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1 Introduction and Statement of the Results
1.1 Grushin Operator
On R™! = R” x R we consider the Grushin operator

c 92 /\2 92 2 92
L=-> 8x/.zju(xj) e et el e 2

Jj=1 J

where R” x R 3 x = (x’, x”), x" = (x], x5, ..., x,) € R", x” € R. The operator £
is homogeneous of degree 2 with respect to the dilations

Six = (tx', 12x"),

that is, £(f o 8;)(x) = t>(LF)(8;x). It is well known £ is a hypoelliptic operator. It
is related to the Heisenberg group H,,. Actually the Grushin operator £ is the image
of a sub-Laplacian L associated to Hl, under a representation 7 acting on functions
on R"*! In fact we make use of this relation to prove some crucial estimates on some
kernels related to L.

The control distance on R"*! associated with £ is defined by

d(x,y) = sup [Y(x) — ¥ (¥,
veD

where D = {yy € WHoR"*!) . z';:l(|ax_;_w|2 + |x;ax~¢|2) < 1}. It is homoge-
neous, that is,

d(5sx, SSY) = Sd(X, Y)

and behaves like:

|x”—y"| if 1x” — v /2 < |y ’
doy) ~ =y R T SR
lx” =y V2 =y s X+ 1Y),
see, e.g., [18,20] for details. Clearly,
n
170 = fOI = dx9) D (184 Flloe + 18 floo) (1.2)

j=1

Let B(x,r) ={y € X:d(x,y) < r} denote the ball with center x and radius > 0
in the metric d(x, y) and |B(X, r)| be its Lebesgue measure volume. Then

B, )~ rFmax{r, x)) ~ o (2] (1.3)

and, consequently,
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n+1 n+2
(5) <M<(5) CR>r>0. (1.4)

r ~Bx, )| T \r

The homogeneity of the distance d implies
|B@sx, s7)| = s" 2| B(x, 7). (1.5)

The space X = R" x R equipped with the Lebesgue measure dx and the distance
d(x,y) is the space of homogeneous type in the sense of Coifman—Weiss [7]. It is well
known (see e.g., [20]) that —L generates a semigroup of self-adjoint linear operators
e~ '£ on L2(X) which has the form

'L F(x) = /X Hy(x, y) f ¥)dy,

where the heat kernel H;(x,y) satisfies the Gaussian upper bound estimates (see
(2.13)).

1.2 Hardy Space Hll:

Let M, f(x) = sup,~g |e‘t£ f(x)| be the maximal function associated with the
semigroup e~ '~. The upper Gaussian estimates (2.13) imply that M/ is bounded on
LP(X) for 1 < p < oo and of weak-type (1,1). We define the Hardy space

Hi={feLl'X: Mcfel'X),

Iy = IMefllx)-

Now we define atoms associated to the homogeneous space X.

1.3 Atoms

Fix 1 < g < oo. A function a is called a (1, ¢)-atom for the Hardy space H'(X) if
there is aball B = B(x,r) = {y: d(X,y) < r} such that
suppa C B,
1_ .
lallze < 1BI7 " (lallz= <[B! if ¢ = o0),

Ja(y)dy = 0.
The atomic norm is given by

1F gy, o = > 11,

where the infimum is taken over all decompositions f = > Ajaj, A; € C, a; are
(1, ¢)-atoms for H'(X).
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We are now in a position to state our first result.

Theorem 1.1 For every q € (1, o] the space H é admits atomic decomposition and
the norms ”f”Hi and || fll ;1 (x) are equivalent.
atom, g

1.4 Riesz Transforms

The system of Riesz transforms R, j = 1,2, ..., 2n, associated with £ is defined
by

R] = BX}C_I/z, Rn+j :x(;ax//ﬁ_l/z, ] =1,2,...,n.

This formal definition has a precise meaning and the operators R ; are Calder6n—
Zygmund operators on X. Moreover, R ; are well-defined in the sense of distributions
on L'(X) (see Sect. 4). Our second main result is the following theorem.

Theorem 1.2 An L'(X) function F belongs to Hé ifand only if R; F € L' (X) for

j=1,2,...,2n. Moreover, there is a constant C > 0 such that
2n
CTIFlgy < 1F e + Z% IR Flliox) < ClIF .- (1.6)
j:

The theory of the classical real Hardy spaces on R” has its origin in studying
holomorphic function of one variable. The reader is referred to the very original works:
Stein and Weiss [23], Burkholder et al. [2], Fefferman and Stein [11], and Coifman
[6]. The spaces are natural extensions of L? spaces and many operators occurring in
harmonic analysis, like convolution singular integral operators, are bounded on them.
The theory was then extended to the spaces of homogeneous type (see [8,17,25]).
More information about the classical real H? spaces with their characterizations and
historical remarks can be also found in [22]. In [13] the authors provide a very general
approach to the theory of H'! spaces for semigroups of linear operators satisfying
Davies—Gaffney estimates and in particular Gaussian bounds. Let us point out, that
in the context of semigroups, the classical Hardy spaces can be thought as those
associated with the Laplace operator on R".

In the monograph [12] Folland and Stein study H” spaces on homogeneous nilpo-
tent Lie groups proving equivalence of their definitions by means of maximal functions,
square functions, and atoms. Important contributions to the theory of Hardy spaces
on homogeneous groups are their characterizations by Riesz transforms proved in
Christ and Geller [5]. To this end the authors of [5] extended Uchiyama’s theorem
(see [26]) about Fefferman—Stein decomposition of BMO functions on R” to homo-
geneous nilpotent Lie groups. Let us emphasise that our proof of the Riesz transforms
characterization of Hardy space H é associated with the Grushin operator (see The-
orem 1.2) takes an inspiration from [5]. We make use of the relation between £ and
L via the already mentioned representation 7 and transfer the methods of [5] into the
space of homogeneous type X.
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Let us also remark that our proof of Theorem 1.1 is based on Uchiyama results [25]
about characterization of Hardy spaces on spaces of homogeneous type by maximal
functions and atomic decompositions.

The Grushin operator £ we consider here is a special example of operators of the
form L = —Ay — |x'?Ayr, (x', x") € R" x R™. It seems likely the methods we
present here combined with [5] and relation of L. with the Heisenberg—Reiter groups
(see, e.g., [18]) will allow to develop the theory of Hardy spaces for L.

1.5 Organization of the Paper

In Sect. 2 we describe relation of the Grushin operator and the sub-Laplacian on
the Heisenberg group via a unitary representation and derive estimates on the heat
kernel of exp(—tL). Section 3 is devoted to proving Theorem 1.1. In Sect. 4 we
study properties of kernels which are obtained as images by the representation of
some singular integral kernels on H,. The crucial theorem about decompositions of
compactly supported BMO functions by means of singular integrals is stated in Sect. 5
and its proof is completed in Appendixes 1 and 2. The proof of the Riesz transforms
characterization of the Hardy space H é is presented in Sect. 6.

2 Relation with the Heisenberg Group

In this section we describe relation between the Grushin operator £ and the sub-
Laplacian L on the Heisenberg group H,,. As we will see £ occurs as an image of
L in a special unitary representation 7 of H, (see [15,19]). We start this section by
recalling basic facts from the analysis on the Heisenberg group.

2.1 Heisenberg Group

The Heisenberg group H, is a Lie group with the underlying manifold R>*+! =
R" x R" x R and the group multiplication

1
(x,y,t)(u,v,s):(x+u,y+v,t+s+§(y~u—x~v)),

where x - y is the standard inner product in R”. We shall also denote the elements of the
Heisneberg group by x = (x, y, 7). Thenx ! = —x = (—x, —y, —1). The Lebesgue
measure dx on RZ*! turns out to be the bi-invariant Haar measure on H,,. Clearly,
H,, is a homogeneous nilpotent Lie group with dilations 8, (x, y, ) = (sx, sy, s21).
We fix a homogeneous norm on Hj, to be so called Koranyi norm given by

1/4

| = Cx, y, 0 = (x> + [y + 161%) 2.1

The function H,, > x — |x| € R;U{0} is smooth away from the origin, homogeneous
of degree one, that is, [6;x| = s|x|, and symmetric (|x| = | — x|). Moreover, |xy| <
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|x| + |y|. Clearly, | (x, y, £)| ~ |x| 4+ |y| + |¢|'/?. The homogeneous dimension of H,,
is denoted by D and in our case D = 2n + 2.

