Skip to main content
Log in

Age-related variation of homing range in honeybee males (Apis mellifera)

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Homing toward specific places is critical for the survival and reproduction of motile animals and can influence the spatial range of animal behavior. The homing distance often varies temporally, which has been thoroughly studied in the context of foraging in social Hymenopteran insects, but little is known about the variation in males engaging in mating. This study released males of different ages with guaranteed flight experience in locations at various distances from the colony and evaluated how, over time, honeybee males change the distances they can travel when homing toward their colony. Furthermore, the effect of age and flight experience on flight ability was investigated to evaluate their effect on homing performance. This study found that older males can return to the colony from a greater distance and faster than younger males and also that flight ability did not vary due to males’ age and flight experience. The results suggest that males could undergo a behavioral process that enables them to expand their homing range. This temporal variation provides an insight into the expansion of males’ dispersal distance, which reduces the possibility of inbreeding and male–male competition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baer B (2005) Sexual selection in Apis bees. Apidologie 36:187–200

    Article  Google Scholar 

  • Becker L (1958) Untersuchungen über das Heimfindevermögen der Bienen. Zeitschrift für Vergleichende Physiol 41:1–25

    Article  Google Scholar 

  • Campbell AJ, Gomes RLC, da Silva KC, Contrera FAL (2019) Temporal variation in homing ability of the neotropical stingless bee Scaptotrigona aff. postica (Hymenoptera: Apidae: Meliponini). Apidologie 50:720–732

    Article  CAS  Google Scholar 

  • Capaldi EA, Dyer FC (1999) The role of orientation flights on homing performance in honeybees. J Exp Biol 202:1655–1666

    Article  CAS  PubMed  Google Scholar 

  • Capaldi EA, Smith AD, Osborne JL, Fahrbach SE, Farris SM, Reynolds DR, Edwards AS, Martin A, Robinson GE, Poppy GM, Riley JR (2000) Ontogeny of orientation flight in the honeybee revealed by harmonic radar. Nature 403:537–540

    Article  CAS  PubMed  Google Scholar 

  • Collett TS, Collett M (2002) Memory use in insect visual navigation. Nat Rev Neurosci 3:542–552

    Article  CAS  PubMed  Google Scholar 

  • Degen J, Kirbach A, Reiter L, Lehmann K, Norton P, Storms M, Koblofsky M, Winter S, Georgieva PB, Nguyen H, Chamkhi H, Greggers U, Menzel R (2015) Exploratory behaviour of honeybees during orientation flights. Anim Behav 102:45–57

    Article  Google Scholar 

  • Degen J, Kirbach A, Reiter L, Manz G, Greggers U, Menzel R (2016) Honeybees learn landscape features during report honeybees learn landscape features during exploratory orientation flights. Curr Biol 26:2800–2804

    Article  CAS  PubMed  Google Scholar 

  • dos Santos CF, Imperatriz-Fonseca VL, Arias MC (2016) Relatedness and dispersal distance of eusocial bee males on mating swarms. Entomol Sci 19:245–254

    Article  Google Scholar 

  • Fahrbach SE, Giray T, Farris SM, Robinson GE (1997) Expansion of the neuropil of the mushroom bodies in male honey bees is coincident with initiation of flight. Neurosci Lett 236:135–138

    Article  CAS  PubMed  Google Scholar 

  • Galindo-Cardona A, Monmany AC, Diaz G, Giray T (2015) A landscape analysis to understand orientation of honey bee (Hymenoptera: Apidae) drones in Puerto Rico. Environ Entomol 44:1139–1148

    Article  CAS  PubMed  Google Scholar 

  • Gmeinbauer R, Crailsheim K (1993) Glucose utilization during flight of honeybee (Apis mellifera) workers, drones and queens. J Insect Physiol 39:959–967

    Article  CAS  Google Scholar 

  • Goulson D, Stout JC (2001) Homing ability of the bumblebee Bombus terrestris (Hymenoptera: Apidae). Apidologie 32:105–111

    Article  Google Scholar 

  • Greenleaf SS, Williams NM, Winfree R, Kremen C (2007) Bee foraging ranges and their relationship to body size. Oecologia 153:589–596

