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SECTIONS AND UNIRULINGS OF FAMILIES OVER P
1

Alex Pieloch

Abstract. We consider morphisms π :X → P
1 of smooth projective varieties over C.

We show that if π has at most one singular fibre, then X is uniruled and π admits
sections. We reach the same conclusions, but with genus zero multisections instead
of sections, if π has at most two singular fibres, and the first Chern class of X is
supported in a single fibre of π.
To achieve these result, we use action completed symplectic cohomology groups as-
sociated to compact subsets of convex symplectic domains. These groups are defined
using Pardon’s virtual fundamental chains package for Hamiltonian Floer cohomol-
ogy. In the above setting, we show that the vanishing of these groups implies the
existence of unirulings and (multi)sections.
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1 Introduction

1.1 Statement of results. In this paper, we study complex projective varieties.
When we refer to a variety, we will always mean a variety over C. The primary goal
of this paper is to prove the following results.

Theorem 1.1. If π : M → P
1 is a morphism of smooth projective varieties that is

smooth1 away from ∞, then M is uniruled and admits sections.

Theorem 1.2. If π : M → P
1 is a morphism of smooth projective varieties that is

smooth away from 0 and ∞ and the first Chern class of M �π−1(∞) vanishes, then

M is uniruled and admits genus zero multisections.

These results hold in the category of complex algebraic varieties. Our approach
to understanding the geometry of these families is fundamentally new and purely
symplectic in nature.

Remark 1.3. The motivation for our results comes from Hodge theory. By the work
of Griffiths [Gri68], given a projective morphism of smooth varieties π : X → S, one
obtains a holomorphic map Φ : ˜S∗ →D, where D is a classifying space of polarized
Hodge structures, which carries a complex structure and is referred to as a period
domain, and ˜S∗ is the universal cover of the complement in S of the singular values
of π. Roughly, Φ sends a point s̃ to the marked polarized Hodge structure of the
fibre Xs̃. If Xs̃ is a smooth genus g curve, then D is the Seigel upper half-space Hg,
which has negative holomorphic sectional curvature. So in this case, when S∗ is a
curve of non-negative genus, Φ is constant and, the variation of Hodge structures
of the fibres over S∗ is trivial. In general, D can be either positively or negatively
curved. Nevertheless, a distance decreasing principle of Griffiths [Gri70] implies the
analogous result in general: the variation of Hodge structures of the fibres over S∗ is
trivial when S∗ is a curve of non-negative genus.

In our case, S = P
1 and π has at most two singular values. So the variation of

Hodge structures of the fibres of π is trivial. It was expected that this Hodge theo-
retic triviality should be witnessed by algebraic cycles (that is, sections) or complex
geometric features. By using symplectic methods, we construct such algebraic cycles
and constrain the actual geometry (as opposed to Hodge theory) of these families.

1 Here we mean smooth in the algebro-geometric sense, that is, π is a holomorphic submersion.
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Remark 1.4. We point out partially related work. Viehweg-Zuo [VZ01, Theorem
0.2] show that if X → P

1 is a morphism of smooth projective varieties that has two or
less singular fibres, then the Kodaira dimension of X is negative, answering a ques-
tion of Catanese-Schneider [CS95, Question 4.1] (cf. [Mig95, Kov96, Kov97, Kov00,
BV00, OV01]). Every uniruled variety has negative Kodaira dimension; however, the
converse is a very difficult open conjecture in the minimal model program. So the
uniruling conclusion of Theorem 1.1 is a strengthening of [VZ01, Theorem 0.2] in
the case with one or less singular fibres.

Deng [Den22, Theorem A] shows that if X → P
1 is a morphism with two or less

singular fibres such that the smooth fibres are good minimal models, then the family
is isotrivial over its smooth locus (cf. [VZ01, HK10, KK08, Sch12, PS17, PTW19,
Den22, Taj20] and the references therein.). So when the smooth fibres have numeri-
cally trivial canonical bundles (cf. Theorem 1.2), [Den22, Theorem A], the Fischer-
Grauert theorem, and [KL09, Lemma 17] imply that such a family is biholomorphic
to a trivial family after base change along a finite étale covering of the smooth locus.
The conclusions of Theorem 1.2 follow. When the family has one or less singular
fibres and the smooth fibres are good minimal models, [Den22, Theorem A] and the
Fischer-Grauert theorem imply that such a family is biholomorphic to a trivial family
over its smooth locus. In this specific good minimal model case, the conclusions of
Theorem 1.2 follow. We stress that our techniques are completely orthogonal to the
techniques used in the above algebraic geometry literature, ours being symplectic in
nature. The only non-elementary result from algebraic geometry that is used in our
proof is Hironaka’s resolution of singularities.

On the symplectic side, Seidel’s construction of his eponymously named repre-
sentation [Sei97] implies that if π (as in Theorem 1.1) is smooth over all of P1, then
π admits a section. Seidel’s original work assumed a relationship between the first
Chern class and the symplectic form of the space. Later, McDuff introduced virtual
techniques to prove the result without this assumption [McD00]. Similar ideas also
appear in [LMP99]. Our results generalize this corollary of Seidel’s and McDuff’s
work. However, our work does not generalize the main results of the above papers,
which are on the Seidel representation. Finally, while our proofs and the proofs of
Seidel and McDuff are both symplectic, they are nevertheless vastly different.

Remark 1.5. Finally, we note: if π : M → P
1 is a morphism of smooth, projective

varieties, and M is Fano, then by [KMM92] M is rationally connected. This implies
that π is actually uniruled by genus zero multisections.

1.2 Sketch of proof. We now sketch the proofs of our main results.
Degenerating to the normal cone: We consider the degeneration of P

1 to the
normal cone of {∞} in P

1, that is, the blowup

β0 : B :=Bl(0,∞)(C× P
1)→C× P

1.

We have a projection πB :B →C by composing β0 with the projection to C. π−1
B (z)

for z �= 0 is biholomorphic to P
1, and π−1

B (0) is a union of two curves F0 ∪E0, where
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E0 is the exceptional divisor, and F0 is a curve that is biholomorphic to P
1. As z → 0,

the curves π−1
B (z) converge in the Gromov topology to the nodal curve π−1

B (0).
Now consider the degeneration of M to the normal cone of π−1(∞) in M .2 This

is a quasi-projective variety P along with a map π̃ : P →B. Let πP := π̃ ◦πB . π−1
P (z)

for z �= 0 is biholomorphic to M , and π̃ over π−1
B (z) is identified with π : M →

P
1. π−1

P (0) = F ∪ E, where F is a subscheme that is birational to M and E is an
exceptional divisor. π̃ over F0 is identified with π up to composing with a birational
morphism, and π̃−1(E0) = E. Roughly, we are degenerating the family π : M → P

1

into two families that meet along a fibre. One family lives over E0, and the other
family lives over F0, and can be identified with our original family.

Consider a sequence of holomorphic disks uz :D→ π−1
P (z) for z �= 0 with uniformly

bounded energies such that

π̃ ◦ uz(D) = {z ∈ P
1 | |z| ≤ 2} ⊂ P

1 ∼= π−1
B (z).

As z → 0 (with an appropriate choice of symplectic form on B), the π̃ ◦ uz converge
in the Gromov topology to a nodal holomorphic curve with boundary in π−1

B (0).
One component of the holomorphic curve has image given by F0 and the other
component is a holomorphic disk whose boundary is completely contained in E0 �

(E0 ∩ F0). Now consider the sequence uz in P . A Gromov-type compactness result
(see Lemma 15.2) implies that these holomorphic curves with boundaries degenerate
to a nodal holomorphic curve with boundary in π−1

P (0). The boundary of the limit
curve (as above) is completely contained in E� (E ∩F ). This limit curve also has an
irreducible component in F whose projection to F0 is non-constant. This gives the
(multi)section described in our main results since the projection from F to F0 may
be identified with π. With this procedure, we turn (sufficiently large) holomorphic
disks in M into closed holomorphic curves in M . In actuality, the uz will be genus
zero curves with boundaries; however, this will not change the argument. We will run
a similar degeneration for holomorphic curves (possibly with boundaries) in π−1

P (z)
that have point constraints, which will give rise to the uniruling parts of our main
results.

Arranging to do Floer theory: The above procedure reduces our task to producing
holomorphic disks in the π−1

P (z). The variety P is Kähler, and, thus, gives rise to
a Kähler form on each π−1

P (z). Via symplectic parallel transport, we symplectically
(but not biholomorphically) identify π−1

P (z) for z �= 0 with π−1
P (1). Pushing forward

the almost complex structure on π−1
P (z) to π−1

P (1) ∼= M , we can reduce our task
to producing holomorphic disks inside of M for an arbitrary choice of compatible
almost complex structure.

To produce these disks, we will do Floer theory in the complement M = M �

π−1(∞). A priori, an arbitrary Kähler form on M does not need to be convex in
any sense that is amenable to doing Floer theory. So we show in Part 3 that we

2 Technically speaking, if π−1(∞) is not smooth, then the total space of the degeneration to the
normal cone will not be smooth. So instead we will actually work with a resolution of this variety.
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can symplectically embed M into a convex symplectic domain (see Definition 2.6)
that is diffeomorphic to Mc := π−1(Dc) for some c > 0. A collar neighborhood of the
boundary of Mc will be modeled after a symplectic mapping cylinder. It has well-
defined Floer theory for appropriate choices of admissible Hamiltonians and almost
complex structures. Producing our needed embedding is rather non-trivial. First, via
a symplectic deformation that preserves the Kähler class, we “push” M away from
π−1(∞) and into Mc, see Sect. 13. Then we realize π : Mc → Dc as a Hamiltonian
fibration with a singularity over 0. Using this description, we symplectically deform
a collar neighborhood of the boundary of Mc, “straightening it out”, to a symplectic
mapping cylinder, see Sect. 14. To continue, let us assume that the constructed
embedding has image lying in Ma ⊂Mc.

Action completed symplectic cohomology: The above embeddings will reduce our
task to producing holomorphic disks (for arbitrary compatible almost complex struc-
tures) in Mc that are sections over Da. To do this, we will use Floer theory. Using
Pardon’s virtual fundamental chains package [Par16], we define the action completed
symplectic cohomology group of a compact subset K inside of Mc (and for compact
subsets in more general convex symplectic domains, see Sect. 5.4). For the moment,
we denote this group by ̂SH(K ⊂Mc) even though it depends on the choice of sym-
plectic form and other data. Roughly, ̂SH(K ⊂Mc) is computed by taking a Novikov
completion (see Sect. 17.2) of the colimit of the Hamiltonian Floer chain complexes of
an increasing sequence of Hamiltonians on Mc that converge to zero on K and diverge
to infinity on Mc�K. A useful feature of these groups is that if K is stably displace-
able inside of Mc, then ̂SH(K ⊂Mc) ⊗ Λ vanishes, where Λ denotes the universal
Novikov field, see Sect. 6.2. A second feature is that when K =Ma = π−1(Da)⊂Mc,
we have a long exact sequence, see Proposition 6.1 item (iii),

H(Mc) ̂SH(Ma ⊂Mc)⊗Λ ̂SH+(Ma ⊂Mc) ,

where H(Mc) denotes the cohomology of Mc with coefficients in Λ, and ̂SH+(Ma,⊂
Mc) is a chain complex that is generated by orbits that correspond to Reeb orbits of
a stable Hamiltonian structure associated to the collar of ∂Mc. In particular, these
are orbits that when projected by π to Da wrap positively around ∂Da. This should
be thought of as some action completed version of positive symplectic cohomology.
Notice that we work in a non-exact setting. So this long exact sequence does not arise
from an action filtration (as the action functional is multi-valued). Instead we prove
an integrated maximum principle, see Sect. 18, for our convex symplectic domains
and use this to topologically construct a filtration of our Floer chain complexes that
gives rise to the above long exact sequence.

From these two features, one finds that if Ma is stably displaceable inside of Mc,
then the boundary homomorphism of this long exact sequence is an isomorphism
over Λ. Unwinding the definition of the boundary homomorphism, one finds that
there exists a Floer trajectory connecting a Reeb orbit near the boundary of Ma to
an index zero critical point of a Hamiltonian that represents the unit inside of the
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cohomology of Mc. This produce a Floer trajectory whose projection under π covers
Da.

However, a Floer trajectory is not a holomorphic curve, which is what we desire.
To remedy this, we prove a Gromov-Floer-type compactness result for sequences of
Floer trajectories associated to sequences of Hamiltonians that converge to zero on
compact subsets. We show that these sequences of Floer trajectories converge to pearl
necklaces,3 that is, holomorphic curves adjoined by negative gradient trajectories of
some background Morse function, see Sect. 16. In particular, when the negative end
of our Floer trajectory is an index zero critical point, the negative end of the pearl
necklace must be a non-constant holomorphic curve and not a negative gradient
trajectory. The positive end of the necklace wraps positively around ∂Da.

By ignoring the trajectories and curves in between the two ends of the necklace,
this “turning off” of the Hamiltonian perturbation gives a genuine (possibly discon-
nected) holomorphic curve that has a component whose projection under π covers Da

and has a non-constant component with a point constraint. Assuming that the image
of M under our symplectic embeddings above is completely contained in Ma, we can
use these holomorphic curves to produce our desired disks. Considering continuation
maps associated to varying Hamiltonians and almost complex structures, one can
show that the existence and energy of the resulting holomorphic curves above are
independent of the choice of point constraint and almost complex structure. In this
manner, we will obtain our desired holomorphic curves with boundaries (assuming
that ̂SH(Ma ⊂Mc)⊗Λ ≡ 0).

Vanishing of action completed symplectic cohomology: We now explain why
̂SH(Ma ⊂ Mc) ⊗ Λ vanishes in our setup. There are two cases to consider, each
corresponding to one of our main theorems.

When π is smooth over 0, the symplectic embedding of M into Mc that we
produce above can actually be made into a symplectic embedding into the product
symplectic manifold Dc×F , where F is the smooth fibre of π. Every compact subset
of C×F is displaceable in some Mc for c sufficiently large. In this manner, we obtain
vanishing for ̂SH(Ma ⊂Mc)⊗Λ.

When M has vanishing first Chern class, we proceed as follows. First, a result of
McLean [McL20, Corollary 6.21] implies that π−1(0) is stably displaceable inside of
Mc. Consequently, ̂SH(Mε ⊂Mc)⊗Λ vanishes for some small ε > 0. However, most
likely Mε ⊂Ma. So we consider a rescaling morphism

̂SH(Ma ⊂Mc+a−ε)⊗Λ → ̂SH(Mε ⊂Mc)⊗Λ.

Roughly, we radially rescale our Hamiltonian vector fields and identity the generators
of the associated Hamiltonian Floer chain complexes. This rescaling sends an orbit
x to x ·T (a−ε)·w(x), where T is the Novikov parameter, and w(x) denotes the winding
number of x about the origin in C

×. In general this morphism is not a bounded

3 We warn the reader that we use different nomenclature in Sect. 16 to state our result.
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map of the associated uncompleted complexes, and, thus, fails to be an isomorphism
after completing our complexes. To remedy this, we use that c1(M) = 0 to obtain a
grading on our Hamiltonian Floer chain complexes. So to conclude that this rescaling
morphism is an isomorphism, it now suffices to show that it is degree-wise bounded.
More explicitly, one need to show that if the Conley-Zehnder index of the orbit
x is bounded by n, then the winding number w(x) is bounded by some constant
Cn that is independent of x. To achieve this, we construct an explicit sequence
of Hamiltonians that are adapted to a normal crossings resolution of the singular
fibre π−1(0) that have this index-bounded property, see Sect. 11 for the construction
of such Hamiltonians, see Remark 12.1 for a discussion on the necessity of such
Hamiltonians, and see Lemma 10.8 for the statement of the required relationship
between indices and winding numbers. The Conley-Zehnder indices of the orbits for
these Hamiltonians will be controlled by the winding numbers about the divisors
in the normal crossings resolution and the discrepancy of the resolution. So this
sequence of Hamiltonians (when rescaled) will give rise to the desired isomorphism,
and (after relabeling the value c) the vanishing of ̂SH(Ma ⊂Mc)⊗Λ.

1.3 Structure of the exposition. Part 1 discusses Hamiltonian Floer cohomol-
ogy and the proofs of our main results. In Sect. 2, we define convex symplectic
domains, which are a class of symplectic domains that satisfy convexity properties
with respect to pseudo-holomorphic curves and are the spaces for which we define
Hamiltonian Floer cohomology and its analogues. In Sect. 3, we define admissible
families of Hamiltonians and almost complex structures for convex symplectic do-
mains. In Sect. 4, we discuss moduli spaces of Floer trajectories and give some basic
energy estimates for Floer trajectories. In Sect. 5, we import Pardon’s virtual fun-
damental chains package [Par16] to define both Hamiltonian Floer cohomology and
action completed symplectic cohomology for convex symplectic domains. In Sect. 6,
we discuss some properties of action completed symplectic cohomology, deriving a
long exact sequence that relates action completed symplectic cohomology with the
Morse cohomology of the symplectic domain and discussing the vanishing of action
completed symplectic cohomology groups associated to stably displaceable subsets.
In Sect. 7, we prove a condition, phrased in terms of the vanishing of action com-
pleted symplectic cohomology, that ensures the existence of genus zero, holomorphic
curves with boundaries through every point in a domain. We also show that the
energies of these curves are well controlled under deformations of almost complex
structures. In Sect. 8, we give the proofs of our main results.

The second part discusses the part of the proof of our main result that is specific
to the Calabi-Yau case. In Sect. 9, we discuss Conley-Zehnder indices of contractible
1-periodic orbits of Hamiltonians, and define pseudo Morse-Bott families of orbits
of Hamiltonians. In Sect. 10, we establish a rescaling isomorphism for the action
completed symplectic cohomology of convex symplectic domains whose collar neigh-
borhoods are symplectic mapping cylinders. In Sect. 11, we discuss symplectic normal
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crossings divisors and their standard tubular neighborhoods, and using these neigh-
borhoods, we construct sequences of Hamiltonians whose dynamics are well-adapted
to the normal crossings structure.

The third part discusses Hamiltonian fibrations and establishes the symplectic
deformations that are used to construct the “modified parallel transport maps” (the
symplectic embeddings) in the proofs of our main results. In Sect. 13, we prove a
self-embedding result for complements of normal crossings divisors in Kähler man-
ifolds. In Sect. 14, we discuss the relationship between Hamiltonian fibrations and
convex symplectic domains. In particular, we focus on Hamiltonian fibrations over
C

×, relating them to symplectic mapping cylinders.
The forth part establishes Gromov-Floer-type compactness results. In Sect. 15,

we prove a compactness result for sequences of holomorphic curves with boundaries
in spaces of the form given by our degeneration to the normal cone setup. In Sect. 16,
we prove a Gromov-Floer type compactness result for sequences of Floer trajectories
associated to Hamiltonians that degenerate to the zero Hamiltonian on a compact
subset.

The fifth part is a string of appendices. In Sect. 17, we discuss the requisite ho-
mological algebra (over the universal Novikov ring) that is needed to define action
completed symplectic cohomology. In Sect. 18, we establish an integrated maximum
principle for our convex symplectic domains. In Sect. 19, we discuss stable displace-
ability properties of neighborhoods of fibres of proper holomorphic maps to Riemann
surfaces.

Part 1 Floer theory

In this part, we define action completed symplectic cohomology groups associ-
ated to compact subsets of convex symplectic domains, and establish some of their
properties. The setting in which we do Floer theory is more general than most of
the literature. First, we do not assuming any relationship between our symplectic
forms and first Chern classes. Second, our symplectic domains do not necessarily have
contact-type boundaries. Instead, we consider symplectic domains whose boundaries
admit stable Hamiltonian structures with admissible almost complex structures. To
deal with the first issue, we import Pardon’s virtual fundamental chain package to
define Hamiltonian Floer chain complexes [Par16]. To deal with the second issue,
we establish an integrated maximum principle for our convex symplectic domains
that ensures that the images of pseudo-holomorphic curves are disjoint from the
boundaries.

2 Convex symplectic domains

We work with compact symplectic manifolds whose boundaries admit stable Hamil-
tonian structures with admissible almost complex structures. We refer to such sym-
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plectic domains as convex symplectic domains. Our definition of convex symplec-
tic domains is analogous to the definition of symplectic domains with contact-type
boundaries; however, our notion of convexity is more general. We briefly review stable
Hamiltonian structures before giving the definition of convex symplectic domains.

Definition 2.1 ([HZ94]). A stable Hamiltonian structure on a manifold Y of di-
mension 2n− 1 is a pair (ω,α), where ω is a 2-form and α is a 1-form, that satisfies:

(i) dω = 0,
(ii) α∧ ωn−1 > 0, and
(iii) ker(ω)⊂ ker(dα).