We choose the standard basis of the left-invariant vector fields:
1

1 .
2}’/'3% Xn+j:8yj__xj8tv ]:1,2,...,11, X2n+1=811

Xj=0x + 2

and the corresponding right-invariant vector fields:
1 1 .
Yj=0y =320 Yorj =0y + 20, j=12....n Youp1 =0
Obviously, for j = 1,2, ..., n we have

Xj=Yj+w;iYoutr1, Xnyj=Yurj+wWarjYour1, Xont1 = Yont1, (2.2)

where w;(x) = w;(x, y,1) = yj, Wayj(X) = Wpj(x, y, 1) = —x;.
We apply the usual notation for higher order derivatives (see [12]). If I =
(i1, 02, - .., iopy1) € (NU {0} F1 is a multi-index, we set

1 _ yilyi2 i2n+1 I _ yityi2 i2n+1
X _X]Xz...X2n+], Y'=1,'Y, ...Y2n+],

d(I)=1i1+ i+ -+ iy + 2izy4+1 is the homogeneous degree of 1.

Let L = — Zii 1 X,% denote the left-invariant sub-Laplacian on H,,. It is well-
known (see e.g., [27]) that the corresponding heat semigroup e~*L is given by
the convolution e_SLf(x, y,t) = f * hg(x,y,t) with a heat kernel hs(x, y, 1) =
hs(—x, —y, —t) which satisfies

hy(x,y,1) =5 PR (S-12(x, v, 1)), 2.3)
sTD2e=ClEy Dl s < (g 1) < §7P2pmeley s 2.4)
|XIYJ]’IS()C, y’ t)l S CI’JS—(D+d(I)+d(J))/Ze—C\(x,y,l)|2/s. (25)

2.2 Unitary Representation

We define the unitary representation of H,, on L*(X) by

1
Ty f(X) =Ty & x") = f (x’ +y,x" +t+ 7%y +x -x’)
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(cf. Meyer [19]). It is easy to see that

XN F@, 2" = n (V) f@,x") = X fO, 27, j=1.2,....n,
N(Xﬂ-‘!‘j)f(x/s -x//) = n(Y/H-j)f(-x/’ X//) = ax//.f(x/v x//)a .] = 11 2’ s,

T Xt 1) f(x', X" = w(Youg) f (X, X7) = Oy f (7, X7).

Hence, 7 (L) = L.
For a function F € L' (H,) we set

ﬂ(F)f(x/,xU)Z/ F(x,y,t)ﬂ(x,y,z)f(x/,x//)=/ﬂ(F)(X, ) f(y)dy,

H, X

where

1
T (F)(x,y) =/ F (z, yo=x =X = 5% (' +x’)) dz. (2.6)
Rn

Clearly, if F € L'(H,), then

/ﬂ(F)(x,y)dx:/n’(F)(X,y)dy:/ F(x,y,t)dxdydt, 2.7
X X H,

T (F)(X,y) = s~ "2 (F) (8,210, 8,-12Y)), (2.8)

where here and subsequently Fy(x, y,t) = s_D/ZF(Bfl/z (x,y,1)).
Further, for suitable functions F on H,, one has

T(X)xm (F)(X,y) = —n (Y F)(X,y), 7w(Xpym(F)(X,y) = (X F)(x,y)(2.9)

Lemma 2.1 There is a constant C; > 0 such that if F € L'(H,), suppF C
By, ((0,0,0), R) C H.,,, then

T(F)(X,y) =0 ford(x,y) > CiR.

Here BHn((0,0,0),R) = {(-xv )’J) € Hi‘l : |(X, yvt)| < R} and |(.X, yvt)| iS lhe
homogeneous norm in H,.
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Proof In the proof we will frequently use, without any comment, the formulas (2.1),
(2.6),and (1.1). Assume that d(x, y) > C| R with C| being large. If |[x'—y’| > R, then
7 (F)(x,y) = 0. Thus for the remaining part of the proof we assume that |x’—y’| < R.
We shall consider two cases.

Case1: [x” —y”|'/2 < |x'|+|y'|. Then |x” —y”| > CR(|x"|+|Y’]), where C is large
if C1 is chosen to be large. Consequently, |x” — y”| > (CR)?. Hence, for |z| < R we
have

1
x" =y = 7% O+ )] = 1" =" = RAY'|+ 1x'])

> | " _ //|(l—l)>(CR)2(1—l)
-y c)~ c)

Thus 7 (F)(x,y) = 0if Cy is large and, consequently, so is C.
Case2: |x”—y"|'/? > |x'|4|y’|. Then |x” —y"|'/? > CR and, again C is large if C is
chosen to be large. For |z| < Rwehave |3z-(y'+x")| < R(Ix'|+]y']) < Rlx"—y"|/2.
Therefore,
" " 1 / 1 4 " " 17172
=y = 2 O D] = =y = R =)
— |x// _ y//|1/2(|x// _ y//|1/2 —R)
> CR(CR—R) =C(C — )R, (2.10)
which implies 7 (F)(x,y) = 0 if C; is large enough. m]

Lemma 2.2 There is a constant Co > 0 such that if F is a bounded function on H,,,
supp F C B((0,0,0), R) C H,, then

7 (F)(x, y)| < CaRP|BX, R)| ™| F L,

Proof Tt suffices to prove the lemma for F being the characteristic function of the ball
By, ((0,0,0), R) for every R > 0. Then, by (2.6),

T (F)(x. y)| < /R R O R S
1
X (y” —x" - 3% "+ y’)) dz. (2.11)

Assume that 7 (F)(x,y) > 0. We consider two cases.
Case 1: R > |x/|/C, where C > 0 is a large constant. Then, by (1.3), |B(x, R)| ~
R"t2 and, consequently, |7 (F)(x,y)| < 2CR" ~ RP|B(x, R)|~!.

Case 2: R < |x'|/C. Notice that [x" + y'| ~ |x'| + |y'| ~ |x/|, since |x' — y'| < R
and C > 0 is large. Hence, by (2.11),
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-1 R2 -~ Rn+1 RD
|7T(F)(X7 y)l 5 R" m Ix/l |B(X R)l
O
2.3 Heat kernel for £
The kernels of the semigroups e %~ and e~* are related by
H(x,y) = m(hs) (X, y). (2.12)

Let us also note that thanks to the homogeneity of £ one has
Ho(x,y) = s~ 21, (aﬂ/zx, 8s71/2y).
Proposition 2.3 (Gaussian bounds for Hy) There are constants ¢, C > 0 such that

C 2
Hy(X,y) < —————e “dx0/s, 2.13
s(X,y) = B ol (2.13)

Proof The proposition is well-known. For the convenience of the reader we present
a short proof based on estimates of the heat kernel for the sub-Laplacian L on the
Heisenberg group combined with Lemmas 2.1 and 2.2. To this end from (2.4) we have

o0
_ )
0 <he(x) S22 e g 040 (B-12%)
k=1

o
— w2
=9 D/zze “k X By, (0,/5k) (X)- (2.14)

Using (2.12), Lemmas 2.1 and 2.2, we obtain

o
2
0 < Hyx.y) $s P2 (V5P B Vsk) ™ e xpecryany @) (2.19)
k=1

Applying (1.4), we get

Bx, Vo)l 1 —ak?
0<Hy(x,y) <> kP |B(x, v/5)| ™! XB(x,C1/5k) ()
; [B(x, /5k)| ‘

o
o _ L2
SO KPT B VT e X gin )
k=1

S IB(X, /5)| e ed Vs (2.16)
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Lemma 2.4 There is a constant C > 0 such that
C d(x,z)
|B(Y, /)| /s

Proof Fixy € X and s > 0 and set F(x) = H;(X,y). Now, using (2.5) and the same
arguments we have used in the proof of (2.13), we obtain

|Hs(X,y) — Hs(z,y)| < 2.17)

n
D 100 FOP + [xjow F)I* <
j=I1

_c
SIB(y. V/5)I?

