliLr@ey < CNV21fllr@), 2 < p <4 (2.3)
for every ¢ > 0.
We then assume g > 4. Choosing u as above we have Uy (f) = Uy (nf) and it
follows that

WU fllg < CNT4 )| ufll, < CNT4|uf llg < CNTHAYfllg, (24)

where we have used Holder’s inequality. It remains to study the case 1 < p < 2.
Interpolating between (2.2) and the trivial estimate ||Uy f||1 < C|| f||1 one obtains

WU fll, < CNIZUP 1, 1< p <2, 2.5)

and Lemma 2.2 follows from (2.2), (2.3), (2.4), and (2.5). O

Now let ¢(x, y, 1) = d¥, whered = ((x —1)* + y»)/2and 0 < y < 1. A
computation shows that

T =7y -2y((y = Dx —)* = »?)
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for d = 1. Since J is a homogeneous function of degree 2y — 5 of (xg, y) where
xo = x — t, we conclude that if 1/2 < d < 2 and |y| > ¢ > 0 on suppy, then
|J| = c1 > 0 on suppy;. Hence (2.2)—(2.5) hold in this case.

We remark that in the case y = 1 J was computed in Carleson and Sjolin [2],
and that in the case y = 1 (2.2) and (2.3) are proved in [2] in the case ¥ (x, y, ) =
x1() x2(x, y), where x| is the characteristic function for the interval [0, 1] and x> is the
characteristic function for the square [0, 1] x [2, 3]. We shall now prove Theorem 1.3.

Proof of Theorem 1.3. We shall estimate the norm of 7, where

Tf(x) = / 0O e YK (x — (3, 0) £ )y
R

where x € R>. Here A > 2,0 < y < 1,and Y9 € CP(R? x R). Also K(z) =
lzI"'w(z), z € R?\ {0}, where 0 < m < 1 and w is described in the introduction.
We first observe that there exists ¥y € Cé’o (Rz), with support in {x € R? :

o0
1/2 < |x| < 2} such that K(z) = > 2K0=my 2k (z) (see Stein [6, p.
k=—00
393]). Since suppiyp is bounded it follows that there exists an integer ko such that

o0

K = > 2kA=m (k) w(z) for all z = x — (¥, 0) with (x,y") € suppyo.
k=ko

We shall assume that kg = 0. The proof in the general case is the same as for

ko = 0. Also choose x € C3°(R) such that suppx C [-1/2—1/10,1/2+1/10] and

o0
2 xt=p=1
Jj=—00
oo
We have T f = >_ Ty «x f where
k=0

Tixf(x) = / MO0 g (e, y) 2Ky (2K (x — (v, 00)) o (x — (v, 0) £ (¥,
R

Also T 1 f = > Ty x fj where fj(t) = f(t)x (2K(t—27%j)). Assuming 1 < p < o0

J
and invoking Holder’s inequality we obtain

Tk f@IP < CO T fj @),
J
since the number of terms in the above sum is bounded.
Setting y/ = 277 we get

Dok fj(x)
- / ORIy (e, )y (240 = O ) (x = (0, ) £ )y’

R
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= p—mk / M2 O 27y (2Fx — @ 0)w(x — 2752, 0)) £;27*2)dZ
R
-2 / MR (2R (255 = (2, 0) w(2Fx = (2, 0) F @K (= )’
R
= [withy = 7/ — jl27"k / PRI e 27K (y 4 g @Ex — (v + /. 0))
R
xw (2% — (' + 1, 0) FQT*G + x()dy =27 / P2 =T =00
R
xPo(x, 275 j + 275y (25 (e — 275, 00) — 0V, 0)w (2 (x — 275, 00) — (v, 0))
x Q7R+ 27y x(v)hdy'.

We also have

J 1Tk fi0)|Pdx = [with x = u + (275 j, 0)]

R2
[ Txfi(u+@7%j,00)|" du = [with & = 2*u]
R2
27 [T f; (2% + 275, 0))|" de. 2.6)

RZ

Now let x € C3°(R) be so that ¥ = 1 on suppy and suppx C [—1, 1]. We then
have

Toa (274 + 275, 0)) = 27 / P E OOy (oK
R
+27%j, 0,27+ 275w (£ — (v, 0)
xw(E — (v, 0) Q7 j+ 275 x X )dy

=2 / Dy (1 )g(y)dy
R
= 27" U1y 8 (&),

where
DO, E) =18 — (0 = (& =y + &)/,

I, E =Y (E = (, 0)o(E - (,0) Yo E+275), 00,275 + 275 )X (),
and

gy = fQ7 i +27)x 0.
Here £ = (1, &) = (¢, &).