Definition 2.2. The hyperplane distribution of a stable Hamiltonian structure
(ω,α) on Y is the distribution ξ := ker(α). The Reeb vector field of a stable Hamil-
tonian structure (ω,α) on Y is the (unique) vector field R determined by ιRω ≡ 0
and ιRα = 1. The Reeb vector field is non-degenerate if for all orbits γ of R, the
linearized return map

d(ϕR
T )γ(0)|ξγ(0) : ξγ(0) → ξγ(0),

where T is the period of γ and ϕR
T is the time T flow of R, has no eigenvalues equal

to 1.

When ω = dα, Y is a contact manifold with contact 1-form α. The hyperplane
distribution and Reeb vector field in Definition 2.2 agree with the usual hyperplane
distribution and Reeb vector field associated to the contact 1-form α. Like with
contact manifolds, we can take symplectizations of stable Hamiltonian structures
and define a class of admissible almost complex structures on them.

Definition 2.3. The symplectization of a stable Hamiltonian structure (ω,α) on Y

is the symplectic manifold ((1− ε,1 + ε)× Y,Ω) with

Ω := ω + d((ε · r)α),

where r is the coordinate on (1− ε,1 + ε) and 0< ε is sufficiently small so that Ω is
symplectic.

After rescaling, we can (and always will) assume that ε = 1 in Definition 2.3.

Definition 2.4. An almost complex structure J on the symplectization of a stable
Hamiltonian structure is admissible if

(i) J is Ω-compatible,
(ii) −dr ◦ J = r · α,
(iii) dα|ξ(·, J ·) is positive semi-definite on ξ, and
(iv) J(ξ) = ξ.

Remark 2.5. The third condition in Definition 2.4 could make the resulting space of
admissible almost complex structures non-contractible. In essence, the contracting
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homotopy of the space of compatible almost complex structures (on ξ), which is
produced by the polarization decomposition (see [Sil01]), a priori, does not need to
preserve the subspace of compatible almost complex structures that make dα|ξ(·, J ·)
positive semi-definite on ξ. Regardless, this possible non-contractibility does not
affect our setup. See Remark 3.8 for further discussion.

Definition 2.6. A compact symplectic manifold with boundary (M,Ω) is a convex
symplectic domain if

(i) there exists a collar neighborhood N(∂M) of the boundary that is symplecto-
morphic to the (bottom half of the) symplectization of a stable Hamiltonian
structure (Ω|∂M , α) on ∂M for some 1-form α on ∂M ,4 and

(ii) there exists an Ω-compatible almost complex structure J on M such that
J |N(∂M) is admissible with respect to the symplectization.

Using the identification with the symplectization, the radial/collar coordinate is

r : N(∂M)∼= (0,1]× ∂M → (0,1].

The associated Liouville 1-form on M is λ := r · α.5 Denote a convex symplectic
domain by (M,Ω, λ). Finally, an almost complex structure J as above is admissible
for (M,Ω, λ).

Example 2.7. Our key example, discussed in Sect. 14.2 of a convex symplectic
domain is a symplectic domain whose boundary is the mapping torus of a symplec-
tomorphism.

Notation 2.8. Ma = r−1([0, a]), where r is extended by zero outside of the collar.

Remark 2.9. We stress two features of convex symplectic domains. First, the dy-
namics of radial Hamiltonians on the collar N(∂M) are given by the dynamics of
the Reeb vector field R of the stable Hamiltonian structure, since the Ω-dual of
−dr is given by the Reeb vector field R. Second, convex symplectic domains satisfy
an integrated maximum principle with respect to radial Hamiltonians. This allows
us to define Hamiltonian Floer cohomology for Hamiltonians that are radial near
the boundary. More importantly, this integrated maximum principle allows for the
collar coordinate r to give rise to filtrations of the associated Hamiltonian Floer
chain complexes that are preserved by continuation maps. Normally such filtrations
are constructed using the action filtration, say for Liouville domains. However, in
the non-exact setting, the action functional is multi-valued, and not well-suited for
defining filtrations. The filtrations derived from the integrated maximum principle
will essentially agree with the usual action filtration for Liouville domains.

4 In fact, by a symplectic neighborhood theorem, it suffices for there to exist a 1-form α such that
(Ω|∂M , α) is a stable Hamiltonian structure on ∂M .

5 The Liouville 1-form λ is only defined on N(∂M). Extending r by zero outside of N(∂M)
extends λ = r · α to a 1-form on all of M . We do not distinguish between this extension and the
original 1-form.
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Notation 2.10. (i) Let (M,Ω, λ) be a convex symplectic domain.
(ii) Let Js be an R-family of admissible almost complex structures for (M,Ω, λ).
(iii) Let H :R× S1 ×M →R be a family of Hamiltonians such that Hs|N(∂M) = hs,

where hs is a family of radial functions in r that satisfies ∂s∂rhs ≤ 0.
(iv) Let u :R× S1 →M be a smooth map that satisfies

0 = (du−XH ⊗ dt)0,1.

We prove the following integrated maximum principle in Sect. 18.

Proposition 2.11. If

lim
s→±∞

r ◦ u(s, t) = c± < 1,

then r ◦ u≤ max(c±). Moreover, if ∂r∂rhs ≥ 0, then r ◦ u≤ c+, and if c− = c+, then

r ◦ u is constant.

3 Admissible Floer data

We define two semisimplicial complexes associated to a convex symplectic domain
(M,Ω, λ). The sets of -simplices will be Δ�-families of pairs of Hamiltonians and ad-
missible almost complex structures on (M,Ω, λ) that satisfy admissibility conditions
that allow their associated Floer theoretic objects to be well-defined.

3.1 Morse flow lines on the simplex. We review the Morse theory of the standard
simplex. We give this discussion because we need to “count” possibly broken, possibly
nodal Floer trajectories when defining our Floer differentials, continuations, and
higher homotopies. The Morse theory of the standard simplex gives a way to express
our Floer trajectories of interest.

Notation 3.1. The standard -simplex is

Δ� = {s ∈R
�+2 | 0 = s0 ≤ · · · ≤ s� ≤ s�+1 = 1}.

For 0 ≤ i≤ , the ith vertex of Δ�, denoted ei, is the point with coordinates

s0 = · · ·= s�−i and s�−i+1 = · · ·= s�+1.

Let f� : Δ� →R denote the Morse function

f�(s) =
�

∑

i=1
cos(πsi).

The vertex ei is the unique index − i critical point of f�. The gradient of f� is

∇f�(s) =−π · (0, sin(πs1), . . . , sin(πs�),0),
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which is tangent to faces of Δ�. Moreover, restrictions of these gradient vector fields
are compatible with inclusions/restrictions of faces Δ�−1 ↪→ Δ�.

Definition 3.2. A Morse flow line from e0 to e� in Δ� is a map

γ = �k
i=1γi : �k

i=1R→ Δ�

such that γi is a (possibly constant) negative gradient flow line of f� and

e0 = lim
s→−∞

γ1(s), . . . , lim
s→+∞

γi(s) = lim
s→−∞

γi+1(s), . . . , lim
s→+∞

γk(s) = e�.

Two Morse flow lines γ and γ′ are isomorphic if there exist translations ϕi : R→ R

such that γi = γ′
i ◦ϕi.

3.2 Kan complex of admissible Floer data. We define the semisimplicial sets
of admissible Floer data. Let (M,Ω, λ) be a convex symplectic domain with collar
coordinate r.

Definition 3.3. A smooth family of almost complex structures Jσ : Δ� → End(TM)
is admissible if for each s ∈ Δ�, Jσ

s is an admissible almost complex structure for
(M,Ω, λ). Denote the set of Δ�-families of admissible almost complex structures by
J�(M,Ω, λ).

Definition 3.4. A smooth family of Hamiltonians Hσ : Δ�×S1 ×M →R is admis-
sible if

– the Hamiltonian Hσ
ei associated to each vertex is non-degenerate, and

– Hσ
s is locally constant about each vertex ei in Δ�,

and near ∂M

– Hσ
s is a linear function in r, and

– ∂s∂rH
σ
γi(s)(r)(γ

′
i(s))≤ 0 for each Morse flow line γ = �γi in Δ�,

where ∂s∂rH
σ
γi(s)(r) denotes the derivative of ∂rHσ in the Δ�-direction evaluated at

(γi(s), r) and ∂s∂rH
σ
γi(s)(r)(γ

′
i(s)) denotes this derivative applied to the vector γ′

i(s).6

Denote the set of admissible Δ�-families of Hamiltonians by H�(M,Ω, λ).

To define action completed symplectic cohomology, we will need our continua-
tion maps to be defined over the universal Novikov ring. This will be ensured for
continuations associated to families of the following Hamiltonians.

Definition 3.5. A family of admissible Hamiltonians Hσ : Δ� × S1 × M → R is
monotonically admissible if ∂sHσ

γi(s)(t, x)(γ′
i(s))≤ 0 for each Morse flow line γ = �γi

in Δ�, where ∂sH
σ
γi(s)(t, x) denotes the derivative of Hσ in the Δ�-direction evaluated

at (γi(s), t, x) and ∂sH
σ
γi(s)(t, x)(γ′

i(s)) denotes this derivative applied to the vector

6 By the chain rule, ∂s∂rH
σ
γi(s)(r)(γ

′
i(s)) = ∂s

(

∂rH
σ
γi(s)(r)

)

.
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γ′
i(s).7 Denote the set of Δ� monotonically admissible families of Hamiltonians by

H+
� (M,Ω, λ).

Ranging over , the sets J�(M,Ω, λ), H�(M,Ω, λ) and H+
� (M,Ω, λ) assemble

into semisimplicial sets, denote J (M,Ω, λ), H(M,Ω, λ), and H+(M,Ω, λ) respec-
tively. Define the product semisimplicial set JH(M,Ω, λ) whose -simplicies are
pairs (Hσ, Jσ) ∈H�(M,Ω, λ)×J�(M,Ω, λ). Similarly, define JH+(M,Ω, λ).

Remark 3.6. We explain when -simplices of Floer data will be used in our con-
structions.

(i) As is standard, we need 0-simplices and 1-simplices to define Hamiltonian Floer
cohomology groups and continuation maps between them respectively

(ii) We need 1-simplices to define action completed symplectic cohomology; how-
ever, 2-simplices and 3-simplices are further needed to show that action com-
pleted symplectic cohomology is well-defined and independent of all choices.

(iii) We also use 2-simplices and 3-simplices to derive further invariance properties
of action completed symplectic cohomology in Sect. 6.1.

So the reader can ignore -simplices of Floer data for ≥ 4.

3.3 Connectivity. The semisimplicial sets H(M,Ω, λ) and H+(M,Ω, λ) are not
contractible (or even 0-connected) because of the condition ∂s∂rH

σ
s,t ◦ γ′

i(s)≤ 0 (and
the monotone property for H+(M,Ω, λ)). We point out that while these semisim-
plicial sets are not contractible, their geometric realizations are contractible. This
is because in forming the geometric realization one has to “add in” all of the “op-
posite” edges and simplices. Nevertheless, to obtain invariance properties for our
constructions, the connectivity given by Lemma 3.7 suffices.

Lemma 3.7. Every map of ∂Δ� to either H(M,Ω, λ) or H+(M,Ω, λ) extends to Δ�

for ≥ 2.

Proof. This follows from the proof of [Var21, Proposition 3.2.13] and the work leading
up to it. The only difference between our setup and the setup of [Var21] is that we
need to incorporate the condition that ∂s∂rHσ

s ◦γ′
i(s)≤ 0 when interpolating families

of Hamiltonians. However, incorporating this condition is the same as incorporating
the condition that families be monotone as in the proof of [Var21, Proposition 3.2.13].
Incorporating these conditions follows from a parameterized version of the Whitney
Extention theorem (or rather a study of the construction used to prove the Whitney
Extension theorem). �

Remark 3.8. The analogue of Lemma 3.7 for JH(M,Ω, λ) and JH+(M,Ω, λ) need
not hold, since the semisimplicial set J (M,Ω, λ) could be non-connected. To obtain
an analogue of Lemma 3.7 for JH(M,Ω, λ) and JH+(M,Ω, λ), one could do one of
the following.

7 By the chain rule, ∂sH
σ
γi(s)(t, x)(γ′

i(s)) = ∂s

(

Hσ
γi(s)(t, x)

)

.
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(i) Begin with the assumption that J (M,Ω, λ) is contractible (which occurs if ∂M
is of contact-type or is a mapping torus of a symplectomorphism).

(ii) Fix an admissible almost complex structure J near ∂M and replace J (M,Ω, λ)
with the semisimplicial set of Δ�-families of admissible almost complex struc-
tures that agree with J near the boundary of M . This replacement semisimplicial
set is contractible.

When we define Hamiltonian Floer cohomology and action completed symplectic
cohomology, we implicitly assume that either J (M,Ω, λ) is contractible, or we have
fixed data for the second item. If J (M,Ω, λ) is not contractible, then our construc-
tions depend on this extra data.

4 Moduli spaces of Floer trajectories

Let (M,Ω, λ) be a convex symplectic domain with collar coordinate r. We define
moduli spaces of Floer trajectories associated to simplices in JH(M,Ω, λ) (and
JH+(M,Ω, λ)).

4.1 Moduli spaces of Floer trajectories. The following definitions are extremely
well-known (see, for example, [Par16, Sect. 10.2] and [Sal97]). So we give them in
our notation with little discussion.

Definition 4.1. Let γ : R→ Δ� be a (possibly constant) Morse flow line and let
u :R×S1 →M be a smooth map. The continuation operator associated to a simplex
σ in JH�(M,Ω, λ) is

∂σ(γ,u) = du+ Jσ(γ,u) ◦ du ◦ j −XHσ(γ,u)⊗ dt− Jσ(γ,u) ◦XHσ(γ,u)⊗ ds,

where Jσ(γ,u)(s, t) = Jσ
γ(s)(u(s, t)) and XHσ(γ,u) = (XHσ)γ(s),t(u(s, t)), where

(XHσ)s,t is the Δ� × S1-family of vector fields on M determined by

Ω((XHσ)s,t, ·) =−d(Hσ
s,t).

Remark 4.2. In Definition 4.1, σ in JH�(M,Ω, λ) does not necessarily have to be
1-dimensional. The continuation operator associated to σ takes as inputs a Morse
flow line in Δ� and a map of the infinite cylinder into M . This operator depends on
the -dimensional family of almost complex structures and Hamiltonians associated
to σ. This dependence is seen by the Morse flow lines varying in Δ�. In particular,
the continuation operator associated to σ does not just depend on a single Morse
flow line.

Definition 4.3. Let σ be a simplex in JH�(M,Ω, λ). Let x0 and x� be 1-periodic
orbits of Hσ

e0 and Hσ
e�

respectively. A Floer trajectory of type (σ,x0, x�) is a pair
(γ,u), where
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(i) γ = �k
i=1γi : �k

i=1R→ Δ� is a Morse flow line with

e0 = lim
s→−∞

γ1(s), . . . , lim
s→+∞

γi(s) = lim
s→−∞

γi+1(s), . . . , lim
s→+∞

γk(s) = e�,

(Write vi := lims→−∞ γi+1(s) for 0 ≤ i≤ k− 1 and vk := e�.) and
(ii) u :C := �k

i=1Ci →M is a smooth map with each Ci being a nodal curve of type
(0,2) with punctures p±i both contained in the same irreducible component,
denoted C0

i . (So C0
i
∼= R×S1 and Ci is R×S1 with bubble trees attached along

a finite set of points in R× S1.) Write C0 = �k
i=1C

0
i .

The pair (γ,u) satisfies the following. There exists 1-periodic orbits xi of Hσ
vi (for

1≤ i≤ k− 1) such that

(i) lims→−∞ ui+1(s, t) = xi(t), and
(ii) lims→+∞ ui(s, t) = xi(t).

The components ui satisfy

(i) ∂σ(γi, ui|C0
i
) = 0, and

(ii) ui|Ci�C0
i

is holomorphic.

Definition 4.4. Two Floer trajectories u and u′ are isomorphic if there exist an
isomorphism of curves of type (0,2), �k

i=1ψi : �k
i=1Ci → �k

i=1C
′
i, and translations

�k
i=1φi : �k

i=1R→�k
i=1R, such that u′

i ◦ψi = ui and γ′
i ◦ φi = γi. A Floer trajectory is

stable if its automorphism group (that is, the group of self-isomorphisms) is finite.

Definition 4.5. The moduli space of Floer trajectories of type (σ,x0, x�), denoted
M(σ,x0, x�), is the space of isomorphism classes of stable Floer trajectories of type
(σ,x0, x�), endowed with the Gromov topology.

Notation 4.6. We will drop γ from our notation for a Floer trajectory, and refer
to the map u as the Floer trajectory.

4.2 Energy. We discuss the geometric energy and topological energy of a Floer
trajectory.

Definition 4.7. The geometric energy of a Floer trajectory u of type (σ,x0, x�) is

Egeo(u) =
1
2

∫

C
‖∂su‖2

Jσ ds∧ dt.

The topological energy of u is

Etop(u) =
∫

C
u∗Ω +

∫

S1
Hσ

e0(x0) dt−
∫

S1
Hσ

e�
(x�) dt.

Lemma 4.8. Let u be a Floer trajectory of type (σ,x0, x�).

Egeo(u) =Etop(u) +
∫

C0
(∂sHσ)(γ,u) ◦ γ′ ds∧ dt.
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In particular, if σ ∈ JH+
� (M,Ω, λ), then

Etop(u) ≥Egeo(u) ≥ 0.

We will typically apply energy estimates to families given by the following con-
struction.

Construction 4.9. Consider two Hamiltonians H0 and H1 with H0 ≤H1, globally,
and ∂rH0 ≤ ∂rH1, near ∂M . Let  : [0,1]→ [0,1] be a smooth function that satisfies:

(i) (s)≡ 1 near 0,
(ii) (s)≡ 0 near 1, and
(iii) ′ ≤ 0.

Define Hσ
s := (s) ·H1 +(1− (s)) ·H0. It is straight-forward to verify that this family

is monotonically admissible and satisfies Hσ
e1 =H0 and Hσ

e0 =H1.

Corollary 4.10. Let u be a Floer trajectory of type (σ,x0, x1), where Hσ is as in

Construction 4.9 with H1 −H0 ≥ c.

Etop(u)≥Egeo(u) + c.

4.3 Compactness. Implicitly, we always assume that our Hamiltonians have no
orbits on the boundaries of our domains. Given this, we have the following compact-
ness result.

Lemma 4.11. The image of every element of M(σ,x0, x�) in M is disjoint from the

boundary of M and the subspace
{

u ∈M(σ,x0, x�) |Etop(u) ≤E0

}

is a compact, Hausdorff space for every constant E0.

Proof. The proof when ∂M is contact carries over almost identically to our setting.
We omit standard details; however, we mention where our proof would diverge from
the standard proof. If ∂M is not necessarily of contact-type, then Ω need not be
exact near ∂M . So images of Floer trajectories near ∂M could have non-trivial
bubbles; however, the argument for Proposition 18.4 with hs ≡ 0 shows that any
holomorphic map P

1 → M that meets the collar N(∂M) must be contained in a
single slice {r}× ∂M of the collar. By continuity of u, the image of the bubbles of u
are disjoint from ∂M if and only is the image of the main component of u is disjoint
from ∂M . With this in mind, the standard proof carries through. �

5 Hamiltonian Floer cohomology

To prove our main result, we need to define Hamiltonian Floer cohomology without
assuming a relationship between the first Chern class and the symplectic form. So
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we need to use virtual techniques. For a guide through the literature on virtual
fundamental chains, see [Par16], [M+19], and the references therein. Such techniques
have been studied in the context of Hamiltonian Floer cohomology by Fukaya-Ono
[FO99], Liu-Tian [LT98], Pardon [Par16], and Abouzaid-Blumberg [AB21]. We use
Pardon’s virtual fundamental chains package [Par16] to define Hamiltonian Floer
cohomology for convex symplectic domains. After giving the definition, we discuss
the usage of radial Hamiltonians to define Hamiltonian Floer cohomology. Finally,
we define action completed symplectic cohomology groups associated to compact
subsets of convex symplectic domains. More explicitly, we adapt the construction
given by [Var21] to convex symplectic domains. Other flavors of action completed
symplectic cohomology in various settings were studied in [Var21], [Gro20], [Ven18],
and [McL20].