Finally, by the definition of the distance d, we have

Cd(x,z)

F — F _—
O = F@l= By Vol

(2.18)

m}

Corollary 2.5 (Holder-type estimates for H;) For 0 < y < 1 there are constants
C, co > 0 such that

C dly,z)\"
|H(X,y) — Hs(x,2)| < |B(x,ﬁ)|( 7 ) . (2.19)

with the improvement

C dy. D\ _dxy?
H;(x,y) — Hg(x, < cod(X,y)/s
|Hs(x,y) — Hs(x,2)| < B(x. /5] ( NG ) e
if d(y,z) <d(x,y)/2. (2.20)
Lemma 2.6 (On diagonal lower bound of Hy) There is a constant C > 0 such that

H;(x,x) > C|B(x, «/E)Fl for every x € X. (2.21)

Proof By the homogeneity it suffices to prove the estimate for s = 1. To this end

Hy(x,%) 2 / e el gz 2 ~ B DT 222

14+ |x/|

m}

3 Proof of Theorem 1.1
Proof To prove the theorem we use Uchiyama’s results [25]. For this purpose we set

p(x,y) = inf |BJ,

Birkhauser



964 J Fourier Anal Appl (2016) 22:954-995

where the infimum is taken over all closed balls B containing x and y. Then p is a
quasi-distance such that p(x,y) < |B(x, d(x,y))| for all X, ye X and

|Bo(x,r)| <71 for every x€X and r >0, 3.1
where B, (x, r) denotes the closed quasi-ball with center x and radius r (see, e.g. [1,
Lemma 6.4] for the proof).
Define the new kernel K, (x, y) by

K, (x,y) = Hi(x,y), (3.2)

where r = |B(x, +/1)|. The kernel K, (x,y) satisfies the following assumptions of
Uchiyama’s theorem, which are stated in conditions (3.3)—(3.5) below. O

e The on-diagonal lower estimate:
Ky (x,X) > - (3.3)

e Upper estimate: for every § >0,
K (x,y) < 4 (14 2089)717 (G4)

e Holder estimate: there exist C3 >0, § >0, such that

—1-25 s,
|K (x,y) — Kr(x,2)| < A(1 4 L8772 (202)04 4y, 2)
< Czmax {r, p(x,y)}. (3.5)
The estimates (3.3)—(3.5) are consequences of (1.4), (2.21), (2.13), and Corollary 2.5
(see, e.g., [1, Appendix 3]).
Now we define the Hardy spaces H ! k, as the set of all L' (R"+1)-functions f

max,
such that || £l 1x) < 00, where £ = sup,_o | [ K,(x. ¥)f(¥) dy].
The atomic Hardy space Haltom’ 00X, p) is defined in the standard way. A function

: 1
a is called an atom for Hy,, o

B, (X0, 1), llalle < |By(Xo,7)|~' ~r~!, [a = 0. Now a function f is an element
of Haltom’ X, p) if f(x) = D, Akak(x), where ai (x) are atoms for Haltom, X, 0)
and Ax € C with D, |Ax| < oo. For such f we set ”f”Halmm,oo(X’p) =inf D, [Akl,
where infimum is taken over all such representations.

We are now in a position to state the following theorem of Uchiyama about atomic
and maximal characterizations of Hardy spaces on a space of homogeneous type.

(X, p), if there is a ball B, (xp, r) such that suppa C

Theorem 3.1 [25, Corollary 1’] Assume that p(X,y) and K,(X,y) satisfy (3.1) and
(3.3)~(3.5). Then the spaces H! K, and Hal (X, p) coincide and the norms

max, tom, 0o
1 N1 x) and 11 £ 1l g1

atom, 0o

(X, p) are equivalent.
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It is easy to prove that there exists a constant ¢ > 1 such that if r = |B(x, WOIR
then

B(x, V1) C By(x,r) C B(X, c/1). (3.6)
The above inclusions imply that the atomic Hardy spaces for d(x,y) and p(X,y)

coincide. Moreover, the maximal functions for the kernels K, and H; are equal. Hence,
Theorem 1.1 follows from Theorem 3.1.

4 Farther Properties of «
4.1 Homogeneous Kernels

A tempered distribution S on H,, is said to be a regular kernel of order r € R if §
coincides with a C* function m(x) away from the origin and satisfies

(S, fods)=s"(S, [)

forany f € S(H). Any regular kernel of order r gives rise to the convolution operator

frs f8®) =(S, fr), fe(y) = fxy),

which will be denoted by the same symbol S.
Any tempered distribution S on H,, which is a regular kernel of order 0 is of the
form

(5. f) = 1 £(0) + lim / /E m(fc)f(srfc)dooc)?

=c1f(0) + lir% m(x) f(x)dx, 4.1)

|x|>¢e

where m is a C* function away from the origin, m(§;x)
= s Pm(x), f): m(x)do(x) = 0 (see [3, Lemma 2.4]). Here ¥ = {x € H, :
|¥| = 1} is the unit sphere in H,, and do (x) is the Radon measure on ¥ such that
Ju, F)dx = I [5 f8s%)sP~1do (x) ds (see [12, Proposition 1.5]).

Let ¢ be a C* function on H,, such that 0 < ¢ < 1, ¢(x) = ¢(y) whenever
|x| = |y|, suppe C {x € H, : % < |x| <2}, Z?’;foo @(8,7x) = 1 for x # 0. Then
any regular kernel S of order O can be written as

(S, fy=cifO+ > /H mj(x) f (x) dx,

j==o0

where m ;(x) = ¢(8,;x)m(x). Clearly,
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XY mj(x)| < €2 DTN X Ty Ty | oo,

/mj(x)dxzo, / X]mj(x)dxzo,/ Y/mj(x)dx =0. (4.2)
Hll

n n

Let m;f(x) =mj(x~") =mj(—x),m;(x) = m;(—x).Itis not difficult to check that
there are constants C, ¢ > 0 such that

||(mj k mk)v”Ll(Hn) + ||(m, ES mZ)v”Ll(Hn) < C27C‘j*k| ”m(p”CI .

Thus, by the Cotlar—Stein lemma, Sf = f * S=c f+ Z?‘;_Oo f #m;j defines a
bounded operator on L?(H,) and, thenon L? (H,,), 1 < p < oo, since S is a Calderén—
Zygmund operator on Hl,. Moreover, ||Sfllzr@m,) < (Cpllmellcr + cOll fllerm,)-
The space of convolution operators with regular kernels of order O is an algebra with
involution. Clearly,

/HSf~§=/H f-S*g, where(s*,f>=51f(0)+pv/ m*(x) f (x)dx.

n

Setn(S)f =c1 f~|—2?i_oo m(m;) f. Then using the Coifman—Weiss transference
principle [9] we have |7 (S 2x)—r2x) = CISI2@,)— 12, Moreover, from
2.7), (2.9), (4.2), Lemmas 2.1 and 2.2 we conclude

/Xn(mj)(x, y)dx = /Xn(mj)(x, y)dy =0, “4.3)
m(m;)(x,y) =0 ford(x,y) > 2C12_j, “4.4)
I7(XDxm (X )y (m ) (x, )| < CIXT Y mg |12 @D+ B(x, 2777 (4.5)

7 (m) (X, y) = T(m )y X). (4.6)

Consequently, 7 (S) is a Calder6n—Zygmund operator with the associated kernel

o0

kx,y) = D wm))(x,y)
j=—00
which satisfies
2(S)f(x) = / k(x,y)f () dy for x ¢ supp. @.7)
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I7 (XD (X )yk(x, )| < CrI1X7 Y mo |l o | B(x, d(x, y)| " d(x, y) 4D,
4.8)

k(8:x, 8;y) = 1~ "k(x, y).

Lemma 4.1 There is a constant C > 0 such that for any regular kernel S of order 0
on Hl,, and for every function f € CCl (B(x0, o)) we have

2n
I (S)fX)| = (2er + CIIMolle)roz ll7w (Xi) fll oo (4.9)
k=1
Proof Note that (1.2) and (4.5) imply
2n
1 fllzoe < 2r0 D I (X0) f s (4.10)
k=1
and
|7 (mj)(x, Y)| < C|Bx,27))| " mo|| Lo~ (4.11)

Let jo be such that 2700 <y < 270t Clearly, by (4.3) and (4.4), we get

> [rmpenseady

j=—00
< / s DIl dy
j<jo B(X(),r())ﬂB(X,C12’J+)
+ Z/ & VI ~ Fldy
Jj>jo B(x,C127/*h)
=Ji+ L.

Observe that if B(xg, r0) N B(x, C127/H1) # @ with j < jo, then |B(x,27/)| ~
| B(x0,27/)|. Hence, applying (4.10), (4.11) and (1.4) we obtain

2n
Ji < D lImollze | B(x, 277)| "' 2r (Z ||7T(Xk)f||L°°)|B(X0sVO)|

J<Jo k=1

2n
< Crollmoll (Z ||7T(Xk)f||L°°) > (35) h

k=1 Jj<Jjo
2n

< Crollmollze D 17w (Xp) fll .
k=1
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To estimate J we use (1.2) together with (4.11) and get

2n
h=C Z llmoll Lo (Z ||7T(Xk)f||L°°)2j

jzJo k=1
2n

< Crollmollze D (X)) f Lo
j=1

]

Thanks to Lemma 4.1 for f € L'(X) and a regular kernel S of order 0 we define
(S) f in the sense of distribution setting

(TS f,9) = (£, w(S)gp), ¢ € CCR".

