
J Fourier Anal Appl (2017) 23:1408–1425
DOI 10.1007/s00041-016-9507-5

L p-Estimates for Singular Oscillatory Integral
Operators

Per Sjölin1

Received: 20 January 2016 / Revised: 20 September 2016 / Published online: 31 October 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com
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1 Introduction

Let K denote a singular kernel in R
n . Singular integral operators T , defined by

T f (x) = ∫

Rn
K (x − y) f (y)dy, x ∈ R

n , f ∈ C∞
0 (Rn), have been studied for a very

long time. Since approximately 1970 there has also been a lot of interest in oscillatory
integral operators. The following theorem describes a typical result.

Theorem 1.1 (see Stein [6], p. 377) Let ψ1 ∈ C∞
0 (Rn ×R

n) and λ > 0 and let � be
real-valued and smooth. Set

Uλ f (x) =
∫

Rn

eiλ�(x,ξ)ψ1(x, ξ) f (x)dx, ξ ∈ R
n,
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and assume that det
(

∂2�
∂xi ∂ξ j

)
�= 0 on suppψ1. Then one has

||Uλ f ||L2(Rn) ≤ Cλ−n/2|| f ||L2(Rn).

We shall here consider singular oscillatory integral operators, that is operators
defined by integrals containing both a singular kernel and an oscillating factor. Opera-
tors of this type have been much studied in the theory of convergence of Fourier series
and also in for instance Phong and Stein [4]. We shall continue this study.

Let ψ0 ∈ C∞
0 (Rn × R

n−1) and n ≥ 2. For f ∈ L2(Rn−1) set

Tλ f (x) =
∫

Rn−1

eiλ|x−(y′,0)|γ ψ0(x, y
′)K

(
x − (y′, 0)

)
f (y′)dy′

for x ∈ R
n , γ > 0, and λ ≥ 2. Here for γ > 1 we set

K (z) = |z|−(n−m−1), z ∈ R
n \ {0},

and for 0 < γ ≤ 1 we set

K (z) = |z|−(n−m−1)ω(z), z ∈ R
n \ {0},

where ω ∈ C∞(Rn \ {0}), ω is homogeneous of degree 0, and ω(z) = 0 for all z with
|z| = 1 and |zn| ≤ ε0 for some given ε0 > 0. We also assume that 0 < m < n − 1.

We shall study the norm of Tλ as an operator from L p(Rn−1) to L p(Rn) and denote
this norm by ||Tλ||p. In Aleksanyan et al. [1] the following theorem was proved.

Theorem 1.2 Set α = (n − 1)/2 and assume γ ≥ 1. Then one has

||Tλ||2 ≤

⎧
⎪⎨

⎪⎩

Cλ−(m+1/2)/γ , m < γα − 1/2,

Cλ−α log λ, m = γα − 1/2,

Cλ−α, m > γα − 1/2.

The above choice of phase function is partially motivated by an application to an
inhomogeneous Helmholtz equation where we give estimates for solutions. In this
case we take γ = 1 (see [1], p. 544). It is also possible to use Tλ to give L p-estimates
for convolution operators. This will be studied in a forthcoming paper.

In [1] it is also proved that ||Tλ||2 ≥ cλ−(m+1/2)/γ for γ > 1, where c denotes
a positive constant. We shall here prove that this also holds for γ = 1 and that
||Tλ||2 ≥ cλ−α for γ ≥ 1. It follows that the results in Theorem 1.2 are essentially
sharp.

In this paper we shall first study the case n = 2 and 1 < p < ∞. We have the
following theorem.
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Theorem 1.3 Assume n = 2 and 0 < γ ≤ 1. Then ||Tλ||2 ≤ Cλ−1/2, and for
2 < p ≤ 4 one has

||Tλ||p ≤
{
Cλ−(1/p+m)/γ , 1/p + m < γ/2,

Cελ
ε−1/2, 1/p + m ≥ γ /2,

where ε denotes an arbitrary positive number. Also set β(p) = 1−1/p for 1 < p < 2,
and β(p) = 2/p for 4 < p < ∞. For 1 < p < 2 and 4 < p < ∞ one has

||Tλ||p ≤

⎧
⎪⎨

⎪⎩

Cλ−(1/p+m)/γ , 1/p + m < γβ(p),

Cλ−β(p) log λ, 1/p + m = γβ(p),

Cλ−β(p), 1/p + m > γβ(p).