5.1 Pardon’s virtual fundamental chains package. Roughly, to define Hamilto-
nian Floer cohomology, we need a (contravariant) functor from JH(M,Ω, λ) (re-
spectively JH+(M,Ω, λ)) to the ∞-category of chain complexes over the universal
Novikov field Λ (respectively universal Novikov ring Λ≥0). That is, to every vertex,
we associate a chain complex. To every 1-simplex, we associated a chain map. To
every 2-simplex, we associate a chain homotopy. Etc..

By Lemma 4.11, all Floer trajectories lie in the interior of M . So the analysis
performed in [Par16] goes through without change. We provide a cursory outline of
Pardon’s construction and explain how we obtain our desired functor.

To begin, the moduli spaces M(σ,x0, x�), furnished with choices of implicit at-
lases A and coherent orientations o, can be assembled into a flow category M over
JH(M,Ω, λ). From this data, Pardon constructs a trivial Kan fibration

˜JH(M,Ω, λ)→JH(M,Ω, λ).

Roughly, a section of this fibration is a coherent choice of virtual fundamental chains
for the above moduli spaces. Pardon constructs a diagram

˜JH(M,Ω, λ)op

π

˜H(M,A,o)
Ndg(Ch(Λ))

forget

JH(M,Ω, λ)op
H(M,A,o)

H0(Ch(Λ)),

where Ndg(Ch(Λ)) is the differential graded nerve of Ch(Λ) and H0(Ch(Λ≥0)) is
the associated homotopy category, see [Lur17, Construction 1.3.1.6]. To obtain the
dashed arrow H(M,A,o), one must choose a section of π. The functor H(M,A,o)
does not depend on the choice of section. Fixing a coherent choice of virtual funda-
mental chains (a section of π),

c : JH(M,Ω, λ)op → ˜JH(M,Ω, λ)op,
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gives a contravariant functor

H(M,A,o, c) : JH(M,Ω, λ)op → Ndg(Ch(Λ)),

where we have denoted all the dependencies. A concrete description of H(M,A,o, c)
for simplices of dimensions = 0 and 1 is given below.

In what follows, we do not show that our Floer theoretic objects are independent
of the above choices, that is, the choice of implicit atlas A, the choice of coherent
orientations o, and the choice of coherent virtual fundamental chains c. We do not
establish independence because we do not need it to prove our main result. All we
need is the existence of such data. Consequently, in our constructions, we can either
fix some universal choice of data associated to each simplex in JH(M,Ω, λ) or we
can fix such choices inductively as we work through our constructions. The latter is
the approach taken by Pardon in [Par16]. The former and latter approaches are also
both considered by Varolgunes in [Var21]. Regardless, we omit such data from our
notation.

5.2 Hamiltonian Floer chain complexes. We give a more explicit description of
the functor from the above discussion and discuss some of its properties.

Notation 5.1. Let σ be a simplex in JH�(M,Ω, λ). Given orbits x0 and x�, let
π(x0, x�) denote the set of homotopy classes of Floer trajectories of type (σ,x0, x�).
Define

M(σ,x0, x�;A) =
{

u ∈M(σ,x0, x�) | [u] =A ∈ π(x0, x�)
}

.

If u and u′ are both in M(σ,x0, x�;A), then Etop(u) =Etop(u′). So given A ∈ π(x0, x�),
define Etop(A) :=Etop(u), where u is any Floer trajectory with [u] =A.

Definition 5.2. The Floer chain complex associated to a 0-simplex (H,J) ∈
JH0(M,Ω, λ) is the chain complex (CF •(H,J ;M,Ω, λ), ∂) that is defined over the
universal Novikov field Λ (see Definition 17.7) where

– (CF •(H,J ;M,Ω, λ) is the Z-graded, free Λ-module generated by the con-
tractible 1-periodic orbits of H , that is,

CF •(H,J ;M,Ω, λ) := Λ · 〈x | x is a 1-periodic orbit of H, ind(x) = • mod 2〉

– ∂ :CF •(H,J ;M,Ω, λ)→CF •+1(H,J ;M,Ω, λ) is the Λ-linear map given by

∂(x+) =
∑

x−
ind(x−)−ind(x+)=1 mod 2

⎛

⎝

∑

A∈π(x−,x+)

#vir(M(σ,x−, x+;A)) · x− · TEtop(A)

⎞

⎠

where #vir(M(σ,x−, x+;A)) ∈Q is determined by Pardon’s virtual fundamental
chains package.
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The continuation map associated to a 1-simplex σ ∈ JH1(M,Ω,Λ) is the Λ-linear
map

c(σ;M,Ω, λ) : CF •(Hσ
e1 , J

σ
e1 ;M,Ω, λ)→CF •(Hσ

e0 , J
σ
e0 ;Ω, λ)

given by

c(σ;M,Ω, λ)(x+)

=
∑

x−
ind(x−)−ind(x+)=0 mod 2

⎛

⎝

∑

A∈π(x−,x+)
#vir(M(σ,x−, x+;A)) · x− · TEtop(A)

⎞

⎠

where #vir(M(σ,x−, x+;A)) ∈ Q is determined by Pardon’s virtual fundamental
chains package.

A word on grading conventions is in order. ind(x) denotes the Conley-Zehnder
index of the orbit x, which is only well-defined modulo 2. So CF •(H,J ;M,Ω, λ) is,
a priori, only a Z/2-graded complex. Here we extend 2-periodically to obtain a Z-
graded complex. When (M,Ω) has vanishing first Chern class, ind(x) is a well-defined
integer and gives CF •(H,J ;M,Ω) an honest Z-graded. The “2-periodification” of
this Z-grading agrees with the a fore mentioned Z-grading. When the grading of
CF •(H,J ;M,Ω) is important, we will mention it; however, if there is no need for
gradings, we will drop the grading notation from our chain complexes.

Notation 5.3. When the context is clear, we will drop M , Ω, λ, and sometimes J

from the notation for CF (H,J ;M,Ω, λ) and c(σ;M,Ω, λ), writing CF (H) and c(σ).
One may also wish to recall our convention for Hamiltonian vector fields given in
Definition 4.1.

By Lemma 4.8, if σ lies in JH+(M,Ω, λ), one can replace Λ in Definition 5.2
with Λ≥0, the universal Novikov ring (see Definition 17.9). To conclude, we point
out some features of Pardon’s virtual fundamental chains package.

Theorem 5.4. (i) [Par16, Lemma 5.2.6] If M(σ,x0, x�;A) is a single point and it

is regular, then

#vir(M(σ,x0, x�;A)) �= 0.

(ii) If #vir(M(σ,x0, x�;A)) �= 0, then M(σ,x0, x�;A) is non-empty.

5.3 Using radial Hamiltonians. It is convenient to work with Hamiltonians that
only depend on r near ∂M to define Hamiltonian Floer chain complexes. Let (M,Ω)
be a convex symplectic domain whose boundary admits the stable Hamiltonian struc-
ture (Ω|∂M , α). Recall, λ = rα. We assume that the Reeb vector field R of the stable
Hamiltonian structure is non-degenerate. The Ω-dual of −dr is R. So the Hamilto-
nian vector field Xh of any radial Hamiltonian h : (0,1] × ∂M → R satisfies: Xh =
∂rh ·R. So the 1-periodic orbits of Xh are of the form (r0, y(∂rh(r0) · t)) ∈ (0,1]×∂M ,
where y(t) is a periodic orbit of R with period ∂rh(r0).
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Definition 5.5. For a ∈ (0,1), a Hamiltonian H : S1 ×M →R is a-radially admis-
sible if

(i) on M � r−1([0, a]), H is non-degenerate, and
(ii) on r−1([a,1]), H = h for some radial function h : [a,1]→R that satisfies

(i) h′(r) is locally constant near a and 1,
(ii) h′(a)> 0 is smaller than the smallest period of all the orbits of R,
(iii) h′′(r)≥ 0, and
(iv) h′′(r) = 0 implies that h′(r) is not a period of an orbit of R.

Definition 5.6. A family of Hamiltonians Hσ : Δ� × S1 × M → R is a-radially
admissible if

(i) each Hσ
ei is a-radially admissible,

(ii) Hσ
s is locally constant about each vertex ei in Δ�, and

(iii) ∂sH
σ
γi(s) ◦ γ

′
i(s)≤ 0 for each Morse flow line γ = �γi in Δ�,

and on r−1([a,1])

(i) Hσ
s is a radial function in r,

(ii) ∂s∂rH
σ
s ◦ γ′

i(s)≤ 0 for each Morse flow line γ = �γi in Δ�.

Remark 5.7. A radially admissible Hamiltonian is a degenerate Hamiltonian as
the orbits corresponding to Reeb orbits occur in S1-families (parameterized by a
choice of starting point). As is standard (see for example [C+96]), we introduce a
time-dependent perturbation locally about each S1-family of orbits. The perturbed
Hamiltonian has two non-degenerate orbits for each S1-family of orbits of the un-
perturbed Hamiltonian. Both of these orbits can be made to lie in the same r-slice
as the original S1-family. This produces an admissible Hamiltonian (in the sense of
Definition 3.4). Similarly, perturbing near each of the vertices of a radially admissible
family of Hamiltonians will yield a monotonically admissible family of Hamiltonians
(in the sense of Definition 3.5). Whenever we refer to radially admissible data, we
implicitly assume that we have introduced these needed perturbations and will not
specify them.

Radial Hamiltonians have filtrations on their Hamiltonian Floer chain complexes
for purely topological reasons. The filtrations follow via the integrated maximum
principle, Proposition 2.11.

Lemma 5.8. Let Hσ be a radially admissible family of Hamiltonians. If r(x�) < r(x0),
then M(σ,x0, x�) is empty.

5.4 Action completed symplectic cohomology. We define action completed sym-
plectic cohomology for convex symplectic domains. The reader may wish to recall
the notions of rays, mapping telescopes, and completions of mapping telescopes over
Λ≥0 in Sect. 17.
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Let K ⊂M � ∂M be a compact subset and let f : M →R be a continuous func-
tion. Define the lower semi-continuous function8 fK :M →R by

fK(p) =

⎧

⎨

⎩

f(p), p ∈K

∞, p /∈K.

Define H+(K ⊂ M,Ω, λ;f) to be the full subcomplex of H+(M,Ω, λ) spanned by
Hamiltonians that are strictly less than fK . The opposite edge relation, denoted �,
on the vertices of H+(K ⊂M,Ω, λ;f) says H0 �H1 if and only if pointwise H0 ≤H1
and (near ∂M ) ∂rH0 ≤ ∂rH1.

Lemma 5.9. The opposite edge relation endows H+
0 (K ⊂M,Ω, λ;f) with the struc-

ture of a directed system that has countable cofinality.9

Proof. It suffices to prove that the poset structure given by � admits a countable,
cofinal sequence. It further suffices to construct a cofinal sequence of admissible
Hamiltonians Hn such that pointwise Hn <Hn+1 and (near the boundary) ∂rHn <

∂rHn+1. Because we can introduce small time dependent perturbations to continuous
functions to obtain non-degenerate Hamiltonians, it further suffices to construct a
cofinal sequence of continuous functions Fn : M →R such that pointwise Fn <Fn+1
and (near ∂M ) ∂rFn < ∂rFn+1.

Note, if f and g are two continuous functions on M that both agree over K,
then fK = gK . So without loss of generality, assume that f ≡ 0 near ∂M . Also any
cofinal sequence Fn for (0)K gives rise to a cofinal sequence for fK by considering
the sequence Fn + f . So it suffices to prove the claim for f ≡ 0.

We construct such Fn by hand. Fix a background metric on M with associated
distance function dist. Fix rK ∈ (0,1) such that r(K)< rK . Fix an integer N ∈N such
that dist(K,r−1(rK))> 1/N . For n≥N , we define the following compact subsets:

Cn = {p ∈M | dist(K,p)≤ 1/n}

and

An =M � (int(Cn)∪ r−1((rK ,1])).

Define continuous functions gn : [0,1/n]→R that satisfy:

(i) gn(0) =−1/n,
(ii) gn(1/n) = n,
(iii) gn is increasing, and

8 Recall that a function φ : X →R∪{∞} is lower semi-continuous if φ−1((c,∞)) is open for each
c ∈R.

9 A directed system is a poset (D,≤), which satisfies the common refinement condition, that is,
for each A0,A1 ∈D there exists A2 ∈D such that A0,A1 ≤A2. A subposet D′ of a directed system
D is cofinal if for each A ∈ D there exists an A′ ∈ D′ such that A ≤ A′. A directed system has
countable cofinality if there exists a cofinal subposet whose collection of objects is countable.
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Figure 1: An example of a choice of functions gn, fn, and Fn for Lemma 5.9.

(iv) gn < gn+1.

Define continuous functions fn : [rK ,1]→R that satisfy:

(i) fn ≡ n locally about rK ,
(ii) fn is a linear function of slope mn locally about 1,
(iii) f ′

n ≥ 0,
(iv) fn < fn+1,
(v) mn <mn+1, and
(vi) limn→∞mn = +∞.

Define continuous functions Fn : M →R by

Fn(p) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

gn ◦ d(K,p), p ∈Cn

n, p ∈An

fn ◦ r(p), p ∈ [rK ,1].

For an example of a choice of functions gn, fn, and Fn, see Figure 1.
For all n, Fn < Fn+1 < (0)K and near ∂M , ∂rFn < ∂rFn+1. It remains to show

that for each H in H+
0 (K ⊂M,Ω, λ; 0) there exists n� 0 so that pointwise H <Fn

and (near ∂M ) ∂rH < ∂rFn. Since each Cn is compact, there exists some fixed n0 so
that H|Cn0

<−1/n1 for all n1 � n0. Since M is compact, we have that H ≤ n2 for
some n2. Again by compactness, there exists n3 such that (∂rH)(1) <mn3 . Setting
N = n2 + n3 � n0 gives that pointwise H < FN and (near ∂M ) ∂rH < ∂rFN , as
desired. �

Continuing our construction, let (Hn, Jn) be a sequence of vertices in JH+
0 (K ⊂

M,Ω, λ;f) such that

(i) there exists 1-simplices σn ∈ JH+
1 (M,Ω, λ) with (Hσn

e1 , Jσn
e1 ) = (Hn, Jn) and

(Hσn
e0 , Jσn

e0 ) = (Hn+1, Jn+1), and
(ii) the sequence Hn is cofinal.

By Lemma 5.9, such a sequence exists. This determines a ray of chain complexes
over Λ≥0,

CF({Hn}) := CF (H0, J0)
c(σ0)

CF (H1, J1)
c(σ1)

CF (H2, J2)
c(σ2)

· · · .
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By Lemma 5.9 and Lemma 3.7 (In particular, one has to utilize 2-simplices and
3-simplices.), the quasi-isomorphism type of ̂Tel(CF({Hn})) is independent of the
choice of sequence σn (and thus also independent of the choice of sequence (Hn, Jn)),
for example, see [Var21, Sect. 3.3]. So we can make the following definition.

Definition 5.10. The action completed symplectic cohomology of (M,Ω, λ) with
respect to K and f is the Λ≥0-module

̂SH(K ⊂M ;f) :=H(̂Tel(CF({Hn}))).

The above independence gives flexibility to future arguments. Different sequences
of Hamiltonians will be more amenable to establishing different properties of action
completed symplectic cohomology.

We conclude by discussing a variant of Definition 5.10. Let H+(K ⊂M,Ω, λ;f, τ)
to be the full subcomplex of H+(M,Ω, λ) spanned by Hamiltonians that are strictly
less than fK and have slope ∂rH = τ near the boundary of M . Analogous to
Lemma 5.9, the opposite edge relation endows H+

0 (K ⊂M,Ω, λ;f, τ) with the struc-
ture of a directed system that has countable cofinality.10 As with H+(K ⊂M,Ω, λ;f),
we can consider a cofinal sequence of Hamiltonians Hn,τ in H+(K ⊂ M,Ω, λ;f, τ)
connected by monotonically admissible 1-simplicies σn,τ and obtain a well-defined
invariant.

Definition 5.11. The action completed symplectic cohomology of (M,Ω, λ) of slope
τ with respect to K and f is the Λ≥0-module

̂SH(K ⊂M ;f, τ) :=H(̂Tel(CF({Hn,τ}))).

In Proposition 6.1 item (iv), we show that

̂SH(K ⊂M ;f, τ)∼= ̂SH(K ⊂M ;f).

We introduce ̂SH(K ⊂ M ;f, τ) (despite this isomorphism) because in the setting
of our main result, we can construct cofinal sequences of Hamiltonians in H+(K ⊂
M,Ω, λ;f, τ) (but not in H+(K ⊂ M,Ω, λ;f)) that satisfy certain index-bounded
assumptions. Such sequences of Hamiltonians are used to establishing a rescaling
isomorphism for action completed symplectic cohomology in the Calabi-Yau setting,
see Sect. 10.

10 Indeed, the only element of the proof that changes is the definition of the functions fn. One
would change fn : [rK ,1] →R to now satisfy:

(i) fn ≡ n locally about rK ,
(ii) fn is a linear function of slope τ locally about 1,
(iii) f ′

n ≥ 0, and
(iv) fn < fn+1.
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6 Properties of action completed symplectic cohomology

We establish the following properties of action completed symplectic cohomology.

Proposition 6.1. (i) Given any two continuous functions f :M →R and g :M →
R, there is an isomorphism that is induced from a zig-zag of continuation maps

̂SH(K ⊂M ;f)⊗Λ∼= ̂SH(K ⊂M ;g)⊗Λ.

(ii) If K is a stably displaceable subset of (M,Ω), then for every continuous function

f 11

̂SH(K ⊂M ;f)⊗Λ = 0.

(iii) There is a function f (see Construction 6.8) so that there exists a long exact
sequence

· · · H(M ;Λ) ̂SH(Ma ⊂M ;f)⊗Λ ̂SH+(Ma ⊂M ;f) · · · ,

where ̂SH+(Ma ⊂M ;f) is a completion of a complex that is generated by pairs

of orbits that correspond to the Reeb orbits of ∂M .

(iv) There is an isomorphism for all τ > 0

̂SH(K ⊂M ;f, τ)∼= ̂SH(K ⊂M ;f).

Remark 6.2. There are other properties of action completed symplectic cohomology
that should hold. In [TV23, Proposition 2.5], it was shown that relative symplectic
cohomology has a unit, which determines the non-vanishing of relative symplectic co-
homology, and that the unit is preserved under restriction maps. This should hold in
our more general setting for action completed symplectic cohomology and the proofs
should be analogous; however, in our general setting, there remains the technical is-
sue of defining the pair-of-pants product using Pardon’s virtual fundamental chains
package [Par16]. This is beyond the scope of this paper. However, if the symplectic
manifold is monotone or has vanishing first Chern class, then classical techniques
can be used to define Hamiltonian Floer cohomology and the proofs in [TV23] carry
over word-for-word to show that our action completed symplectic cohomology has
these above properties.

We prove each item in turn. We will assume that the boundaries of our convex
symplectic domains have non-degenerate Reeb vector fields.

11 The result also holds with ̂SH(K ⊂M ;f) replaced by ̂SH(K ⊂M ;f, τ).
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6.1 Partial invariance under changing the function. We discuss the dependence
of ̂SH(K ⊂M ;f) on the function f , proving Proposition 6.1 item (i). We begin with
the following.

Lemma 6.3. Given a continuous function f : M →R and a constant c≥ 0, there is

an isomorphism induced from a continuation map

̂SH(K ⊂M ;f)⊗Λ → ̂SH(K ⊂M ;f + c)⊗Λ.

Proof. Let Hn be a cofinal sequence of Hamiltonians for fK . Define σn ∈ JH+
1 (M,Ω,

λ) using Construction 4.9,

Hσn
s = (s) ·Hn+1 + (1− (s)) ·Hn.

This data computes ̂SH(K ⊂ M ;f). The sequences H ′
n := Hn + c and σ′

n ∈
JH+

1 (M,Ω, λ) with associated families Hσn + c compute ̂SH(K ⊂M ;f + c). There
is a bijection between the data of CF (Hn) and the data of CF (H ′

n). We upgrade
these bijections to isomorphisms.

Consider the continuation map of the 1-simplex τn with Hτn
e0 =H ′

n and Hτn
e1 =Hn

constructed using Construction 4.9. So Hτn
s = (s) · c+Hn, and XHτn is independent

of s. Consider the constant Floer trajectories, which are isolated, regular, and have
topological energy equal to c. By Corollary 4.10, all other Floer trajectories have
topological energy strictly greater than c. So by Theorem 5.4,12

c(τn)(·) = (·) · T c + higher order terms in T.