) Birkhduser
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It is clear that v/ has a support which is uniformly bounded in j and k, and the
derivatives of 1 can be bounded uniformly in j and k. Here we use the fact thatk > 0.
Invoking (2.6) we conclude that

1/p 1/p

/ ToafiOPdx | = 272%/pymk / Ui 5(6)]7dE
2 2

We set d = (|& — y'|*> + 522)1/2. It follows from the definitions of ¥ and w that
1/2 <d < 2and |&] > ¢ > 0 on suppy;. Hence the determinant 7 for the phase
function @ satisfies | 7| > ¢ > 0 on suppy/, as we remarked after the proof of Lemma
2.2. We can therefore apply Lemma 2.2 and one obtains

1/p

/|Z/{)\2*kyg(§)|pd§ < C()»Ziky)fﬂ(p)HgHLp(R).
2

We have ¢ = g« and

1
/ gjlPdy < / 1FQHj 27k Py = 2 / 1fQ )+ P
R —1

|z/|<27*

and it follows that

o
> / |gjk1Pdy’ < C24||£115.
j=—op

Hence

/|Tx,kf|pdx < CZ/ T i fi1Pdx < C272o=mkr (a=kry=Pp)p
R2 ] R2

S [ 1gialray’ = catamiegatn oy
IR

and we obtain the inequality
1T kllp < C27MP27mE (a2 7Hr) =P ),
Making a trivial estimate we also have

1T k]|, < C27K/Po=mk,

Birkhduser
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o
Invoking the inequality ||T}||, < % [Ty k|| p we obtain
Tl < cr—Bw) Z Qk(=1/p=m+yB(P) 4 ¢ Z 2—k(/p+m) _ 4 4 B.
2k§Al/V Zkle/y
It is clear that B < CA~(1/P+™/7 and in the case 1/p +m < yB(p) we get
A < CA—PW Y p=mtyB(p)y — ) ~A/ptm)/y
and

T3l < cy~/p+m/y.

In the case 1/p + m = yB(p) we get A < Ck_ﬁ(p)logk and [|T;]l, <
CA=PP) Jog .
Finally, in the case 1/p + m > yB(p) we have A < CA PP and || T[], <

cr B,
We remark that in the case p = 2 only the case 1/p +m > yB(p) can occur. The
proof of Theorem 1.3 is complete. O
Before proving Theorem 1.4 we shall make a preliminary observation. Set £ =
(&',&,) where &’ = (&1,&,...,&,—1) andn > 2. Also set x’ = (x1,X2, ..., Xn—1)
and ®(x', £) = d” where y > Oandd = (|§' —x'|> +£2)!/2. In[1, Section 4.1], we
studied the determinant

X = de

for 1/2 < d < 2.1In [1] it is proved that

DI — x'|> + &2

P(x” S-/’ £,) = (_ydy—Z)n—l (y — =

2.7)
Now let ®((x", &) = |/ — x'|Y = d{/ where di = |’ — x’|. We shall need the
determinant

1

2d, \"
Pi(x, €)= det( ! ) .
8xi8$j i,j=1

It is clear that
Pi(x', &) =P, &,0) = (—Vdr_z)”_l(y -1
and for y > 0, y # 1, it follows that

P &) > c>0forl1/2<d <2. 2.8)
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Proof of Theorem 1.4. We shall use the method in the proof of Theorem 1.3 and omit
some details. We assume that

K(z) =Y 2kr=lmmy 2ky),

k=0

where suppyr C {x € R"~!, 1/2 < |x| < 2}. One obtains

Sif =D Suif

k=0

where

S f () = / ST o (r, 2501y (0K (x — 3)) ().
Rnfl

We also have

f= > 1

jEZ"71
where
i =foxkae—27%p), jez ' rer",

and x € Ci° (R~ is like x in the proof of Theorem 1.3.
The Schwarz inequality gives the estimate