We shall also study the sharpness of the estimates in Theorem 1.3. We shall then
estimate the operator Sλ given by

Sλ f (x) =
∫

Rn−1

eiλ|x−y|γ ψ0(x, y)K (x − y) f (y)dy, x ∈ R
n−1,

where n ≥ 2, ψ0 ∈ C∞
0 (Rn−1 × R

n−1), and K (z) = |z|−(n−m−1), z ∈ R
n−1 \ {0}.

We let ||Sλ||p denote the norm of Sλ as an operator from L p(Rn−1) to L p(Rn−1). We
shall prove the following theorem.

Theorem 1.4 Assume n ≥ 2, 0 < m < n − 1, γ > 0, and γ �= 1. Then

||Sλ||2 ≤

⎧
⎪⎨

⎪⎩

Cλ−m/γ , m < γα,

Cλ−α log λ, m = γα,

Cλ−α, m > γα,

where α = (n − 1)/2. Here the constant C depends on n, m, and γ .

We shall point out a relation between the operators Tλ and Sλ. We choose γ > 1
and take K (z) = |z|−(n−m−1), z ∈ R

n \ {0}, and let Tλ be defined as above. Then
setting x = (x ′, xn), where x ′ = (x1, x2, . . . , xn−1) we obtain

Tλ f (x
′, 0) =

∫

Rn−1

eiλ|x ′−y′|γ ψ0(x
′, 0, y′)K (x ′ − y′, 0) f (y′)dy′,

that is we obtain an operator of type Sλ. The reason for introducing the homogeneous
function ω in the above definition of Tλ for 0 < γ ≤ 1 is that we want certain
determinant conditions to be satisfied. This is discussed in [1, p. 539], and in this
paper after the proof of Lemma 2.2.
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We shall also make some remarks on an operator which is somewhat similar to Sλ.
Set

L(x) = ei |x |a

|x |α , x ∈ R
n \ {0},

where a > 0, a �= 1, and α < n. Then L belongs to the space S ′(Rn) of tempered
distributions and we set

T f = L � f, f ∈ C∞
0 (Rn).

We say that the operator T is bounded on L p(Rn) if

||T f ||p ≤ Cp|| f ||p, f ∈ C∞
0 (Rn).

In Sjölin [5] the following theorem is proved.

Theorem 1.5 If α ≥ n(1 − a/2) set p0 = na/(na − n + α). Then T is bounded on
L p(Rn) if and only if p0 ≤ p ≤ p′

0. If α < n(1− a/2) then T is not bounded on any
L p(Rn), 1 ≤ p ≤ ∞.

We finally remark that Theorem 1.1 is due to Hörmander.
In Sect. 2 we shall give the proofs of Theorems 1.3 and 1.4. In Sect. 3 we shall

discuss the sharpness of the results in these theorems.

2 Proofs of Theorems 1.3 and 1.4

We shall apply the following theorem.

Theorem 2.1 (see Hörmander [3], p. 3) Let ψ1 ∈ C∞
0 (R3), let ϕ ∈ C∞(R3) be

real-valued, and assume that the determinant

J =
∣
∣
∣
∣
ϕxt ϕyt

ϕxtt ϕytt

∣
∣
∣
∣ �= 0

on suppψ1. Here ϕ = ϕ(x, y, t) and ϕxt = ∂2ϕ
∂x∂t etc. Set

UN f (x, y) =
∫

R

eiNϕ(x,y,t)ψ1(x, y, t) f (t)dt, N ≥ 1,

for f ∈ L1(R) and (x, y) ∈ R
2. It follows that

||UN f ||Lq (R2) ≤ CN−2/q(q/(q − 4))1/4|| f ||Lr (R)

if q > 4 and 3/q + 1/r = 1.
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We shall need an estimate of the norm of UN as an operator from L p(R) to L p(R2).
We denote this norm by ||UN ||p. An application of Theorem 2.1 will give the inequal-
ities in the following lemma.

Lemma 2.2 Let UN be defined as in Theorem 2.1. Then one has

||UN ||p ≤ CN−β(p), 1 < p < ∞,

where

β(p) =

⎧
⎪⎨

⎪⎩

1 − 1/p, 1 < p ≤ 2,

1/2 − ε, 2 < p ≤ 4,

2/p, 4 < p < ∞.

Here ε is an arbitrary positive number and C depends on ϕ and p, and in the case
2 < p ≤ 4, also on ε.

Proof Assume that suppψ1 ⊂ B2 × B1, where B1 is a ball in R and B2 a ball in R
2.