We used the chain level bijection from above to specify our map. These continuation
maps fit into a homotopy commutative diagram:

CF (H0)
c(σ0)

c(τ0)
ν0

CF (H1)
c(σ1)

c(τ1)
ν1

· · ·

CF (H ′
0)

c(σ′
0)

CF (H ′
1)

c(σ1)
· · · .

with homotopies νn : CF (Hn) → CF (H ′
n+1)[1]. To get this homotopy commutative

diagram, consider the I × I family of Hamiltonians

Hνn
s = (1− (s1)) ·Hn + (s1) ·Hn+1 + (s2) · c

with s = (s1, s2) ∈ I × I and  as in Construction 4.9. One divides this I × I family
into two 2-simplicies glued along the diagonal of I × I . As a matrix,

∂sH
νn
s =

(

′(s1) · (Hn+1 −Hn) ′(s2) · c
)

.

12 or rather this quantity scaled by an element of Q
× which depends on the input orbit. For

conciseness, we omit this constant here and in future arguments.



A. PIELOCH GAFA

So arguing as in Corollary 4.10, νn(·) has valuation strictly greater than c. Equiv-
alently, νn(·) ∈ Λ>c · CF (H ′

n+1)[1]. By the discussion at the end of Sect. 17.1, we
obtain a morphism of the associated mapping telescopes of the rays of σn and σ′

n

that is given by

(·) �→ (·) · T c + higher order terms in T.

From this description, we see that after tensoring with Λ, this map induces an isomor-
phism on the associated completed mapping telescopes. This proves the claim. �

Lemma 6.4. Given a continuous function f : M → R and a constant a such that

f < a, there is an isomorphism that is induced from a continuation map

̂SH(K ⊂M ;f)⊗Λ → ̂SH(K ⊂M ;a)⊗Λ.

Proof. Fix constants a < b < c so that f < a < f+b < c. As in the proof of Lemma 6.3,
let Hn be a cofinal sequence of Hamiltonians for fK . Define σn ∈ JH+

1 (M,Ω, λ) using
Construction 4.9. So

Hσn
s = (s) ·Hn+1 + (1− (s)) ·Hn.

This data computes ̂SH(K ⊂M ;f). Similarly, let ˜Hn and σ̃n denote the data that
computes ̂SH(K ⊂M ;a), defining σ̃n via Construction 4.9. Assume without loss of
generality that pointwise Hn <H ′

n and near ∂M , ∂rHn = ∂rH
′
n for all n. Again, as

in the proof of Lemma 6.3, the data H ′
n := Hn + b and Hσ′

n := Hσn + b computes
̂SH(K ⊂M, ;f + b). Similarly, the data ˜H ′

n := ˜Hn + c− a and H σ̃′
n := H σ̃n + c− a

computes ̂SH(K ⊂M ; c).
Using Lemma 3.7, we may fix continuations τ in and homotopies νin for i = 0,1,2

and obtain a homotopy commutative diagram

CF (Hn)
c(τ0

n)

c(σn)
ν0
n

CF ( ˜Hn)
c(τ1

n)

c(σ̃n)
ν1
n

CF (H ′
n)

c(τ2
n)

c(σ′
n)

ν2
n

CF ( ˜H ′
n)

c(σ̃′
n)

CF (Hn+1)
c(τ0

n+1)
CF ( ˜Hn+1)

c(τ1
n+1)

CF (H ′
n+1)

c(τ2
n+1)

CF ( ˜H ′
n+1).

One can fix τ in and νin arbitrarily so long as they are monotonically admissible. This
diagram induces maps on completed mapping telescopes

̂Tel(CF({Hn}))
Ψ0

̂Tel(CF({ ˜Hn}))
Ψ1

̂Tel(CF({H ′
n}))

Ψ2
̂Tel(CF({ ˜H ′

n})) .
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To prove the claim, it suffices to show that Ψ1 ◦Ψ0 and Ψ2 ◦Ψ1 are both isomor-
phisms after tensoring with Λ and passing to cohomology. By symmetry, it suffices
to prove this for Ψ1 ◦Ψ0.

Using Lemma 3.7, construct a homotopy commutative diagram

CF (H0)
c(σn)

1

c(τ1
0 )◦c(τ0

0 )
CF (H1)

c(σ1)

1

c(τ1
1 )◦c(τ0

1 )
· · ·

CF (H ′
0)

c(σ′
0)

1

CF (H ′
1)

c(σ′
1)

1

· · ·

CF (H0)
c(σ0)

ν0c(τ0)

CF (H1)
c(σ1)

ν1c(τ1)

· · ·

CF (H ′
0)

c(σ′
0)

CF (H ′
1)

c(σ′
1)

· · · ,

where, τi is the continuation considered in Lemma 6.3, and our unspecified homo-
topies (and higher homotopies) can be chosen arbitrarily so long as they are mono-
tonically admissible. In this manner, we obtain a homotopy commutative diagram

̂Tel(CF({H ′
n})) ̂Tel(CF({Hn}))

̂Tel(CF({H ′
n})) ̂Tel(CF({Hn})),

where the top map is Ψ1 ◦Ψ0, the bottom map is the map from Lemma 6.3, and the
vertical maps are the identities. So Ψ1 ◦Ψ0 must be an isomorphism after tensoring
with Λ and passing to cohomology. This completes the proof. �

We now give the proof of Proposition 6.1 item (i).

Proof. Fix a constant c such that c > f and c > g. By Lemma 6.4, we have a zig-zag
of continuations maps, inducing isomorphisms

̂SH(K ⊂M ;f)⊗Λ ̂SH(K ⊂M ; c)⊗Λ ̂SH(K ⊂M ;g)⊗Λ.
�

Remark 6.5. Notice that the proof of Proposition 6.1 item (i) also proves the nat-
ural invariance of ̂SH(K ⊂M ;f, τ)⊗Λ under changing the function f .

6.2 Vanishing for stably displaceable subsets. The group ̂SH(K ⊂ M ;f) en-
codes dynamical information about the subset K in M . The key consequence is
Proposition 6.1 item (ii). We elaborate below.
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Definition 6.6. A subset B of a symplectic manifold (M,Ω) is Hamiltonian dis-
placeable if there exists a compactly supported Hamiltonian diffeomorphism φ :M →
M that is supported away from the boundary of M such that φ(B)∩B =∅.

Let us fix polar coordinates (σ, τ) for R× S1.

Definition 6.7. A subset B of a symplectic manifold (M,Ω) is stably displaceable
if the subset B × S1 of (M ×R× S1,Ω⊕ (dσ ∧ dτ)) is Hamiltonian displaceable.

Using Proposition 6.1 item (i), it suffices to prove Proposition 6.1 item (ii) f ≡ 0,
which follows from the same line of arguing given in [Var18, Sect. 4.2].

6.3 A long exact sequence. For Liouville domains, the action long exact se-
quence relates the (Morse) cohomology and the symplectic cohomology of the Liou-
ville domain. Here we deduce the analogous long exact sequence for action completed
symplectic cohomology, Proposition 6.1 item (iii). To construct it, we construct a spe-
cific function f on M that we will use to relate H(M ;Λ) with ̂SH(K ⊂M ;f) ⊗ Λ
for K =Ma as in Notation 2.8.

Construction 6.8. We fix a > δ > 0. Define a function ˜f :M →R by

˜f(x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−δ, x ∈Ma−δ

−
√

δ2 − (r(x)− (a− δ))2, a− δ ≤ r(x)≤ a

0, r(x)≥ a.

For 0 ≤ s < δ, consider the family ˜fs : M →R given by

˜fs(x) =

⎧

⎨

⎩

˜f(x), x ∈Ma−δ+s

˜f ′(a− δ + s) · (r(x)− (a− δ + s)) + ˜f(a− δ + s), r(x)≥ a− δ + s.

Fix δ > ε > 0 so that for all r ≤ a− δ + ε, ˜f ′(r) is strictly less than all periods of the
Reeb orbits of R. Let f :M →R satisfy:

(i) f is a negative C2-small Morse function on Ma−δ,
(ii) f ≤ ˜f , and
(iii) f ≡ ˜f for r(x)≥ a− δ + ε.

For ε≤ s < δ, define a family

fs(x) =

⎧

⎨

⎩

f(x), x ∈Ma−δ+s

˜fs(x), r(x)≥ a− δ + s.

Fix a strictly increasing sequence of real numbers ε < s0 < s1 < · · · < sn < · · · that
converges to δ. Define Hn :M →R by (or rather, we consider an appropriately small
smoothing of these Hamiltonians) Hn := fsn −1/n. Please see Figure 2 for depictions
of these functions.
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Figure 2: Depictions of the choice of functions f and Hn for Construction 6.8.

Notice that the sequence Hn is cofinal sequence among admissible Hamiltonians
that are less than fMa , each Hn is (a− δ+ε)-radially admissible (for a generic choice
of sequence sn), and ∂rHn+1 > ∂rHn. Using Construction 4.9, build (a − δ + ε)-
radially admissible families of Hamiltonians Hσn with Hσn

e1 =Hn and Hσn
e0 =Hn+1.

We now construct the desired long exact sequence. Assume the notation and
data from Construction 6.8. CF (Hn) is generated by the critical points of f on
Ma−δ and the pairs of orbits that correspond to Reeb orbits of R with periods less
than ˜f ′

a−δ+sn
(a− δ + ε). By Lemma 5.8, the critical points form a subcomplex

CF0(Hn) ↪→CF (Hn)

with quotient

CF+(Hn) :=CF (Hn)/CF0(Hn)

generated by the orbits that correspond to Reeb orbits. Since each σn is radially
admissible, their associated continuation maps preserve this filtration. So we obtain
(a map of) short exact sequences

0 Tel(CF0({Hn})) Tel(CF({Hn})) Tel(CF+({Hn})) 0

0 colim(CF0({Hn})) colim(CF({Hn})) colim(CF+({Hn})) 0.

Here the colim means the ordinary colimit of our directed systems.13 The right-
hand-terms are filtered colimits of finitely generated, free Λ≥0-modules. So by [TS21,

13 The reason that we consider both colimits and mapping telescopes (that is, homotopy colimits)
is two fold.

– There associated completions are quasi-isomorphic via Lemma 17.6. So when constructing our
desired long exact sequence, we can choose to work with either.

– The chain complexes colim(CF0({Hn})) and colim(CF+({Hn})) are, actually, generated by
the critical points of f and the pairs of orbits that correspond to Reeb orbits of the bound-
ary’s stable Hamiltonian structure respectively. However, these descriptions are not needed to
construct our long exact sequence.
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Tag 058G], they are flat Λ≥0-modules. So by [TS21, Tag 0315], we have short
exact sequences of completions with vertical maps being quasi-isomorphisms (by
Lemma 17.12).

0 ̂Tel(CF0({Hn})) ̂Tel(CF({Hn})) ̂Tel(CF+({Hn})) 0

0 ĉolim(CF0({Hn})) ĉolim(CF({Hn})) ĉolim(CF+({Hn})) 0.

By similar arguments as in Lemma 6.3 and [Par16, Theorem 10.7.1], the cohomology
of the left-hand-terms tensored with Λ is the cohomology of Ma with coefficients in Λ,
which is also the cohomology of M with coefficients in Λ. From this discussion, we can
deduce Proposition 6.1 item (iii) by defining ̂SH+(Ma ⊂M) to be the cohomology
of the right-hand-terms tensored with Λ. The long exact sequence does not depend
on any of our choices; however, we do not prove or further discuss this independence
as it is not needed.

Remark 6.9. To explicitly construct the complexes in Proposition 6.1 item (iii),
one needs the sequence of Hamiltonians Hn to be connected via radially admissible
families of Hamiltonians. There are several possible choices of such sequences and we
only give one here. However, the reader should note that a naive construction with f

being given by the zero function will not necessarily produce the desired complexes
as the values of the r-derivatives of the associated cofinal sequence of Hamiltonians
might eventually decrease with increasing n. Consequently, the associated continua-
tion maps need not preserve the filtration.

6.4 Invariance of the slope near the boundary. We show that ̂SH(K ⊂M ;f, τ)
does not depend on τ , proving Proposition 6.1 item (iv).

Proof. Let Hn,τ be a cofinal sequence of Hamiltonians in H+(K ⊂M ;f, τ). Without
loss of generality, assume that

Hn,τ = τ · r + n

on {1 − δ ≤ r ≤ 1}. Let σn,τ be 1-simplices in JH+(M,Ω, λ) with H
σn,τ
e0 = Hn+1,τ

and H
σn,τ
e1 =Hn,τ as in Construction 4.9. This means

Hσn,τ
s = (s) + n+ τ · r

on {1− δ ≤ r ≤ 1} where  is the cut-off function in Construction 4.9. Define Hn and
σn as follows. First, fix sn < δ such that

˜f ′(1− δ + sn) = τ · n,

https://stacks.math.columbia.edu/tag/058G
https://stacks.math.columbia.edu/tag/0315
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Figure 3: Depictions of the choice of functions Hn,τ , and Hn for Proposition 6.1 item (iv).

where ˜f is as in Construction 6.8 with a= 1. For convenience, define

cn :=− ˜f(1− δ + s1) + τ(1− δ + s1) + n.

Define

Hn(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

Hn,τ (x), r(x)≤ 1− δ + s1
˜f(x) + cn, 1− δ + s1 ≤ r(x)≤ 1− δ + sn

n · τ · r− n · τ · (1− δ + sn)
+ ˜f(1− δ + sn) + cn, 1− δ + sn ≤ r(x).

Please see Figure 3 for a depiction of these functions.
Define Hσn via Construction 4.9. Notice that CF (Hn) has two types of gen-

erators: The generators that correspond to the generators of CF (Hn,τ ) that have
associated orbits lying in the region where r ≤ 1 − δ + s1, and the generators that
have associated orbits lying in the region where r ≥ 1 − δ + s1. By Lemma 5.8, the
first type of generators may be canonically identified with CF (Hn,τ ) and be realized
as a subcomplex in : CF (Hn,τ ) ↪→ CF (Hn). The map in is not necessarily induced
from a continuation.14 In this manner, we obtain a strictly commutative diagram

CF (H0,τ )
c(στ,0)

i0

CF (H1,τ )
c(στ,1)

i1

· · ·

CF (H0)
c(σ0)

CF (H1)
c(σ1)

· · · .

Indeed, when r ≤ 1− δ+ s1, the Floer data Hn,τ and σn,τ agrees identically with the
Floer data Hn and σn. Moreover, by Lemma 5.8, there is a bijection between their
associated Floer trajectories that have ends lying in the region where r ≤ 1− δ + s1.
So with the above identifications of subcomplexes the diagram strictly commutes.

14 As a result of this, our isomorphism will not be natural in the sense that it is induced from a
continuation map. Of course, we could consider continuations to construct this subcomplex; however,
the strictly commutative diagram in this argument will become only homotopy commutative. In
light of this, we would need to consider the associated mapping cones (as opposed to quotients)
and a more delicate homological analysis would be required (similar to, but different than the
homological analysis given in the proof of Lemma 6.3).
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Consider the quotient

C(in) =CF (Hn)/CF (Hn,τ ),

which is generated by the orbits that lie in the region where r ≥ 1 − δ + s1. The
continuation maps c(σn) induce maps ϕn : C(in) → C(in+1) as follows. Let x be a
generator in C(in), lift it to the corresponding generator x̃ in CF (Hn), define ϕn(x)
to be the composition of c(σn)(x̃) with the quotient map from CF (Hn) →C(in). We
have a strictly commutative diagram of rays:

0 CF (Hτ,0)
i0

c(στ,0)

CF (H0)

c(σ0)

C(i0)

ϕ0

0

0 CF (Hτ,1)
i1

c(στ,1)

CF (H1)

c(σ1)

C(i1)

ϕ1

0.

Notice that the complex Tel({C(in)}) is a filter colimit of finitely generated, free
Λ≥0-modules. So by [TS21, Tag 058G], it is a flat Λ≥0-module. So by [TS21, Tag
0315], we have a short exact sequence of completed mapping telescopes:

0 ̂Tel(CF(Hn,τ )) ̂Tel(CF(Hn)) ̂Tel({C(in)}) 0 .

The cohomology of the left complex is ̂SH(K ⊂ M ;f, τ). The cohomology of the
middle complex is ̂SH(K ⊂ M ;f). So to complete the proof, it suffices to show
that ̂Tel({C(in)}) is acyclic. Using Lemma 17.6, we prove the stronger claim that
ĉolim({C(in)}) is trivial. We will show that for each generator x ∈ C(in), the valu-
ation of the sequence of elements ϕm+n ◦ · · · ◦ ϕn(x) diverges with m. This implies
that each element of the completed colimit is equivalent (as a Cauchy sequence) to
the trivial element.

We will use induction to prove that ϕm+n ◦ · · · ◦ ϕn(x) diverges with m. We fix
some conventions. First, the generators of C(in) may be identified with a subset of
the generators of C(in+k) for all k > 0. These are the generators of C(in+k) whose
orbits lie in the region where 1−δ+s1 ≤ r ≤ 1−δ+sn. We will use this identification
when computing ϕm+n ◦ · · · ◦ ϕn(x). Second, there exists an increasing sequence of
real numbers r1, r2, . . . and an increasing sequence of natural numbers k1, k2, . . . such
that the orbits that correspond to generators of C(in) lie in

kn
⋃

j=0
{r = rj}.

https://stacks.math.columbia.edu/tag/058G
https://stacks.math.columbia.edu/tag/0315
https://stacks.math.columbia.edu/tag/0315
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We claim that the following holds: for all n and for each generator x of C(in)
with r(x) = rj ,

val(ϕm+n+j ◦ · · · ◦ϕn(x))≥m+ 1

for all m≥−j. Given this, it follows that for every generator x in C(in) that ϕm+n ◦
· · · ◦ ϕn(x) diverges with m, as desired. So it just remains to prove this claim. We
will prove it via a double induction on j and m. We will begin with the base case:
j = 0.

We claim that the following holds: for all n and for each generator x of C(in)
with r(x) = r0,

val(ϕm+n ◦ · · ·ϕn(x))≥m+ 1

for all m≥ 0.
Use the identification of the generators of C(in) as a subset of the generators of

C(in+1) to write

ϕn(x) = λ0 · x+
∑

i>0
λi · yi,

where yi is a generator (not equal to x) of C(in+1) whose orbits lie in the region
where 1 − δ + s1 ≤ r ≤ 1 − δ + sn. By Lemma 5.8, we have that r(yi) ≤ r(x) = r0.
But since r0 is minimal, we have that r(yi) = r0 = r(x). Considering the constant
Floer trajectory at x, which is regular, isolated, and has topological energy equal
to 1, Theorem 5.4 and Corollary 4.10 give that val(λ0) ≥ 1. Since r(yi) = r(x), by
Proposition 18.4, any Floer trajectory of type (σn, yi, x) must be contained in the
r-slice {r = r(x)}. Consequently, by Corollary 4.10 and our description of σn (which
induces the map ϕn), we have that val(λi) ≥ 1.15 It follows that val(ϕn(x))≥ 1. But
since r(x) = r0 = r(yi), by induction on m, we have that

val(ϕm+n ◦ · · ·ϕn(x))≥m+ 1

for all m≥ 0, as desired.
Now we move onto the inductive step for j. Inductively, suppose that we have

shown the following: for all n and for each generator x of C(in) with r(x) = rj with
j ≤N ,

val(ϕm+n+j ◦ · · · ◦ϕn(x))≥m+ 1

for m≥−j. We will prove this for j = N + 1, which we will prove via induction on
m. The base case becomes m=−j and showing the following: for all n and for each

15 We remark that Corollary 4.10 does not immediately apply here since Hn+1−Hn is not globally
greater than or equal to 1. However, since any Floer trajectory of type (σn, yi, x) must be contained
in the r0-slice and Hn+1 −Hn is greater than or equal to 1 on this slice, the same computation
shows that val(λi) ≥ 1. We will continue to implicitly use similar lines of reasoning below.
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generator x of C(in) with r(x) = rN+1,

val(ϕn(x))≥−j + 1.

However, this is vacuously always satisfied since val(ϕn(x)) is always non-negative.
Now we induct on m. Our inductive hypothesis becomes the following: for all n and
for each generator x of C(in) with r(x) = rj for j ≤N + 1,

val(ϕm+n+j ◦ · · · ◦ϕn(x))≥m+ 1

for M ≥m≥−j. We now what to prove this for m =M + 1 and j = N + 1. To this
end, suppose that x is a generator of C(in) with r(x) = rN+1. As above, write

ϕn(x) = λ0 · x+
∑

i>0
λi · yi.

