
J Fourier Anal Appl (2016) 22:954–995
DOI 10.1007/s00041-015-9447-5

On Hardy and BMO Spaces for Grushin Operator
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1 Introduction and Statement of the Results

1.1 Grushin Operator

On Rn+1 = R
n × R we consider the Grushin operator

L = −
n∑

j=1

(
∂2

∂x ′
j
2 + (x ′

j )
2 ∂2

∂x ′′ 2

)
= −�x ′ − |x ′|2 ∂2

∂x ′′ 2 ,

where Rn × R � x = (x ′, x ′′), x ′ = (x ′
1, x ′

2, . . . , x ′
n) ∈ R

n , x ′′ ∈ R. The operator L
is homogeneous of degree 2 with respect to the dilations

δt x = (t x ′, t2x ′′),

that is, L( f ◦ δt )(x) = t2(LF)(δt x). It is well known L is a hypoelliptic operator. It
is related to the Heisenberg group Hn . Actually the Grushin operator L is the image
of a sub-Laplacian L associated to Hn under a representation π acting on functions
onRn+1. In fact we make use of this relation to prove some crucial estimates on some
kernels related to L.

The control distance on R
n+1 associated with L is defined by

d(x, y) = sup
ψ∈D

|ψ(x) − ψ(y)|,

where D = {ψ ∈ W 1,∞(Rn+1) : ∑n
j=1(|∂x ′

j
ψ |2 + |x ′

j∂x ′′ψ |2) ≤ 1}. It is homoge-
neous, that is,

d(δsx, δsy) = sd(x, y)

and behaves like:

d(x, y) ∼ |x ′ − y′| +
{ |x ′′−y′′|

|x ′|+|y′| if |x ′′ − y′′|1/2 ≤ |x ′| + |y′|,
|x ′′ − y′′|1/2 if |x ′′ − y′′|1/2 > |x ′| + |y′|, (1.1)

see, e.g., [18,20] for details. Clearly,

| f (x) − f (y)| ≤ d(x, y)

n∑

j=1

(
‖∂x ′

j
f ‖∞ + ‖x ′

j∂x ′′ f ‖∞
)

. (1.2)

Let B(x, r) = {y ∈ X : d(x, y) < r} denote the ball with center x and radius r > 0
in the metric d(x, y) and |B(x, r)| be its Lebesgue measure volume. Then

|B(x, r)| ∼ rn+1 max{r, |x ′|} ∼ rn+1(r + |x ′|) (1.3)

and, consequently,
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(
R

r

)n+1

� |B(x, R)|
|B(x, r)| �

(
R

r

)n+2

, R ≥ r > 0. (1.4)

The homogeneity of the distance d implies

|B(δsx, sr)| = sn+2|B(x, r)|. (1.5)

The space X = R
n × R equipped with the Lebesgue measure dx and the distance

d(x, y) is the space of homogeneous type in the sense of Coifman–Weiss [7]. It is well
known (see e.g., [20]) that −L generates a semigroup of self-adjoint linear operators
e−tL on L2(X) which has the form

e−tL f (x) =
∫

X
Ht (x, y) f (y)dy,

where the heat kernel Ht (x, y) satisfies the Gaussian upper bound estimates (see
(2.13)).

1.2 Hardy Space H1
L

Let ML f (x) = supt>0 |e−tL f (x)| be the maximal function associated with the
semigroup e−tL. The upper Gaussian estimates (2.13) imply that ML is bounded on
L p(X) for 1 < p ≤ ∞ and of weak-type (1,1). We define the Hardy space

H1
L = { f ∈ L1(X) : ML f ∈ L1(X)

}
,

‖ f ‖H1
L

= ‖ML f ‖L1(X).

Now we define atoms associated to the homogeneous space X.

1.3 Atoms

Fix 1 < q ≤ ∞. A function a is called a (1, q)-atom for the Hardy space H1(X) if
there is a ball B = B(x, r) = {y : d(x, y) < r} such that

supp a ⊂ B,

‖a‖Lq ≤ |B| 1q −1 (‖a‖L∞ ≤ |B|−1 if q = ∞),∫
a(y) dy = 0.

The atomic norm is given by

‖ f ‖H1
atom, q (X,d) =

∑
|λ j |,

where the infimum is taken over all decompositions f = ∑ λ j a j , λ j ∈ C, a j are
(1, q)-atoms for H1(X).
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We are now in a position to state our first result.

Theorem 1.1 For every q ∈ (1,∞] the space H1
L admits atomic decomposition and

the norms ‖ f ‖H1
L

and ‖ f ‖H1
atom, q (X) are equivalent.

1.4 Riesz Transforms

The system of Riesz transforms R j , j = 1, 2, . . . , 2n, associated with L is defined
by

R j = ∂x ′
j
L−1/2, Rn+ j = x ′

j∂x ′′L−1/2, j = 1, 2, . . . , n.

This formal definition has a precise meaning and the operators R j are Calderón–
Zygmund operators on X. Moreover,R j are well-defined in the sense of distributions
on L1(X) (see Sect. 4). Our second main result is the following theorem.

Theorem 1.2 An L1(X) function F belongs to H1
L if and only if R j F ∈ L1(X) for

j = 1, 2, . . . , 2n. Moreover, there is a constant C > 0 such that

C−1‖F‖H1
L

≤ ‖F‖L1(X) +
2n∑

j=1

‖R j F‖L1(X) ≤ C‖F‖H1
L
. (1.6)

The theory of the classical real Hardy spaces on R
n has its origin in studying

holomorphic function of one variable. The reader is referred to the very original works:
Stein and Weiss [23], Burkholder et al. [2], Fefferman and Stein [11], and Coifman
[6]. The spaces are natural extensions of L p spaces and many operators occurring in
harmonic analysis, like convolution singular integral operators, are bounded on them.
The theory was then extended to the spaces of homogeneous type (see [8,17,25]).
More information about the classical real H p spaces with their characterizations and
historical remarks can be also found in [22]. In [13] the authors provide a very general
approach to the theory of H1 spaces for semigroups of linear operators satisfying
Davies–Gaffney estimates and in particular Gaussian bounds. Let us point out, that
in the context of semigroups, the classical Hardy spaces can be thought as those
associated with the Laplace operator on R

n .
In the monograph [12] Folland and Stein study H p spaces on homogeneous nilpo-

tentLie groups proving equivalence of their definitions bymeans ofmaximal functions,
square functions, and atoms. Important contributions to the theory of Hardy spaces
on homogeneous groups are their characterizations by Riesz transforms proved in
Christ and Geller [5]. To this end the authors of [5] extended Uchiyama’s theorem
(see [26]) about Fefferman–Stein decomposition of BMO functions on R

n to homo-
geneous nilpotent Lie groups. Let us emphasise that our proof of the Riesz transforms
characterization of Hardy space H1

L associated with the Grushin operator (see The-
orem 1.2) takes an inspiration from [5]. We make use of the relation between L and
L via the already mentioned representation π and transfer the methods of [5] into the
space of homogeneous type X.
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Let us also remark that our proof of Theorem 1.1 is based on Uchiyama results [25]
about characterization of Hardy spaces on spaces of homogeneous type by maximal
functions and atomic decompositions.

The Grushin operator L we consider here is a special example of operators of the
form L = −�x ′ − |x ′|2�x ′′ , (x ′, x ′′) ∈ R

n × R
m . It seems likely the methods we

present here combined with [5] and relation of L with the Heisenberg–Reiter groups
(see, e.g., [18]) will allow to develop the theory of Hardy spaces for L.

1.5 Organization of the Paper

In Sect. 2 we describe relation of the Grushin operator and the sub-Laplacian on
the Heisenberg group via a unitary representation and derive estimates on the heat
kernel of exp(−tL). Section 3 is devoted to proving Theorem 1.1. In Sect. 4 we
study properties of kernels which are obtained as images by the representation of
some singular integral kernels on Hn . The crucial theorem about decompositions of
compactly supported BMO functions by means of singular integrals is stated in Sect. 5
and its proof is completed in Appendixes 1 and 2. The proof of the Riesz transforms
characterization of the Hardy space H1

L is presented in Sect. 6.

2 Relation with the Heisenberg Group

In this section we describe relation between the Grushin operator L and the sub-
Laplacian L on the Heisenberg group Hn . As we will see L occurs as an image of
L in a special unitary representation π of Hn (see [15,19]). We start this section by
recalling basic facts from the analysis on the Heisenberg group.

2.1 Heisenberg Group

The Heisenberg group Hn is a Lie group with the underlying manifold R
2n+1 =

R
n × R

n × R and the group multiplication

(x, y, t)(u, v, s) =
(

x + u, y + v, t + s + 1

2
(y · u − x · v)

)
,

where x · y is the standard inner product inRn . We shall also denote the elements of the
Heisneberg group by x = (x, y, t). Then x−1 = −x = (−x,−y,−t). The Lebesgue
measure dx on R

2n+1 turns out to be the bi-invariant Haar measure on Hn . Clearly,
Hn is a homogeneous nilpotent Lie group with dilations δs(x, y, t) = (sx, sy, s2t).
We fix a homogeneous norm on Hn to be so called Koranyi norm given by

|x| = |(x, y, t)| = ((|x |2 + |y|2)2 + 16t2
)1/4

. (2.1)

The functionHn � x �→ |x| ∈ R+∪{0} is smooth away from the origin, homogeneous
of degree one, that is, |δsx| = s|x|, and symmetric (|x| = | − x|). Moreover, |x y| ≤
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|x| + | y|. Clearly, |(x, y, t)| ∼ |x | + |y| + |t |1/2. The homogeneous dimension ofHn

is denoted by D and in our case D = 2n + 2.
We choose the standard basis of the left-invariant vector fields:

X j = ∂x j + 1

2
y j∂t , Xn+ j = ∂y j − 1

2
x j∂t , j = 1, 2, . . . , n, X2n+1 = ∂t ,

and the corresponding right-invariant vector fields:

Y j = ∂x j − 1

2
y j∂t , Yn+ j = ∂y j + 1

2
x j∂t , j = 1, 2, . . . , n, Y2n+1 = ∂t .

Obviously, for j = 1, 2, . . . , n we have

X j = Y j + w j Y2n+1, Xn+ j = Yn+ j + wn+ j Y2n+1, X2n+1 = Y2n+1, (2.2)

where w j (x) = w j (x, y, t) = y j , wn+ j (x) = wn+ j (x, y, t) = −x j .
We apply the usual notation for higher order derivatives (see [12]). If I =

(i1, i2, . . . , i2n+1) ∈ (N ∪ {0})2n+1 is a multi-index, we set

X I = Xi1
1 Xi2

2 . . . Xi2n+1
2n+1, Y I = Y i1

1 Y i2
2 . . . Y i2n+1

2n+1 ,

d(I ) = i1 + i2 + · · · + i2n + 2i2n+1 is the homogeneous degree of I.