We then have UN f = UN (μ f ) if μ ∈ C∞
0 (R) and μ(t) = 1 for t ∈ B1. Now take

q > 4 and assume that 3/q + 1/r = 1. It follows that 1 < r < 4 and using Hölder’s
inequality twice and Theorem 2.1 we obtain

||UN f ||4 ≤ C ||UN f ||q = C ||UN (μ f )||q ≤
CN−2/q ||μ f ||r ≤ CN−2/q ||μ f ||4 ≤ CN−2/q || f ||4.

Hence
||UN f ||4 ≤ CN ε−1/2|| f ||4 (2.1)

for every ε > 0, where the constant depends on ε. Then we shall obtain an L2-estimate
for the operator UN . From the condition on J in Theorem 2.1 it follows that there
exists a number δ0 > 0 such that

δ0 ≤ |J | ≤ C0(|ϕxt | + |ϕyt |)

on suppψ1, where C0 depends on ϕ.

Choose μ j ∈ C∞
0 (R3), j = 2, 3, . . . , M , such that

M∑

2
μ j (x, y, t) = 1 for

(x, y, t) ∈ Q and each μ j has support in a small cube. Here Q is a cube in R
3

with center at the origin and suppψ1 ⊂ Q. It follows that

ψ1 =
M∑

2

ψ1μ j =
M∑

2

ψ j ,
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where ψ j = ψ1μ j . Setting

U ( j)
N f (x, y) =

∫

R

eiNϕ(x,y,t)ψ j (x, y, t) f (t)dt

we have

UN =
M∑

j=2

U ( j)
N

and shall estimate each U ( j)
N .

If (x0, y0, t0) ∈ suppψ j then (x0, y0, t0) ∈ suppψ1 and |ϕxt | ≥ δ/2 or |ϕyt | ≥ δ/2
at (x0, y0, t0), where δ = δ0/C0. Say that |ϕxt | ≥ δ/2. Then |ϕxt | ≥ δ/4 on suppψ j

since suppψ j is contained in a small cube.
Invoking Theorem 1.1 we get

(∫
|U ( j)

N f (x, y)|2dx
)1/2

≤ CN−1/2
(∫

| f (t)|2dt
)1/2

for every y. Integrating in y and summing over j we then obtain

||UN f ||L2(R2) ≤ CN−1/2|| f ||L2(R). (2.2)

Interpolating between the inequalities (2.1) and (2.2) one has

||UN f ||L p(R2) ≤ CN ε−1/2|| f ||L p(R), 2 < p ≤ 4 (2.3)

for every ε > 0.
We then assume q > 4. Choosing μ as above we have UN ( f ) = UN (μ f ) and it

follows that

||Un f ||q ≤ CN−2/q ||μ f ||r ≤ CN−2/q ||μ f ||q ≤ CN−2/q || f ||q , (2.4)

where we have used Hölder’s inequality. It remains to study the case 1 < p < 2.
Interpolating between (2.2) and the trivial estimate ||UN f ||1 ≤ C || f ||1 one obtains

||Un f ||p ≤ CN−(1−1/p)|| f ||p, 1 < p < 2, (2.5)

and Lemma 2.2 follows from (2.2), (2.3), (2.4), and (2.5). 
�
Now let ϕ(x, y, t) = dγ , where d = ((x − t)2 + y2)1/2 and 0 < γ ≤ 1. A

computation shows that

J = γ 2(γ − 2)y
(
(γ − 1)(x − t)2 − y2

)
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for d = 1. Since J is a homogeneous function of degree 2γ − 5 of (x0, y) where
x0 = x − t , we conclude that if 1/2 ≤ d ≤ 2 and |y| ≥ c > 0 on suppψ1, then
|J | ≥ c1 > 0 on suppψ1. Hence (2.2)–(2.5) hold in this case.

We remark that in the case γ = 1 J was computed in Carleson and Sjölin [2],
and that in the case γ = 1 (2.2) and (2.3) are proved in [2] in the case ψ1(x, y, t) =
χ1(t)χ2(x, y), whereχ1 is the characteristic function for the interval [0, 1] andχ2 is the
characteristic function for the square [0, 1]× [2, 3]. We shall now prove Theorem 1.3.