Lemma 4.2 There is a constant C > 0 such that for any regular kernel S of order 0
on H,, which has the form (4.1) we have

() fllg) = (er + Climolle OISl g1 - (4.12)

Proof The proof is standard. For the sake of completeness we present its sketch. With-
out loss of generality we can assume that c; = 0. Because 7 (S) maps continuously
L'(X) to D'(R"+1), it suffices to prove that there is a constant C > 0 such that
||n(S)a||Hé < C for every atom a € Haltom’oo(X). Fix a (1, oo)-atom a associated
with a ball B(yo, ro). Since > j 7 (mj)a converges in L*(X), it converges in the L 1(X)

norm on B(yo, 2rp) as well.Note alsothat (m j)a(x) = Oford(x, yo) > 2C127 +ryp.
If 2rg < d(x, yo) <2C1277 + rg, then applying (1.2) and (4.5) we get

wmpatol = [ ()~ mlm) 0530 Jay) dy|

B(yo.70)
< Cllmollc12/rol B(yo, 279)| 1. (4.13)

Hence, Zj 7 (mj)a converges in L'(X) and L%(X) to 7 (S)a and fn(S)a(x) dx =
0. Moreover,

ro

I (S)atl = ClmollerTp1 & yonid e, yo)

for d(x,yo) > 2ro,

I (S)all2x) < Clllmoller + 1)1 B(yo. ro)| /2.
So, m(S)a can be written as 7 (S)a = Zj Ajaj with a; being (1, 2)-atoms and
Zj Al < C. O

Let ¢ be a Schwartz class function on [0, co) and dE}, and d E - be the spectral
measures for L and L respectively. It is well known that the operator

Iﬂ(L)f=/0 V(W) AEL(M) f

Birkhduser



J Fourier Anal Appl (2016) 22:954-995 969

is a convolution operator with a Schwartz class function on H,, denoted by the same
symbol ¥ (L)(x) , thatis, (L) f(x) = f x ¥ (L)(x) (see, e.g., [14]). Moreover, for
every multi-index / and M > 0O there is N > 0 and a constant C; s/ y > 0 such that

sup (1 + [xDM (1X (L)) + 1Yy (L) (x)])

xeH,
N .
< Crunsup(+ Y (D 1w Pl | (4.14)
A>0 =0
By homogeneity,
(L) (x) =172y (L)(5,-12x). (4.15)

Clearly, the operator

w(ﬁ)f=/0 YA dEL) f
is of the form
Y (L) f(x) =/Xw(l?)(x, V) f(y)dy,

where

V(D) (x,y) = (Y (L)X, ). (4.16)

For detailed spectral properties of £ we refer the reader to [19].

4.2 Riesz Transforms

The Riesz transforms R;, j = 1,2, ..., 2n, on the Heisenberg group H,, are defined
by R f = X;L-V2f =limeoc [© Xje ™ f4 =limeo f2(c [° Xjh L),
Yy KK J e—0C Jo J NG e—>0 e ALV
By the Cotlar—Stein almost orthogonality principle the above limit defines a bounded
operator on L?(H,,). One can also prove that R ;j are the principal valued convolution
singular integral operators R; f = f * kj, where Rj(x) = —c fooo th,(x)% are

real-valued regular kernels of order 0.

Similarly the Riesz transforms R ; associated with the Grushin operator are defined
by Rj = en(X))L7Y2, j = 1,2,...,2n. Clearly, R; = 7(R;). Thus R; are
Calder6n—Zygmund operators on X, which are bounded on L?(X), 1 < p < oo, and,
by Lemma 4.2, bounded on H 11: For boundedness of R ; on L”(X) see also [16].
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5 (*) Property and Decomposition of BM O (X)

Let TS') = (51, 82, ..., Sq) be a system of regular kernels of order 0 on Hl,,. We say
that it fulfills condition (%) if for every unit vector v € RY there are regular kernels
T; of order zero, (T}, f) = ¢; f(0) +pV [y m(x) f(x)dx, j =1,2,...,d,such
that

d
Zj:l S;ij =1
d
Zj:l v;Tj =0,
lcj| < C with C independent of v,
X mU )| + |YImVl(x)| < C; for |x| = 1, with C; independent of v.

()

Theorem 5.1 (Christ and Geller [5, Sect. 6]) The system of the regular kernels of
order zero {8o, R1, Ra, ..., Ron} on the Heisenberg group H, fulfils condition (x).

A locally integrable function f on X is said to be an element of BM O (X) if

1
IfllBMox) = sup ——— [f(X) — fBx.r|dx < o0,
X yeX, r>0 |B(Yv r)| B(y,r) xr)

here fp(y.r = |B(y, r)|*1 fB(y " f(x) dx denotes the mean value of f over B(y, r) =
(xeX:d(y,x) <r}.
Our goal of this section is to prove the following theorem.

Theorem 5.2 Assume that S;, j = 1,2,...,d, is a system of operators satisfying
(*). Then there is a constant C > 0 such that any compactly supported BM O (X)
function f can be written as

d
f=>_7SNHg; + go. .1
j=1
with
d
> lgjllee = CliflBMo)- (5.2)
j=0
Moreover,
d
Z lg;ll2x) < oo 5.3)
Jj=0

For the proof of the theorem we follow methods presented in Christ and Geller
[5] about decompositions of BMO functions on homogeneous Lie groups (see also
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the original Uchiyama’s proof [26] of constructive Fefferman—Stein decomposition of
BMO functions on the Euclidean spaces).

There is no loss of generality to assume that || f||gmox) = € with ¢ > 0 very
small to be determined latter on.

Let us also emphasize that for any # > 0O the mapping f — f o §; is an isometry
on L* and BM O (X).

The main step of the proof of Theorem 5.2 is the following theorem.

Theorem 5.3 AssumethatS;, j = 1,2, ...,d, is asystem of operators satisfying ().
Then there are constants constant Cg, Co, &y > 0 such that any BM O (X) function f
supported in any ball B(zg, r) with || fllemox) = € < &o, can be written as

d
f=2.7(SNE +&+ fi. (5.4)
j=1
d
D 1Zjlloe <3d, 1Bl < Coll fllBmo), (5.5)
j=1
Ifillmox) < Coe®. supp fi C B(zp, Csr), (5.6)
Moreover,
d
D Zi 2 < ColBzs. ' fllBmo)- (5.7)
j=0

For the proof of Theorem 5.3 we adapt arguments of Christ and Geller [5]. For the
convenience of the reader we present all the details in Appendixes 1 and 2.

Proof of Theorem 5.2 Fix 0 < ¢ < g such that Cge < 1 and C9C§/28 < 1. Decom-
pose f according to Theorem 5.3. If f; = 0 we are done. Otherwise we apply Theorem

5.3 to the function &|| f1 | 3}, x, /1 and obtain functions f3, g}”, j=0,1,....d,

such that
d
A=2"a@nE +8 + f (5.8)
j=1

¢ L1l
> I e = 3d =20 < 3dCye,
j=1

~{1
18w < Coll fillBmo < C3e?, (5.9)

< C3&, supp fo C Bz, C3r), (5.10)

Il f2llBMox) < —”fl”BgMO(X) Cye?
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IA

d

~{1 Il fillBmox
> 18 e < TR ol B, Cir)l e
j=0

IA

C3|B(zp, Csr)|"/?e2. (5.11)

Set :g“}O} =g;,j=0,1,...,d. Continuing this procedure we obtain sequences of
functions §j."}, j=0,1,...,d,n=0,1,2,...,and f;, such that

d
~{0 ~{0
f=>asH" +8" + h.
j=1

d
fo= 2w (SHM + gl + fug.
j=1

d d
SR e <3dCge. S IEM 2o < €5 1B (zs. CRr) V26
Jj=1 j=0

I fustllBmocx) < Catle" 2, supp f41 C B (ZB, cg“r) '
Observe that

I full 2y < C'1Bs, CIO" 2| full BMocx)

< C"C3"*|B(zg, r)|'2Che" — 0, as n — oo,

oo d 00

~ 3n/2
S 1 e = D Cot e P B@s. )| e
n=0 j=0 n=0

Putting g; = > 77, Zg’}"} we obtain Theorem 5.2. o

6 Proof of Theorem 1.2

Let VM O(X) be the closure of the space of continuous functions with compact sup-
port in the BM O-norm. It is well-known (see [8, Theorem 4.1]) that VM O (X) is a
predual space to H. 1 (X), thatis, VM O (X)* = H} (X) in the sense that any

atom, 0o atom, 0o
functional ® on VM O(X) is of the form ®(f) = f fX)F(x)dx for f € C.(X),
where F € Haltom’ 0 X).