1S5 f P < C1Safi (0
J

and arguing as in the proof of Theorem 1.3 we get

Suxfix) = p—mk / e“‘z_ky|2k()f—2_kj)—yly Yolx, 2_kj + 2—ky)
Rnfl
v x —=27% ) =y x FQ7F i+ 27Ky x (n)dy

and

/ 1Sk fj(x)|2dx = 27+0=D / 1Suk fj (27 e + 275 j)Pde.
Rnfl Rnfl
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It follows that

S fj@ e 427Ky =27k / T EN kg 42k 27K j 2Ry
Rn—]
XY E = fQF 27 XX ()dy
= 27" Uy 1, 8 (€)

_ 22—k
=2k / PRIy (y, £)g(v)dy
Rn—l

where @1 (y, §) = [§—yI”, ¥1(y, §) = Y =P E+274j, 275 j+27 0T (),
and g(y) = f27Fj + 27 y)x ().
Invoking the determinant condition (2.8) and Theorem 1.1 we conclude that

1Uso-tr &l 21y < CO27) ™ lgl] 21y
where @ = (n — 1)/2. Arguing as in the proof of Theorem 1.3 we then obtain
IS5 kll2 < C27mkp—epkve

and ||y x|l < C27k,

Hence
ISl <A@ D7 2emmkg X" gk
2k<plly 2k>p1/v
and Theorem 1.4 follows easily from this inequality. O

3 Counter-examples

Assume y > 0,1 < p < 0o, and

T (x) = / OO e VK (x — (v, 0) £ ()Y
Rnfl

where x € R", n > 2, and K (z) = |z|™ " with 0 < m < n — 1. We shall estimate
the norm [|T; ||, = [ITallpr®r-1)— Lr®r) from below. We take ¥y € R~ and set
E = B(y(; coA™”) where B(x; R) denotes a ball with center x and radius R. Also let
F denote a cube in R” with center ( y(/), 100coA ") and side length coA~". We assume
that ¥o(x, y') = 1forx € Fand y' € E.

Birkhauser
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Setting f = x and taking x € F we obtain

nﬂm=/K@—WﬂWW+/@W“”W—nmmwwmwy
E

E
= P(x) + R(x).

Setting p = 1/y we have
MO0 1) < x = (v, 07 < Ceprr ™ = Ceo, ¥ € E,

and

RI = Cen [ Klx = /. 0)ay'
E

Now taking co small we obtain

|T), f(x)]| > C/ K(x -, 0))dy/ > C/)»_p(m_n+1)dy/ — CopPm

E E
and
/ Ty f (x)[Pdx = AP (A PIYP = cp=m/Y \ 7P,
F
On the other hand
1/p
Il = /dy’ — Ca—P=D/p — cy—=D/yp
E
and we have
T llp = C% — e/~ — oy~ pm)]y

The same proof works also in the case K (z) = |z " Tlw(z).
In Theorems 1.2 and 1.3 we proved estimates of the type

T3l < c)~A/p+m/y

and the inequality (3.1) shows that these estimates are sharp.
In Theorem 1.4 we proved the estimate

[Sxlla < CA™™/Y

) Birkhduser
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We shall now prove that also this estimate is sharp. We shall use the same method
as in the above counter-example.

We take xo and yo in R"~! with |xo — yo| = 100cor™? and set E = B(yo; cor™")
and F = B(xo; co»~?). Here E and F are balls in R"~!. Setting f = x and arguing
as above one obtains

1S5, f(x)] = cA™P" forx € F.
It follows that
1S5, f1l2 = e/ = =Dy
and
1 £1l2 = Cam =72y,
We conclude that

[[Salla = ca™™/7

and it follows that (3.2) is sharp.
In Theorems 1.2 and 1.3 we have

Trw = [ g K (x - 04.00) Sy
Rn—]
where x = (', x,) and @(x, y') = (|x' — y'|> + x)7/2.
We let a denote the point (0,1) = (0,0,...,0,1) in R". We assume that

Yo(x, y") = 1 in a neighbourhood of (a, 0) and let f = xp where B = B(0; cor™h)
is a ball in R"~!. For x in a neighbourhood of a one obtains

Tif(x) = / MK (x — (v, 0))dy'.
B

It follows from the mean value theorem that
lp(x, ) — @(x,0)| < Ccor~! for y’ € B
and choosing ¢y small we obtain
IAp(x,y") — Ap(x,0)| < ¢ fory’ € B,

where ¢ is small. It follows that there is no cancellation in the above integral and we
get

|T5 f(x)] = cpa™ D

Birkhauser
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in a neighbourhood of a. Hence
1T fll2 = e32=0 0.