Let L = −∑2n
k=1 X2

k denote the left-invariant sub-Laplacian on Hn . It is well-
known (see e.g., [27]) that the corresponding heat semigroup e−sL is given by
the convolution e−sL f (x, y, t) = f ∗ hs(x, y, t) with a heat kernel hs(x, y, t) =
hs(−x,−y,−t) which satisfies

hs(x, y, t) = s−D/2h1(δs−1/2(x, y, t)), (2.3)

s−D/2e−C|(x,y,t)|2/s � hs(x, y, t) � s−D/2e−c|(x,y,t)|2/s, (2.4)

|X I Y J hs(x, y, t)| ≤ CI,J s−(D+d(I )+d(J ))/2e−c|(x,y,t)|2/s . (2.5)

2.2 Unitary Representation

We define the unitary representation of Hn on L2(X) by

π(x,y,t) f (x) = π(x,y,t) f (x ′, x ′′) = f

(
x ′ + y, x ′′ + t + 1

2
x · y + x · x ′

)
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(cf. Meyer [19]). It is easy to see that

π(X j ) f (x ′, x ′′) = π(Y j ) f (x ′, x ′′) = x ′
j∂x ′′ f (x ′, x ′′), j = 1, 2, . . . , n,

π(Xn+ j ) f (x ′, x ′′) = π(Yn+ j ) f (x ′, x ′′) = ∂x ′
j

f (x ′, x ′′), j = 1, 2, . . . , n,

π(X2n+1) f (x ′, x ′′) = π(Y2n+1) f (x ′, x ′′) = ∂x ′′ f (x ′, x ′′).

Hence, π(L) = L.
For a function F ∈ L1(Hn) we set

π(F) f (x ′, x ′′) =
∫

Hn

F(x, y, t)π(x,y,t) f (x ′, x ′′) =
∫

X
π(F)(x, y) f (y) dy,

where

π(F)(x, y) =
∫

Rn
F

(
z, y′ − x ′, y′′ − x ′′ − 1

2
z · (y′ + x ′)

)
dz. (2.6)

Clearly, if F ∈ L1(Hn), then

∫

X
π(F)(x, y) dx =

∫

X
π(F)(x, y) dy =

∫

Hn

F(x, y, t) dx dy dt, (2.7)

π(Fs)(x, y) = s−(n+2)/2π(F)
(
δs−1/2x, δs−1/2y)

)
, (2.8)

where here and subsequently Fs(x, y, t) = s−D/2F(δs−1/2(x, y, t)).
Further, for suitable functions F on Hn one has

π(Xk)xπ(F)(x, y) = −π(Yk F)(x, y), π(Xk)yπ(F)(x, y) = π(Xk F)(x, y).(2.9)

Lemma 2.1 There is a constant C1 > 0 such that if F ∈ L1(Hn), supp F ⊂
BHn ((0, 0, 0), R) ⊂ Hn, then

π(F)(x, y) = 0 for d(x, y) > C1R.

Here BHn ((0, 0, 0), R) = {(x, y, t) ∈ Hn : |(x, y, t)| < R} and |(x, y, t)| is the
homogeneous norm in Hn.
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Proof In the proof we will frequently use, without any comment, the formulas (2.1),
(2.6), and (1.1). Assume that d(x, y) > C1R withC1 being large. If |x ′− y′| > R, then
π(F)(x, y) = 0. Thus for the remaining part of the proof we assume that |x ′−y′| ≤ R.
We shall consider two cases.

Case 1: |x ′′ − y′′|1/2 ≤ |x ′|+ |y′|. Then |x ′′ − y′′| > C R(|x ′|+ |y′|), where C is large
if C1 is chosen to be large. Consequently, |x ′′ − y′′| > (C R)2. Hence, for |z| < R we
have

∣∣x ′′ − y′′ − 1

2
z · (y′ + x ′)

∣∣ ≥ |x ′′ − y′′| − R(|y′| + |x ′|)

≥ |x ′′ − y′′|
(
1 − 1

C

)
≥ (C R)2

(
1 − 1

C

)
.

Thus π(F)(x, y) = 0 if C1 is large and, consequently, so is C .

Case 2: |x ′′−y′′|1/2 > |x ′|+|y′|. Then |x ′′−y′′|1/2 > C R and, againC is large ifC1 is
chosen to be large. For |z| < R wehave | 12 z·(y′+x ′)| < R(|x ′|+|y′|) ≤ R|x ′′−y′′|1/2.
Therefore,

∣∣x ′′ − y′′ − 1

2
z · (y′ + x ′)

∣∣ ≥ |x ′′ − y′′| − R|x ′′ − y′′|1/2

= |x ′′ − y′′|1/2(|x ′′ − y′′|1/2 − R)

≥ C R(C R − R) = C(C − 1)R2, (2.10)

which implies π(F)(x, y) = 0 if C1 is large enough. ��
Lemma 2.2 There is a constant C2 > 0 such that if F is a bounded function on Hn,
supp F ⊂ B((0, 0, 0), R) ⊂ Hn, then

|π(F)(x, y)| ≤ C2RD|B(x, R)|−1‖F‖L∞(Hn).

Proof It suffices to prove the lemma for F being the characteristic function of the ball
BHn ((0, 0, 0), R) for every R > 0. Then, by (2.6),

|π(F)(x, y)| ≤
∫

Rn
χ[−R,R]n (z)χ[−R,R]n (y′ − x ′)χ[−R2,R2]

×
(

y′′ − x ′′ − 1

2
z · (x ′ + y′)

)
dz. (2.11)

Assume that π(F)(x, y) > 0. We consider two cases.
Case 1: R > |x ′|/C , where C > 0 is a large constant. Then, by (1.3), |B(x, R)| ∼
Rn+2 and, consequently, |π(F)(x, y)| ≤ 2C Rn ∼ RD|B(x, R)|−1.

Case 2: R ≤ |x ′|/C . Notice that |x ′ + y′| ∼ |x ′| + |y′| ∼ |x ′|, since |x ′ − y′| < R
and C > 0 is large. Hence, by (2.11),



962 J Fourier Anal Appl (2016) 22:954–995

|π(F)(x, y)| � Rn−1 R2

|x ′+y′| ∼ Rn+1

|x ′| ∼ RD

|B(x,R)| .

��

2.3 Heat kernel for L

The kernels of the semigroups e−sL and e−sL are related by

Hs(x, y) = π(hs)(x, y). (2.12)

Let us also note that thanks to the homogeneity of L one has

Hs(x, y) = s−(n+2)/2H1

(
δs−1/2x, δs−1/2y

)
.

Proposition 2.3 (Gaussian bounds for Hs) There are constants c, C > 0 such that

Hs(x, y) ≤ C

|B(x,
√

s)|e−cd(x,y)2/s . (2.13)

Proof The proposition is well-known. For the convenience of the reader we present
a short proof based on estimates of the heat kernel for the sub-Laplacian L on the
Heisenberg group combined with Lemmas 2.1 and 2.2. To this end from (2.4) we have

0 ≤ hs(x) � s−D/2
∞∑

k=1

e−αk2χBHn (0,k)(δs−1/2x)

= s−D/2
∞∑

k=1

e−αk2χBHn (0,
√

sk)(x). (2.14)

Using (2.12), Lemmas 2.1 and 2.2, we obtain

0 ≤ Hs(x, y) � s−D/2
∞∑

k=1

(
√

sk)D|B(x,
√

sk)|−1e−αk2χB(x,C1
√

sk)(y) (2.15)

Applying (1.4), we get

0 ≤ Hs(x, y) �
∞∑

k=1

k D B(x,
√

s)|
|B(x,

√
sk)| |B(x,

√
s)|−1e−αk2χB(x,C1

√
sk)(y)

�
∞∑

k=1

k D−n−1|B(x,
√

s)|−1e−αk2χB(x,C1
√

sk)(y)

� |B(x,
√

s)|−1e−cd(x,y)2/s . (2.16)

��
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Lemma 2.4 There is a constant C > 0 such that

|Hs(x, y) − Hs(z, y)| ≤ C

|B(y,
√

s)|
d(x, z)√

s
. (2.17)

Proof Fix y ∈ X and s > 0 and set F(x) = Hs(x, y). Now, using (2.5) and the same
arguments we have used in the proof of (2.13), we obtain

n∑

j=1

|∂x ′
j
F(x)|2 + |x ′

j∂x ′′ F(x)|2 ≤ C

s|B(y,
√

s)|2 .

Finally, by the definition of the distance d, we have

|F(x) − F(z)| ≤ Cd(x, z)√
s|B(y,

√
s)| . (2.18)

��
Corollary 2.5 (Hölder-type estimates for Ht ) For 0 < γ < 1 there are constants
C, c0 > 0 such that

|Hs(x, y) − Hs(x, z)| ≤ C

|B(x,
√

s)|
(

d(y, z)√
s

)γ

. (2.19)

with the improvement

|Hs(x, y) − Hs(x, z)| ≤ C

|B(x,
√

s)|
(

d(y, z)√
s

)γ

e−c0d(x,y)2/s

if d(y, z) ≤ d(x, y)/2. (2.20)

Lemma 2.6 (On diagonal lower bound of Hs) There is a constant C > 0 such that

Hs(x, x) ≥ C |B(x,
√

s)|−1 for every x ∈ X. (2.21)

Proof By the homogeneity it suffices to prove the estimate for s = 1. To this end

H1(x, x) �
∫

Rn
e−C|z|2e−C|z·x ′| dz � 1

1 + |x ′| ∼ |B(x, 1)|−1. (2.22)

��

3 Proof of Theorem 1.1

Proof To prove the theorem we use Uchiyama’s results [25]. For this purpose we set

ρ(x, y) = inf |B|,
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where the infimum is taken over all closed balls B containing x and y. Then ρ is a
quasi-distance such that ρ(x, y) � |B(x, d(x, y))| for all x, y∈X and

|Bρ(x, r)| � r for every x∈X and r >0, (3.1)

where Bρ(x, r) denotes the closed quasi-ball with center x and radius r (see, e.g. [1,
Lemma 6.4] for the proof).

Define the new kernel Kr (x, y) by

Kr (x, y) = Ht (x, y) , (3.2)

where r = |B(x,
√

t)|. The kernel Kr (x, y) satisfies the following assumptions of
Uchiyama’s theorem, which are stated in conditions (3.3)–(3.5) below. ��
• The on-diagonal lower estimate:

Kr (x, x) ≥ 1
Ar . (3.3)

• Upper estimate: for every δ>0,

Kr (x, y) ≤ A
r

(
1 + ρ(x,y)

r

)−1−δ
. (3.4)

• Hölder estimate: there exist C3>0, δ>0, such that

∣∣Kr (x, y) − Kr (x, z)
∣∣ ≤ A

r

(
1 + ρ(x,y)

r

)−1−2δ(ρ(y,z)
r

)δif ρ(y, z)

≤ C3 max {r, ρ(x, y)}. (3.5)

The estimates (3.3)–(3.5) are consequences of (1.4), (2.21), (2.13), and Corollary 2.5
(see, e.g., [1, Appendix 3]).