Assume firstly that F € L'(X) N L*(X) and R, F € L'(X), j = 1,2,...,2n.
If f is compactly supported continuous function on X, then, according to Theorems
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5.1 and 5.2, there are functions g; € L>®(X) N L3(X), j=0,1,2,...,2n, such that
>0 lg lle < ClifllBmocx) and f = go+ 37, R’ g ;- Hence,

2n
‘/Xf(x)mdxlz/x g0+z7€7gj F dx
j=I
_ 2n
= / 20OFX) + > g; (R, F(x) | dx

j=1

2n

Iflso) [ IF i + D IR Flip |- (6.1)
j=1

IA

Thus, the integral f +— f f (x) F(x) dx has the unique extension to a bounded func-
tional on V M O (X) and, consequently, F' € Haltom’ 0o (X) with

2n

x = C [ IFlx) + D IR Fllzix
j=1

I

atom, 0o

We now relax the assumption F € L%(X) assuming only that F € L!(X) with
R;F e L'(X).

Lemma 6.1 Let S be a regular kernel of order zero on Hi,,. Then there is a constant
C > 0 such that for everyt > 0

|79, e “1F| iy = CIF L), (6.2)

where [n(S), e_“:] =n(S)e 'L — e L (S) is the commutator of 7(S) and e~ *~.

We shall postpone the proof of the lemma to the end of the section.
Note that e '£F ¢ L*(X) for F € L'(X). Thus from Lemma 6.1 we conclude
that

IR Flli = C(IR; Fllies) + 1Flliex)) 63)

with a constant C independent of ¢+ > 0. The first part of the proof combined with
(6.3) and Theorem 1.1 lead to

2n
—tL < . —tL —tL
le™ “Fllyy <€ ZluR,e Fllpioo + e Flli
]:
2n
<C| IR Fllix + IFllicx) | -
j=1
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because ¢ '~ is uniformly bounded on L'(X). Since My,(e "EFF)(x)
<M C(e_’Z‘CF )(x) for 0 < 1 < #1, we deduce from the Lebesgue monotone conver-
gence theorem that M F € L'(X) and
2n
IMeFllpiy < C [ D IRGFI+IF L,
j=1
This completes the proof of the first inequality of (1.6).
The proof of the second inequality in (1.6) is standard and follows from the fact

that R ; are Calder6n—Zygmund operators (see Sect. 4). We omit the details.

Proof of Lemma 6.1 By the homogeneity it suffices to prove the lemma for r = 1.
Recall that

/H,(x,z)dz:/H,(z,y)dz:l,
X X

where H, (X, y) denote the integral kernel for e’ L Letm ;j be as in Sect. 4.1. Set

M; :/‘/(Hl(x,z)rr(mj)(z,y)—yr(mj)(x,z)Hl(z,y))dz‘dx.

If j <0, then

M; 5/‘/H1(x, 2)(7(m ) (2. y) — 7(m ) (X, y))dz‘dx

+/‘/(rr(mj)(x,y)—n(mj)(x,z))Hl(z,y)dz‘dx
=J1+ /.
J s/\/ Hy 5, 2) (w(m))(2.y) — w0m ) (x. y))dz| dx
d(2.y) <82

] Hix, D) (r0m ) (2. y) — 7 ) (5. )| dx

d(z,y)>8C127/
=Jn + Jiz.
By (4.5), (1.2) and (2.13), we have
2/d(x, z) .

Ji1 §C/ /H](X,Z)—.dXdeCZJ.

d(z,y)<8C12-J |B(y,277)]
(6.4)

Using (4.4) and (2.13) and (4.5), we obtain
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Jip = // CHi (X, 2)|(m)(X,y)|dzdx
d(z,y)>8C127/

< / / Hi(x, 2)wm)) (%, y)ldzdx < C2. (6.5)
d(x,2)>C127/

Similarly,

=y | [ ey = 7nx. ) iy d
d(x,y)<8C27/

v
d(x,y)>8C12-/

Again, applying (1.2), (4.5), (2.13) and the doubling property of the measure, we get

[ em05.9) = w0 . 20) 0. ) ] dx = o+

d(y,z)2/ i
T1 = C [yxyy<scin-i Jx Tpocary H1 (2. y) dzdx < C2J. (6.6)

If d(x,y) > 8C127/ then m(mj)(x,y) = 0. Hence, thanks to (2.13) and (4.5), we
have

J2 S/ / m(mj)(x,2)|Hi(z,y) dzdx
d(x,y)>8C1277 Jd(x,z)<2C127/

5/ / |7 (m ) (x, z)|H) (z,y) dxdz < C2/. (6.7)
d(z,y)>2C12-7 JX
If j > 0, then using (4.3) and Corollary 2.5 we arrive to
M; 5/’/(H1(x, 2) — Hy(x,y))7(m;)(z. y)dz(dx
+ [| [ ronp oty - toxp)ds ax

2- Jy
< c/‘/ e*cod(xs”ﬂn(mj)(z, y)| dz dx
d

@y)<2c2-i |BX, 1]

2—Jjv .
+C/‘/ |77 (m ) (X, 2)| ————e IO 47 dx
d(x,2)<2C2-J |B(y, DI

<Cc27lv. (6.8)
Finally, (6.4)—(6.8) imply Z j=—00 M; < C < oo, which completes the proof of the
Lemma. O

Acknowledgments This research was initiated when the second author was visiting the Institute of
Mathematics of the University of Wroctaw in the spring of 2014; the financial support and kind hospitality
are gratefully acknowledged. The authors want to thank the referee for her/his helpful comments which
improved the presentation of the paper. The first author supported by the Polish National Science Center
(Narodowe Centrum Nauki, Grant DEC-2012/05/B/ST1/00672).

Birkhauser



976 J Fourier Anal Appl (2016) 22:954-995

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix 1: Chang-Fefferman Decomposition
Our goal in this section is to prove a version of Chang—Fefferman decomposition of

compactly supported BM O (X) functions. Then we shall establish some properties of
the decomposition. We borrow main ideas from [5].

Dyadic Sets

Theorem 7.1 (Christ [4]) There exist a collection B of open sets {Q{; CcRt ke
7, a € I}, and constants § € (0, 1), 1 > ag > 0, and C3 > 0 such that

X\ U okl =0 vk (7.1)
acl;
If € >k theneither Qf C Qf or Q4N QL =0. (7.2)

For each (k,a) and each € <k there is a unique 8 such that Qf; C Qé. (7.3)

diam (Q%) < C36%. (7.4)
Each ngl contains some ball BQ;(; = B(zf;, aoék). (7.5)
Set By = {QF : « € It} and £(Q) = 8% if Q € By. Fix a constant Ag > 2 such

that for any x € X and k € Z there is Q € By such that B(x, 8sk—1y AgBg. Then
for any ball B = B(x, r) denote AgB = B(x, Agr) by B.

Chang-Fefferman Decomposition

Lemma 7.2 Suppose that N1 € N is given. Then every f € BM O (X) with compact
support can be decomposed to

F& =20 horagr (). (7.6)
keZ acly
where
age(x) = LMd e (x), (1.7)
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dgy is supported by BZ,& = C4Byi = B(z, C4aosb). (7.8)
lr (X agk lloo < €8N DE i (XNagrlloo < €675, (7.9)
> L PIPI < CIOIfI3mocx) Jforevery Q € B, (7.10)

BBy, L(P)=L(Q)

where Cy and C are independent of f.

Remark 7.3 Let us emphasize that the condition (7.7) replaces the condition

/ agpk (x) W (x) dx = 0 for all polynomials W of homogeneous degree <2Nj,
(7.11)
in the Chang—Fefferman decomposition for the classical BM O spaces and for the
BMO spaces on homogeneous Lie groups. Actually (7.7) implies (7.11) by the inte-

gration by parts, since LV W (x) = 0 for every polynomial W of homogeneous degree
< 2Nj.