Proof of Theorem 1.3. We shall estimate the norm of Tλ where

Tλ f (x) =
∫

R

eiλ|x−(y′,0)|γ ψ0(x, y
′)K

(
x − (y′, 0)

)
f (y′)dy′,

where x ∈ R
2. Here λ ≥ 2, 0 < γ ≤ 1, and ψ0 ∈ C∞

0 (R2 × R). Also K (z) =
|z|m−1ω(z), z ∈ R

2 \ {0}, where 0 < m < 1 and ω is described in the introduction.
We first observe that there exists ψ ∈ C∞

0 (R2), with support in {x ∈ R
2 :

1/2 ≤ |x | ≤ 2} such that K (z) =
∞∑

k=−∞
2k(1−m)ψ(2k z)ω(z) (see Stein [6, p.

393]). Since suppψ0 is bounded it follows that there exists an integer k0 such that

K (z) =
∞∑

k=k0

2k(1−m)ψ(2k z)ω(z) for all z = x − (y′, 0) with (x, y′) ∈ suppψ0.

We shall assume that k0 = 0. The proof in the general case is the same as for
k0 = 0. Also choose χ ∈ C∞

0 (R) such that suppχ ⊂ [−1/2− 1/10, 1/2+ 1/10] and
∞∑

j=−∞
χ(t − j) = 1.

We have Tλ f =
∞∑
k=0

Tλ,k f where

Tλ,k f (x) =
∫

R

eiλ|x−(y′,0)|γ ψ0(x, y
′)2k(1−m)ψ

(
2k(x − (y′, 0))

)
ω(x − (y′, 0)) f (y′)dy′,

Also Tλ,k f = ∑

j
Tλ,k f j where f j (t) = f (t)χ

(
2k(t−2−k j)

)
. Assuming 1 < p < ∞

and invoking Hölder’s inequality we obtain

|Tλ,k f (x)|p ≤ C
∑

j

|Tλ,k f j (x)|p,

since the number of terms in the above sum is bounded.
Setting y′ = 2−k z′ we get

Tλ,k f j (x)

=
∫

R

eiλ|x−(y′,0)|γ 2k(1−m)ψ0(x, y
′)ψ

(
2k(x − (y′, 0))

)
ω

(
x − (y′, 0)

)
f j (y

′)dy′
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= 2−mk
∫

R

eiλ|x−2−k (z′,0)|γ ψ0(x, 2
−k z′)ψ

(
2k x − (z′, 0)

)
ω

(
x − 2−k(z′, 0)

)
f j (2

−k z′)dz′

= 2−mk
∫

R

eiλ2
−kγ |2k x−(z′,0)|γ ψ0(x, 2

−k z′)ψ
(
2k x − (z′, 0)

)
ω

(
2k x−(z′, 0)

)
f (2−k z′)χ(z′− j)dz′

= [with y′ = z′ − j]2−mk
∫

R

eiλ2
−kγ |2k x−(y′+ j,0)|γ ψ0(x, 2

−k(y′ + j))ψ(2k x − (y′ + j, 0))

×ω
(
2k x − (y′ + j, 0)

)
f (2−k(y′ + j))χ(y′)dy′ = 2−mk

∫

R

eiλ2
−kγ |2k (x−(2−k j,0))−(y′,0)|γ

×ψ0(x, 2
−k j + 2−k y′)ψ

(
2k(x − (2−k j, 0)) − (y′, 0)

)
ω

(
2k(x − (2−k j, 0)) − (y′, 0)

)

× f (2−k j + 2−k y′)χ(y′)dy′.

We also have

∫

R2

|Tλ,k f j (x)|pdx = [with x = u + (2−k j, 0)]
∫

R2

∣
∣Tλ,k f j

(
u + (2−k j, 0)

)∣∣p du = [with ξ = 2ku]

2−2k
∫

R2

∣
∣Tλ,k f j

(
2−kξ + (2−k j, 0)

)∣∣p dξ. (2.6)

Now let χ̃ ∈ C∞
0 (R) be so that χ̃ = 1 on suppχ and suppχ̃ ⊂ [−1, 1]. We then

have

Tλ,k f j
(
2−kξ + (2−k j, 0)

) = 2−mk
∫

R

eiλ2
−kγ |ξ−(y′,0)|γ ψ0(2

−kξ

+(2−k j, 0), 2−k j + 2−k y′)ψ
(
ξ − (y′, 0)

)

×ω
(
ξ − (y′, 0)

)
f (2−k j + 2−k y′)χ(y′)χ̃(y′)dy′

= 2−mk
∫

R

eiλ2
−kγ �(y′,ξ)ψ1(y

′, ξ)g(y′)dy′

= 2−mkUλ2−kγ g(ξ),

where

�(y′, ξ) = |ξ − (y′, 0)|γ = (|ξ ′ − y′|2 + ξ22 )γ /2,

ψ1(y
′, ξ)=ψ

(
ξ − (y′, 0)

)
ω

(
ξ − (y′, 0)

)
ψ0(2

−kξ+(2−k j, 0), 2−k j + 2−k y′)χ̃(y′),

and

g(y′) = f (2−k j + 2−k y′)χ(y′).