    Article  PubMed  Google Scholar 

  • Hamilton WD (1967) Extraordinary sex ratios. Science (80-) 156:477–488

    Article  CAS  Google Scholar 

  • Hasegawa E, Yamaguchi T (1995) Population structure, local mate competition, and sex-allocation pattern in the ant Messor aciculatus. Evolution (N Y) 49:260–265

    Google Scholar 

  • Hayashi S, Farkhary SI, Takata M, Satoh T, Koyama S (2017) Return of drones: flight experience improves returning performance in honeybee drones. J Insect Behav 30:237–246

    Article  Google Scholar 

  • Hedrick P, Gadau J, Page REJ (2006) Genetic sex determination and extinction. Trends Ecol Evol 21:55–57

    Article  PubMed  Google Scholar 

  • Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230

    Article  CAS  PubMed  Google Scholar 

  • Howell DE, Usinger RL (1933) Observations on the flight and length of life of drone bees. Ann Entomol Soc Am 26:239–246

    Article  Google Scholar 

  • Hrassnigg N, Crailsheim K (2005) Differences in drone and worker physiology in honeybees (Apis mellifera). Apidologie 36:255–277

    Article  Google Scholar 

  • Ichikawa N, Sasaki M (2003) Importance of social stimuli for the development of learning capability in honeybees. Appl Entomol Zool 38:203–209

    Article  Google Scholar 

  • Jaffé R, Dietemann V, Crewe RM, Moritz RFA (2009) Temporal variation in the genetic structure of a drone congregation area: An insight into the population dynamics of wild African honeybees (Apis mellifera scutellata). Mol Ecol 18:1511–1522

    Article  PubMed  Google Scholar 

  • Jensen AB, Palmer KA, Chaline N, Raine NE, Tofilski A, Martin SJ, Pedersen BV, Boomsma JJ, Ratnieks FLW (2005) Quantifying honey bee mating range and isolation in semi-isolated valleys by DNA microsatellite paternity analysis. Conserv Genet 6:527–537

    Article  CAS  Google Scholar 

  • Koeniger N, Koeniger G, Pechhacker H (2005) The nearer the better? Drones (Apis mellifera) prefer nearer drone congregation areas. Insectes Soc 52:31–35

    Article  Google Scholar 

  • Koeniger G, Koeniger N, Phiancharoen M (2011) Comparative reproductive biology of honeybees. In: Honeybees of Asia. Springer, Berlin, pp 159–206

    Chapter  Google Scholar 

  • Koeniger G, Koeniger N, Ellis J, Conner L (2014) Mating biology of honey bees (Apis mellifera). Wicwas Press

    Google Scholar 

  • Kraus FB, Wolf S, Moritz RFA (2009) Male flight distance and population substructure in the bumblebee Bombus terrestris. J Anim Ecol 78:247–252

    Article  CAS  PubMed  Google Scholar 

  • Lensky Y, Cassier P, Notkin M, Delorme-Joulie C, Levinsohn M (1985) Pheromonal activity and fine structure of the mandibular glands of honeybee drones (Apis mellifera L.)(Insecta, Hymenoptera, Apidae). J Insect Physiol 31:265–276

    Article  CAS  Google Scholar 

  • Loper GM (1985) Influence of age on the fluctuation of iron in the oenocytes of honey Bee (Apis mellifera) Drones. Apidologie 16:181–184

    Article  Google Scholar 

  • Loper GM, Wolf WW, Taylor ORJ (1992) Honey bee drone flyways and congregation areas: radar observations. J Kansas Entomol Soc 65:223–230

    Google Scholar 

  • Mattila HR, Reeve HK, Smith ML (2012) Promiscuous honey bee queens increase colony productivity by suppressing worker selfishness. Curr Biol 22:2027–2031

    Article  CAS  PubMed  Google Scholar 

  • Mattila HR, Seeley TD (2007) Genetic diversity in honey bee colonies enhances productivity and fitness. Science (80-) 317:362–364

    Article  CAS  Google Scholar 

  • Menzel R, Brandt R, Gumbert A, Komischke B, Kunze J (2000) Two spatial memories for honeybee navigation. Proc R Soc B Biol Sci 267:961–968