Now we define the Hardy spaces H1
max,Kr

as the set of all L1(Rn+1)-functions f

such that ‖ f (+)‖L1(X) < ∞, where f (+) = supr>0 | ∫ Kr (x, y) f (y) dy|.
The atomic Hardy space H1

atom,∞(X, ρ) is defined in the standard way. A function
a is called an atom for H1

atom,∞(X, ρ), if there is a ball Bρ(x0, r) such that supp a ⊂
Bρ(x0, r), ‖a‖L∞ ≤ |Bρ(x0, r)|−1 ∼ r−1,

∫
a = 0. Now a function f is an element

of H1
atom,∞(X, ρ) if f (x) =∑k λkak(x), where ak(x) are atoms for H1

atom,∞(X, ρ)

and λk ∈ C with
∑

k |λk | < ∞. For such f we set ‖ f ‖H1
atom, ∞(X,ρ) = inf

∑
k |λk |,

where infimum is taken over all such representations.
We are now in a position to state the following theorem of Uchiyama about atomic

and maximal characterizations of Hardy spaces on a space of homogeneous type.

Theorem 3.1 [25, Corollary 1’] Assume that ρ(x, y) and Kr (x, y) satisfy (3.1) and
(3.3)–(3.5). Then the spaces H1

max,Kr
and H1

atom,∞(X, ρ) coincide and the norms

‖ f (+)‖L1(X) and ‖ f ‖H1
atom, ∞(X,ρ) are equivalent.
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It is easy to prove that there exists a constant c ≥ 1 such that if r = |B(x,
√

t)|,
then

B(x,
√

t) ⊂ Bρ(x, r) ⊂ B(x, c
√

t). (3.6)

The above inclusions imply that the atomic Hardy spaces for d(x, y) and ρ(x, y)

coincide.Moreover, themaximal functions for the kernels Kr and Ht are equal. Hence,
Theorem 1.1 follows from Theorem 3.1.

4 Farther Properties of π

4.1 Homogeneous Kernels

A tempered distribution S on Hn is said to be a regular kernel of order r ∈ R if S
coincides with a C∞ function m(x) away from the origin and satisfies

〈S, f ◦ δs〉 = sr 〈S, f 〉

for any f ∈ S(H). Any regular kernel of order r gives rise to the convolution operator

f �→ f ∗ Š(x) = 〈S, fx〉, fx( y) = f (x y),

which will be denoted by the same symbol S.
Any tempered distribution S on Hn which is a regular kernel of order 0 is of the

form

〈S, f 〉 = c1 f (0) + lim
ε→0

∫ ∞

ε

∫




m(x̄) f (δr x̄) dσ(x̄)
dr

r

= c1 f (0) + lim
ε→0

∫

|x|>ε

m(x) f (x) dx, (4.1)

where m is a C∞ function away from the origin, m(δsx)

= s−Dm(x),
∫



m(x̄) dσ(x̄) = 0 (see [3, Lemma 2.4]). Here 
 = {x̄ ∈ Hn :
|x̄| = 1} is the unit sphere in Hn and dσ(x̄) is the Radon measure on 
 such that∫
Hn

f (x)dx = ∫∞0
∫



f (δs x̄)s D−1dσ(x̄) ds (see [12, Proposition 1.5]).
Let ϕ be a C∞ function on Hn such that 0 ≤ ϕ ≤ 1, ϕ(x) = ϕ( y) whenever

|x| = | y|, suppϕ ⊂ {x ∈ Hn : 1
2 ≤ |x| ≤ 2},∑∞

j=−∞ ϕ(δ2 j x) = 1 for x �= 0. Then
any regular kernel S of order 0 can be written as

〈S, f 〉 = c1 f (0) +
∞∑

j=−∞

∫

Hn

m j (x) f (x) dx,

where m j (x) = ϕ(δ2 j x)m(x). Clearly,
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|X I Y J m j (x)| ≤ C2 j (D+d(I )+d(J ))‖X I Y J m0‖L∞ ,
∫

Hn

m j (x) dx = 0,
∫

Hn

X J m j (x) dx = 0,
∫

Hn

Y J m j (x) dx = 0. (4.2)

Let m∗
j (x) = m j (x−1) = m j (−x), m̌ j (x) = m j (−x). It is not difficult to check that

there are constants C, c > 0 such that

‖(m∗
j ∗ mk)ˇ‖L1(Hn) + ‖(m j ∗ m∗

k)ˇ‖L1(Hn) ≤ C2−c| j−k|‖mϕ‖C1 .

Thus, by the Cotlar–Stein lemma, S f = f ∗ Š = c1 f +∑∞
j=−∞ f ∗ m̌ j defines a

bounded operator on L2(Hn) and, then on L p(Hn), 1 < p < ∞, since S is a Calderón–
Zygmund operator on Hn . Moreover, ‖S f ‖L p(Hn) ≤ (C p‖mϕ‖C1 + c1)‖ f ‖L p(Hn).
The space of convolution operators with regular kernels of order 0 is an algebra with
involution. Clearly,

∫

Hn

S f · g =
∫

Hn

f · S∗g, where 〈S∗, f 〉 = c̄1 f (0) + pv
∫

Hn

m∗(x) f (x) dx.

Setπ(S) f = c1 f +∑∞
j=−∞ π(m j ) f . Then using theCoifman–Weiss transference

principle [9] we have ‖π(S)‖L2(X)→L2(X) ≤ C‖S‖L2(Hn)→L2(Hn). Moreover, from
(2.7), (2.9), (4.2), Lemmas 2.1 and 2.2 we conclude

∫

X
π(m j )(x, y) dx =

∫

X
π(m j )(x, y) dy = 0, (4.3)

π(m j )(x, y) = 0 for d(x, y) > 2C12
− j , (4.4)

|π(X I )xπ(X J )yπ(m j )(x, y)| ≤ C‖X J Y I m0‖L∞2(d(I )+d(J )) j |B(x, 2− j )|−1,(4.5)

π(m∗
j )(x, y) = π(m j )(y, x). (4.6)

Consequently, π(S) is a Calderón–Zygmund operator with the associated kernel

k(x, y) =
∞∑

j=−∞
π(m j )(x, y)

which satisfies

π(S) f (x) =
∫

k(x, y) f (y) dy for x /∈ supp f, (4.7)
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|π(X I )xπ(X J )yk(x, y)| ≤ CI,J ‖X J Y I m0‖L∞|B(x, d(x, y))|−1d(x, y)−d(I )−d(J ),

(4.8)

k(δt x, δt y) = t−(n+2)k(x, y).

Lemma 4.1 There is a constant C > 0 such that for any regular kernel S of order 0
on Hn and for every function f ∈ C1

c (B(x0, r0)) we have

|π(S) f (x)| ≤ (2c1 + C‖m0‖L∞)r0

2n∑

k=1

‖π(Xk) f ‖L∞ . (4.9)

Proof Note that (1.2) and (4.5) imply

‖ f ‖L∞ ≤ 2r0

2n∑

k=1

‖π(Xk) f ‖L∞ (4.10)

and

|π(m j )(x, y)| ≤ C |B(x, 2− j )|−1‖m0‖L∞ . (4.11)

Let j0 be such that 2− j0 < r0 ≤ 2− j0+1. Clearly, by (4.3) and (4.4), we get

∣∣∣
∞∑

j=−∞

∫
π(m j )(x, y) f (y) dy

∣∣∣

≤
∑

j< j0

∫

B(x0,r0)∩B(x,C12− j+1)

|π(m j )(x, y)|| f (y)| dy

+
∑

j≥ j0

∫

B(x,C12− j+1)

|π(m j )(x, y)|| f (y) − f (x)| dy

= J1 + J2.

Observe that if B(x0, r0) ∩ B(x, C12− j+1) �= ∅ with j < j0, then |B(x, 2− j )| ∼
|B(x0, 2− j )|. Hence, applying (4.10), (4.11) and (1.4) we obtain

J1 ≤
∑

j< j0

‖m0‖L∞|B(x, 2− j )|−12r0

(
2n∑

k=1

‖π(Xk) f ‖L∞

)
|B(x0, r0)|

≤ Cr0‖m0‖L∞

(
2n∑

k=1

‖π(Xk) f ‖L∞

)
∑

j< j0

( r0
2− j

)n+1

≤ Cr0‖m0‖L∞
2n∑

k=1

‖π(Xk) f ‖L∞ .
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To estimate J2 we use (1.2) together with (4.11) and get

J2 ≤ C
∑

j≥ j0

‖m0‖L∞

(
2n∑

k=1

‖π(Xk) f ‖L∞

)
2− j

≤ Cr0‖m0‖L∞
2n∑

j=1

‖π(X j ) f ‖L∞ .

��
Thanks to Lemma 4.1 for f ∈ L1(X) and a regular kernel S of order 0 we define

π(S) f in the sense of distribution setting

〈π(S) f, ϕ〉 = 〈 f, π(Š)ϕ〉, ϕ ∈ C∞
c (Rn+1).

Lemma 4.2 There is a constant C > 0 such that for any regular kernel S of order 0
on Hn which has the form (4.1) we have

‖π(S) f ‖H1
L

≤ (c1 + C‖m0‖C1)‖ f ‖H1
L
. (4.12)

Proof The proof is standard. For the sake of completeness we present its sketch.With-
out loss of generality we can assume that c1 = 0. Because π(S) maps continuously
L1(X) to D′(Rn+1), it suffices to prove that there is a constant C > 0 such that
‖π(S)a‖H1

L
≤ C for every atom a ∈ H1

atom,∞(X). Fix a (1,∞)-atom a associated

with a ball B(y0, r0). Since
∑

j π(m j )a converges in L2(X), it converges in the L1(X)

normon B(y0, 2r0) aswell.Note also thatπ(m j )a(x) = 0 for d(x, y0) > 2C12− j +r0.
If 2r0 < d(x, y0) ≤ 2C12− j + r0, then applying (1.2) and (4.5) we get

|π(m j )a(x)| =
∣∣∣
∫

B(y0,r0)

(
π(m j )(x, y) − π(m j )(x, y0)

)
a(y) dy

∣∣∣

≤ C‖m0‖C12 j r0|B(y0, 2− j )|−1. (4.13)

Hence,
∑

j π(m j )a converges in L1(X) and L2(X) to π(S)a and
∫

π(S)a(x) dx =
0. Moreover,

|π(S)a(x)| ≤ C‖m0‖C1
r0

|B(y0, d(x, y0))|d(x, y0)
for d(x, y0) > 2r0,

‖π(S)a‖L2(X) ≤ C(‖m0‖C1 + c1)|B(y0, r0)|−1/2.

So, π(S)a can be written as π(S)a = ∑ j λ j a j with a j being (1, 2)-atoms and∑
j |λ j | ≤ C . ��
Let ψ be a Schwartz class function on [0,∞) and d EL and d EL be the spectral

measures for L and L respectively. It is well known that the operator

ψ(L) f =
∫ ∞

0
ψ(λ) d EL(λ) f
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is a convolution operator with a Schwartz class function on Hn denoted by the same
symbol ψ(L)(x) , that is, ψ(L) f (x) = f ∗ ψ(L)(x) (see, e.g., [14]). Moreover, for
every multi-index I and M ≥ 0 there is N > 0 and a constant CI,M,N > 0 such that

sup
x∈Hn

(1 + |x|)M(|X I ψ(L)(x)| + |Y I ψ(L)(x)|)

≤ CI,M,N sup
λ>0

(1 + λ)N

⎛

⎝
N∑

j=0

|ψ( j)(λ)|
⎞

⎠ . (4.14)

By homogeneity,

ψ(t L)(x) = t−D/2ψ(L)(δt−1/2x). (4.15)

Clearly, the operator

ψ(L) f =
∫ ∞

0
ψ(λ) d EL(λ) f

is of the form

ψ(L) f (x) =
∫

X
ψ(L)(x, y) f (y) dy,

where

ψ(L)(x, y) = π(ψ(L))(x, y). (4.16)

For detailed spectral properties of L we refer the reader to [19].