We have || f||2 = c42~"~1D/2 and we obtain

T12 32~ =h — e—=D/2
Ifllz = can—=D2 = 7 '
Hence
[|Tall2 > esp == D/2 (3.3)

and thus the estimates ||73|]2 < CA~®~1D/2 in Theorems 1.2 and 1.3 are sharp.
We shall then construct a similar counter-example for the operator S; in Theorem
1.4. Here we have

Sif(x) = / My (x, K (x — ¥) f(n)dy, x € R™!
Rn—l

where ¢(x, y) = |x — y|¥. Take a = (0,0, ...,0, 1) and assume that ¥o(x, y) = 1
in a neighbourhood of (a, 0). Also let f = yxp where B is as in the previous counter-
example. The same argument as above then gives the estimate ||S; ||, > cA~*—D/2
and it follows that the estimate ||S;,||» < CA~"~1/2 in Theorem 1.4 is sharp.

We shall then again consider the operator 7 in Theorem 1.3. Here we have n = 2
and the above counter-example also gives

—1
||ka||p - A :C)L,a,]/p)

1Tl = >c
POl T AT

for 1 < p < 2. It follows that the estimate
1T, < CAFPP

for 1 < p < 2 in Theorem 1.3 is sharp (since B(p) =1 — 1/p).
In Theorem 1.3 we have

Tof(x,y) = / e Dy (x, y, K (x — £, y) f(1)dt, (x,y) € R?,
R

where o(x, . 1) = ((x — )2 +y?)"? and K () = 21" ' (2).
Setting

Tig(t) = / e YDy Gy DK (x — 1, y)g(x, y)dxdy, t e R,
RZ

Birkhduser
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we get
(To.f. 92 = (/. T, [ € CER), g € CORY),
where (, )2 and (, )1 denote the inner products in L2(R?) and L*(R). It follows that

NTllp = Tl Lr Ry Lr(R2) = ||Tf||Lr(R2)—>L’(R)

where 1/p + 1/r = 1. We shall use this inequality for 4 < p < oco.
Let B denote a disc in R? with center (0, 1) and radius cor~!. Take g € Cy° (R?)
with supportin B,0 < g <1l,and g = 1in %B. Then

1/r
lellr < //dxdy — e
B

and choosing vy such that ¥y(x, y, #) = 1 in a neighbourhood of (0, 1, 0) we get
T = er™?

in a neighbourhood of 0. Hence
1758l = ca 2

and

T A2
T, = ||||Aﬁ||r S — m20-1/n)
8llr

Since 1 — 1/r = 1/p we conclude that
ITollp = 27?4 < p < o0
and it follows that the estimate
|Ta]l, < CA7PP) 4 < p < o0,

in Theorem 1.3 is sharp (since B(p) = 2/p).
In Theorem 1.3 we also have an estimate of the type

T3], < CA71/2Fe

for 2 < p < 4. We shall finally discuss the sharpness of this estimate in the case
y = 1. We shall study the statement

Ty < CA™ 127 for some p with2 < p < 4 and some § > 0. 3.4)
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Omitting details we shall describe how (3.4) leads to a contradiction.
Following Stein [6], p. 393, we have

I . —3k/2 X 2
W-u(x)+k§2 Ip(z—k),xeR\{O},

where u € L'(R?), ¥ is smooth, and suppy C {x € R?; 1/2 < |x| < 2}. We set

ilx]

|x|3/2

= ei\xlu(X) + 2273k/26i|x|w(x/2k)’ x eR? \ {0},
k=1

Ko(x) =

and So f = Ko * f. We define the operator Vi by setting

Vif = 273k/222k(ei2k|x|w) . f =
2k/2(ei2k|x|1//) . f = A]/Z(eiwa/) « f,

where A = 2. Using (3.4) we can prove that
IVellp = Vil Lp g2y o2y < CA 70 = €279,

and the inequality

o0
D IVellp < o0
k=1

implies that Sg is a bounded operator on L? (IR?). It follows that the characteristic func-
tion of the unit disc is a Fourier multiplier for L” (R?). This contradicts Fefferman’s
multiplier theorem.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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