Here ξ = (ξ1, ξ2) = (ξ ′, ξ2).
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It is clear that ψ1 has a support which is uniformly bounded in j and k, and the
derivatives ofψ1 can be bounded uniformly in j and k. Here we use the fact that k ≥ 0.

Invoking (2.6) we conclude that

⎛

⎜
⎝

∫

R2

|Tλ,k f j (x)|pdx
⎞

⎟
⎠

1/p

= 2−2k/p2−mk

⎛

⎜
⎝

∫

R2

|Uλ2−kγ g(ξ)|pdξ

⎞

⎟
⎠

1/p

.

We set d = (|ξ ′ − y′|2 + ξ22 )1/2. It follows from the definitions of ψ and ω that
1/2 ≤ d ≤ 2 and |ξ2| ≥ c > 0 on suppψ1. Hence the determinant J for the phase
function� satisfies |J | ≥ c > 0 on suppψ1, as we remarked after the proof of Lemma
2.2. We can therefore apply Lemma 2.2 and one obtains

⎛

⎜
⎝

∫

R2

|Uλ2−kγ g(ξ)|pdξ

⎞

⎟
⎠

1/p

≤ C(λ2−kγ )−β(p)||g||L p(R).

We have g = g j,k and

∫

R

|g j,k |pdy′ ≤
1∫

−1

| f (2−k j + 2−k y′)|pdy′ = 2k
∫

|z′|≤2−k

| f (2−k j + z′)|pdz′

and it follows that

∞∑

j=−∞

∫

R

|g j,k |pdy′ ≤ C2k || f ||pp.

Hence
∫

R2

|Tλ,k f |pdx ≤ C
∑

j

∫

R2

|Tλ,k f j |pdx ≤ C2−2k2−mkp(λ2−kγ )−β(p)p

∑

j

∫

R

|g j,k |pdy′ ≤ C2−k2−mkp(λ2−kγ )−pβ(p)|| f ||pp

and we obtain the inequality

||Tλ,k ||p ≤ C2−k/p2−mk(λ2−kγ )−β(p).

Making a trivial estimate we also have

||Tλ,k ||p ≤ C2−k/p2−mk .
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Invoking the inequality ||Tλ||p ≤
∞∑
0

||Tλ,k ||p we obtain

||Tλ||p ≤ Cλ−β(p)
∑

2k≤λ1/γ

2k(−1/p−m+γβ(p)) + C
∑

2k≥λ1/γ

2−k(1/p+m) = A + B.

It is clear that B ≤ Cλ−(1/p+m)/γ and in the case 1/p + m < γβ(p) we get

A ≤ Cλ−β(p)λ(−1/p−m+γβ(p))/γ = Cλ−(1/p+m)/γ

and

||Tλ||p ≤ Cλ−(1/p+m)/γ .

In the case 1/p + m = γβ(p) we get A ≤ Cλ−β(p) log λ and ||Tλ||p ≤
Cλ−β(p) log λ.

Finally, in the case 1/p + m > γβ(p) we have A ≤ Cλ−β(p) and ||Tλ||p ≤
Cλ−β(p).

We remark that in the case p = 2 only the case 1/p + m > γβ(p) can occur. The
proof of Theorem 1.3 is complete. 
�

Before proving Theorem 1.4 we shall make a preliminary observation. Set ξ =
(ξ ′, ξn) where ξ ′ = (ξ1, ξ2, . . . , ξn−1) and n ≥ 2. Also set x ′ = (x1, x2, . . . , xn−1)

and �(x ′, ξ) = dγ where γ > 0 and d = (|ξ ′ − x ′|2 + ξ2n )1/2. In [1, Section 4.1], we
studied the determinant

P(x ′, ξ ′, ξn) = det

(
∂2�

∂xi∂ξ j

)n−1

i, j=1

for 1/2 ≤ d ≤ 2. In [1] it is proved that

P(x ′, ξ ′, ξn) = (−γ dγ−2)n−1 (γ − 1)|ξ ′ − x ′|2 + ξ2n

d2
. (2.7)

Now let �1(x ′, ξ ′) = |ξ ′ − x ′|γ = dγ
1 where d1 = |ξ ′ − x ′|. We shall need the

determinant

P1(x
′, ξ ′) = det

(
∂2�1

∂xi∂ξ j

)n−1

i, j=1
.