4.2 Riesz Transforms

The Riesz transforms R j , j = 1, 2, . . . , 2n, on the Heisenberg group Hn are defined

by R j f = X j L−1/2 f = limε→0 c
∫ ε−1

ε
X j e−t L f dt√

t
= limε→0 f ∗(c

∫ ε−1

ε
X j ht

dt√
t
).

By the Cotlar–Stein almost orthogonality principle the above limit defines a bounded
operator on L2(Hn). One can also prove that R j are the principal valued convolution
singular integral operators R j f = f ∗ Ř j , where R j (x) = −c

∫∞
0 Y j ht (x) dt√

t
are

real-valued regular kernels of order 0.
Similarly the Riesz transformsR j associated with the Grushin operator are defined

by R j = cπ(X j )L−1/2, j = 1, 2, . . . , 2n. Clearly, R j = π(R j ). Thus R j are
Calderón–Zygmund operators on X, which are bounded on L p(X), 1 < p < ∞, and,
by Lemma 4.2, bounded on H1

L. For boundedness ofR j on L p(X) see also [16].
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5 (�) Property and Decomposition of BMO(X)

Let
−→
S = (S1, S2, . . . , Sd) be a system of regular kernels of order 0 on Hn . We say

that it fulfills condition (�) if for every unit vector ν ∈ R
d there are regular kernels

Tj of order zero, 〈Tj , f 〉 = c j f (0) + pv
∫
Hn

m{ j}(x) f (x) dx, j = 1, 2, . . . , d, such
that

(�)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑d
j=1 S∗

j Tj = I,
∑d

j=1 ν j Tj = 0,

|c j | ≤ C with C independent of ν,

|X I m{ j}(x)| + |Y I m{ j}(x)| ≤ CI for |x| = 1, with CI independent of ν.

Theorem 5.1 (Christ and Geller [5, Sect. 6]) The system of the regular kernels of
order zero {δ0, R1, R2, . . . , R2n} on the Heisenberg group Hn fulfils condition (�).

A locally integrable function f on X is said to be an element of B M O(X) if

‖ f ‖B M O(X) := sup
y∈X, r>0

1

|B(y, r)|
∫

B(y,r)

| f (x) − fB(x,r)| dx < ∞,

here fB(y,r) = |B(y, r)|−1
∫

B(y,r)
f (x) dx denotes themean value of f over B(y, r) =

{x ∈ X : d(y, x) < r}.
Our goal of this section is to prove the following theorem.

Theorem 5.2 Assume that S j , j = 1, 2, . . . , d, is a system of operators satisfying
(�). Then there is a constant C > 0 such that any compactly supported B M O(X)

function f can be written as

f =
d∑

j=1

π(S∗
j )g j + g0, (5.1)

with

d∑

j=0

‖g j‖∞ ≤ C‖ f ‖B M O(X). (5.2)

Moreover,

d∑

j=0

‖g j‖L2(X) < ∞. (5.3)

For the proof of the theorem we follow methods presented in Christ and Geller
[5] about decompositions of BMO functions on homogeneous Lie groups (see also
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the original Uchiyama’s proof [26] of constructive Fefferman–Stein decomposition of
BMO functions on the Euclidean spaces).

There is no loss of generality to assume that ‖ f ‖B M O(X) = ε with ε > 0 very
small to be determined latter on.

Let us also emphasize that for any t > 0 the mapping f �→ f ◦ δt is an isometry
on L∞ and B M O(X).

The main step of the proof of Theorem 5.2 is the following theorem.

Theorem 5.3 Assume that S j , j = 1, 2, . . . , d, is a system of operators satisfying (�).
Then there are constants constant C8, C9, ε0 > 0 such that any B M O(X) function f
supported in any ball B(zB, r) with ‖ f ‖B M O(X) = ε < ε0, can be written as

f =
d∑

j=1

π(S∗
j )g̃ j + g̃0 + f1, (5.4)

d∑

j=1

‖g̃ j‖∞ ≤ 3d, ‖g̃0‖L∞ ≤ C9‖ f ‖B M O(X), (5.5)

‖ f1‖B M O(X) ≤ C9ε
2, supp f1 ⊂ B(zB, C8r), (5.6)

Moreover,

d∑

j=0

‖g̃ j‖L2(X) ≤ C9|B(zB, r)|1/2‖ f ‖B M O(X). (5.7)

For the proof of Theorem 5.3 we adapt arguments of Christ and Geller [5]. For the
convenience of the reader we present all the details in Appendixes 1 and 2.

Proof of Theorem 5.2 Fix 0 < ε < ε0 such that C9ε < 1 and C9C3/2
8 ε < 1. Decom-

pose f according to Theorem5.3. If f1 = 0we are done. Otherwisewe apply Theorem
5.3 to the function ε‖ f1‖−1

B M O(X) f1 and obtain functions f2, g̃{1}
j , j = 0, 1, . . . , d,

such that

f1 =
d∑

j=1

π(S∗
j )g̃

{1}
j + g̃{1}

0 + f2, (5.8)

d∑

j=1

‖g̃{1}
j ‖L∞ ≤ 3d

‖ f1‖B M O(X)

ε
≤ 3dC9ε,

|̃g{1}
0 ‖L∞ ≤ C9‖ f1‖B M O(X) ≤ C2

9ε
2, (5.9)

‖ f2‖B M O(X) ≤ ‖ f1‖B M O(X)

ε
C9ε

2 ≤ C2
9ε

3, supp f2 ⊂ B(zB, C2
8r), (5.10)
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d∑

j=0

‖g̃{1}
j ‖L2(X) ≤ ‖ f1‖B M O(X)

ε
C9|B(zB, C1r)|1/2ε

≤ C2
9 |B(zB, C8r)|1/2ε2. (5.11)

Set g̃{0}
j = g̃ j , j = 0, 1, . . . , d. Continuing this procedure we obtain sequences of

functions g̃{n}
j , j = 0, 1, . . . , d, n = 0, 1, 2, . . ., and fn such that

f =
d∑

j=1

π(S∗
j )g̃

{0}
j + g̃{0}

0 + f1,

fn =
d∑

j=1

π(S∗
j )g

{n}
j + g{n}

0 + fn+1,

d∑

j=1

‖g̃{n}
j ‖L∞ ≤ 3dCn

9 εn,

d∑

j=0

‖g̃{n}
j ‖L2(X) ≤ Cn+1

9 |B (zB, Cn
8 r
) |1/2εn+1,

‖ fn+1‖B M O(X) ≤ Cn+1
9 εn+2, supp fn+1 ⊂ B

(
zB, Cn+1

8 r
)

.

Observe that

‖ fn‖L2(X) ≤ C ′|B(zB, Cn
1 r)|1/2‖ fn‖B M O(X)

≤ C ′′C3n/2
8 |B(zB, r)|1/2Cn

2 εn → 0, as n → ∞,

∞∑

n=0

d∑

j=0

‖g̃{n}
j ‖L2(X) ≤

∞∑

n=0

Cn+1
9 C3n/2

8 |B(zB, r)|1/2εn+1.

Putting g j =∑∞
n=0 g̃{n}

j we obtain Theorem 5.2. ��

6 Proof of Theorem 1.2

Let V M O(X) be the closure of the space of continuous functions with compact sup-
port in the B M O-norm. It is well-known (see [8, Theorem 4.1]) that V M O(X) is a
predual space to H1

atom,∞(X), that is, V M O(X)∗ = H1
atom,∞(X) in the sense that any

functional � on V M O(X) is of the form �( f ) = ∫ f (x)F(x) dx for f ∈ Cc(X),
where F ∈ H1

atom,∞(X).
Assume firstly that F ∈ L1(X) ∩ L2(X) and R j F ∈ L1(X), j = 1, 2, . . . , 2n.

If f is compactly supported continuous function on X, then, according to Theorems
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5.1 and 5.2, there are functions g j ∈ L∞(X) ∩ L2(X), j = 0, 1, 2, . . . , 2n, such that
∑2n

j=0 ‖g j‖∞ ≤ C‖ f ‖B M O(X) and f = g0 +∑2n
j=1R∗

j g j . Hence,

∣∣∣
∫

X
f (x)F(x) dx

∣∣∣ =
∣∣∣∣∣∣

∫

X

⎛

⎝g0 +
2n∑

j=1

R∗
j g j

⎞

⎠ F dx

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∫ ⎛

⎝g0(x)F(x) +
2n∑

j=1

g j (x)R j F(x)

⎞

⎠ dx

∣∣∣∣∣∣

≤ ‖ f ‖B M O(X)

⎛

⎝‖F‖L1(X) +
2n∑

j=1

‖R j F‖L1(X)

⎞

⎠ . (6.1)

Thus, the integral f �→ ∫ f (x)F(x) dx has the unique extension to a bounded func-
tional on V M O(X) and, consequently, F ∈ H1

atom,∞(X) with

‖F‖H1
atom, ∞(X) ≤ C

⎛

⎝‖F‖L1(X) +
2n∑

j=1

‖R j F‖L1(X)

⎞

⎠ .

We now relax the assumption F ∈ L2(X) assuming only that F ∈ L1(X) with
R j F ∈ L1(X).

Lemma 6.1 Let S be a regular kernel of order zero on Hn. Then there is a constant
C > 0 such that for every t > 0

∥∥[π(S), e−tL]F
∥∥

L1(X)
≤ C‖F‖L1(X), (6.2)

where
[
π(S), e−tL] = π(S)e−tL − e−tLπ(S) is the commutator of π(S) and e−tL.

We shall postpone the proof of the lemma to the end of the section.
Note that e−tLF ∈ L2(X) for F ∈ L1(X). Thus from Lemma 6.1 we conclude

that

‖R j e
−tLF‖L1(X) ≤ C

(
‖R j F‖L1(X) + ‖F‖L1(X)

)
(6.3)

with a constant C independent of t > 0. The first part of the proof combined with
(6.3) and Theorem 1.1 lead to

‖e−tLF‖H1
L

≤ C

⎛

⎝
2n∑

j=1

‖R j e
−tLF‖L1(X) + ‖e−tLF‖L1(X)

⎞

⎠

≤ C

⎛

⎝
2n∑

j=1

‖R j F‖L1(X) + ‖F‖L1(X)

⎞

⎠ ,
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because e−tL is uniformly bounded on L1(X). Since ML(e−t1LF)(x)

≤ ML(e−t2LF)(x) for 0 < t2 < t1, we deduce from the Lebesgue monotone conver-
gence theorem that MLF ∈ L1(X) and

‖MLF‖L1(X) ≤ C

⎛

⎝
2n∑

j=1

‖R j F‖ + ‖F‖L1(X)

⎞

⎠ .