Proof of Lemma 7.2 For fixed Ni let ¢, ¥, n € S(R) be real valued functions such
that

PE) =Y (ED), 19p©)] < CIEPNT? for [g] < 1, ¢&) =& NnE), (7.12)

supp ¢, supp7 C (=1, 1), (7.13)

/m¢(zg)2? =1, VE#0. (7.14)
0

Here a and 7 denote the Fourier transforms of ¢ and 5 respectively. Then there are
Schwartz class functions (])(\/Z) (x) and n(\/Z) (x) on H,, such that ¢(t\/Z)f(x) =
f (L) (x), p (/L) (x) =t Pp(~/L)(8; ' x). The same holds for n(t+/L)(x).
Moreover, it follows from (2.13), (7.13), and the finite propagation of the fundamen-
tal solution of the wave equation that the functions ¢ (1~/L)(x) and 5(t~/L)(x) are
compactly supported, that is, there is a constant C’ > 0 such that

supp(p(tx/Z), supp n(t«/Z) C B(0,C’t) C H,,
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see [10,21] for details. Consequently, by Lemma 2.1,
dUVL)(x,y) = n(tVL)(x,y) =0 ford(x,y) > Cst with Cs = C'C;.(7.15)
Additionally,
I (XDan(tVE) (X, y)| < Cryt™ P |Bly. 1) (7.16)

with the same estimates on 7 (X )xqﬁ(t\/Z) x,y).
For f € L?(X) we have

R
o= lim / ¢><z~/Z>¢<r~/Z)f<x>d—t

—ZZ/ / VD NGV Ny

keZ acly
(7.17)
Set
- sk L di 1/2
hor = 104 / /|(¢(:«/Z)f>(y>| dy— ) .
“ s Jok !
(7.18)
s dt
gy =gl [, [ e/ D@D N0y
Qs Jok !
(7.19)
age(x) = LN gk (%)
51(1
gt |, / VDOV fdy . (7.20)

Thus (7.6) and (7.7) hold. Now (7.8) follows from (7.4) and (7.15). Observe that
|B(y, )| ~ |Qk| for (y,1) € QF x (8%, 85=1). Thus from (7.15) and (7.16) we
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conclude
(X yagr )]
Skfl dl’
scilighl [ [ YO0 GV F iy
o sk 0k t

sk-1 dt 1/2
< c1|A;i|a<2Nld<’”"(|Q’;|1 / / Id)(tx/z)f(y)lzdy—)
o sk 0k t
< C;8CN—dk (7.21)

which gives (7.9). Finally, for fixed Q € B,

(A0Co)E(Q) dt
S hpPIP| < / / 6GVD) FoP dx L
(AoC4)Bg JO t

BRNBS A0, L(P)<U(Q)
(7.22)

So to finish the proof of (7.10) it suffices to note that |¢ (1+/L) f (x)|? dx% is a Carleson
measure with the estimate

diam B d
/B /0 BGVD FOP dx"" < CIBII f o (7.23)

for any ball B C X. This fact has a standard proof, which for the reader convenience
we present here. First from (7.12) and (2.7) one gets

/ d(tvVL)(x,y)dy =0, Vx e X. (7.24)
X

Fix a ball B and decompose

f=—xcep +(f —Oxepyr tc=fi+ f2te,
where ¢ = |CeB|™! fC6B f(x)dx, Cs¢ = 16(Cs + 1). Applying (7.24) we have

pUVL) f = ¢p(VL) fi + d(VL) fo. By the John-Nirenberg inequality || /1|7, <
C|B| ||f||%MO(X) (see e.g., [24, Sect. I1T]). Consequently,

diam B d
/B /O 6aVD P < CIAR = CIBI o (129

Further, thanks to (7.15), ¢(t\/Z)f2(x) =0forx € Band 0 < ¢t < diam B. Thus
(7.23) is proved. O
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Let us remark that for Ao defined in (7.18) we have
Aol = ClifllBMoX) (7.26)

since |¢ (¢ \/Z) f(x) |2 dxd[—t is a Carleson measure.

Lemma 7.4 Let N € 7 be given. Then there exist constants N1 € Z and Cy > 0
such that for any regular kernel S of order 0 of the form (4.1) and any a satisfying
(7.7)-(7.9) we have

17 (S)ag(x)| < Cy(ct + Imollcav) (1 +€(Q)'d(x,20)) 2N,  (7.27)

0(Q)'dx,x)
1+2(0) " ldx, x)
§ (l—i—Z(Q)ld(x, x’))ZN
1+ Q)" 'd(x,z9) '

17 (S)ag(x) — 7(Sapx)| < Cy(ci + lImoll g2y +1)

(7.28)

/ m(S)ag(x)dx = 0. (7.29)
X

Proof Thanks to (7.7)—(7.9) without loss of generality we may assume that c; = 0.
In order to prove (7.27) it suffices, by (7.7)—(7.9), (4.5) and Lemma 4.1, to consider
d(x,zg) > 16C4apf(Q). Then, integration by parts leads to

n(S)ao(| = | [ 1£kx. o) dy)

< 1LY moll / By, d(x, )| d(x, y) M [ao(y)| dy
BO
[

10|
[B(zg,d(X,z0)|
LM+
d(x,29)*M1+2"

< CIILM mg | d(x,z0) *Ne(@)*™

< CILN mo|| oo (7.30)

where in the last inequality we have used (1.4). The proof of (7.27) is complete.

We now turn to prove (7.28). It suffices to consider d(x,x’) < £(Q), otherwise
(7.28) follows from (7.27).

Assume first that d(x,zg) > 16C4a0l(Q). Let g € C2°(X) be such that
g(x) = g(x) = 1, suppg € B(x,d(x,z9)/4), [m(X )glloo < Crd(x,29)~D.
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Then, integrating by parts and using (1.2) together with (4.8) and (7.9), we obtain

(g - 7(SHagx)|
= | [ (s00k0x,y) = e okx 1)) £V o ) ]|

| /X £ (s00kx,y) — 6K 1) )ao ) dy|

2n
< d(x,x) /X S I (XL (8(kC- . ) Iolao ) dy
i=1

< Cd(x, X)||moll c2m+1d (X, 29) ML) M| Q| - |B(zg, d(x,29))| !

UQ)"ldx. x) ( 1+ 60" d(x,x) )2N‘+"+2
14+ Q)" tdx,x) \1+£(0)"1d(x,z0)

3

= C||m0||C2N1+1

where in the last inequality we have applied (1.4).
Assume now thatd(x, zg) < 16C4apf(Q). According to (1.2) it is enough to prove
that
[T (X)) (S)ag(x)| < C||mo||szv.+1E(Q)’1 fori =1,2,...,2n. (7.31)

Consider j’s such that 277 > £(Q). Then, by (4.5) and (7.7)—(7.9), we get

(X m ag ()] = | / 7 (X)w(m ) (%, Yo () dy
< c/ Yemolloo2! B, 279) [V ag(¥)] dy
B(x,C2-J)
< Clmollc12’. (7.32)

Therefore, 35— o) 1T (Xp)m(m j)ag(x)| < Climollc1£(Q)~".
Consider 27/ < £(Q). By (2.9) and (2.2), we have

T (Xp)xmw(m;)(X,y) = —n(Yim;) = —w(Xemj + wp Xop1m;) (X, y)
T (Xp)ymw(mj)(X,y) + 7 (Xop)ymw(wem;)(X,y). (7.33)

Hence, integration by parts and use of (4.3) lead to

X ao)] < | [ 7o) x e (Xao) ) dy]
+] [ ey et dy)
< | [ 2 {ertian ) - @)

+] [ rtum ) e dy)
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2n

< / 0 ) DI ) 3 e (X Xaplo dy

B(x,C27J ol
+ / | Cwem ) )] - [T (Xangao ()] dy
B(x,C2-/)
< Climollo2772(Q) 72,

since [wgmj| < C277|mj1.80, X p-j <40y 1T (Xi)7 (mj)ag(x)] < Climolloct(Q)".

Finally (7.29) is a direct consequence of Lemma 4.2, because a is a multiple of a
(1, 0o)-atom for H!(X). m]
Corollary 7.5 Assume that for S, j = 1,...,d, the condition (x) holds. Suppose
that ag satisfies the conclusions (7.7)-(7.9) of the Chang—Fefferman decomposition.

—
Then there is a constant Cy such that given any unit vector v € RY there exists b 0
such that

- d(zQ,x))‘”’
b cn 1+ == : 7.34
b ol <Cy ( + o) (7.34)

— —
10 ox)— b oy =Cu

d(x,y) (1 , @, x))‘”
€«Q) €«Q)
for d(x,y) < Aot(Q), (7.35)

N-—1 —-N
B om0 — B o] = €1y 28D (1 L ”) (1 " d(zQ’X))

4(9)) ¢(Q) L)
forall x,y € X, (7.36)
-, — —
S*-bo=uag, (box),v)=0. (7.37)

Proof Define b o = (T )(ag). Then (7.34), (7.35), and (7.37) follow directly from
Lemma 7.4 and property (x). It suffices to prove (7.36). If d(x,y) < £(Q) ord(X,y) <
3d(x,zg), then (7.36) is deduced easily from (7.28). Finally assume that d(x,y) >
£(Q) and 3d(x,zg) < d(x,y). Then d(x,zg) < d(z¢p,y) and, consequently, (7.34)
implies (7.36). O

Auxiliary Functions

Let Ng be a large integer. For a compactly supported f € BM O (X) define

73 (X) = Z Irol(1 + 87 %d(zg,x))~ ™, (7.38)
(Q)=s*
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where A ¢ are scalars from the Chang—Fefferman decomposition (see Lemma 7.2). Fix
0 <k < 1—§, where § is from Theorem 7.1 and set

or(x) = > (1 -0 r;(x). (7.39)
J<k
Then,
ox(X) = 7 (X) + (I — K)ok —1(x). (7.40)

Easily, if Ny is sufficiently large, then
2 2 —k —No
x> <C > 2 (1 +8 d(zQ,x)) . (7.41)
QeBy
Indeed,

d(zg,x)\ N0 d(zp,x)\ Mo
Z [LoAp] (1 + 8—1‘) (1 + S—k)

2(Q)=8k £(P)=5k

1 5 d(zg,x)\ M d(zp,x)\ N0
< 5 Z |)\.Q| (1 -+ 3—k 14+ 5k

E(Q):Sk,Z(P):Sk
1 5 d(zg,x)\ M dzp,x)\ N
+ 5 Z AP (1 + sk I+ I

£(Q)=8k £(P)=6k
d(zp,x)\ N
(l + S—k

d(zg,x)\ N0
= > IAQ|2(1+—(Z5Qk X))

«o)=* 0(P)=5t
d(zp,x)\ Mo
<C Y ol (1+%) . (7.4
£(Q)=8*

Because ZZ(P):B" (1 +87*d(zp, x))_N0 < C independently of k, provided Nog > 3.