As we argued above, val(λ0) ≥ 1 and when r(yi) = r(x), then val(λi) ≥ 1. If r(yi) �=
r(x), then r(yi) < r(x) by Lemma 5.8. By relabeling, suppose that r(yi) = rN+1 =
r(x) for i≤  and r(yi) < rN+1 for i > . Computing, we have that

val(ϕn+M+N+2 ◦ · · · ◦ϕn(x))

= val

⎛

⎝ϕn+M+N+2 ◦ · · · ◦ϕn+1(λ0 · x)

+ϕn+M+N+2 ◦ · · · ◦ϕn+1

⎛

⎝

∑

i≤�

λi · yi

⎞

⎠

+ϕn+M+N+2 ◦ · · · ◦ϕn+1

(

∑

i>�

λi · yi
)

⎞

⎠

≥min{val(ϕn+M+N+2 ◦ · · · ◦ϕn+1(λ0 · x)),

min
i≤�

{val(ϕn+M+N+2 ◦ · · · ◦ϕn+1(λi · yi))},

min
i>�

{val(ϕn+M+N+2 ◦ · · · ◦ϕn+1(λi · yi))}}.

Now we analyze each element in turn. First, by induction on m, we have that

val(ϕn+M+N+2 ◦ · · · ◦ϕn+1(λ0 · x))≥ val(ϕ(n+1)+M+(N+1) ◦ · · · ◦ϕn+1(x)) + 1

≥ (M + 1) + 1.

For i≤ , by induction on m, we have that

val(ϕn+M+N+2 ◦ · · · ◦ϕn+1(λi · y))≥ val(ϕ(n+1)+M+(N+1) ◦ · · · ◦ϕn+1(yi)) + 1

≥ (M + 1) + 1.
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For i > , assume that r(yi) = rNi so that Ni ≤N . Then by induction on j, we have
that

val
(

ϕn+M+N+2 ◦ · · · ◦ϕn+1

(

∑

i>�

λi · yi
))

≥ val(ϕ(n+1)+(M+N−Ni+1)+Ni
◦ · · · ◦ϕn+1(yi))

≥ (M +N −Ni + 1) + 1

≥ (M + 1) + 1.

So we have shown that

val(ϕn+M+N+2 ◦ · · · ◦ϕn(x))≥M + 2.

This completes the induction on m and, consequently, completes the double induction
on m and j. This completes the proof. �

7 Unirulings by disks

This section presents a Floer theoretic result that is needed to establish our main
result. It is divided into two parts. The first states the main result and gives its
proof, assuming a technical lemma. The second proves the technical lemma.

7.1 Main result. We consider a convex symplectic domain (M,Ω, λ) whose
boundary has a non-degenerate Reeb vector field. We also assume that the sym-
plectic form Ω is integral.16

Proposition 7.1. Suppose that ̂SH(Ma ⊂M ; 0)⊗Λ = 0. For each δ > 0 there exists

a constant E > 0 such that for each

– Ω-compatible almost complex structure J on Ma−δ, and

– p ∈ int(Ma−δ)

there exists a non-empty open subset I ⊂ (0, a− δ] that depends on J and p such

that for each a′ ∈ I there exists a (possibly disconnected) genus zero, compact, holo-

morphic curve u : Σ→Ma′ with non-empty boundary that satisfies:

(i) u(∂Σ)⊂ ∂Ma′ ,

(ii) u is non-constant on each of its components,

(iii) u(Σ)∩ p �=∅, and

(iv) the energy of u with respect to Ω and J is bounded by E.

We will use the curves from Proposition 7.1 to produce unirulings and (multi)sec-
tions. To prove the above result, we apply the following technical lemma, the con-
vergence result from Proposition 16.3, and the removal of singularities theorem.

16 The symplectic form Ω is integral if for every map u : S2 →M , the integral
∫

u∗Ω ∈ Z.
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Lemma 7.2. Under the assumptions of Proposition 7.1, there exist constants E > 0,
and ε < δ, and p0 ∈ int(Ma−δ) and a sequence of (a − δ + ε)-radially admissible

Hamiltonians Hν on M with

– Hν =Hν+1 for a− δ + ε≤ r(x), and
– Hν = g/ν on Ma−δ, where g is a negative C2-small Morse function that is

Morse-Smale with respect to J ,

and a sequence of Floer trajectories uν ∈M((Hν , J), x−, x+), where

– r(x−) is an index zero critical point of g at p0,

– r(x+)> a− δ + ε, and

– E(uν)<E.

Moreover, E is independent of J .

We prove Lemma 7.2 in the next subsection. Assuming it, we prove Proposi-
tion 7.1.

Proof. We immediately reduce to the case where p = p0. By [McL12, Lemma 5.16],
there exists a Hamiltonian diffeomorphism ϕ that is supported in int(Ma−δ) so that
ϕ(p0) = p. Notice that the pull-back of J along ϕ is Ω-compatible. So in order to
find the desired J -holomorphic curve through p, it suffices to find a ϕ∗J -holomorphic
curve through p0. So we have reduced our work to proving the result for fixed p0 ∈
int(Ma−δ).

Using the sequence of Floer trajectories from Lemma 7.2, Proposition 16.3 im-
plies that for each J there exists a Morse-Bott broken Floer trajectory of type
((H∞, J), x−, x+), say

(γ0, u1, γ1, . . . , uk, γk, uk+1, uk+2, . . . , um),

that satisfies:

(i) ev(γ0) = x−,
(ii) lims→+∞ um(s, t) = x+, and
(iii)

∑m
i=1E(ui)≤E.

Since x− = p0 is an index zero critical point of the Morse function g, Proposition 16.3
implies (without loss of generality) that γ0 is constant and u1 is non-constant.

Suppose that the image of ui is contained inside int(Ma) for all i <  and u� is
not contained inside int(M). It follows that lims→+∞ u�(s, t) lies in the region where
r ≥ a− δ+ ε. By Sard’s theorem, there exists a non-empty open subset I ⊂ (0, a− δ]
that depends on J such that for each a′ ∈ I, (u�)−1(Ma′)∩C�

0 is a smooth Riemann
surface with non-empty boundary. There is an irreducible component of this Riemann
surface with a single puncture whose image is (asymptotic to) a point on int(Ma).
Let Σ′ denote the surface composed of C1 and the truncated curve (u�)−1(Ma′)∩C�

0.
Let u′ : Σ′ →Ma′ be the J -holomorphic (In this region, the Hamiltonian is zero and,
thus, the maps are genuinely holomorphic.) curve given by u′ = �i=0,�u

i. Notice that
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u′ has energy bounded by E. So by the removal of singularities theorem, see [MS12,
Theorem 4.1.2], u′ may be extended to a holomorphic map over its punctures. Write
this extension as u : Σ→Ma′ .

We wrap up. First, the classification of surfaces with boundaries gives that Σ is a
genus zero curve with boundary. Second, by construction, the image of boundary of
Σ under u is contained in ∂Ma′ . Third, by construction, u is non-constant on each of
its components. Fourth, since lims→−∞ u1(s, t) = p0, u(Σ) meets the point p0. Fifth,
the energy of u with respect to Ω and J is bounded by E independently of J . This
completes the proof. We mention that the image of u does not need to be connected
(however, it will be connected when the γi are constant or u� = u1). �

7.2 Proof of technical lemma. To prove Lemma 7.2, we consider the sequence
of radially admissible Hamiltonians as in Construction 6.8 and explicitly exhibit a
non-trivial differential in a Floer chain complex that computes ̂SH(Ma−δ ⊂M ;f).
This non-trivial differential will give rise to the desired Floer trajectory.

Put differently, the vanishing of action completed symplectic cohomology gives
an isomorphism H(M ;Λ) ∼= ̂SH+(Ma−δ ⊂M ;f). Under this isomorphism, a (com-
pleted) element of ̂SH+(Ma−δ ⊂M ;f) is mapped onto the point class in H(M ;Λ).
We show that the count of Floer trajectories that defines this mapping is non-zero
and deduce that there exists a Floer trajectory connecting a Reeb orbit to the point
class of the interior Morse function. Of course, we need to preserve these (virtual)
counts of Floer trajectories for varying J and g and show that the resulting Floer
trajectories have energies bounded independent of these choices. The main technical
difficulty is that the point class will only be hit by a completed element, that is,
we will only hit the point class plus higher order terms in the Novikov parameter.
When deforming J or g, we need to ensure that these higher order terms do not pair
off with the point class, leaving us with no differential hitting the point class. This
requires a chain level homological analysis of Floer complexes. We use the integrality
of the symplectic form to carry out this analysis.

To begin, by rescaling Ω, we may assume that for every map u : S2 →M ,
∫

u∗Ω ∈
5 ·Z. We point out two simple consequences of this integrality and Lemma 4.8.

Lemma 7.3. Consider a monotonically admissible family of Hamiltonians Hσ. Let

u be a Floer trajectory of type (σ,x0, x�) such that x0, and x� are constant. If

0≤Hσ
e0(x0)−Hσ

e�
(x�) < 5,

then

Etop(u)≥Hσ
e0(x0)−Hσ

e�
(x�).

If

−5≤Hσ
e0(x0)−Hσ

e�
(x�)< 0,
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then

Etop(u) ≥ 5 +Hσ
e0(x0)−Hσ

e�
(x�).

Notation 7.4. Let J0 be an admissible almost complex structure on M . Let g0 :
Ma−δ →R be a negative C2-small Morse function as in Construction 6.8. We assume
that J0 and g0 further satisfy:

– g0 is Morse-Smale with respect to the metric Ω(·, J0·),
– p0 is the unique index zero critical point of g0,
– g0(p0)/2− g0(x)≤ 0 for all critical points x �= p0, and
– |g0| ≤ 1.

Consider the cofinal sequence of Hamiltonians Hn and connecting families σn as in
Construction 6.8, where the Morse function part is g0.

Lemma 7.5. Assuming that ̂SH(Ma−δ ⊂M ; 0) ⊗ Λ vanishes, there exists λ′ ∈ Λ≥0
and n ∈N such that

val(λ′ · c(σn−1) ◦ · · · ◦ c(σ0)(p0)− d(y))> val(λ′) + 3

for some y ∈CF (Hn, J0), where p0 denotes the critical point of g0 at p0.

Proof. By Lemma 5.8 and [Par16, Theorem 10.7.1], p0 is closed in each CF (Hi, J0). In
particular, p0 is closed in CF (H0, J0). By assumption (and Proposition 6.1 item (i)),

0 = ̂SH(Ma−δ ⊂M ; 0)⊗Λ ∼= ̂SH(Ma−δ ⊂M ;f)⊗Λ.

By Lemma 17.14, there exists λ′ ∈Λ≥0 and y ∈CF (Hn, J0) (for some n) such that

val(λ′ · c(σn−1) ◦ · · · ◦ c(σ0)(p0)− d(y))> val(λ′) + 3,

as desired. �

To understand Lemma 7.5, consider elements of M(σi, x, y). By Lemma 5.8, all the
elements lie in int(Ma−δ) when y is a critical point of g0. Notice that the associated
family of Hamiltonians on int(Ma−δ) is given by

Hσi = g0 − (s) · 1
i+ 1

− (1− (s)) · 1
i
.

By our choice of g0 and Lemma 7.3, all elements of M(σi, x, y), where x and y are
critical points of g0, have energy greater than or equal to

⎧

⎨

⎩

g0(x)− g0(y) + 1/i− 1/(i+ 1), g0(x)− g0(y) + 1/i− 1/(i+ 1)≥ 0
3, else.

So by considering the constant Floer trajectory in M(σi, p0, p0) (as we have done
before), Corollary 4.10 implies that

c(σi)(p0) = T
1
i
− 1

i+1 · (ηi · p0 +Ci),
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where val(ηi) = 0, and Ci is a Λ≥0-linear combination of critical points of g0 (not
including p0) such that the valuation of Ci along any critical point x is at least
g0(x) − g0(p0). Define λ = λ′ · T 1−1/n · ∏

i ηi. Inductively (considering the constant
Floer trajectories in the M(σi, x, x)), we have that

d(y) = λ · p0 +C +D,

where C is a Λ≥0-linear combination of critical points of g0 (not including p0) such
that the valuation of C along any critical point x is at least g0(x)− g0(p0) + val(λ),
and D is a Λ≥0-linear combination of orbits with val(D)> val(λ) + 2. In particular,
we have shown that

d(y) = λ · p0 + higher order terms in T.

Consider Hn from Lemma 7.5. We will modify it and the almost complex structure
J0 to a sequence of Hamiltonians Hν and the desired almost complex structure J

that satisfy the conditions of the lemma. We complete the proof of Lemma 7.2.

Proof. For ν ∈N, fix (a− δ + ε)-radially admissible Hamiltonians Gν that satisfy:

– Gν ≤Gν+1
– for r ≤ a− δ, Gν = g0/2ν , and
– for r ≤ a− δ + ε, Gν =Hn + δ + 1/n.

Using Construction 4.9, we have continuations Gσν with Gσν
e0 =Gν+1 and Gσν

e1 =Gν .
We consider how d(y) = λ · p0 +C +D transforms under these continuations.

To begin, the continuations σν are monotone. So

val(c(σν) ◦ · · · ◦ c(σ0)(D))> val(λ) + 2.

Suppose that x and y are critical points of g0. When g0(x)/2− g0(y)≥ 0, Lemma 7.3
implies that all elements of M(σν , x, y) have energy greater than or equal to
g0(x)/2ν+1 − g0(y)/2ν . When g0(x)/2 − g0(y) < 0, Lemma 7.3 implies that all ele-
ments of M(σν , x, y) have energy greater than or equal to

5 + g0(x)/2ν+1 − g0(y)/2ν ≥ 3.

In particular, since g0(p0)/2−g0(x)< 0 for all critical points x �= p0, we (inductively)
have that the valuation of

c(σν) ◦ · · · ◦ c(σ0)(C)

along p0 is at least val(λ)+3. Also, we can (inductively) conclude that the valuation
of

c(σν) ◦ · · · ◦ c(σ0)(C)

along any critical point x �= p0 is at least

−g0(p0) + g0(x)/2ν+1 >−g0(p0) + g0(p0)/2ν+1
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The only element of M(σν , p0, p0) with energy equal to −g0(p0)(1/2ν − 1/2ν+1) is
the constant Floer trajectory. So inductively, combining the above observations, we
have that

c(σν) ◦ · · · ◦ c(σ0)(d(y)) = λν · p0 + higher order terms in T,

where λν ∈Λ≥0 has valuation given by val(λ)− g0(p0) + g0(p0)/2ν < val(λ) + 2.
Fix a negative C2-small Morse function g : Ma−δ →R that satisfies:

– g is Morse-Smale with respect to Ω(·, J ·),
– g has a unique index zero critical point at p0 ∈ int(Ma−δ), and
– g ≥ g0 with g(p0) = g0(p0).

Fix (a− δ + ε)-radially admissible Hamiltonians Hν that satisfy:

– Hν ≤Hν+1
– for r ≤ a− δ, Hν = g/2ν , and
– for r ≤ a− δ + ε, Hν =Hn + δ + 1/n.

Let J1 denote an admissible almost complex structure on M that agrees with J0
for r ≥ a− δ + ε and agrees with J on Ma−δ. Define simplices τν ∈ JH+

1 (M,Ω, λ)
connecting Gν and Hν via Construction 4.9, and by fixing a family of almost complex
structures that connects J0 to J1 that is the identity for r ≥ a− δ + ε.17

the family connecting J0 to J1 can be an arbitrary family. In particular, This
gives continuation maps

c(τν) :CF (Gν , J0)→CF (Hν , J1).

By considering the constant Floer trajectories in M(σν , p0, p0), which have zero en-
ergy, and the monotonicity of the τν , the above work for the σν gives that

c(τν) ◦ c(σν) ◦ · · · ◦ c(σ0)(d(y)) = λν · p0 + higher order terms in T.

We wrap up. First, the sequence of Hamiltonians Hν defines a sequence of Hamil-
tonians as stated in the lemma modulo interchanging ν and 2ν . Set E = val(λ) + 2.
This bound is independent of the choice of almost complex structure J . By The-
orem 5.4, Lemma 4.8, and our explicit description of the differential for Floer
chain complexes, there exists an element uν ∈M((Hν , J1), p0, x+) with Egeo(uν) ≤
Etop(uν)≤E. Finally, by Proposition 6.1 item (iii) and [Par16, Theorem 10.7.1], x+
corresponds to a Reeb orbit and thus satisfies r(x+)≥ a− δ + ε. �

Remark 7.6. In lieu of our above approach, one could observe that, since transver-
sality for the associated moduli spaces of Morse flow lines can be achieved, the work

17 We remind the reader that since we are using Pardon’s virtual fundamental chains package, for
our almost complex structures, we neither need to introduce time-dependent perturbations to them
nor require them to be generically chosen. In particular, in this proof, neither J1 nor the family
connecting J0 and J1 needs to be regular.
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of Pardon prior to [Par16, Theorem 10.7.1] gives that (after fixing an appropriate
choice of additional data) the only Floer trajectories needed to compute the above
continuation maps are, in fact, the Morse flow lines. This simplifies the homolog-
ical analysis. However, we have opted for our more elementary approach. We also
point out that if c1(M) = 0, then using the resulting Z-grading on the Floer chain
complexes greatly simplifies the above analysis.

7.3 An addendum on the product case. Consider M = C × F , where (F,ωF )
is a closed symplectic manifold with symplectic form ωC + ωF , where ωC is the
standard symplectic form on C. The associated stable Hamiltonian structure has a
degenerate Reeb vector field. However, with the radial coordinate, | · |2, on C, the
orbits arise as S1 ×F -families of orbits. So as in Remark 5.7, we may appropriately
define Hamiltonian Floer theory for these spaces by using radial Hamiltonians and
introducing small perturbations near the families of orbits, which we now suppress.

Each Da×F is displaceable in Db×F for some b� a. So Proposition 6.1 item (ii)
implies that Proposition 7.1 gives a uniruling via disks. However, we can conclude
this result with a stronger conclusion.

Proposition 7.7. In the above setup, Lemma 7.2 holds with the additional conclu-

sion that x+ corresponds to a Reeb orbit whose projection down to C winds once

around the origin.

So the holomorphic curves in Proposition 7.1 all have an irreducible component
(the one that contains the boundary) whose degree is one when projected to C (since
the Gromov-Floer compactness used in the proof of Proposition 16.3 preserves this
winding).

Proof. To establish this winding condition, one needs to understand the bounding
cochain y in the proof of Lemma 7.2. Let J0 = j⊕JF be the product almost complex
structure (which is admissible), where j is the standard complex structure on C

and JF is an Ω-compatible almost complex structure on F . Fix a C2-small Morse
function f on F that is Morse-Smale with respect to the metric ωF (·, JF ·) and
let H = c · exp(| · |2) + f , where c is some small positive constant. The associated
Hamiltonian vector field is given by the sum of the ωF -dual of −df and the ωC-
dual of −d(c · exp(| · |2)). So the Floer data decouples, and we obtain a Künneth
decomposition

CF (H,J0) =CF (f,JF )⊗CF (c · exp(| · |2), j).

Here, the left-hand-side computes the symplectic cohomology of M as in [Sei08]. But
now an explicit analysis of the complex CF (c ·exp(| · |2), j) shows that it is acyclic and
the orbit at 0 is the boundary of an orbit that corresponds to a Reeb orbit (in C) that
winds once around the origin. So via Künneth, the point class of f is the boundary
of an orbit y that corresponds to a Reeb orbit (in M ) that winds once around the
origin. Using this data, one runs Lemma 7.2 and studies the bounding cochain y.
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One can arrange to “turn off” H away from the Reeb orbits of the Hamiltonian H ,
and Lemma 5.8 ensures that the continuation of y under our deformations never has
image composed of orbits with winding numbers greater than 1. In this manner, we
get the additional conclusion. �

8 Proof of main theorem

We do not delay giving the proofs of our main results any further. We will pull results
from later sections; however, these results can easily be black boxed for the moment.

Notation 8.1. (i) Let π : M → P
1 be a proper morphism of smooth projective

varieties that is smooth over P
1
� {0,∞}.

(ii) Let M :=M � π−1(∞) and also write π :M →C for the restriction of π to M .
(iii) Let p be a point in M .
(iv) Let Ma := π−1(Da), where Da is the disc of radius a in C.

To orient the reader: We prove Theorem 1.1 and Theorem 1.2 by using Propo-
sition 7.1 to produce holomorphic curves with boundaries in M and then apply
Lemma 15.2 to turn these holomorphic curves with boundaries into closed holomor-
phic curves in M that have the desired properties. We divide this into a sequence
of lemmas, which we discuss below; however, we defer the proofs until the later
subsections.