This completes the proof of the first inequality of (1.6).
The proof of the second inequality in (1.6) is standard and follows from the fact

that R j are Calderón–Zygmund operators (see Sect. 4). We omit the details.

Proof of Lemma 6.1 By the homogeneity it suffices to prove the lemma for t = 1.
Recall that

∫

X
Ht (x, z) dz =

∫

X
Ht (z, y) dz = 1,

where Ht (x, y) denote the integral kernel for e−tL. Let m j be as in Sect. 4.1. Set

M j =
∫ ∣∣∣
∫ (

H1(x, z)π(m j )(z, y) − π(m j )(x, z)H1(z, y)
)

dz
∣∣∣ dx.

If j ≤ 0, then

M j ≤
∫ ∣∣∣
∫

H1(x, z)
(
π(m j )(z, y) − π(m j )(x, y)

)
dz
∣∣∣ dx

+
∫ ∣∣∣
∫ (

π(m j )(x, y) − π(m j )(x, z)
)
H1(z, y) dz

∣∣∣ dx

= J1 + J2.

J1 ≤
∫ ∣∣∣
∫

d(z,y)≤8C12− j
H1(x, z)

(
π(m j )(z, y) − π(m j )(x, y)

)
dz
∣∣∣ dx

+
∫ ∣∣∣
∫

d(z,y)>8C12− j
H1(x, z)

(
π(m j )(z, y) − π(m j )(x, y)

)
dz
∣∣∣ dx

= J11 + J12.

By (4.5), (1.2) and (2.13), we have

J11 ≤ C
∫

d(z,y)≤8C12− j

∫
H1(x, z)

2 j d(x, z)
|B(y, 2− j )| dx dz ≤ C2 j .

(6.4)

Using (4.4) and (2.13) and (4.5), we obtain
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J12 =
∫ ∫

d(z,y)>8C12− j
H1(x, z)|π(m j )(x, y)|dz dx

≤
∫ ∫

d(x,z)>C12− j
H1(x, z)|π(m j )(x, y)|dz dx ≤ C2 j . (6.5)

Similarly,

J2 ≤
∫

d(x,y)≤8C12− j

∣∣∣
∫ (

π(m j )(x, y) − π(m j )(x, z)
)
H1(z, y) dz

∣∣∣ dx

+
∫

d(x,y)>8C12− j

∣∣∣
∫ (

π(m j )(x, y) − π(m j )(x, z)
)
H1(z, y) dz

∣∣∣ dx = J21 + J22

Again, applying (1.2), (4.5), (2.13) and the doubling property of the measure, we get

J21 ≤ C
∫

d(x,y)<8C12− j

∫
X

d(y,z)2 j

|B(x,2− j )| H1(z, y) dz dx ≤ C2 j . (6.6)

If d(x, y) > 8C12− j then π(m j )(x, y) = 0. Hence, thanks to (2.13) and (4.5), we
have

J22 ≤
∫

d(x,y)>8C12− j

∫

d(x,z)<2C12− j
|π(m j )(x, z)|H1(z, y) dz dx

≤
∫

d(z,y)>2C12− j

∫

X
|π(m j )(x, z)|H1(z, y) dx dz ≤ C2 j . (6.7)

If j > 0, then using (4.3) and Corollary 2.5 we arrive to

M j ≤
∫ ∣∣∣
∫ (

H1(x, z) − H1(x, y)
)
π(m j )(z, y) dz

∣∣∣dx

+
∫ ∣∣∣
∫

π(m j )(x, z)
(
H1(z, y) − H1(x, y)

)
dz
∣∣∣ dx

≤ C
∫ ∣∣∣
∫

d(z,y)<2C12− j

2− jγ

|B(x, 1)|e−c0d(x,y)2 |π(m j )(z, y)| dz dx

+ C
∫ ∣∣∣
∫

d(x,z)<2C12− j
|π(m j )(x, z)| 2− jγ

|B(y, 1)|e−c0d(x,y)2 dz dx

≤ C2− jγ . (6.8)

Finally, (6.4)–(6.8) imply
∑∞

j=−∞ M j ≤ C < ∞, which completes the proof of the
Lemma. ��
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Appendix 1: Chang–Fefferman Decomposition

Our goal in this section is to prove a version of Chang–Fefferman decomposition of
compactly supported B M O(X) functions. Then we shall establish some properties of
the decomposition. We borrow main ideas from [5].

Dyadic Sets

Theorem 7.1 (Christ [4]) There exist a collection B of open sets {Qk
α ⊂ R

n+1 : k ∈
Z, α ∈ Ik}, and constants δ ∈ (0, 1), 1 ≥ a0 > 0, and C3 > 0 such that

∣∣∣∣∣∣
X \
⋃

α∈Ik

Qk
α

∣∣∣∣∣∣
= 0 ∀k. (7.1)

I f � ≥ k then either Q�
β ⊂ Qk

α or Q�
β ∩ Qk

α = ∅. (7.2)

For each (k, α) and each �<k there is a unique β such that Qk
α ⊂ Q�

β . (7.3)

diam (Qk
α) ≤ C3δ

k . (7.4)

Each Qk
α contains some ball BQk

α
= B(zk

α, a0δ
k). (7.5)

Set Bk = {Qk
α : α ∈ Ik} and �(Q) = δk if Q ∈ Bk . Fix a constant A0 > 2 such

that for any x ∈ X and k ∈ Z there is Q ∈ Bk such that B(x, 8δk−1) ⊂ A0BQ . Then
for any ball B = B(x, r) denote A0B = B(x, A0r) by B̃.

Chang–Fefferman Decomposition

Lemma 7.2 Suppose that N1 ∈ N is given. Then every f ∈ B M O(X) with compact
support can be decomposed to

f (x) =
∑

k∈Z

∑

α∈Ik

λQk
α
aQk

α
(x), (7.6)

where

aQk
α
(x) = LN1 ãQk

α
(x), (7.7)

http://creativecommons.org/licenses/by/4.0/
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ãQk
α

is supported by B�
Qk

α
= C4BQk

α
= B(zk

α, C4a0δ
k). (7.8)

‖π(X I )̃aQk
α
‖∞ ≤ CI δ

2N1k−d(I )k, ‖π(X I )aQk
α
‖∞ ≤ CI δ

−d(I )k, (7.9)

∑

B̃�
P∩B̃�

Q �=∅, �(P)≤�(Q)

|λP |2|P| ≤ C |Q|‖ f ‖2B M O(X) for every Q ∈ B, (7.10)

where CI and C are independent of f .

Remark 7.3 Let us emphasize that the condition (7.7) replaces the condition

∫
aQk

α
(x)W (x) dx = 0 for all polynomials W of homogeneous degree <2N1,

(7.11)

in the Chang–Fefferman decomposition for the classical B M O spaces and for the
BMO spaces on homogeneous Lie groups. Actually (7.7) implies (7.11) by the inte-
gration by parts, sinceLN1W (x) = 0 for every polynomial W of homogeneous degree
< 2N1.

Proof of Lemma 7.2 For fixed N1 let φ,ψ, η ∈ S(R) be real valued functions such
that

φ(ξ) = ψ(ξ2), |φ(ξ)| ≤ C |ξ |2N1+2 for |ξ | < 1, φ(ξ) = ξ2N1η(ξ), (7.12)

supp φ̂, supp η̂ ⊂ (−1, 1), (7.13)

∫ ∞

0
φ(tξ)2

dt

t
= 1, ∀ξ �= 0. (7.14)

Here φ̂ and η̂ denote the Fourier transforms of φ and η respectively. Then there are
Schwartz class functions φ(

√
L)(x) and η(

√
L)(x) on Hn such that φ(t

√
L) f (x) =

f ∗ φ(t
√

L)(x), φ(t
√

L)(x) = t−Dφ(
√

L)(δ−1
t x). The same holds for η(t

√
L)(x).

Moreover, it follows from (2.13), (7.13), and the finite propagation of the fundamen-
tal solution of the wave equation that the functions φ(t

√
L)(x) and η(t

√
L)(x) are

compactly supported, that is, there is a constant C ′ > 0 such that

suppφ(t
√

L), supp η(t
√

L) ⊂ B(0, C ′t) ⊂ Hn,
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see [10,21] for details. Consequently, by Lemma 2.1,

φ(t
√
L)(x, y) = η(t

√
L)(x, y) = 0 for d(x, y) > C5t with C5 = C ′C1. (7.15)

Additionally,

|π(X I )xη(t
√
L)(x, y)| ≤ CI,ηt−d(I )|B(y, t)|−1 (7.16)

with the same estimates on π(X I )xφ(t
√L)(x, y).

For f ∈ L2(X) we have

f (x) = lim
ε→0, R→∞

∫ R

ε

φ(t
√
L)φ(t

√
L) f (x)

dt

t

=
∑

k∈Z

∑

α∈Ik

∫ δk−1

δk

∫

Qk
α

φ(t
√
L)(x, y)(φ(t

√
L) f )(y)dy

dt

t
.

(7.17)

Set

λQk
α

=
(

|Qk
α|−1
∫ δk−1

δk

∫

Qk
α

|(φ(t
√
L) f )(y)|2dy

dt

t

)1/2
,

(7.18)

ãQk
α

= λ−1
Qk

α

∫ δk−1

δk

∫

Qk
α

t2N1η(t
√
L)(x, y)(φ(t

√
L) f )(y)dy

dt

t
,

(7.19)

aQk
α
(x) = LN1 ãQk

α
(x)

= λ−1
Qk

α

∫ δk−1

δk

∫

Qk
α

φ(t
√
L)(x, y)φ(t

√
L) f (y)dy

dt

t
. (7.20)

Thus (7.6) and (7.7) hold. Now (7.8) follows from (7.4) and (7.15). Observe that
|B(y, t)| ∼ |Qk

α| for (y, t) ∈ Qk
α × (δk, δk−1). Thus from (7.15) and (7.16) we
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conclude

|π(X I )̃aQk
α
(x)|

≤ CI |λ−1
Qk

α
|
∫ δk−1

δk

∫

Qk
α

t2N1−d(I )|Qk
α|−1|φ(t

√
L) f (y)|dy

dt

t

≤ CI |λ−1
Qk

α
|δ(2N1−d(I ))k

(
|Qk

α|−1
∫ δk−1

δk

∫

Qk
α

|φ(t
√
L) f (y)|2dy

dt

t

)1/2

≤ CI δ
(2N1−d(I ))k, (7.21)

which gives (7.9). Finally, for fixed Q ∈ B,

∑

B̃�
P∩B̃�

Q �=∅, �(P)≤�(Q)

|λP |2|P| ≤
∫

(A0C4)BQ

∫ (A0C4)�(Q)

0
|φ(t

√
L) f (x)|2 dx

dt

t
.