Lemma 7.6 (Christ and Geller [5]) If Ny is sufficiently large, then for every compacty
supported BM O (X)-function f one has

Itklloo < Cr2ll fllBMOX)>

loklloo < Cr2ll fllBMOX)>

[ > 0j®)7jx) dx < Cl Ol flzmon, if L(Q) =36

Bo j>k

Birkhauser



984 J Fourier Anal Appl (2016) 22:954-995

Proof The proof is same as of [5, Lemma 3.3].

Lemma 7.7 There is a constant C such that if f = 3 hoag is the Chang—Fefferman
decomposition of a BM O (X)-function f given by the proof of Lemma 7.2 such that
supp [ C B(xq, 1), then

| 3 reao|_=¢ X 5 1 lmom forCoz 1.

£(Q)=Co sk>Cy

Proof There is a constant M such that for k < 0 the number of Q € By such that
Ao # 0is bounded by M with M; independent of xq. For such Q, |Q| ~ | B(xo, §5).
So, by (7.18) and (7.16),

(Sk 1
2 dt
hol? < / LI sup BV 2| dy—
|Q| re(sk,5k=1),y'eQ, 2€B(xo,1) !
< ||f||L1|B<zQ, 872 < ' £11711B(x0, D] ?
< "N fllzmoc- (7.43)
which implies the lemma. O

Appendix 2: Proof of Theorem 5.3
Proof of Theorem 5.3 Using dilations we may assume without loss of generality that

f is supported by B(zp, 1). By the Chang—Fefferman decomposition given in the
proof of Lemma 7.2 we have

f= ZKQGQ = z Aoagp + Z roag = fo + go.
0 HQ)=I 0(Q)>1

It follows from Lemma 7.7 that

lgollLee < C"ll fllBMox)-

Thus, in farther consideration we shall deal with the function fo = >.,9)< A0do
with A ¢, ag satisfying (7.7)—(7.10). Remark that there is a constant C;( independent
of zp such that that if 1y # 0 in the decomposition of fy, then

0 C BY) = B(zo. C4a0(Q)) C B(zs. Cro). suppag C By  (8.1)

#QeB:rg#0)<C5 forl > 0. (8.2)
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Following [5] our task is to construct, by induction, for each integer [ > —1
— —
functions # ;, ? ;and E; on X taking values in C4 such that

ﬁ
S5 Hi= > ioag. (8.3)
©Q)=4
T =1, (8.4)
— —
1=+ h+ Ey for >0, (8.5)
(g1} convergesin Li . to g € L™(X), (8.6)
o0
- - 20
E; convergesin L), to £~ € BMO(X), (8.7)
=0
20 2
I E"IBMox) = ClfIgmocx)- (8.3)

The proofs of the above will be based on the following (simultaneously established)
— —
properties of 4 4, ?l, and E:

Hi= > robo. where (8.9)
Q=4
— d(zg,x)\ "
| b o(x)| < Cyy (1+—) , (8.10)
¢ Q)

— — d(x,y) d(x,y) N‘l( d(zQ,x>)‘N
b — b C 1 1
[0 o®) = b oWl=Cny o ( * z(Q)) T

for all x,y € X, (8.11)

— —
b o(x)— b oY)l =Ci

d(x,y) (1 , @, x))‘”

Q) £(Q)
for d(x,y) < Aot(Q), (8.12)

— N ;
(b o(x), g1-1(zp)) =0 for £(Q) =4, (8.13)
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8 1(x) — T 1Y) < Ay

d(x, y)(1 n d(x,y)

N—1
5l 5l ) o1(x) for all x,y € X,

(8.14)

ﬁ
[E(x)| < Crut(X)0y(x), (8.15)

d(x,y)

— —
[Eix) — Eiy)l = C—

1f13m0x, ford(x.y) < A¢s',  (8.16)

where A is a constant appearing in the definition of B and Al > C11(1—-Cqy Clzs)’l .
We define & _1(x) = (1,0,...,0), E_1(x) = h _1(x) = (0, ..., 0).
Assume that (8.3)—(8.6), (8.9)—(8.16) hold for all j such that j < [. From Corollary
7.5 one can deduce that for Q with £(Q) = 8 there exists 7Q(x) satisfying (8.10)—

(8.13) such that ag(x) = 3 . Z)Q(x). Let ﬁl(x) be given by (8.9). Then, thanks to
(8.10) and Lemma 7.6,
%
[hx)| < Cnux) < Cullfllsmox) < CniCre. (8.17)
— — .
Define G ;(x) = ?l_l(x) + h(x).Set C13 = C11Cy». Since |§)l_1(x)| =1,

1= Cise < | Gi®)] < 1+ Cpae. (8.18)

In other words | G ;(x)] is close to 1. Thanks to the orthogonality a better estimates is
true:

11— |81(x)|| < Clyn(x)or(x) with Crq =2(1 — k) 'C3 A;. (8.19)

To show (8.19) we estimate

> holB o®), F 1)

(o)=s!
=| > 2B o®. F i@ — Fr1(z0))]

©)=8

d , 2N d(x, d(x, N—-1

= 3 olon(1+ HEE) A S (14 HE) oo

“e)=s

d(x, —N

<Cudr Y, |)"Q|(l+ (X;Q)) 01-1(X)

0Q)=s!
< CnArg(x)o—1(x),
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where in the first inequality we have used (8.10) and (8.14). Recall that |§> —1x)| = 1.
Hence,

11— 1G] < 2[Re(H 1(x), B1100)| + 7 102
< 2C11AIT(X)01-1 (X) + CTy (%)
< 2CH A1T(X) (0-1(%) + T (%))
<201 =) 'C At (x)0(x), (8.20)

where in the last inequality we have used (7.40). Thus (8.19) is established.
We define

—
— G i(x)
g1(X) = = ,
|G 1(x)]
— — 8 (x) —
Eix) =310~ (Z110 + K 1(x) = —=— — G (x).
1G]

Our task is to verify (8.14). Using (8.18) we have

T — 2] < (- Ci30) G i(x) — G,(y)-
(8.21)

Further,
1G1x) = G < 1B 110 — T W+ 17 () — Ky (8.22)

By induction the first summand in (8.22) is dominated by

Ay

d(x,y) d(x,y)\N-1
5i—1 (1 5i—1 ) 01-1(X)

d(x,y) d(x, y)\N-1
=AI— (1 5 ) 01-1(X)
$ d(x,y) d(x,y)

= A 1
- d (1+ 5l

N-1
) =001,
By (8.11) and (8.9) the second summand in (8.22) is bounded by

> |AQ|‘Z)Q(X) __b)Q(Y)‘

0(Q)=9
d(x,y) d(x,y)\N-1 d(zg,x)\—N
san=5 (1 550) T X pel(1+ =)
L(Q)=8!
d(x,y) d(x,y)\N-1
<Cn 5 (1 5 ) 7(X).
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Recall that §(1 — k)~! < 1. Take ¢ > 0 small enough so that

8

< 1.
(I-Ci38)(1 —«)

Recall also that A} > Cq((1 — Clgs)’]. By the above

Ig1(x) — 21
1,= —
<(1-Cie) NG ix) — Gi(y)
d(x,y) d(x,y)\N-1
<=1+ =5)

x ) A1l — 0o + — 1)
— o _
A—Cpoyl—x)"" - I—Cpe '
d(x,y) d(x,y)\N-1
=2 (1+550) T aw (8.23)
and (8.14) is established.
To obtain (8.15) note that that thanks to (8.19) we have
— — —
E/(¥) =120 - Gix)|=|g:x)1—- |G x)|
%
=|1-1G,®I| < Clami (X)o7 (x). (8.24)

We now turn to prove (8.16). We start by showing that there is a constant C5 such
that

d 9
(’;l Ve for dx.y) < Agé. (8.25)