It is clear that

P1(x
′, ξ ′) = P(x ′, ξ ′, 0) = (−γ dγ−2

1 )n−1(γ − 1)

and for γ > 0, γ �= 1, it follows that

|P1(x ′, ξ ′)| ≥ c > 0 for 1/2 ≤ d1 ≤ 2. (2.8)
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Proof of Theorem 1.4. We shall use the method in the proof of Theorem 1.3 and omit
some details. We assume that

K (z) =
∞∑

k=0

2k(n−1−m)ψ(2k z),

where suppψ ⊂ {x ∈ R
n−1, 1/2 ≤ |x | ≤ 2}. One obtains

Sλ f =
∞∑

k=0

Sλ,k f

where

Sλ,k f (x) =
∫

Rn−1

eiλ|x−y|γ ψ0(x, y)2
k(n−1−m)ψ

(
2k(x − y)

)
f (y)dy.

We also have

f =
∑

j∈Zn−1

f j ,

where

f j (t) = f (t)χ
(
2k(t − 2−k j)

)
, j ∈ Z

n−1, t ∈ R
n−1,

and χ ∈ C∞
0 (Rn−1) is like χ in the proof of Theorem 1.3.

The Schwarz inequality gives the estimate

|Sλ,k f (x)|2 ≤ C
∑

j

|Sλ,k f j (x)|2

and arguing as in the proof of Theorem 1.3 we get

Sλ,k f j (x) = 2−mk
∫

Rn−1

eiλ2
−kγ |2k (x−2−k j)−y|γ ψ0(x, 2

−k j + 2−k y)

ψ(2k(x − 2−k j) − y) × f (2−k j + 2−k y)χ(y)dy

and

∫

Rn−1

|Sλ,k f j (x)|2dx = 2−k(n−1)
∫

Rn−1

|Sλ,k f j (2
−kξ + 2−k j)|2dξ.
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It follows that

Sλ,k f j (2
−kξ + 2−k j) = 2−mk

∫

Rn−1

eiλ2
−kγ |ξ−y|γ ψ0(2

−kξ + 2−k j, 2−k j + 2−k y)

× ψ(ξ − y) f (2−k j + 2−k y)χ(y)χ̃(y)dy

= 2−mkUλ2−kγ g(ξ)

= 2−mk
∫

Rn−1

eiλ2
−kγ �1(y,ξ)ψ1(y, ξ)g(y)dy

where�1(y, ξ) = |ξ−y|γ ,ψ1(y, ξ) = ψ(ξ−y)ψ0(2−kξ+2−k j, 2−k j+2−k y)χ̃(y),
and g(y) = f (2−k j + 2−k y)χ(y).

Invoking the determinant condition (2.8) and Theorem 1.1 we conclude that

||Uλ2−kγ g||L2(Rn−1) ≤ C(λ2−kγ )−α||g||L2(Rn−1)

where α = (n − 1)/2. Arguing as in the proof of Theorem 1.3 we then obtain

||Sλ,k ||2 ≤ C2−mkλ−α2kγα

and ||Sλ,k ||2 ≤ C2−mk .
Hence

||Sλ||2 ≤ Cλ−α
∑

2k≤λ1/γ

2(γ α−m)k +
∑

2k≥λ1/γ

2−mk

and Theorem 1.4 follows easily from this inequality. 
�

3 Counter-examples

Assume γ > 0, 1 < p < ∞, and

Tλ f (x) =
∫

Rn−1

eiλ|x−(y′,0)|γ ψ0(x, y
′)K

(
x − (y′, 0)

)
f (y′)dy′,

where x ∈ R
n , n ≥ 2, and K (z) = |z|m−n+1 with 0 < m < n − 1. We shall estimate

the norm ||Tλ||p = ||Tλ||L p(Rn−1)→L p(Rn) from below. We take y′
0 ∈ R

n−1 and set
E = B(y′

0; c0λ−ρ) where B(x; R) denotes a ball with center x and radius R. Also let
F denote a cube in Rn with center (y′

0, 100c0λ
−ρ) and side length c0λ−ρ . We assume

that ψ0(x, y′) = 1 for x ∈ F and y′ ∈ E .
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Setting f = χE and taking x ∈ F we obtain

Tλ f (x) =
∫

E

K
(
x − (y′, 0)

)
dy′ +

∫

E

(eiλ|x−(y′,0)|γ − 1)K
(
x − (y′, 0)

)
dy′

= P(x) + R(x).