We first define a space in which we will apply Lemma 15.2. We will use the
degeneration of M to the normal cone of π−1(∞) (or rather a resolution of this
possibly singular space.). This will be the P given in the lemma below.

Lemma 8.2. There exists a smooth, quasi-projective variety P , equipped with a

proper, surjective, holomorphic map πP : P →C which satisfies:

(i) π−1
P (C×) is isomorphic to C

× ×M with Pz := π−1
P (z)∼= M for z �= 0, and

(ii) π−1
P (0) = F ∪E, where E is a (possibly singular) subscheme and F is a (possibly

singular) proper subscheme that is birational to M via a morphism that is an

isomorphism over F � (E ∩ F )→M ,

and a map h : P → P
1, which satisfies:

(i) F ⊂ h−1(0), and
(ii) h restricted to π−1

P (C×) ∼= C
× ×M is identified with the composition

C
× ×M

pr
M

M
π

P
1 .

We denote the restriction of h to Pz by hz : Pz → P
1.

For each k > 0 and any Kähler form ΩP on P , h−1(Dk) ⊂ P satisfies the setup
Lemma 15.2. So if there exists a sequence of holomorphic curves with boundaries in
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the fibres h−1
1/ν(Dk) that satisfy the conditions of Lemma 15.2, then this compactness

will give closed holomorphic curves in M . The precise sequences of holomorphic
curves that we construct are below.

Lemma 8.3. Given a Kähler form ΩP on P , there exists a constant k > 0 and se-

quences of (possibly disconnected) genus zero, compact holomorphic curves uν : Σν →
Q with boundaries, where Q := h−1(Dk). These curves satisfy:

(i) πP ◦ uν ≡ zν ∈C with zν → 0,
(ii) uν(xν) → p ∈ F �E ∩ F for some xν ∈Σν ,

(iii) uν is non-constant on each of its components,

(iv) uν(∂Σν)⊂ ∂Q and uν(int(Σν))⊂ int(Q), and
(v) the energies of the uν are uniformly bounded in ν independent of p.

Moreover, if π is smooth over 0, then a component of uν with boundary projects to

Dk via a degree one map.

To construct these curves, we construct a symplectic form Ω on M for which
the end M �Ma is modeled after a symplectic mapping cylinder for some a > 0.
This gives the subsets Mc for c > a the structures of convex symplectic domains,
see Sect. 14.2. Given Ω, we may define action complete symplectic cohomology for
(Mc,Ω). Under the additional assumption of either π being smooth over 0 or M

having vanishing first Chern class,

̂SH(Mb ⊂Mc; 0)⊗Λ = 0,

where c > b > a. We also construct a symplectic embedding of each fibre (h−1
z (C),

ΩP |h−1
z (C)) into (M,Ω) with image in Ma. Via these embeddings, we push forward

the almost complex structures of the fibres h−1
z (C) to Ω-compatible almost com-

plex structures on Ma. Applying Proposition 7.1, we produce holomorphic curves
for these pushed forward almost complex structures. Finally, to produce the afore
mentioned curves in the fibres h−1

z (C), we pull-back the curves in Ma along the
embeddings and appropriately “trim” their domains using Sard’s theorem to lie in
some appropriate h−1(Dk). The explicit description of the symplectic form Ω and the
symplectic embeddings, which the reader should think of as some type of modified
parallel transport maps, is given in the following two lemmas. They correspond to
Theorem 1.1 and Theorem 1.2 respectively. We prove Lemma 8.4 in a later subsec-
tion of this section; however, we defer the proof of Lemma 8.5 to a later part of this
exposition as it is quite a bit more involved.

Lemma 8.4. Suppose that π is smooth over 0 with fibre F . There exists a symplectic

form Ω = ωC+ωF on M ∼= C×F , where ωC is the standard symplectic form on C and

ωF is a symplectic form on F , constants c > b > a > 0, and symplectic embeddings

ψz : (h−1
z (C),ΩP |Pz) ↪→ (M,Ω)

for each z ∈C
× that satisfy
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(i) Ω is integral,

(ii) ̂SH(Mb ⊂Mc; 0)⊗Λ = 0,
(iii) ψz(h−1

z (C))⊂Ma, and

(iv) ψz(h−1
z (0)) = π−1(0)∼= 0× F via the diffeomorphism M ∼= C× F over C.

Lemma 8.5. Suppose that M has vanishing first Chern class. There exists a sym-

plectic form Ω on M , constants c > b > a > 0, and symplectic embeddings

ψz : (h−1
z (C),ΩP |Pz) ↪→ (M,Ω)

for each z ∈C
× that satisfy

(i) Ω is integral,

(ii) (M �Ma,Ω) is symplectomorphic to a symplectic mapping cylinder, whose as-

sociated Reeb vector field is non-degenerate,

(iii) ̂SH(Mb ⊂Mc; 0)⊗Λ = 0, and
(iv) ψz(h−1

z (C))⊂Ma.

Assuming the above lemmas, we give the proofs of Theorem 1.1 and Theorem 1.2.
They are analogous. So we give them simultaneously.

Proof. Let k, Q, and uν be as in Lemma 8.3. We first discuss unirulings, and then
discuss (multi)sections.

Each uν has a component with the point constraint at xν with uν(xν) → p. If
for ν � 0, these components are genus zero curves with boundaries in ∂Q, then by
Lemma 15.2, there exists a non-constant rational curve u : Σ→M with u(x) = p for
some x ∈ Σ. If for ν � 0, these components have empty boundaries, then applying
the classical Gromov compactness to the uν gives a non-constant rational curve
u : Σ →M with u(x) = p for some x ∈Σ. To obtain non-constant rational curves for
points p ∈ π−1(∞) = M �M , one observes that the curves produced above all have
uniformly bounded energies. Consequently, by the classical Gromov compactness
theorem, we can obtain rational curves through all p ∈M . This produces a uniruling.

Each uν has a component with boundary. Without loss of generality, replace
the domain of uν with a component that has non-empty boundary. It is again a
genus zero curve with boundary. We claim that the image of uν must pass through
π−1(0)⊂M ∼= Pzν .

Indeed, by Lemma 8.3, the curve uν is contained in Pzν and satisfies uν(∂Σν) ⊂ ∂Q

and uν(int(Σν))⊂ int(Q). By Lemma 8.2,

Pzν ∩ ∂Q= Pzν ∩ h−1(∂Dk)∼= π−1(∂Dk).

So we find that uν(∂Σν) ⊂ π−1(∂Dk) and uν(int(Σν))⊂ π−1(int(Dk)) when we iden-
tify Pzν and M . Now consider the composition

π ◦ uν |int(Σν) : int(Σν) → π−1(int(Dk))→ int(Dk).

We claim that this map is surjective. Since int(Dk) is connected, to show that this
map is surjective, it suffices to show that it is open and closed. The map is open by
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the open mapping theorem from complex analysis. To see that it is closed, notice
that π ◦ uν is proper. So π ◦ uν |int(Σν) is proper. Since int(Σν) and int(Dk) are both
locally compact and Hausdorff, π ◦ uν |int(Σν) being proper implies that it is closed.
So it follows that π ◦ uν |int(Σν) is surjective. Consequently, uν must pass through
π−1(0)⊂M ∼= Pzν , as claimed.

After fixing a marked point for uν on Σν that passes through π−1(0), Lemma 8.2
and Lemma 8.3 imply that Q and uν satisfy the hypotheses of Lemma 15.2. So by
Lemma 15.2, there exists genus zero, compact, holomorphic curve u : Σ →M with
empty boundary such that the image of u is connected and intersects both π−1(0)
and π−1(∞). In particular, there exists an irreducible component of the domain
of u such that π ◦ u restricted to this irreducible component is non-constant. This
produces a (multi)section.

Finally, when π is smooth over 0 as in Theorem 1.1, we need to show that u

restricted to an irreducible component is an actual section. It suffices to show that
u restricted to some irreducible component has degree one. This follows from the
additional conclusion of Lemma 8.3 and by noting that the degree is preserved in
the limiting curve u. �

The remainder of this section is divided into three additional subsections, each of
which contains a proof of one of the above three lemmas.

8.1 Defining the degeneration space. We prove Lemma 8.2. But first, we discuss
the degeneration of M to the normal cone of π−1(∞)⊂M , see [Ful84, Chap. 5].

Construction 8.6. Define

Z := {0} × π−1(∞) ⊂C×M.

Define the blowup

β : P ′ :=BlZ(C×M)→C×M.

P ′ is a (possibly singular) quasi-projective variety. The map β is referred to as the
degeneration of M to the normal cone C of π−1(∞) ⊂M . It is an isomorphism over
(C×M)� Z. Post-composing β with the projection to the first factor C×M → C

gives a surjective, holomorphic map πP ′ : P ′ → C such that π−1
P ′ (C×) ∼= C

× ×M . In
particular, π−1

P ′ (z)∼= M for z ∈C
×. Over 0, π−1

P ′ (0) = F ′∪E′ and the following holds.

(i) E′ is the exceptional divisor of the blowup. It is isomorphic to the projective
completion of the normal cone of π−1(∞) in M , that is, E′ ∼= P(C ⊕C).

(ii) F ′ is isomorphic to the blow up of M along π−1(∞). So F ′ is birational to M

via β|F ′ : F ′ →M , which is an isomorphism over F ′
� (E′ ∩ F ′) →M .

(iii) E′ ∩ F ′ is given by the projectivization of the normal cone of π−1(∞) in M ,
that is, E′ ∩ F ′ ∼= P(C). The inclusion E′ ∩ F ′ ↪→ E′ is the inclusion of the
hyperplane at infinity in P(C ⊕C). The inclusion E′ ∩F ′ ↪→ F ′ is the inclusion
of the exceptional divisor of the blowup β|F ′ : F ′ →M .
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Construction 8.7. Apply Construction 8.6 to the identity P
1 → P

1. Define the
blowup

β0 :B :=Bl(0,∞)(C× P
1)→C× P

1

and the projection πB :B →C as in Construction 8.6.
Write π−1

B (0) = F0 ∪E0. F0 is a (−1)-curve. So we may blow down F0 to obtain
a smooth, quasi-projective variety, which in this case is isomorphic to a Hirzeburch
surface with the fibre over infinity removed. This space is isomorphic C×P

1. Denote
this blow-down map by β1 :B →C× P

1.

We now prove Lemma 8.2.

Proof. By [Har77, II.7.15], we have a morphism πBl : P ′ → B and a commutative
diagram

C
× ×M

1×π

P ′
β

πBl

C×M

1×π

C
× × P

1 B
β0

C× P
1.

Since π is proper, πBl is proper.
P ′ is not necessarily smooth (smoothness could fail in E′). By Hironaka’s resolu-

tion of singularities [Hir64], there exists a smooth, quasi-projective variety P (which
is the P in the statement of the lemma) and a birational morphism S : P → P ′ that
is an isomorphism over P ′

�E′. This gives a commutative diagram

C
× ×M

1×π

P
β◦S

πBl◦S

C×M

1×π

C
× × P

1 B
β0

C× P
1.

Define:

(i) πP := πB ◦ πBl ◦ S = πP ′ ◦ S,
(ii) h := pr

P
1 ◦ β1 ◦ πBl ◦ S,

(iii) F := S−1(F ′ �E′), and
(iv) E := S−1(E′).

By [Har77, II.7.16], S|F : F → F ′ is a blowup of F ′ that is supported away from
(F ′

� E′ ∩ F ′) ∼= M . By Construction 8.6, β|F ′ ◦ S|F : F → M is a birational map
that is an isomorphism over F � (F ∩E)→M , as desired. A pictorial description of
this data is given in Fig. 4. The remaining claims of the lemma are easily verified. �
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Figure 4: Depictions of the spaces and maps from Lemma 8.2.

8.2 Finding symplectic embeddings. We prove Lemma 8.4, using work in
Sect. 13 and Proposition 14.20.

Proof. Let ΩP be any integral Kähler form on P (which exists since P is projective).
Let Ωz := ΩP |Pz . For each z ∈C

×, we have a symplectic parallel transport map from
(Pz,Ωz) to (P1,Ω1). By [McL12, Lemma 5.16], we may pre-compose this parallel
transport map with a symplectomorphism such that the composition, ϕz : (Pz,Ωz)→
(P1,Ω1), maps h−1

z (∞) to h−1
1 (∞) and h−1

z (0) to h−1
1 (0). We identify (P1,Ω1) and h1

with (M,Ω1) and π respectively. Applying Proposition 13.1 to π−1(∞) in M , there
exists a Kähler form ˜Ω on M and a symplectic embedding ψ : (M,Ω1) ↪→ (M, ˜Ω) that
is the identity near π−1(0) and whose image, ψ(M), is a compact subset of M . Since
the subsets Ma for a > 0 give a compact exhaustion of the space M , we have that
there exists a constant a > 0 such that ψ(M) is contained in Ma/2.

Since ˜Ω is Kähler, it is compatible with the almost complex structure that makes
the projection π : M →C holomorphic. Consequently, the fibres of π are symplectic
submanifolds with respect to ˜Ω, and (M,π, ˜Ω) defines a Hamiltonian fibration over
C. By Proposition 14.13, there exists a symplectic form Ω = ωC + ωF on M , where
ωF is the restriction of ˜Ω to F , and a symplectic embedding μ : (M, ˜Ω) ↪→ (M,Ω).
The image of μ ◦ψ(M) lands in Ma (after we replace our old a by a possibly larger
a). Moreover, μ fixes π−1(0)∼= 0× F .

Now for each c > 0, (Mc,Ω) admits the structure of a convex symplectic do-
main. So action completed symplectic cohomology is well-defined for the subdo-
mains (Mc,Ω). Since Mc is symplectically given by the product Dc × F , for some
c � b > a, Mb is displaceable in (Mc,Ω). Thus, by Proposition 6.1 item (ii),
̂SH(Mb ⊂Mc; 0)⊗Λ = 0.

Define

ψz : (h−1
z (C),Ωz)→ (M,Ω)

by the composite ψz := μ ◦ψ ◦ϕz . ψz fixes π−1(0). To see that Ω is integral, one can
either notice that Ω is cohomologous to the original Kähler form, which is integral
(as all of the above embeddings are produced via Moser’s argument), or that ωF
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is the restriction of an integral form, and, thus, is integral. So these maps and the
symplectic form Ω satisfy the conclusions of the lemma. �

8.3 Producing a sequence of curves. We prove Lemma 8.3.

Notation 8.8. (i) Let zν := 1/ν ∈C for ν ∈ Z≥1.
(ii) Let pν ∈ h−1

zν (D1) be a sequence of points such that limν→∞ pν = p ∈M .
(iii) Let Aν := h−1

zν ([0,3]).
(iv) Let Ων := ΩP |Pzν

.
(v) Let Jν := JP |Aν .

Proof. We assume the notation and results of Lemma 8.4 and Lemma 8.5. Since
ψzν |Aν is a symplectic embedding, we may extend the almost complex structure
(ψzν |Aν )∗(Jν) to an admissible almost complex structures on (Mc,Ω), which we de-
note by J ′

ν . Also, we set p′ν := ψzν (pν).
By Proposition 7.1, there exists a constant E > 0 and (possibly disconnected)

genus zero, compact, J ′
ν -holomorphic curves u′

ν : Σ′
ν →M with boundaries that sat-

isfy:

(i) u′
ν(∂Σ′

ν)⊂M �Ma,
(ii) u′

ν is nowhere constant,
(iii) u′

ν(Σ′)∩ p′ν �=∅, and
(iv) the energy of u′

ν with respect to Ω and J ′
ν is bounded by E.

The image of ψzν is contained in Ma. So by Sard’s theorem, there exists a measure
1 subset of [1,2] such that for ν and all k in said subset

Σν := (u′
ν)−1(ψzν (h−1

zν (Dk)))

is a smooth Riemann surfaces with boundary. In particular, this is achieved when
all u′

ν are transverse to h−1(∂Dk). Define Q := h−1(Dk) and uν : Σν → Q by uν :=
(ψzν )−1 ◦ u′

ν |Σν . The curves uν satisfy the conditions of the lemma by construction.
In particular, uν(int(Σν)) ⊂ int(Q) by the fact that u′

ν is transverse to ∂Q. The
degree one assumption on the uν in the case where π is smooth over 0 follows from
Lemma 8.4, Proposition 7.7, and the fact that this degree is preserved by the maps
ψz (since they are homotopy equivalences that fix the central fibre π−1(0)). �

Part 2 Discussion of the Calabi-Yau case

In this part, we prove Lemma 8.5. First, we discuss Conley-Zehnder indices of
orbits of Hamiltonians. Second, we discuss a rescaling isomorphism for action com-
plete symplectic cohomology groups of convex symplectic domains with vanishing
first Chern class whose ends are modeled after symplectic mapping cylinders. This
isomorphism is established by assuming the existence of cofinal sequences of Hamil-
tonians that satisfy certain index bounded assumptions. Thirdly, we discuss sym-
plectic normal crossings divisors and a sequence of Hamiltonians whose dynamics
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are nicely captured by the normal crossings structure, and, in particular, satisfy an
index bounded assumption. Finally, we will combined our work from the above three
sections with the symplectic deformations from Part 3 to conclude Lemma 8.5.

9 Conley-Zehnder indices

We discuss Conley-Zehnder indices of contractible 1-periodic orbits of Hamiltonians.

Definition 9.1. The Conley-Zehnder index CZ(At) is a half-integer associated to
a path of symplectic matrices (At)t∈[a,b] [RS93]. It satisfies the following properties
[Gut14]:

(CZ1) CZ((exp(it))t∈[0,2π]) = 2,
(CZ2) CZ((At)t∈[a,b] ⊕ (Bt)t∈[a,b]) =CZ(At) +CZ(Bt),
(CZ3) the Conley-Zehnder index of a concatenation of two paths of symplectic

matrics is the sum of the Conley-Zehnder indices of the individual paths,
(CZ4) the Conley-Zehnder index is invariant under homotopies of paths of sym-

plectic matrices relative to the end points, and
(CZ5) if CZ(At) is a loop of symplectic matrices, then CZ(At) is equal to two

times the Maslov index of the loop At.

Consider an arbitrary symplectic manifold (M,Ω). When c1(M) �= 0, a capping
of a period orbit defines a Conley-Zehnder index for the orbit, which depends on the
choice of capping.

Definition 9.2. Let γ : S1 →M be a contractible periodic orbit of a Hamiltonian
H . Let v :D→M be a smooth map with v(exp(it)) = γ(t). Let τv : v∗TM →D×C

n

be a symplectic trivialization. The Conley-Zehnder index of γ with respect to v,
CZ(γ, v), is the Conley-Zhender index of the path of symplectic matrices

(τv|γ(t)) ◦ (dφH
t |γ(0)) ◦ (τv|γ(0))−1.

The index CZ(γ, v) is independent of the choice of trivialization τv. Moreover,
given any two cappings of γ, say v0 and v1,

CZ(γ, v0) =CZ(γ, v1) + 2〈c1(M), v0#(−v1)〉.

Recall that the anti-canonical bundle of M , denoted K∗ = Λn
C
TM , is represented

as a complex line bundle by the cohomology class c1(M) : M →K(Z,2) = CP
∞. So

when c1(M) = 0, the anti-canonical bundle of M is trivializable as a complex line
bundle.

Now suppose c1(M) = 0. A trivialization of the anti-canonical bundle of M defines
a Conley-Zehnder index for a periodic orbit.

Notation 9.3. Let K∗ denote the anti-canonical bundle of M . We assume that
c1(M) = 0. So there is a trivialization τ :K∗ →M ×C.
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Definition 9.4. Let γ : S1 →M be a contractible periodic orbit of a Hamiltonian
H . Fix a trivialization τγ : γ∗TM →M ×C

n such that the top exterior power of τγ
agrees with τ . The Conley-Zehnder index of γ with respect to τ , CZ(γ, τ), is the
Conley-Zhender index of the path of symplectic matrices

(τγ |γ(t)) ◦ (dφH
t |γ(0)) ◦ (τγ |γ(0))−1.

Extending the argument of [McL16, Lemma 4.3] from Reeb orbits to contractible
Hamiltonian orbits gives:

Lemma 9.5. Suppose c1(M) = 0. If γ is a contractible periodic orbit of a Hamiltonian

H on M , then

CZ(γ, τ) =CZ(γ, v)

for any choice of capping v and any choice of trivialization τ . In particular, both

definitions agree and are independent of all choices.

Notation 9.6. In light of Lemma 9.5, if γ is a contractible periodic orbit of a
Hamiltonian H on M and c1(M) = 0, write

CZ(γ) :=CZ(γ, τ).