— —
1G] =161 < C1s
From (8.18) and (8.17) we get

— —
G101 = 1G]
G2 1 (v 12
=GP - 1GimP
= | H 0P = 1P| +2|(F 1), F 1-100) = (F 19, F -1 9)|
— —
= 2eC1Co| R 1) = H 1)
+2| (R 130, G 12100 = F )| +2[(H100 = H 1), 1)

=N+ + /3.
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Applying (8.9), (8.11) and Lemma 7.6 we obtain

— —
Ji <2eCiiCin Y. Ihollb o®) = b o)

0Q)=4
d(x,y) dx,y)\" ! d(zg, %)\ "
<4sChiC S Il Sly (1+ 51y 1+%
(Q)=3!
_ d(X, ) d(x )
< 46CHCia(1 + A" S5m0 = 4CHChH(1 4+ AN e,

since d(X,y) < Aoél. To estimate J, we use (8.17), (8.14), and Lemma 7.6 to obtain

dx.y) [, | dx y)\N-1
b= 2eCnCoh - (1+5057) T o
d(x
<2C}HCp( + AN Ay ((;ZY) e,

In order to estimate J3 we apply (8.9) and (8.13) to write

55 =2|(Zegrs (B 0®) = B o), T i) — F1-1(20))|

Then utilizing (8.12) and (8.14) we have

J3 < 2(1 4 Ag)?N+H!
d(x, dzp,y)\—-2N  d(y, d(y, N—1
o Z holC1y (x,y) (1+ (zg Y)) A (¥.29) (1+ (y ZQ)) 1)

st st sl 8l
(Q)=4
d(x
<2044 Cy4 (5, Yoo
d(x,y) 2

<201+ ANty 4, e

where in the last inequality we have used Lemma 7.6. So the proof of (8.25) is complete.
—
We are now in a position to finish the proof of (8.16). By the definition of E; and
(8.18),

— —
|E1(x) — E(y)l

Gi(x) Gy =
-
= ‘( A Gz(X))—( LN A Gl(}’))‘
G 1) Gyl
- (Gz(Y)—Gz(X))(l— _ )+ Gl<y>(_> - )‘
G 1) Gl G
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1= — —
= (1= Cue) ' [Gi0 - G| |1 = [Giw|
+(-Ci) |61 - 1)

d(x. y) d(x.y)
0 (x)Ciae + Cis(1 = Cize) ™ 5 e?

< A;(1+ AN !

’

where in the last inequality for the first summand we have used (8.23) while for the
second one we have applied (8.25). Now from Lemma 7.6 we obtain (8.16).

Thus the construction of the functions 71, ?1 and f; satisfying (8.3)—(8.5) and
(8.9)—(8.16) is complete.
It remains to prove (8.6)—(8.8). First, (7.29) combined with (8.11) and (8.13) imply

«P) d(zg.zp)\~N
\/ (B o). B p(x) dx| < C17 (Q)|P|(1+W)

for £(P) < £(Q). (8.26)

Now for nonnegative integers s1 < sy let @ = Qy, 5, = U‘;z:“ B;. In virtue of (8.26),

s

L= X AQAP/ (b o). b p(x))dx

_3] QEQAI .5 PEQA[ .52
(P) d(zg,zp)\ "
<207 > > |AQ||AP|£(Q)|P|(1+E(QT
0€Qy,5, PEQy,
L(P)=<L(Q)

= (P) d(zg,zp)\ "
<2017, D] |AQ||AP|—|P|(1+—)
e S €¢(0) €«Q)
L(P)=82(Q)

[c ole o}
<203y > >, > bollrpliPigt2miN.
k=0 j=0 QEQ.YI,SZ PGQsl,sz

(P)=6%e(Q)
d(zg.2p)<27£(Q)

Applying two times the Cauchy—Schwarz inequality we obtain

1/2
HZ th <2c13225"2 ’N'Z %ol |Q|]

I=s1 k=0 j=0 QeQ
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2 1/2

x 1> >, A pllP| ﬁ

QeQ PeQ
0(P)=80(Q)
d(z9.2p)<270(Q)

1/2
<2013 Y 827N 13 g0l
k>0 QeQ
j=0

1/2

x1 > > Apl?IP| > p ol

QeQ PcQ PeQ
e(P)=5%2(0Q) o(P)=sk2(0)
d(zg.2p)<2/(0) d(z9,2p)<2/£(Q)

Observe that for fixed integer k > 0 and fixed Q € Q,

> IPI= G20l
L(P)=8%£(0)
d(z9.2p)<2£(Q)

SO

52
N o 1/2
1> il <2020 > 827132 E S g2 01}

I=s1 k=0 0eQ
j=0

1/2

1> D> P

QeQ PeQ
(P)=8*¢(Q)
d(zg.2p)<2£(Q)

It follows from (1.4) and Theorem 7.1 that there is a constant C > 0 such that for
every j,k > 0 and every P € Q the number of Q € Q such that £(P) = §k¢(Q),
d(zg,zp) < 2/£(Q) is bounded by C23/ . Therefore,

5 1/2 1/2
DRI I SR TPIETe] > xpPIP]
I=s1 k>0 0eQ PeQ
j=0
8% dt
=Cn D holl0l < €23 /8 i /X 6D FIPdy—.  (8.27)
0eQ
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where in the last inequality we have used (7.18). From the spectral theorem we easily
—
conclude that || 372 & 1||i2 — 0as s, 5, — oo.

Fix Q € B. Let k be such that 8 = £(Q). From (8.15) and Lemma 7.6 we obtain

/é ZI_E)j(X)IdX < C14/I§ ch(x)tj(x)dx

WL 2 jzk
< CuCul QI fzmo):- (8.28)

On the other hand we conclude from (8.16) that for x, y € Q we have the following
estimate on the finite sum:

— =2 2
Z |Ej(x)— Ej(y)| < Cd&x DI f3mox)
min(k,0)<j <k

x> 5 < Cliflpmox)- (8:29)
min(k,0)<j<k

From (8.28) and (8.29) we obtain that the series > >0 7:2 j(x) converges in LllOC to
Eo(x) and

— [ B0 - X Fieo)|dx = Clif o
1Bol /B¢ min(k,0)<j <k
which gives (8.7) and (8.8).

Since 3 o j+ E j = §1— & -1, we conclude (8.6) from (8.7), (8.27), (8.28),
and (8.4).

Having (8.3)—(8.16) already proved we are in a position to complete the proof of
Theorem 5.3.

It follows from (8.24) and Lemma 7.6 that

e d(x, —No
|E1¥)| < C2Cusll fllsMox) 2. I)»Ql(l + Zé)g)) . (8.30)
(Q)=4'

Thus if d(x, zg) > 2C9, then thanks to (7.26), (8.1), and (8.2) we have

N B d(x,zp)\~No
Z|E1(x)| < Culflmox 25 31(1 * TB)

>0 >0
< ClfI3moxdx.z8)~". (8.31)
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— — .
By (8.27), leo h(x) = ZI(Q)SI Lo b ¢ converges in L=(X) and

|> 7
>0

%

- ro b ‘

L2(X) H z evo
o

< Cllflsmocx)| Bz, D2 (8.32)

2% =Clfllr2x)

We decompose

271 => (B1-Fr1- 21_5)1

>0 >0 >0

— —> —>
= g — ?—l - Z El XB(zp,2C19)¢ — Z El XB(zp,2C1p) -
>0 >0
(8.33)

From (8.4) and (8.31) we have

- > -
H § —&-1— Z Ey | xB@g2C10)¢

’ <24+ Clf Bmo: 834

=0 L®(X)
Now using (8.31) combined with (8.8) we get
= 2
(X E:) mwinrco] 00 = C1 Mmoo (8.35)
>0
and, consequently,
E < C|Bg, DI f12 8.36)
1 | XB(zg.,2C10) L2 |B(zg, 1)| ”f”BMO(X)' (8.
>0

Finally, from (8.32) and (8.36) we deduce

- = -
g —&-1— Z E | xB@g.2ci0¢llL2x)

>0
— —
=ID 17+ D) Er | xasacollizm
=0 >0
= C1B@s. DI (If lsmo + 1 o)) - (8.37)
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Let

— i
F=n(S* 1D E1 ] xBasci
>0

Lemma4.2 together with (8.35) and duality argument give || F|| sy o )< C || f ”123M0(X)'
Moreover, |F(x)| < CIIfII%MO(X) for d(x, zp) > 4Cyp. Putting

=2 > = -

g =8 81— Z E | XB@g.2C10)
10

80 = 80 — F XB(zg.4C10)»

f1 = —F XB(p,4C10)»

we obtain the required decomposition. O
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