(7.22)

So to finish the proof of (7.10) it suffices to note that |φ(t
√L) f (x)|2 dx dt

t is aCarleson
measure with the estimate

∫

B

∫ diam B

0
|φ(t

√
L) f (x)|2 dx

dt

t
≤ C |B|‖ f ‖2B M O(X) (7.23)

for any ball B ⊂ X. This fact has a standard proof, which for the reader convenience
we present here. First from (7.12) and (2.7) one gets

∫

X
φ(t

√
L)(x, y) dy = 0, ∀x ∈ X. (7.24)

Fix a ball B and decompose

f = ( f − c)χC6B + ( f − c)χ(C6B)c + c = f1 + f2 + c,

where c = |C6B|−1
∫

C6B f (x) dx, C6 = 16(C5 + 1). Applying (7.24) we have

φ(t
√L) f = φ(t

√L) f1 + φ(t
√L) f2. By the John–Nirenberg inequality ‖ f1‖2L2 ≤

C |B|‖ f ‖2B M O(X) (see e.g., [24, Sect. III]). Consequently,

∫

B

∫ diam B

0
|φ(t

√
L) f1(x)|2 dx

dt

t
≤ C‖ f1‖2L2 ≤ C |B|‖ f ‖2B M O(X). (7.25)

Further, thanks to (7.15), φ(t
√L) f2(x) = 0 for x ∈ B and 0 < t ≤ diam B. Thus

(7.23) is proved. ��
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Let us remark that for λQ defined in (7.18) we have

|λQ | ≤ C‖ f ‖B M O(X), (7.26)

since |φ(t
√L) f (x)|2 dx dt

t is a Carleson measure.

Lemma 7.4 Let N ∈ Z
+ be given. Then there exist constants N1 ∈ Z

+ and CN > 0
such that for any regular kernel S of order 0 of the form (4.1) and any aQ satisfying
(7.7)–(7.9) we have

|π(S)aQ(x)| ≤ CN (c1 + ‖m0‖C2N1 )(1 + �(Q)−1d(x, zQ))−2N , (7.27)

|π(S)aQ(x) − π(S)aQ(x′)| ≤ CN (c1 + ‖m0‖C2N1+1)
�(Q)−1d(x, x′)

1 + �(Q)−1d(x, x′)

×
(
1 + �(Q)−1d(x, x′)
1 + �(Q)−1d(x, zQ)

)2N

. (7.28)

∫

X
π(S)aQ(x) dx = 0. (7.29)

Proof Thanks to (7.7)–(7.9) without loss of generality we may assume that c1 = 0.
In order to prove (7.27) it suffices, by (7.7)–(7.9), (4.5) and Lemma 4.1, to consider

d(x, zQ) > 16C4a0�(Q). Then, integration by parts leads to

|π(S)aQ(x)| =
∣∣∣
∫

{LN1
y k(x, y)}̃aQ(y) dy

∣∣∣

≤ ‖L N1m0‖L∞
∫

B�
Q

|B(y, d(x, y))|−1 d(x, y)−2N1 |̃aQ(y)| dy

≤ C‖L N1m0‖L∞
|Q|

|B(zQ, d(x, zQ)|d(x, zQ)−2N1�(Q)2N1

≤ C‖L N1m0‖L∞
�(Q)2N1+2

d(x, zQ)2N1+2 , (7.30)

where in the last inequality we have used (1.4). The proof of (7.27) is complete.
We now turn to prove (7.28). It suffices to consider d(x, x′) ≤ �(Q), otherwise

(7.28) follows from (7.27).
Assume first that d(x, zQ) > 16C4a0�(Q). Let g ∈ C∞

c (X) be such that
g(x) = g(x′) = 1, supp g ∈ B(x, d(x, zQ)/4), ‖π(X I )g‖∞ ≤ CI d(x, zQ)−d(I ).
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Then, integrating by parts and using (1.2) together with (4.8) and (7.9), we obtain

|π(S)aQ(x) − π(S)aQ(x′)|
=
∣∣∣
∫

X

(
g(x)k(x, y) − g(x′)k(x′, y)

)
LN1 ãQ(y) dy

∣∣∣

=
∣∣∣
∫

X
LN1

y

(
g(x)k(x, y) − g(x′)k(x′, y)

)
ãQ(y) dy

∣∣∣

≤ d(x, x′)
∫

X

2n∑

i=1

‖π(Xi )xLN1
y
(
g( · )k( · , y)

)‖∞|̃aQ(y)| dy

≤ Cd(x, x′)‖m0‖C2N1+1d(x, zQ)−2N1−1�(Q)2N1 |Q| · |B(zQ, d(x, zQ))|−1

≤ C‖m0‖C2N1+1
�(Q)−1d(x, x′)

1 + �(Q)−1d(x, x′)

(
1 + �(Q)−1d(x, x′)
1 + �(Q)−1d(x, zQ)

)2N1+n+2

,

where in the last inequality we have applied (1.4).
Assume now that d(x, zQ) ≤ 16C4a0�(Q). According to (1.2) it is enough to prove

that

|π(Xi )π(S)aQ(x)| ≤ C‖m0‖C2N1+1�(Q)−1 for i = 1, 2, . . . , 2n. (7.31)

Consider j’s such that 2− j > �(Q). Then, by (4.5) and (7.7)–(7.9), we get

|π(Xk)π(m j )aQ(x)| =
∣∣∣
∫

π(Xk)xπ(m j )(x, y)aQ(y) dy
∣∣∣

≤ C
∫

B(x,C2− j )

‖Ykm0‖∞2 j |B(x, 2− j )|−1|aQ(y)| dy

≤ C‖m0‖C12 j . (7.32)

Therefore,
∑

2− j >�(Q) |π(Xk)π(m j )aQ(x)| ≤ C‖m0‖C1�(Q)−1.
Consider 2− j ≤ �(Q). By (2.9) and (2.2), we have

π(Xk)xπ(m j )(x, y) = −π(Ykm j ) = −π(Xkm j + wk X2n+1m j )(x, y)

= π(Xk)yπ(m j )(x, y) + π(X2n+1)yπ(wkm j )(x, y). (7.33)

Hence, integration by parts and use of (4.3) lead to

|π(Xk)π(m j )aQ(x)| ≤
∣∣∣
∫

π(m j )(x, y)(π(Xk)aQ)(y) dy
∣∣∣

+
∣∣∣
∫

π(wkm j )(x, y)(π(X2n+1)aQ)(y) dy
∣∣∣

≤
∣∣∣
∫

π(m j )(x, y)
{
(π(Xk)aQ)(y) − (π(Xk)aQ)(x)

}
dy
∣∣∣

+
∣∣∣
∫

π(wkm j )(x, y)(π(X2n+1)aQ)(y) dy
∣∣∣
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≤
∫

B(x,C2− j )

|π(m j )(x, y)|d(x, y)

2n∑

i=1

‖π(Xi Xk)aQ‖∞ dy

+
∫

B(x,C2− j )

|π(wkm j )(x, y)| · |(π(X2n+1)aQ(y)| dy

≤ C‖m0‖∞2− j�(Q)−2,

since |wkm j | ≤ C2− j |m j |. So,∑2− j ≤�(Q) |π(Xk)π(m j )aQ(x)| ≤ C‖m0‖∞�(Q)−1.
Finally (7.29) is a direct consequence of Lemma 4.2, because aQ is a multiple of a

(1,∞)-atom for H1(X). ��
Corollary 7.5 Assume that for S j , j = 1, . . . , d, the condition (�) holds. Suppose
that aQ satisfies the conclusions (7.7)–(7.9) of the Chang–Fefferman decomposition.

Then there is a constant CN such that given any unit vector ν ∈ R
d there exists

−→
b Q

such that

|−→b Q | ≤ CN

(
1 + d(zQ, x)

�(Q)

)−2N

, (7.34)

|−→b Q(x) − −→
b Q(y)| ≤ C11

d(x, y)

�(Q)

(
1 + d(zQ, x)

�(Q)

)−2N

for d(x, y) ≤ A0�(Q), (7.35)

|−→b Q(x) − −→
b Q(y)| ≤ C11

d(x, y)

�(Q)

(
1 + d(x, y)

�(Q)

)N−1 (
1 + d(zQ, x)

�(Q)

)−N

for all x, y ∈ X, (7.36)

−→
S ∗ · −→

b Q = aQ, 〈−→b Q(x), ν〉 = 0. (7.37)

Proof Define
−→
b Q = π(

−→
T )(aQ). Then (7.34), (7.35), and (7.37) follow directly from

Lemma 7.4 and property (�). It suffices to prove (7.36). If d(x, y) ≤ �(Q) or d(x, y) ≤
3d(x, zQ), then (7.36) is deduced easily from (7.28). Finally assume that d(x, y) >

�(Q) and 3d(x, zQ) < d(x, y). Then d(x, zQ) < d(zQ, y) and, consequently, (7.34)
implies (7.36). ��

Auxiliary Functions

Let N0 be a large integer. For a compactly supported f ∈ B M O(X) define

τk(x) =
∑

�(Q)=δk

|λQ |(1 + δ−kd(zQ, x))−N0 , (7.38)
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where λQ are scalars from the Chang–Fefferman decomposition (see Lemma 7.2). Fix
0 < κ < 1 − δ, where δ is from Theorem 7.1 and set

σk(x) =
∑

j≤k

(1 − κ)k− jτ j (x). (7.39)

Then,

σk(x) = τk(x) + (1 − κ)σk−1(x). (7.40)

Easily, if N0 is sufficiently large, then

τk(x)2 ≤ C
∑

Q∈Bk

λ2Q

(
1 + δ−kd(zQ, x)

)−N0
. (7.41)

Indeed,

∑

�(Q)=δk ,�(P)=δk

|λQλP |
(
1 + d(zQ, x)

δk

)−N0
(
1 + d(zP , x)

δk

)−N0

≤ 1

2

∑

�(Q)=δk ,�(P)=δk

|λQ |2
(
1 + d(zQ, x)

δk

)−N0
(
1 + d(zP , x)

δk

)−N0

+ 1

2

∑

�(Q)=δk ,�(P)=δk

|λP |2
(
1 + d(zQ, x)

δk

)−N0
(
1 + d(zP , x)

δk

)−N0

=
∑

�(Q)=δk

|λQ |2
(
1 + d(zQ, x)

δk

)−N0 ∑

�(P)=δk

(
1 + d(zP , x)

δk

)−N0

≤ C
∑

�(Q)=δk

|λQ |2
(
1 + d(zQ, x)

δk

)−N0

. (7.42)

Because
∑

�(P)=δk

(
1+ δ−kd(zP , x)

)−N0 ≤ C independently of k, provided N0 > 3.

Lemma 7.6 (Christ and Geller [5]) If N0 is sufficiently large, then for every compacty
supported B M O(X)-function f one has

‖τk‖∞ ≤ C12‖ f ‖B M O(X),

‖σk‖∞ ≤ C12‖ f ‖B M O(X),∫

B̃Q

∑

j≥k

σ j (x)τ j (x) dx ≤ C12|Q|‖ f ‖2B M O(X) if �(Q) = δk .
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Proof The proof is same as of [5, Lemma 3.3].