We now discuss Conley-Zehnder indices of pseudo Morse-Bott families of 1-
periodic orbits of Hamiltonians and how these indices change under small perturba-
tions. Our discussion is analogous to that of McLean’s [McL16], who defined pseudo
Morse-Bott families of Reeb orbits.

Definition 9.7. Let Γ be a collection of 1-periodic orbits of a Hamiltonian H . The
fixed points of Γ is the set

Γ(0) = {γ(0) ∈M | γ ∈ Γ}.

The collection Γ is isolated if there exists an open neighborhood UΓ of Γ(0) such
that if γ(0) is in Uγ , then γ ∈ Γ.

Definition 9.8. A pseudo Morse-Bott family of 1-periodic orbits of a Hamiltonian
H is an isolated collection of 1-periodic orbits Γ such that

(i) dim(ker(dϕH
1 − 1)) is constant on Γ(0), and

(ii) Γ(0) is path connected.

The size of Γ is defined to be dim(ker(dϕH
t − 1)).

We now assume for the remainder of this subsection that c1(M) = 0.

Definition 9.9. The Conley-Zehnder index of a pseudo Morse-Bott family Γ is
CZ(Γ) :=CZ(γ) for any γ ∈ Γ.
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If a Hamiltonian has a pseudo Morse-Bott family (that is not comprised of a
single isolated orbit), then the Hamiltonian will be degenerate. So we would like
to perturb the Hamiltonian to obtain a non-degenerate Hamiltonian. The following
lemma relates the Conley-Zehnder index of the pseudo Morse-Bott family and the
Conley-Zehnder indices of the orbits of the perturbed Hamiltonian. It follows from
extending the argument of [McL16, Lemma 4.10] from Reeb orbits to contractible
Hamiltonian orbits.

Lemma 9.10. Let Γ be a pseudo Morse-Bott family of size k. There exists a constant

δ > 0 and a neighborhood U of Γ(0) such that if ˜H is a Hamiltonian that satisfies

(i) ˜H|U is non-degenerate, and

(ii) | ˜H −H|C2 < δ,

and γ̃ is a 1-periodic orbit of ˜H with γ̃(0) ∈ U , then

CZ(Γ)− k/2≤CZ(γ̃)≤CZ(Γ) + k/2.

10 A rescaling isomorphism

We assume (M,Ω, λ) is a convex domain with stable Hamiltonian boundary given by
the mapping torus of a symplectomorphism. We will be using some of the discussion
on these spaces from Sect. 14.2.

Fix polar coordinates for the collar of the boundary, (0,1] × ∂M , and write
Ω = η + dr ∧ dθ, where η = Ω|∂M , as in Lemma 14.9. With this stable Hamiltonian
structure, λ = rdθ. Let J be an admissible almost complex structure for (M,Ω, λ).
As in Lemma 14.11, write

J =

⎛

⎜

⎝

0 −1 0
1 0 0
0 0 JF

⎞

⎟

⎠

with respect to the splitting r · ∂r ⊕ ˜∂θ ⊕ TF . We assume that the family JF is
independent of r. Define Mc for c > 1 by

Mc =M ∪ ([1, c)× ∂M).

The data Ω, λ, and J on (0,1]× ∂M extend to data on Mc in the obvious manner.
Suppose that K is a compact, codimension zero submanifold of Mc with connected

boundary such that ∂K is properly contained in the collar neighborhood of the
boundary of Mc. Let

Kδ := {(r,x) ∈Mc | (r− δ,x) ∈K},

with the convention that if r− δ < 0, then (r− δ,x) ∈K. See Figure 5 for a depiction
of K versus Kδ in the case where M =C.
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Figure 5: An example of subsets K and Kδ when M = C.

For example, (Mb)δ = Mb+δ. The goal is to establish sufficient conditions for an
isomorphism

̂SH(K ⊂Mc; 0, τ)⊗Λ∼= ̂SH(Kδ ⊂Mc+δ; 0, τ)⊗Λ.

We study how the Floer theory of our spaces behaves with respect to rescaling of
the collar coordinate.

Remark 10.1. This type of rescaling isomorphism for action completed symplectic
cohomology groups is not new. Similar ideas appeared in [McL20], and were later sys-
tematically studied in [TV23]. The novelty in our approach lies in that we establish
the rescaling isomorphism for boundaries given by mapping tori of symplectomor-
phisms as opposed to contact-type boundaries. In light of this, our analogue of an
index-bounded type assumption that appears in the above papers is also different.
See Lemma 10.8 for an explicit formulation of our index-bounded type assumption.

Given constants 0 < a < b < c and δ > 0, let  : (0,+∞) → (0,+∞) be a smooth
function that satisfies:

– (r) = r for r ≤ a,
– (r) = δ + r for r ≥ b, and
– ′(r)≥ 1 for all r.

We have a diffeomorphism (0, c]× ∂M → (0, δ + c]× ∂M given by

ϕ(r,x) = ((r), x).

As ϕ is the identity for r ≤ a, it extends to a diffeomorphism Mc →Mc+δ. Notice
that ϕ is not a symplectomorphism; nevertheless, the almost complex structure J

transforms nicely with respect to ϕ.

Lemma 10.2. The almost complex structure ϕ∗J = ϕ∗ ◦ J ◦ϕ−1
∗ is Ω-compatible.

Proof. We need to show that Ω(·, ϕ∗ ◦ J ◦ ϕ−1
∗ ·) is a metric. It suffices to show that

pulling-back this 2-tensor along ϕ produces a metric. Computing

ϕ∗(Ω(·, ϕ∗ ◦ J ◦ϕ−1
∗ ·))

= (ϕ∗Ω)(·, J ·) = η(·, J ·) + ′ · dr ∧ dθ(·, J ·) = Ω(·, J ·) + (′ − 1) · dr ∧ dθ(·, J ·)
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Ω(·, J ·) is a metric since J is Ω-compatible. Also, since ′ ≥ 1 and the local projection
N(∂M) → (0, c] × S1 is holomorphic, (′ − 1) · dr ∧ dθ(·, J ·) is symmetric and non-
negative definite. So the pull-back is a metric, as desired. �

In the collar neighborhood, ϕ∗J is not an admissible almost complex structure in
the sense of Definition 2.4. Indeed, for r ≥ c+ δ− ε with ε > 0 sufficiently small,

ϕ∗J =

⎛

⎜

⎝

0 −(r−δ)
r 0

r
r−δ 0 0
0 0 JF

⎞

⎟

⎠

with respect to the basis obtained from r · ∂r and ˜∂θ and a basis for the vertical
distribution. Define κ : [c+ δ − ε, c+ δ]→R by

– κ(r) = 1 locally near r = c+ δ− ε,
– κ(r) = 0 locally near r = c+ δ, and
– κ′ ≤ 0.

Define ˜J via

˜J :=

⎛

⎜

⎝

0 −(r−κ(r)·δ)
r 0

r
r−κ(r)·δ 0 0

0 0 JF

⎞

⎟

⎠

for r ≥ c + δ − ε and ˜J = ϕ∗J for r ≤ c + δ − ε. ˜J is admissible for (Mc+δ,Ω, λ) in
the sense of Definition 2.4 with collar taken sufficiently close to ∂Mc+δ. Moreover, ˜J

is weakly admissible for (Mc+δ,Ω, λ) in the sense of Definition 18.1 with the collar
taken to be r ≥ c+δ−ε. Indeed, one sets f to be the anti-derivative of r/(r−δ ·κ(r)).

We now discuss rescalings of Hamiltonians.

Definition 10.3. A (monotonically) admissible family of Hamiltonians Hσ is ϕ-
scalable if

(i) Hσ
s =mσ

s · r + kσs for some family of constants mσ
s and kσs for a≤ r ≤ b, and

(ii) Hσ
s is radial with constant slope (independent of s) for r ≥ c− ε.

Remark 10.4. We could work with more general Hamiltonians, but it is hardly
worth the effort.

Lemma 10.5. If Hσ is ϕ-scalable, then there exists a (monotonically) admissible

family of Hamiltonians H σ̃ on Mc+δ such that ϕ∗XHσ =X
Hσ̃

.

Proof. Define

H σ̃ =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Hσ, r ≤ a

mσ · r + kσ, a≤ r ≤ b+ δ

Hσ ◦ϕ−1(r,x) + δ ·mσ, b+ δ ≤ r

.
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By Lemma 14.5, over [a, b]× ∂M ,

XHσ = ∂rH
σ · ˜∂θ =mσ · ˜∂θ.

So ϕ∗XHσ =mσ · ˜∂θ =X
Hσ̃

for a≤ r ≤ b+ δ. Also,

(ϕ∗XHσ)(r,x) =XHσ(ϕ−1(r,x)) =X
Hσ̃

(r,x)

for r ≤ a and r ≥ b+ δ since

Ω(X
Hσ̃

(r,x), ·) =−dH σ̃(r,x)(·) =−dHσ(ϕ−1(r,x)) ◦ (ϕ−1)∗(r,x)(·)

= Ω(XHσ(ϕ−1(r,x)), ·).

Finally, the (monotonic) admissibility of H σ̃ follows from its construction and the
(monotonic) admissibility of Hσ. �

Suppose that Hσ is ϕ-scalable. Since ϕ∗XHσ = X
Hσ̃

, we obtain a bijection be-
tween the 1-periodic orbits of Hσ

ei and the 1-periodic orbits of H σ̃
ei for all i. Denote

this by x↔ x̃.
If u is a Floer trajectory of type ((Hσ, J), x0, x�), then ϕ ◦ u is a Floer trajectory

of type ((H σ̃, ˜J), x̃0, x̃�). Moreover, every Floer trajectory of type ((H σ̃, ˜J), x̃0, x̃�)
arises in this manner. Indeed, since H σ̃ is radial with constant slope for r ≥ c +
δ − ε, all of its orbits lie in the region where r < c− ε. Since ˜J is admissible in the
sense of Definition 18.1 for r ≥ c + δ − ε, Proposition 18.4 implies that any Floer
trajectory of type ((H σ̃, ˜J), x̃0, x̃�) lies completely in Mc+δ−ε. Consequently, if v is
of type ((H σ̃, ˜J), x̃0, x̃�), then ϕ−1 ◦ v is of type ((Hσ, J), x0, x�). We have used that
ϕ−1 is ( ˜J,J)-holomorphic over the image of v. This gives a canonical identification
of M((Hσ, J), x0, x�) and M((H σ̃, ˜J), x̃0, x̃�). We denote it by u↔ ũ = ϕ ◦ u.

Lemma 10.6. For every ϕ-scalable Hamiltonian H , there is an isomorphism over Λ,

CF (H,J)→CF ( ˜H, ˜J), x �→ x̃ · TC(x),

where

C(x) =−
∫

S1
x∗(((r)− r)dθ) +

∫

S1

˜H(x̃(t))−H(x(t)) dt.

Moreover, for each (monotonically) admissible family Hσ, there exists a strictly com-

mutative diagram

CF (Hσ
e1 , J)

c(σ)

CF (H σ̃
e1 ,

˜J)

c(σ̃)

CF (Hσ
e0 , J) CF (H σ̃

e0 ,
˜J).
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Proof. Define

Φ :CF (H,J)→CF ( ˜H, ˜J), Φ(x) = x̃ · TC(x),

where C(x) is given in the statement of the lemma. Clearly, Φ is an isomorphism
over Λ. It just remains to show that it is a chain map. It suffices to show that

Etop(ũ)−Etop(u) =C(x−)−C(x+),

where u is of type ((Hσ, J), x−, x+).

Etop(ũ)−Etop(u)

=
∫

ũ∗Ω−
∫

˜H(x̃+) +
∫

˜H(x̃−)−
∫

u∗Ω +
∫

H(x+)−
∫

H(x−)

=
∫

u∗(ϕ∗Ω−Ω)−
∫

˜H(x̃+) +
∫

˜H(x̃−) +
∫

H(x+)−
∫

H(x−)

=
∫

u∗(η + ′dr ∧ dθ− η− dr ∧ dθ)−
∫

˜H(x̃+) +
∫

˜H(x̃−)

+
∫

H(x+)−
∫

H(x−)

=
∫

x∗
+(((r)− r)dθ)−

∫

x∗
−(((r)− r)dθ)−

∫

˜H(x̃+)

+
∫

˜H(x̃−) +
∫

H(x+)−
∫

H(x−)

=C(x−)−C(x+).

An analogous computation shows the diagram for continuation maps is also commu-
tative. �

Now we can establish the rescaling isomorphism that we will need to prove
Lemma 8.5. Suppose that K is a compact, codimension zero submanifold of Mc

with connected boundary such that r(∂K)⊂ (b, c). In particular, the boundary of K
does not need to be contained in a single r-slice. We only require that the boundary
of K be completely contained above the r-slice {r = b}.

Lemma 10.7. Let Hn be a cofinal sequence of Hamiltonians in H+(K ⊂Mc;f, τ).
Suppose that each Hn is ϕ-scalable. Then ˜Hn is a cofinal sequence of Hamiltonians

in H+(Kδ ⊂Mc+δ; ˜f, τ), where ˜f is some function on Mc+δ.

Proof. Since the Hn are ϕ-scalable, this sequence must converge to a linear function
when a≤ r ≤ b. Write f =m · r + k for a≤ r ≤ b. Define

˜f =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

f, r ≤ a

m · r + k, a≤ r ≤ b+ δ

f ◦ϕ−1(r,x) + δ ·m, b+ δ ≤ r.
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By definition of ˜Hn, it is a cofinal sequence of Hamiltonians in H+(Kδ ⊂Mc+δ; ˜f, τ).
�

Lemma 10.8. Suppose that c1(M) = 0. If there exists a cofinal sequence of ϕ-scalable

Hamiltonians Hn in H+(K ⊂Mc;f, τ) and constants W� > 0 for each  ∈N such that

all 1-periodic orbits x of the Hamiltonians Hn satisfy

|CZ(x)| ≤ =⇒
∣

∣

∣

∣

∫

x∗dθ

∣

∣

∣

∣

≤W�,

then ̂SH(K ⊂Mc;f, τ)⊗Λ ∼= ̂SH(Kδ ⊂Mc+δ; ˜f, τ)⊗Λ.

Proof. By Construction 4.9, we can construct monotonically admissible families Hσn

such that Hσn
e0 = Hn+1 and Hσn

e1 = Hn. We may assume that Hσn is ϕ-scalable. So
by Lemma 10.6, we have a strictly commutative diagram

· · · CF (Hn, J)
c(σn)

CF (Hn+1, J) · · ·

· · · CF ( ˜Hn, ˜J)
c(σ̃n)

CF ( ˜Hn+1, ˜J) · · · .

This induces an isomorphism of mapping telescopes

Tel(CF({Hn}))⊗Λ→ Tel(CF({ ˜Hn}))⊗Λ.

Since c1(M) = 0, we obtain a genuine Z-grading on our Floer chain complexes by
the Conley-Zehnder index (not the 2-periodic grading mentioned in Sect. 5.2). Since
Definition 17.10 is a degree-wise completion, if the above isomorphism is degree-wise
bounded, then it will give the desired isomorphism of action completed symplectic
cohomology groups.

So we need to show that for each  ∈ N there exists C� such that if x is a 1-
periodic orbit of Hn with |CZ(x)| = , then |C(x)| ≤ C�. Consider such an x. By
construction r(x) ≤ a or r(x) ≥ b. If r(x) ≤ a, then ˜Hn(x̃) −Hn(x) = 0. If r(x) ≥ b,
then ˜Hn(x̃)−Hn(x) = δ ·mn ≤ δ ·m, where m is as in the construction of ˜f . Setting
C� = δ ·W� + δ ·m, we have that

|C(x)|=
∣

∣

∣

∣

−
∫

x∗(− r)dθ +
∫

˜Hn(x̃)−
∫

Hn(x)
∣

∣

∣

∣

≤ δ

∣

∣

∣

∣

∫

x∗dθ

∣

∣

∣

∣

+ δ ·m=C�. �

11 Hamiltonians adapted to normal crossings divisors

We wish to use Lemma 10.8 to establish Lemma 8.5. So we need to construct an
appropriate sequence of cofinal Hamiltonians that satisfy the index-bounded assump-
tions of Lemma 10.8. We consider the set up in Sect. 8 and note that [Hir64] gives
a birational map ˜M →M that is an isomorphism away from π−1(0) such that its
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composition with π, π̃ : ˜M → C, is smooth away from π̃−1(0), and π̃−1(0) ⊂ ˜M is a
normal crossings divisor. We will associate to a neighborhood of this normal cross-
ings divisor a cofinal sequence of Hamiltonians whose Conley-Zehnder indices are
controlled by the algebraic topology of the divisor. These Hamiltonians will give rise
to our desired sequence of index-bounded Hamiltonians. To construct these Hamil-
tonians, we need to deform a neighborhood of the normal crossings divisor in such a
manner that the neighborhoods of the open strata of the normal crossings divisor ad-
mit a system of compatible, symplectic tubular neighborhoods. So the remainder of
this subsection is divided up as follows. First, we discuss a purely symplectic notion
of normal crossings divisors, and the existence of a standard symplectic neighbor-
hood of these divisors. Our discussion closely follows that of [McL20, Sect. 6.2], and
we claim no originality for this material. Second, we construct the above mentioned
Hamiltonians.

For now, we consider an arbitrary symplectic manifold (M,Ω).

Definition 11.1 ([McL20, Definition 6.10]). A tubular neighborhood of a smooth
submanifold Q⊂M is an open neighborhood U of Q in M and a smooth fibration
π : U →Q such that

(i) for a Riemannian metric g on M , U = exp−1(DQ), where

DQ := {(x, v) ∈ TM | x ∈Q,g(v, v)< 1, g(v,w) = 0 for all w ∈ TxQ},

and
(ii) π = πDQ ◦ exp−1, where πDQ :DQ→Q is the natural projection.

Notation 11.2. Let I be a finite indexing set. Given I ⊂ I, set U(1)I :=
∏

i∈I U(1){i} and D
I :=

∏

i∈I D
{i}, where U(1) is the 1-dimensional unitary group

and D is the unit disk.

Definition 11.3 ([McL20, Sect. 6.2]). For I ⊂ I, a symplectic U(1)I neighborhood
of a symplectic submanifold Q⊂ (M,Ω) is a tubular neighborhood π : U →Q of Q
such that

(i) π−1(x) is a symplectic submanifold, symplectomorphic to D
I ,

(ii) π has structure group U(1)I :=
∏

i∈I U(1){i} given by acting on the D
I diago-

nally, and
(iii) the symplectic parallel transport map of (U,π,Ω|U) is well-defined18 and has

holonomy lying in U(1)I .19

Let π : U →Q be a symplectic U(1)I neighborhood. Given J ⊂ I , the action of
U(1)J ⊂ U(1)I on U gives rise to a U(1)J -bundle πJ : U → UJ , where UJ is the

18 This tuple defines a Hamiltonian fibration (with open fibre) and thus determines a horizontal
distribution with respect to which we can parallel transport. Given that the fibre is open, this
parallel transport need not be well-defined.
19 that is, the symplectic parallel transport maps respect the UI structure groups.
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fixed locus of the U(1)J ⊂ U(1)I action. The restriction of πJ to a fibre of π is the
projection D

I →D
J . This gives rise to a symplectic U(1)J neighborhood of UJ inside

of U .

Definition 11.4 ([McL20, Sect. 6.2]). A symplectic crossings divisor in (M,Ω) is a
finite collection (Di)i∈I of transversally intersecting real codimension 2 submanifolds
of (M,Ω) such that

(i) DI = ∩i∈IDi is symplectic in (M,Ω),
(ii) the orientation of DI from Ω|DI

agrees with the orientation of DI from the
orientation of M from Ω and the orientation of the normal bundle of DI , denoted
NDI , induced from the splitting NDI =⊕i∈INDi|DI

.

Definition 11.5 ([McL20, Sect. 6.2]). A standard tubular neighborhood of a sym-
plectic crossing divisor (Di)i∈I is a collection of symplectic U(1)I neighborhoods
πI : UI →DI for each I ⊂ I such that

(i) UI ∩UJ = UI∪J , and
(ii) πJ(UI) = UI ∩DJ for J ⊂ I ⊂ I, and
(iii) πJ

I : UI → UJ
I is equal to πJ |UI : UI → UI ∩DJ as U(1)J bundles for J ⊂ I ⊂ I.

Notation 11.6. – Given a U(1){i} trivialization of πi, let (ri, θi) denote the polar
coordinates on the fibre D

{i}.
– Let ρi : Ui → R denote the map whose restriction to a U(1){i} trivialization of
πi is ρi = r2

i /2.
– Let αi denote the 1-form on Ui whose restriction to a U(1){i} trivialization of
πi is αi = dθi.