Setting ρ = 1/γ we have

|eiλ|x−(y′,0)|γ − 1| ≤ λ|x − (y′, 0)|γ ≤ Cc0λλ−ργ = Cc0, y′ ∈ E,

and

|R(x)| ≤ Cc0

∫

E

K
(
x − (y′, 0)

)
dy′.

Now taking c0 small we obtain

|Tλ f (x)| ≥ c
∫

E

K
(
x − (y′, 0)

)
dy′ ≥ c

∫

E

λ−ρ(m−n+1)dy′ = Cλ−ρm

and
∫

F

|Tλ f (x)|pdx ≥ cλ−ρm(λ−ρn)1/p = cλ−m/γ λ−n/γ p.

On the other hand

|| f ||p =
⎛

⎝
∫

E

dy′
⎞

⎠

1/p

= Cλ−ρ(n−1)/p = Cλ−(n−1)/γ p

and we have

||Tλ||p ≥ c
λ−m/γ λ−n/γ p

λ−(n−1)/γ p
= cλ−m/γ λ−1/γ p = cλ−(1/p+m)/γ . (3.1)

The same proof works also in the case K (z) = |z|m−n+1ω(z).
In Theorems 1.2 and 1.3 we proved estimates of the type

||Tλ||p ≤ Cλ−(1/p+m)/γ

and the inequality (3.1) shows that these estimates are sharp.
In Theorem 1.4 we proved the estimate

||Sλ||2 ≤ Cλ−m/γ . (3.2)
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We shall now prove that also this estimate is sharp. We shall use the same method
as in the above counter-example.

We take x0 and y0 in Rn−1 with |x0 − y0| = 100c0λ−ρ and set E = B(y0; c0λ−ρ)

and F = B(x0; c0λ−ρ). Here E and F are balls inRn−1. Setting f = χE and arguing
as above one obtains

|Sλ f (x)| ≥ cλ−ρm for x ∈ F.

It follows that

||Sλ f ||2 ≥ cλ−m/γ λ−(n−1)/2γ

and

|| f ||2 = Cλ−(n−1)/2γ .

We conclude that

||Sλ||2 ≥ cλ−m/γ

and it follows that (3.2) is sharp.
In Theorems 1.2 and 1.3 we have

Tλ f (x) =
∫

Rn−1

eiλϕ(x,y′)ψ0(x, y
′)K

(
x − (y′, 0)

)
f (y′)dy′

where x = (x ′, xn) and ϕ(x, y′) = (|x ′ − y′|2 + x2n )
γ /2.

We let a denote the point (0, 1) = (0, 0, . . . , 0, 1) in R
n . We assume that

ψ0(x, y′) = 1 in a neighbourhood of (a, 0) and let f = χB where B = B(0; c0λ−1)

is a ball in Rn−1. For x in a neighbourhood of a one obtains

Tλ f (x) =
∫

B

eiλϕ(x,y′)K
(
x − (y′, 0)

)
dy′.

It follows from the mean value theorem that

|ϕ(x, y′) − ϕ(x, 0)| ≤ Cc0λ
−1 for y′ ∈ B

and choosing c0 small we obtain

|λϕ(x, y′) − λϕ(x, 0)| ≤ c1 for y
′ ∈ B,

where c1 is small. It follows that there is no cancellation in the above integral and we
get

|Tλ f (x)| ≥ c2λ
−(n−1)
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in a neighbourhood of a. Hence

||Tλ f ||2 ≥ c3λ
−(n−1).

We have || f ||2 = c4λ−(n−1)/2 and we obtain

||Tλ||2
|| f ||2 ≥ c3λ−(n−1)

c4λ−(n−1)/2
= c5λ

−(n−1)/2.