Lemma 7.7 There is a constant C such that if f =∑ λQaQ is the Chang–Fefferman
decomposition of a B M O(X)-function f given by the proof of Lemma 7.2 such that
supp f ⊂ B(x0, 1), then

∥∥∥
∑

�(Q)≥C0

λQaQ

∥∥∥∞ ≤ C
∑

δk≥C0

δ−k‖ f ‖B M O(X) for C0 ≥ 1.

Proof There is a constant M1 such that for k ≤ 0 the number of Q ∈ Bk such that
λQ �= 0 is bounded by M1 with M1 independent of x0. For such Q, |Q| ∼ |B(x0, δk)|.
So, by (7.18) and (7.16),

|λQ |2 ≤ 1

|Q|
∫ δk−1

δk

∫

Q
‖ f ‖2L1 sup

t∈(δk ,δk−1),y′∈Q, z∈B(x0,1)

∣∣φ(t
√
L)(y′, z)

∣∣2d y
dt

t

≤ ‖ f ‖2L1 |B(zQ, cδk)|−2 ≤ C ′δ−2k‖ f ‖2L1 |B(x0, 1)|−2

≤ C ′′δ−2k‖ f ‖2B M O(X), (7.43)

which implies the lemma. ��

Appendix 2: Proof of Theorem 5.3

Proof of Theorem 5.3 Using dilations we may assume without loss of generality that
f is supported by B(zB, 1). By the Chang–Fefferman decomposition given in the
proof of Lemma 7.2 we have

f =
∑

Q

λQaQ =
∑

�(Q)≤1

λQaQ +
∑

�(Q)>1

λQaQ = f0 + g0.

It follows from Lemma 7.7 that

‖g0‖L∞ ≤ C ′′‖ f ‖B M O(X).

Thus, in farther consideration we shall deal with the function f0 = ∑�(Q)≤1 λQaQ

with λQ , aQ satisfying (7.7)–(7.10). Remark that there is a constant C10 independent
of zB such that that if λQ �= 0 in the decomposition of f0, then

Q ⊂ B�
Q = B(zQ, C4a0�(Q)) ⊂ B(zB, C10), supp aQ ⊂ B�

Q (8.1)

#{Q ∈ Bl : λQ �= 0} ≤ Cδ−3l for l ≥ 0. (8.2)
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Following [5] our task is to construct, by induction, for each integer l ≥ −1
functions

−→
h l ,

−→g l and
−→
E l on X taking values in C

d such that

−→
S∗ · −→

h l =
∑

�(Q)=δl

λQaQ, (8.3)

|−→g l(x)| ≡ 1, (8.4)

−→g l = −→g l−1 + −→
h l + −→

E l , for l ≥ 0, (8.5)

{−→g l} converges in L1
loc to −→g ∈ L∞(X), (8.6)

∞∑

l=0

−→
E l converges in L1

loc to
−→
E 0 ∈ B M O(X), (8.7)

‖−→E 0‖B M O(X) ≤ C‖ f ‖2B M O(X). (8.8)

The proofs of the above will be based on the following (simultaneously established)
properties of

−→
h l ,

−→g l , and
−→
E l :

−→
h l =

∑

�(Q)=δl

λQ
−→
b Q, where (8.9)

|−→b Q(x)| ≤ C11

(
1 + d(zQ, x)

�(Q)

)−2N

, (8.10)

|−→b Q(x) − −→
b Q(y)| ≤ C11

d(x, y)

�(Q)

(
1 + d(x, y)

�(Q)

)N−1 (
1 + d(zQ, x)

�(Q)

)−N

for all x, y ∈ X, (8.11)

|−→b Q(x) − −→
b Q(y)| ≤ C11

d(x, y)

�(Q)

(
1 + d(zQ, x)

�(Q)

)−2N

for d(x, y) ≤ A0�(Q), (8.12)

〈−→b Q(x),
−→g l−1(zQ)〉 ≡ 0 for �(Q) = δl , (8.13)
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|−→g l(x) − −→g l(y)| ≤ A1
d(x, y)

δl

(
1 + d(x, y)

δl

)N−1
σl(x) for all x, y ∈ X,

(8.14)

|−→E l(x)| ≤ C14τl(x)σl(x), (8.15)

|−→E l(x) − −→
E l(y)| ≤ C

d(x, y)

δl
‖ f ‖2B M O(X) ford(x, y) ≤ A0δ

l , (8.16)

where A0 is a constant appearing in the definition of B̃ and A1 > C11(1−C11C12ε)
−1.

We define −→g −1(x) ≡ (1, 0, . . . , 0),
−→
E −1(x) = −→

h −1(x) ≡ (0, . . . , 0).
Assume that (8.3)–(8.6), (8.9)–(8.16) hold for all j such that j < l. FromCorollary

7.5 one can deduce that for Q with �(Q) = δl there exists
−→
b Q(x) satisfying (8.10)–

(8.13) such that aQ(x) = −→
S∗ · −→

b Q(x). Let
−→
h l(x) be given by (8.9). Then, thanks to

(8.10) and Lemma 7.6,

|−→h l(x)| ≤ C11τl(x) ≤ C11‖ f ‖B M O(X) ≤ C11C12ε. (8.17)

Define
−→
G l(x) = −→g l−1(x) + −→

h l(x). Set C13 = C11C12. Since |−→g l−1(x)| ≡ 1,

1 − C13ε ≤ |−→G l(x)| ≤ 1 + C13ε. (8.18)

In other words |−→G l(x)| is close to 1. Thanks to the orthogonality a better estimates is
true:

∣∣1 − |−→G l(x)|∣∣ ≤ C14τl(x)σl(x) with C14 = 2(1 − κ)−1C2
11A1. (8.19)

To show (8.19) we estimate

∣∣∣
∑

�(Q)=δl

λQ〈−→b Q(x),
−→g l−1(x)〉

∣∣∣

=
∣∣∣
∑

�(Q)=δl

λQ〈−→b Q(x),
−→g l−1(x) − −→g l−1(zQ)〉

∣∣∣

≤
∑

�(Q)=δl

|λQ |C11

(
1 + d(zQ, x)

�(Q)

)−2N
A1

d(x, zQ)

δl−1

(
1 + d(x, zQ)

δl−1

)N−1
σl−1(x)

≤ C11A1

∑

�(Q)=δl

|λQ |
(
1 + d(x, zQ)

δl

)−N
σl−1(x)

≤ C11A1τl(x)σl−1(x),
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where in the first inequalitywe have used (8.10) and (8.14). Recall that |−→g l−1(x)| ≡ 1.
Hence,

∣∣1 − |−→G l(x)|∣∣ ≤ 2
∣∣Re〈−→h l(x),

−→g l−1(x)〉∣∣+ |−→h l(x)|2
≤ 2C11A1τl(x)σl−1(x) + C2

11τl(x)2

≤ 2C2
11A1τl(x)

(
σl−1(x) + τl(x)

)

≤ 2(1 − κ)−1C2
11A1τl(x)σl(x), (8.20)

where in the last inequality we have used (7.40). Thus (8.19) is established.
We define

−→g l(x) =
−→
G l(x)

|−→G l(x)|
,

−→
E l(x) = −→g l(x) − (−→g l−1(x) + −→

h l(x)
) =

−→
G l(x)

|−→G l(x)|
− −→

G l(x).

Our task is to verify (8.14). Using (8.18) we have

|−→g l(x) − −→g l(y)| ≤ (1 − C13ε)
−1|−→G l(x) − −→

G l(y)|.
(8.21)

Further,

|−→G l(x) − −→
G l(y)| ≤ |−→g l−1(x) − −→g l−1(y)| + |−→h l(x) − −→

h l(y)|. (8.22)

By induction the first summand in (8.22) is dominated by

A1
d(x, y)

δl−1

(
1 + d(x, y)

δl−1

)N−1
σl−1(x)

≤ δA1
d(x, y)

δl

(
1 + d(x, y)

δl

)N−1
σl−1(x)

= δ

1 − κ
A1

d(x, y)

δl

(
1 + d(x, y)

δl

)N−1
(1 − κ)σl−1(x).

By (8.11) and (8.9) the second summand in (8.22) is bounded by

∑

�(Q)=δl

|λQ |
∣∣∣
−→
b Q(x) − −→

b Q(y)

∣∣∣

≤ C11
d(x, y)

δl

(
1 + d(x, y)

δl

)N−1 ∑

�(Q)=δl

|λQ |
(
1 + d(zQ, x)

δl

)−N

≤ C11
d(x, y)

δl

(
1 + d(x, y)

δl

)N−1
τl(x).
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Recall that δ(1 − κ)−1 < 1. Take ε > 0 small enough so that

δ

(1 − C13ε)(1 − κ)
< 1.

Recall also that A1 > C11(1 − C13ε)
−1. By the above

|−→g l(x) − −→g l(y)|
≤ (1 − C13ε)

−1|−→G l(x) − −→
G l(y)|

≤ d(x, y)

δl

(
1 + d(x, y)

δl

)N−1

×
(

δ

(1 − C13ε)(1 − κ)
A1(1 − κ)σl−1(x) + C11

1 − C13ε
τl(x)

)

≤ A1
d(x, y)

δl

(
1 + d(x, y)

δl

)N−1
σl(x) (8.23)

and (8.14) is established.
To obtain (8.15) note that that thanks to (8.19) we have

|−→E l(x)| = |−→g l(x) − −→
G l(x)| = ∣∣−→g l(x)(1 − |−→G l(x)|)∣∣

= ∣∣1 − |−→G l(x)|∣∣ ≤ C14τl(x)σl(x). (8.24)

We now turn to prove (8.16). We start by showing that there is a constant C15 such
that

∣∣∣|−→G l(x)| − |−→G l(y)|
∣∣∣ ≤ C15

d(x, y)

δl
ε2 for d(x, y) ≤ A0δ

l . (8.25)

From (8.18) and (8.17) we get

∣∣∣|−→G l(x)| − |−→G l(y)|
∣∣∣

≤
∣∣∣|−→G l(x)|2 − |−→G l(y)|2

∣∣∣

≤
∣∣∣|−→h l(x)|2 − |−→h l(y)|2

∣∣∣+ 2
∣∣∣〈−→h l(x),

−→g l−1(x)〉 − 〈−→h l(y),
−→g l−1(y)〉

∣∣∣

≤ 2εC11C12

∣∣∣
−→
h l(x) − −→

h l(y)

∣∣∣

+ 2
∣∣∣〈−→h l(x),

−→g l−1(x) − −→g l−1(y)〉
∣∣∣+ 2
∣∣∣〈−→h l(x) − −→

h l(y),
−→g l−1(y)〉

∣∣∣
= J1 + J2 + J3.
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Applying (8.9), (8.11) and Lemma 7.6 we obtain

J1 ≤ 2εC11C12

∑

�(Q)=δl

|λQ ||−→b Q(x) − −→
b Q(y)|

≤ 4εC2
11C12

∑

�(Q)=δl

|λQ |d(x, y)

δl

(
1 + d(x, y)

δl

)N−1 (
1 + d(zQ, x)

δl

)−N

≤ 4εC2
11C12(1 + A0)

N−1 d(x, y)

δl
τl(x) ≤ 4C2

11C2
12(1 + A0)

N−1 d(x, y)

δl
ε2,

since d(x, y) ≤ A0δ
l . To estimate J2 we use (8.17), (8.14), and Lemma 7.6 to obtain

J2 ≤ 2εC11C12A1
d(x, y)

δl−1

(
1 + d(x, y)

δl−1

)N−1
σl−1(x)

≤ 2C2
11C12(1 + A0)

N−1A1
d(x, y)

δl
ε2.