    Article  CAS  Google Scholar 

  • Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hulse S, Plumpe T, Schaupp F, Schuttler E, Stach S, Stindt J, Stollhoff N, Watzl S (2005) Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci 102:3040–3045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moritz RFA (1988) Biochemical changes during honey bee flight muscle development. Biona Rep 6:51–64

    Google Scholar 

  • Page REJ, Metcalf RA (1984) A population investment sex ratio for the honey bee (Apis mellifera L.). Am Nat 124:680–702

    Article  Google Scholar 

  • Papi F (1992) Animal homing. Chapman and Hall, London

    Book  Google Scholar 

  • Peer DF (1957) Further studies on the mating range of the honey bee, Apis mellifera L. Can Entomol 89:108–110

    Article  Google Scholar 

  • Poidatz J, Monceau K, Bonnard O, Thiéry D (2018) Activity rhythm and action range of workers of the invasive hornet predator of honeybees Vespa velutina, measured by radio frequency identification tags. Ecol Evol 8:7588–7598

    Article  PubMed  PubMed Central  Google Scholar 

  • Reyes M, Crauser D, Prado A, Le Conte Y (2019) Flight activity of honey bee (Apis mellifera) drones. Apidologie 50:669–680

    Article  Google Scholar 

  • Rinderer TE, Oldroyd BP, Wongsiri S, Sylvester HA, Guzman LID, Potichot S, Sheppard WS, Buchmann SL (1993) Time of drone flight in four honey bee species in south-eastern Thailand. J Apic Res 32:27–33

    Article  Google Scholar 

  • Rueppell O, Page REJ, Fondrk MK (2006) Male behavioural maturation rate responds to selection on pollen hoarding in honeybees. Anim Behav 71:227–234

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruttner F (1966) The life and flight activity of drones. Bee World 47:93–100

    Article  Google Scholar 

  • Ruttner F, Ruttner H (1966) Investigations on the flying activity and the mating behaviour of drones. 3. range and direction of drone flights. Z Bienenforsch 8:332–354

    Google Scholar 

  • Ruttner H, Ruttner F (1972) Investigations on the flying activity and the mating behaviour of drones 5. drone congregation areas and mating distance. Apidologie 3:203–232

    Article  Google Scholar 

  • Taylor ORJ, Rowell GA (1988) Drone abundance, queen flight distance, and the neutral mating model for the honey bee, Apis mellifera. In: Needham GR, Page REJ, Delfinado-Baker M, Bowman CE (eds) Africanized honey bees and bee mites. Ellis Horwood, pp 173–183

    Google Scholar 

  • Utaipanon P, Holmes MJ, Chapman NC, Oldroyd BP (2019) Estimating the density of honey bee (Apis mellifera) colonies using trapped drones: area sampled and drone mating flight distance. Apidologie 50:578–592

    Article  CAS  Google Scholar 

  • Van Nieuwstadt MGL, Iraheta CER (1996) Relation between size and foraging range in stingless bees (Apidae, Meliponinae). Apidologie 27:219–228

    Article  Google Scholar 

  • Winston ML (1987) The biology of the honey bee. Harvard University Press, Cambridge

    Google Scholar 

  • Witherelli PC (1971) Duration of flight and of interflight time of drone honey bees, Apis mellifera. Ann Entomol Soc Am 64:609–612

    Article  Google Scholar 

  • Yoshida T, Saito J, Kajigaya N (1994) The mating flight times of native Apis cerana japonica Radoszkowski and introduced Apis mellifera L. in sympatric conditions. Apidologie 25:353–360

    Article  Google Scholar 

  • Zmarlicki C, Morse RA (1963) Drone congregation areas J Apic Res 2:64–66

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Madoka Nakai and Dr. Maki Inoue for providing helpful comments on this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Hayashi.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 33 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayashi, S., Sasaki, T., Farkhary, S.I. et al. Age-related variation of homing range in honeybee males (Apis mellifera). Insect. Soc. 69, 37–45 (2022). https://doi.org/10.1007/s00040-021-00843-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-021-00843-3

Keywords

Navigation