Hence
||Tλ||2 ≥ c5λ

−(n−1)/2 (3.3)

and thus the estimates ||Tλ||2 ≤ Cλ−(n−1)/2 in Theorems 1.2 and 1.3 are sharp.
We shall then construct a similar counter-example for the operator Sλ in Theorem

1.4. Here we have

Sλ f (x) =
∫

Rn−1

eiλϕ(x,y)ψ0(x, y)K (x − y) f (y)dy, x ∈ R
n−1,

where ϕ(x, y) = |x − y|γ . Take a = (0, 0, . . . , 0, 1) and assume that ψ0(x, y) = 1
in a neighbourhood of (a, 0). Also let f = χB where B is as in the previous counter-
example. The same argument as above then gives the estimate ||Sλ||2 ≥ cλ−(n−1)/2

and it follows that the estimate ||Sλ||2 ≤ Cλ−(n−1)/2 in Theorem 1.4 is sharp.
We shall then again consider the operator Tλ in Theorem 1.3. Here we have n = 2

and the above counter-example also gives

||Tλ||p ≥ ||Tλ f ||p
|| f ||p ≥ c

λ−1

λ−1/p = cλ−(1−1/p)

for 1 ≤ p < 2. It follows that the estimate

||Tλ||p ≤ Cλ−β(p)

for 1 < p < 2 in Theorem 1.3 is sharp (since β(p) = 1 − 1/p).
In Theorem 1.3 we have

Tλ f (x, y) =
∫

R

eiλϕ(x,y,t)ψ0(x, y, t)K (x − t, y) f (t)dt, (x, y) ∈ R
2,

where ϕ(x, y, t) = (
(x − t)2 + y2

)γ /2 and K (z) = |z|m−1ω(z).
Setting

T ∗
λ g(t) =

∫

R2

e−iλϕ(x,y,t)ψ0(x, y, t)K (x − t, y)g(x, y)dxdy, t ∈ R,
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we get

(Tλ f, g)2 = ( f, T ∗
λ g)1, f ∈ C∞

0 (R), g ∈ C∞
0 (R2),

where (, )2 and (, )1 denote the inner products in L2(R2) and L2(R). It follows that

||Tλ||p = ||Tλ||L p(R)→L p(R2) ≥ ||T ∗
λ ||Lr (R2)→Lr (R)

where 1/p + 1/r = 1. We shall use this inequality for 4 ≤ p < ∞.
Let B denote a disc in R

2 with center (0, 1) and radius c0λ−1. Take g ∈ C∞
0 (R2)

with support in B, 0 ≤ g ≤ 1, and g = 1 in 1
2 B. Then

||g||r ≤
⎛

⎝
∫∫

B

dxdy

⎞

⎠

1/r

= cλ−2/r

and choosing ψ0 such that ψ0(x, y, t) = 1 in a neighbourhood of (0, 1, 0) we get

|T ∗
λ g(t)| ≥ cλ−2

in a neighbourhood of 0. Hence

||T ∗
λ g||r ≥ cλ−2

and

||T ∗
λ ||r ≥ ||T ∗

λ g||r
||g||r ≥ c

λ−2

λ−2/r = cλ−2(1−1/r).

Since 1 − 1/r = 1/p we conclude that

||Tλ||p ≥ cλ−2/p, 4 ≤ p < ∞

and it follows that the estimate

||Tλ||p ≤ Cλ−β(p), 4 < p < ∞,

in Theorem 1.3 is sharp (since β(p) = 2/p).
In Theorem 1.3 we also have an estimate of the type

||Tλ||p ≤ Cλ−1/2+ε

for 2 < p < 4. We shall finally discuss the sharpness of this estimate in the case
γ = 1. We shall study the statement

||Tλ||p ≤ Cλ−1/2−δ for some p with 2 < p < 4 and some δ > 0. (3.4)
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Omitting details we shall describe how (3.4) leads to a contradiction.
Following Stein [6], p. 393, we have

1

|x |3/2 = u(x) +
∞∑

k=1

2−3k/2ψ
( x

2k

)
, x ∈ R

2 \ {0},

where u ∈ L1(R2), ψ is smooth, and suppψ ⊂ {x ∈ R
2; 1/2 ≤ |x | ≤ 2}. We set

K0(x) = ei |x |

|x |3/2 = ei |x |u(x) +
∞∑

k=1

2−3k/2ei |x |ψ(x/2k), x ∈ R
2 \ {0},

and S0 f = K0 � f . We define the operator Vk by setting

Vk f = 2−3k/222k(ei2
k |x |ψ) � f =

2k/2(ei2
k |x |ψ) � f = λ1/2(eiλ|x |ψ) � f,

where λ = 2k . Using (3.4) we can prove that

||Vk ||p = ||Vk ||L p(R2)→L p(R2) ≤ Cλ−δ = C2−kδ,

and the inequality

∞∑

k=1

||Vk ||p < ∞

implies that S0 is a bounded operator on L p(R2). It follows that the characteristic func-
tion of the unit disc is a Fourier multiplier for L p(R2). This contradicts Fefferman’s
multiplier theorem.
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