In order to estimate J3 we apply (8.9) and (8.13) to write

J3 = 2
∣∣∣
〈∑

�(Q)=δl λQ(
−→
b Q(x) − −→

b Q(y)),
−→g l−1(y) − −→g l−1(zQ)

〉∣∣∣.

Then utilizing (8.12) and (8.14) we have

J3 ≤ 2(1 + A0)
2N+1

×
∑

�(Q)=δl

|λQ |C11
d(x, y)

δl

(
1 + d(zQ , y)

δl

)−2N
A1

d(y, zQ)

δl

(
1 + d(y, zQ)

δl

)N−1
σl (y)

≤ 2(1 + A0)
2N+1C11A1

d(x, y)

δl
τl (y)σl (y)

≤ 2(1 + A0)
2N+1C11C2

12A1
d(x, y)

δl
ε2,

where in the last inequalitywehaveusedLemma7.6. So the proof of (8.25) is complete.
We are now in a position to finish the proof of (8.16). By the definition of

−→
E l and

(8.18),

|−→E l(x) − −→
E l(y)|

=
∣∣∣∣∣

( −→
G l(x)

|−→G l(x)|
− −→

G l(x)

)
−
( −→

G l(y)

|−→G l(y)|
− −→

G l(y)

)∣∣∣∣∣

=
∣∣∣∣∣

(−→
G l(y) − −→

G l(x)
)(

1 − 1

|−→G l(x)|

)
+ −→

G l(y)

(
1

|−→G l(x)|
− 1

|−→G l(y)|

)∣∣∣∣∣
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≤ (1 − C13ε)
−1
∣∣∣
−→
G l(x) − −→

G l(y)

∣∣∣
∣∣∣1 − |−→G l(x)|

∣∣∣

+ (1 − C13ε)
−1
∣∣∣|−→G l(x)| − |−→G l(y)|

∣∣∣

≤ A1(1 + A0)
N−1 d(x, y)

δl
σl(x)C13ε + C15(1 − C13ε)

−1 d(x, y)

δl
ε2,

where in the last inequality for the first summand we have used (8.23) while for the
second one we have applied (8.25). Now from Lemma 7.6 we obtain (8.16).

Thus the construction of the functions
−→
h l ,

−→g l and
−→
E l satisfying (8.3)–(8.5) and

(8.9)–(8.16) is complete.
It remains to prove (8.6)–(8.8). First, (7.29) combined with (8.11) and (8.13) imply

∣∣∣
∫

X
〈−→b Q(x),

−→
b P (x)〉 dx

∣∣∣ ≤ C17
�(P)

�(Q)
|P|
(
1 + d(zQ, zP )

�(Q)

)−N

for �(P) ≤ �(Q). (8.26)

Now for nonnegative integers s1 ≤ s2 letQ = Qs1,s2 =⋃s2
l=s1

Bl . In virtue of (8.26),

∥∥∥
s2∑

l=s1

−→
h l

∥∥∥
2

L2
=
∑

Q∈Qs1,s2

∑

P∈Qs1,s2

λQ λ̄P

∫

X
〈−→b Q(x),

−→
b P (x)〉 dx

≤ 2C17

∑

Q∈Qs1,s2

∑

P∈Qs1,2
�(P)≤�(Q)

|λQ ||λP | �(P)

�(Q)
|P|
(
1 + d(zQ, zP )

�(Q)

)−N

≤ 2C17

∞∑

k=0

∑

Q∈Q

∑

P∈Qs1,2
�(P)=δk�(Q)

|λQ ||λP | �(P)

�(Q)
|P|
(
1 + d(zQ, zP )

�(Q)

)−N

≤ 2C18

∞∑

k=0

∞∑

j=0

∑

Q∈Qs1,s2

∑

P∈Qs1,s2
�(P)=δk�(Q)

d(zQ ,zP )≤2 j �(Q)

|λQ ||λP ||P|δk2− j N .

Applying two times the Cauchy–Schwarz inequality we obtain

∥∥∥
s2∑

l=s1

−→
h l

∥∥∥
2

L2
≤ 2C18

∞∑

k=0

∞∑

j=0

δk2− j N

⎧
⎨

⎩
∑

Q∈Q
|λQ |2|Q|

⎫
⎬

⎭

1/2
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×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

Q∈Q

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑

P∈Q
�(P)=δk�(Q)

d(zQ ,zP )≤2 j �(Q)

|λP ||P|

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

2

1

|Q|

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

1/2

≤ 2C18
∑

k≥0
j≥0

δk2− j N

⎧
⎨

⎩
∑

Q∈Q
|λQ |2|Q|

⎫
⎬

⎭

1/2

×

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∑

Q∈Q

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑

P∈Q
�(P)=δk�(Q)

d(zQ ,zP )≤2 j �(Q)

|λP |2|P|

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∑

P∈Q
�(P)=δk�(Q)

d(zQ ,zP )≤2 j �(Q)

|P|

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

1

|Q|

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

1/2

.

Observe that for fixed integer k ≥ 0 and fixed Q ∈ Q,

∑

�(P)=δk�(Q)

d(zQ ,zP )≤2 j �(Q)

|P| ≤ C192
3 j |Q|,

so

‖
s2∑

l=s1

−→
h l‖2L2 ≤ 2C20

∑

k≥0
j≥0

δk2− j (N−3/2)
{ ∑

Q∈Q
|λQ |2|Q|

}1/2

×

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

Q∈Q

∑

P∈Q
�(P)=δk�(Q)

d(zQ ,zP )≤2 j �(Q)

|λP |2|P|

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

1/2

.

It follows from (1.4) and Theorem 7.1 that there is a constant C > 0 such that for
every j, k ≥ 0 and every P ∈ Q the number of Q ∈ Q such that �(P) = δk�(Q),
d(zQ, zP ) ≤ 2 j�(Q) is bounded by C23 j . Therefore,

‖
s2∑

l=s1

−→
h l‖2L2 ≤ C21

∑

k≥0
j≥0

δk2− j (N−3)

⎧
⎨

⎩
∑

Q∈Q
|λQ |2|Q|

⎫
⎬

⎭

1/2⎧⎨

⎩

⎛

⎝
∑

P∈Q
|λP |2|P|

⎞

⎠

⎫
⎬

⎭

1/2

= C22

∑

Q∈Q
|λQ |2|Q| ≤ C23

∫ δs1

δs2

∫

X
|φ(t

√
L) f (y)|2dy

dt

t
. (8.27)
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where in the last inequality we have used (7.18). From the spectral theorem we easily
conclude that ‖∑s2

l=s1

−→
h l‖2L2 → 0 as s1, s2 → ∞.

Fix Q ∈ B. Let k be such that δk = �(Q). From (8.15) and Lemma 7.6 we obtain

∫

B̃Q

∑

j≥k

|−→E j (x)| dx ≤ C14

∫

B̃Q

∑

j≥k

σ j (x)τ j (x) dx

≤ C14C12|Q|‖ f ‖2B M O(X). (8.28)

On the other hand we conclude from (8.16) that for x, y ∈ Q̃ we have the following
estimate on the finite sum:

∑

min(k,0)≤ j<k

|−→E j (x) − −→
E j (y)| ≤ Cd(x, y)‖ f ‖2B M O(X)

×
∑

min(k,0)≤ j<k

δ− j ≤ C‖ f ‖2B M O(X). (8.29)

From (8.28) and (8.29) we obtain that the series
∑

j≥0
−→
E j (x) converges in L1

loc to−→
E 0(x) and

1

|B̃Q |
∫

B̃Q

∣∣∣
−→
E 0(x) −

∑

min(k,0)≤ j<k

−→
E j (zQ)

∣∣∣ dx ≤ C‖ f ‖2B M O(X),

which gives (8.7) and (8.8).
Since
∑l

j=0
−→
h j +−→

E j = −→g l −−→g −1, we conclude (8.6) from (8.7), (8.27), (8.28),
and (8.4).

Having (8.3)–(8.16) already proved we are in a position to complete the proof of
Theorem 5.3.

It follows from (8.24) and Lemma 7.6 that

|−→E l(x)| ≤ C12C14‖ f ‖B M O(X)

∑

�(Q)=δl

|λQ |
(
1 + d(x,zQ)

�(Q)

)−N0
. (8.30)

Thus if d(x, zB) > 2C10, then thanks to (7.26), (8.1), and (8.2) we have

∑

l≥0

|−→E l(x)| ≤ C21‖ f ‖2B M O(X)

∑

l≥0

δ−3l
(
1 + d(x, zB)

δl

)−N0

≤ C‖ f ‖2B M O(X)d(x, zB)−N . (8.31)
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By (8.27),
∑

l≥0
−→
h l(x) =∑l(Q)≤1 λQ

−→
b Q converges in L2(X) and

∥∥∥
∑

l≥0

−→
h l

∥∥∥
L2(X)

=
∥∥∥
∑

�(Q)≤1

λQ
−→
b Q

∥∥∥
L2(X)

≤ C‖ f ‖L2(X)

≤ C‖ f ‖B M O(X)|B(zB, 1)|1/2. (8.32)

We decompose

∑

l≥0

−→
h l =
∑

l≥0

(
−→g l − −→g l−1) −

∑

l≥0

−→
E l

= −→g − −→g −1 −
⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)c −
⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10).

(8.33)

From (8.4) and (8.31) we have

∥∥∥−→g − −→g −1 −
⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)c

∥∥∥
L∞(X)

≤ 2 + C‖ f ‖2B M O(X). (8.34)

Now using (8.31) combined with (8.8) we get

∥∥∥

⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)

∥∥∥
B M O(X)

≤ C‖ f ‖2B M O(X) (8.35)

and, consequently,

∥∥∥

⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)

∥∥∥
L2(X)

≤ C |B(zB, 1)|1/2‖ f ‖2B M O(X). (8.36)

Finally, from (8.32) and (8.36) we deduce

‖−→g − −→g −1 −
⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)c‖L2(X)

= ‖
∑

l≥0

‖−→h l +
⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)‖L2(X)

≤ C |B(zB, 1)|1/2
(
‖ f ‖B M O(X) + ‖ f ‖2B M O(X)

)
. (8.37)
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Let

F = π(
−→
S ∗) ·
⎧
⎨

⎩

⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)

⎫
⎬

⎭ .

Lemma4.2 togetherwith (8.35) andduality argument give‖F‖B M O(X)≤C‖ f ‖2BMO(X).

Moreover, |F(x)| ≤ C‖ f ‖2B M O(X) for d(x, zB) > 4C10. Putting

−→̃
g = −→g − −→g 1 −

⎛

⎝
∑

l≥0

−→
E l

⎞

⎠χB(zB ,2C10)c ,

g̃0 = g0 − FχB(zB ,4C10)c ,

f1 = −FχB(zB ,4C10),

we obtain the required decomposition. ��

References
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