– Define N δ = ∪iρ
−1
i ((−∞, δ]), and VI = UI �∪j∈I�IUj .

By [McL12, Lemma 5.3 and Lemma 5.14] or by [TMZ18, Theorem 2.12]), for
δ > 0 sufficiently small, there exists an open neighborhood N(∪iDi) of ∪iDi in M

and a symplectomorphism

ψ : (N(∪iDi),Ω)→ (N ε,Ω0)

such that (N ε,Ω0) admits a standard tubular neighborhood as in Definition 11.5. In
particular,

(i) Ω0|VI
= Ω|DI

+
∑

i d(ρi · αi), and
(ii) for all x ∈ ∪iDi, ψ(x) = x.

After rescaling, we can (and do) assume that ε = 1.
Now our discussion diverges from the discussion in [McL20, Sect. 6.2]. We now

move on to construct a cofinal sequence of Hamiltonians that are adapted to our
standard tubular neighborhood. To be precise, we fix the following.
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Figure 6: Depiction of the function f for Notation 11.7.

Figure 7: A toric representation of our neighborhoods associated to a symplectic crossings divisor
with two components.

Notation 11.7. Let f : [0,+∞)→R be the C1-function given by

f(r) =

⎧

⎨

⎩

−(1− r)2/2, r ≤ 1
0, r ≥ 1.

See Figure 6 for a depiction of the function f .
Let H : N1 → R be given by H|VI

=
∑

i f(ρi). Note, dH|VI
=

∑

i∈I f
′(ρi)dρi. So

H−1(δ) is a regular submanifold of codimension 1 in N1 for each δ < 0. For each
δ >−1/2, N ε ⊂H−1((−∞, δ]) for some ε > 0 sufficiently small. Indeed, in VI ∩N ε,
H is bounded by

∑

i∈I f(ε). As ε→ 0,
∑

i∈I f(ε) convergences to −|I|/2≤−1/2< δ.
So for εI sufficiently small, H|VI∩NεI < δ. Take ε := minI⊂I{εI} to obtain the result.
See Figure 7 for a toric representation.

Lemma 11.8. There exists a sequence of Hamiltonians Hn : N1 →R that satisfy:

(i) If y ∈H−1((δ,0]), then limn→∞Hn(y) = +∞.

(ii) If x ∈H−1((−∞, δ]), then limn→∞Hn(x) = 0.
(iii) Hn(x)>Hm(x) for all x and n >m.

Construction 11.9. Let ˜n : R→R be the C2-function given by

˜n(r) :=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, r ≤ δ + 1/n
−6n4

(

(r−δ−1/n)3
3 − (r−δ−1/n)2

2n

)

, δ + 1/n≤ r ≤ δ + 2/n
n, r ≥ δ + 2/n.
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Consider the C1-function ˜Hn := ˜n ◦H . The Ω0-dual of −d ˜Hn is

X
˜Hn

=
∑

i

˜′n(H) ◦ f ′(ρi) · ∂θi .

Since f ′(ρi) goes to zero as ρi goes to 1 and since ˜′n(H) goes to zero as H goes to
either δ + 1/n or δ + 2/n, the 1-periodic orbits of ˜Hn occur in the regions where f

and ˜n(H) are smooth. So we may perturb f and ˜n to smooth functions fn, and n
such that they and the composition Hn := n ◦ (

∑

i fn(ρi))−1/n satisfy the following.
First, fn satisfies:

(i) |f − fn|C1 < εn, and
(ii) fn(r)≡ 1 for r ≥ 1,

where εn > 0 is some small constant that depends on n. In our estimates below, it
suffices to take εn = 1/n5. Second, n satisfies:

(i) |˜n − n|C2 < εn,
(ii) n(r)≡ 0 for r ≤ δ + 1/n, and
(iii) n(r)≡ n for r ≥ δ + 2/n.

Third Hn satisfies:

(i) the collections of orbits and fixed points agree: ΓHn = Γ
˜Hn

with ΓHn(0) =
Γ

˜Hn
(0), and

(ii) in an open neighborhood of ΓHn(0) = Γ
˜Hn

(0), the flows agree ϕ
˜Hn
t = ϕHn

t .

We prove Lemma 11.8.

Proof. We handle each of the three statements individually.

(i) Suppose that H(y) = δ + ε for ε > 0. Then for n� 0,

∑

i

fn(ρi(y))>H(y)− εn · |I|= δ + ε− εn · |I|> δ +
2
n
.

So

Hn(y) = n

(

∑

i

fn(ρi(y))
)

− 1/n= n− 1/n.

(ii) Suppose that H(x)≤ δ. Then
∑

i

fn(ρi(x))≤ δ + εn · |I| ≤ δ + 1/n.

So

Hn(x) = n

(

∑

i

fn(ρi(x))
)

− 1/n=−1/n.
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(iii) Suppose that n > m. Set Fn(x) =
∑

i fn(ρi(x)), and F (x) =
∑

i f(ρi(x)). So
|Fn(x)− F (x)| ≤ |I| · εn. Via the triangle inequality,

∣

∣

∣n(Fn(x))− ˜n(F (x))
∣

∣

∣ ≤
∣

∣

∣n(Fn(x))− ˜n(Fn(x))
∣

∣

∣ +
∣

∣

∣

˜n(Fn(x))− ˜n(F (x))
∣

∣

∣

≤ εn + |˜′n|sup · |Fn(x)− F (x)|

= εn +
3n2

2
· |Fn(x)− F (x)|

≤ εn +
3n2

2
· |I| · εn

≤ εn · (1 + 2n2 · |I|).

Continuing to estimate coarsely,

n(Fn(x))− m(Fm(x))

= n(Fn(x))− ˜n(F (x)) + ˜n(F (x))− ˜m(F (x)) + ˜m(Fm(x))− m(Fm(x))

≥−εn(1 + 2n2 · |I|) + ˜n(F (x))− ˜m(F (x))− εm(1 + 2m2 · |I|)

≥−εn · (1 + 2n2 · |I|)− εm · (1 + 2m2 · |I|)

≥−εn · (4n2 · |I|)− εm · (4m2 · |I|)

≥−8|I| · (1/m3).

So

Hn −Hm = n(Fn(x))− 1/n− m(Fm) + 1/m

≥−8|I| · (1/m3) + 1/m− 1/n

≥−8|I| · (1/m3) + 1/m2

> 0

with the last line holding when m and n are greater than 8 · |I|.

This completes the proofs of all the items. �

We now study the orbits of the Hamiltonians Hn. The associated Hamiltonian
vector field of Hn is

XHn =
∑

i

′n

(

∑

i

fn(ρi)
)

· f ′
n(ρi) · ∂θi .

Notation 11.10. (i) Let d = (d1, . . . , d|I|) ∈ Z
|I|
≥0.

(ii) Let I(d) = {i ∈ I | di �= 0}.
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(iii) Let

Γn
d(0) =

{

x ∈N1 | ′n

(

∑

i

fn(ρi)
)

· f ′
n(ρi) = 2π · di

}

=
{

x ∈N1 | ˜′n

(

∑

i

f(ρi)
)

· f ′(ρi) = 2π · di
}

.

This is the fixed points of a collection of 1-periodic orbits of Hn, which we
denote by Γn

d . Γn
d lies completely in VI(d). Geometrically, Γn

d is a T |I(d)| torus
bundle over the DI(d) � ∪j /∈I(d)Vi, which is a manifold with corners. The flow
ϕHn
t is given by rotation in the fibres. As n increases, the flow rotates the fibres

by a greater and greater amount.

Lemma 11.11. The (path components of) Γn
d(0) are pseudo Morse-Bott families of

size

dim(ker(dϕHn
1 − 1)|Γn

d
(0)) = 2n− |I(d)|.

Also, for each γ ∈ Γn
d , there exists a capping v in N1 such that

2
∑

i

di − 2n≤CZ(γ, v)≤ 2
∑

i

di + 2n.

Remark 11.12. At this point in our construction, c1(N1) does not necessarily van-
ish. So CZ(Γn

d) is not well-defined, which is why Lemma 11.11 is stated in terms of
cappings.

Proof. Since the fixed points Γn
d(0) lie completely in VI(d), we work in VI(d). Suppose

that I(d) = {1, . . . ,m}. In this region, ϕHn
t is given fibrewise over πI(d) by

(

. . . , exp
(

˜′n

(

∑

i

f(ρi)
)

· f ′(ρi) · it
)

· zi, . . .
)

where (z1, . . . , z|I(d)|) are the complex coordinates for the fibre. The return map dϕHn
t

with respect to the basis ∂ρi , ∂θi , and the horizontal distribution determined by πI(d)
is

⎛

⎜

⎝

1 0 0
Fij(t) 1 0

0 0 1

⎞

⎟

⎠

where

Fij(t) = t ·
(

′′
(

∑

i

f(ρi)
)

· f ′(ρj) · f ′(ρi) + δij · ′
(

∑

i

f(ρi)
)

· f ′′(ρi)
)

.
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To prove the first claim, we just need to show that the matrix Fij(1) is non-singular.
Notice that ′n · f ′(ρi) = 2π · di. So f ′(ρi)/di = f ′(ρj)/dj for all i and j. Since f ′ is
linear near our orbits, ρi = aij ·ρj for some aij ∈Q. If det(Fij(1)) = 0, then the values
of the ρi are algebraic for all i, which implies that π is algebraic, a contradiction.

To estimate the Conley-Zehnder index, notice that if γ is a 1-periodic orbit in
Γn
d , then γ is completely contained in a fibre π−1

I(d)(p) for some p ∈DI(d). So there
exists a map v : D→ π−1

I(d)(p) such that v(exp(2πit)) = γ(t). To show that CZ(γ, v)
satisfies the statement of the lemma, one argues as in [McL20, Proof of Proposition
6.17 following equation (15)]. �

Now we consider π̃ : ˜M → C from the beginning of this section. Let β : ˜M →M

denote the resolution map. For convenience, set U = M � π−1(0), and ˜U = ˜M �

π̃−1(0). So β is an isomorphism from ˜U to U and ˜M� ˜U is a collection of transversally
intersecting complex hypersurfaces D1, . . . ,Dn that comprise our normal crossings
divisor.

We will consider the Hamiltonians as above that are adapted to a neighborhood
of π̃−1(0) ⊂ ˜M . We will need a procedure for descending these Hamiltonians and
their Hamiltonian vector fields to M . To this end, we prove the following lemma:

Lemma 11.13. Given a Kähler form on M , there exists a symplectic form ˜Ω on ˜M

and a symplectic embedding that is isotopic to the identity

ψ : ( ˜M � π̃−1(0), ˜Ω) ↪→ (M � π−1(0),Ω)

that can be made to agree with β on the complement of any open neighborhood of

π̃−1(0).

Proof. The proof follows from Proposition 13.1 and the construction of a symplectic
form on a blow up of a Kähler manifold. Let us recall the latter. If Y is a Käh-
ler manifold and Z ⊂ Y is a smooth complex submanifold, then the blow up of Y
along Z, denoted b : BlZY → Y , has a symplectic form that is compatible with the
integrable almost complex structure. Indeed, let E denote the exceptional locus of
the blow up. By [Voi07, Sect. 3], a symplectic form on BlZY is obtained by adding
a sufficiently small multiple of the curvature (1,1)-form associated to a Hermitian
metric on O(−E) to the pull-back b∗ωY , where ωY is the Kähler form on Y . The
curvature form of a Hermitian line bundle is the negative of the curvature form of
the dual Hermitian line bundle, and O(E) is the dual of O(−E). So equivalently, a
symplectic form on BlZY is obtained by subtracting a sufficiently small multiple of
the curvature (1,1)-form associated to a Hermitian metric on O(E). Let us be more
explicit. Let s be a holomorphic section of O(E) with s−1(0) = E. Let | · | denote
the norm of a Hermitian metric on O(E). Fix a smooth function  :R≥0 →R≥0 that
satisfies:

(i) (r) = r for 0 ≤ r ≤ δ/2,
(ii) (r) is constant for δ ≤ r, and
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(iii) ′(r)≥ 0

for some small δ > 0. For k ∈ Z>0 sufficiently large,

b∗ωY − 1
k
· ddc(log((|s|)))

is symplectic, where ωY denotes the symplectic form on Y . Note that the expression
log((|s|)) is only well-defined outside of E. However, the expression ddc(log((|s|)))
extends over E. This extension yields the global symplectic form.

We now apply this construction to the resolution β : ˜M →M . By Hironaka’s res-
olution of singularity [Hir64], the resolution β : ˜M →M is obtained from a sequence
of blow ups in smooth complex submanifolds:

˜M =Mm

βm

Mm−1
βm−1

· · ·
β2

M1
β1

M0 =M.

Let Ei ⊂ Mi denote the exceptional locus of βi. Fix holomorphic sections σi and
Hermitian metrics with associated norms | · |i for the O(Ei) with σ−1

i (0) = Ei. Let
σ̃i and ‖ · ‖i denote the pull-back of σi and | · |i respectively to (βm · · ·βi+1)∗O(Ei) =
O((βm · · ·βi+1)−1(Ei)). We remark that (βm · · ·βi+1)−1(Ei) is an effective sum of the
divisors Di in D := π̃−1(0) = ∪iDi. Fix a holomorphic section σ and a Hermitian
metric with associated norm ‖ · ‖ for O(D). Finally, let  : [0,1]→ [0,1] be as above.

By our discussion above on symplectic forms of blow ups, for ki ∈ Z>0 sufficiently
large and for ki · ai = k with ai ∈ Z>0,

β∗Ω− 1
k
ddc log(‖σ‖)−

m
∑

i=1

1
ki

· (βm · · ·βi+1)∗ddc log((‖σ̃i‖i))

is symplectic (this follows by taking k sufficiently large as adding a sufficiently small
closed 2-form to any symplectic form is symplectic). Computing near π̃−1(0), we
have that

β∗Ω− 1
k
·ddc log(‖σ‖)−

m
∑

i=1

ai
k
· ddc log(‖σ̃i‖i)

=β∗Ω− 1
k
·

⎛

⎝ddc log(‖σ‖) +
m

∑

i=1
ddc log

⎛

⎝

ai
∏

j=1
‖σ̃i‖i

⎞

⎠

⎞

⎠

=β∗Ω− 1
k
· ddc

⎛

⎝log

⎛

⎝‖σ‖ ·
m
∏

i=1

ai
∏

j=1
‖σ̃i‖i

⎞

⎠

⎞

⎠

Note that

E :=D +
m

∑

i=1

ai
∑

j=1
(βm · · ·βi+1)−1Ei
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is effective and its support is all of π̃−1(0). Also

O(E) =O(D)⊗
m

⊗

i=1

ai
⊗

j=1
(βm · · ·βi+1)∗O(Ei).

So if s is the holomorphic section of O(E) given by σ ⊗ (⊗m
i=1 ⊗ai

j=1 σ̃i) and | · |E
denotes the corresponding tensor product Hermitian metric, then

|s|E = ‖σ‖ ·
m
∏

i=1

ai
∏

j=1
‖σ̃i‖i.

So

˜Ω = β∗Ω− 1
k
· ddc log((|s|E)).

is a Kähler form on ˜M . Vacuously,

˜Ω +
1
k
· ddc log((|s|E))

is symplectic on ˜M � π̃−1(0). Observing the proof of Proposition 13.1, over ˜M �

π̃−1(0), we get a symplectic embedding

˜ψ : ( ˜M � π̃−1(0), ˜Ω) ↪→ ( ˜M � π̃−1(0), β∗Ω).

The map ˜ψ is produced via Moser’s argument and, thus, is isotopic to the identity
map. Now ψ := β ◦ ˜ψ gives the desired embedding. �

Suppose c1(M) = 0. Let τ :K∗
M →M ×C be a trivialization of the anti-canonical

bundle of M , and let τ̃ = τ ◦ β be the induced trivialization of the anti-canonical
bundle of ˜U . Fix a generic section s of K∗

˜M
that satisfies s(x) := τ̃−1(x,1) for all x

outside of a compact subset that contains an open neighborhood of ∪iDi.
˜M smoothly deformation retracts onto ∪iDi. So H2n−2( ˜M ;Z) ∼= ⊕i[Di]. Write

[s−1(0)] = −∑

i ai · [Di]. These terms are the discrepancy of the resolution β. By
[McL20, Lemma 6.15], each ai is non-negative. ([McL20] works in the setting where
U and ˜U are affine; however, this assumption is not used in the presented argument.)
Similarly, consider the 1-form dθ that is defined on C

×. Consider a smooth bump
function ϕ that is one near the divisors and zero outside of a compact subset that
contains an open neighborhood of the divisor. Then d(ϕ · dθ) ∈ H2

c ( ˜M ;Z). So by
Poincaré duality, it may be written as

∑

iwi · [Di].

Notation 11.14. Consider Hamiltonians ˜Hn : N(∪iDi) →R from Construction 11.9
(there they are denoted by Hn). Since these Hamiltonians are constant near the
boundary of N(∪iDi) ⊂ ˜M , they extend to Hamiltonians on ˜M , abusively denoted
by ˜Hn : ˜M →R.
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The ˜Hn : ˜M →R in Construction 11.9 descend to Hamiltonians on M as follows:
Consider the symplectic embedding ψ from Lemma 11.13. ψ∗ ˜Hn defines a Hamilto-
nian on the image of ψ. Since the ˜Hn are constant near π̃−1(0), ψ∗ ˜Hn extends to a
Hamiltonian on M , denoted Hn : M →R.

Using that ψ is a symplectic embedding, every non-constant orbit of the Hamil-
tonian vector field of Hn with respect to Ω is given by ψ ◦ γ for the corresponding
non-constant orbit γ of the Hamiltonian vector field of ˜Hn with respect to ˜Ω. We
identify these orbits and consequently identify the families of orbits corresponding
to Γn

d . Similarly, given γ ∈ Γn
d ⊂ ˜M with capping v as in Lemma 11.11, the capping

v extends via the isotopy of ψ to a capping of γ ∈ Γn
d ⊂M .

Using the discrepancy and items (CZ2), (CZ3) and (CZ5), we obtain the following.

Lemma 11.15. For each γ ∈ Γn
d with capping v as in Lemma 11.11, we have

CZ(γ) =CZ(γ, v) + 2
∑

i

diai

where the left most Conley-Zehnder index is computed in M . Consequently,

2
∑

i

di(ai + 1)− 2n≤CZ(γ)≤ 2
∑

i

di(ai + 1) + 2n.

As a corollary of Lemma 11.15 and our construction, we have the following.

Lemma 11.16. There exists perturbations H ′
n as in Lemma 9.10 of our Hamiltonians

Hn on M with the following property: for each n ∈ Z, there exists a constant Cn such

that if γ is a 1-periodic orbit of any H ′
n and CZ(γ)≤ n, then

∫

γ∗(dθ)≤Cn.

Proof. We begin with a warm-up. Suppose that we do not perturb Hn. In this case,
an orbit in Γn

d wraps
∑

i diwi around the origin when projected to C, that is,
∫

γ∗dθ =
∑

i

diwi.

By Lemma 11.16, since the ai are all non-negative, any bound on CZ(γ) implies a
bound on the possible values of each di, and, thus, a bound on

∫

γ∗dθ. This proves
the result when we do not perturb our Hamiltonians.

To prove the result for the perturbed Hamiltonians, it is easiest to fix a very
explicit perturbation. In particular, we perturb each Hn about the collections of
orbits Γn

d , which are torus bundles over manifolds with corners. First, one perturbs
the Hamiltonian by adding a C2-small Morse function near the manifold with corners
along DI(d), in such a manner that the Hamiltonian vector field has no orbits point
near the corners. After this perturbation, the orbits of Γn

d break up as torus families
worth of orbits, with a torus family over each critical point of the added Morse
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function. Finally, one further perturbs these torus families to break them up into
2|I(d)| individual orbits. This is analogous to the types of perturbations we discussed
in Remark 5.7. Each resulting orbit of these perturbed Hamiltonians is C0 close to
an orbit from the associated unperturbed Hamiltonian. This perturbation scheme is
carried out in [McL12, Proof of Lemma 6.8.]. In particular, the proof there works
equally as well for our setting. From this, Lemma 9.10, and the warm-up above, we
conclude the lemma. �

12 Proof of Lemma 8.5

We prove Lemma 8.5. We assume the notation from the setup of Sect. 8.

Proof. Let ΩP be any integral Kähler form on P . Let Ωz := ΩP |Pz . For each z ∈C
×,

we have a symplectic parallel transport map from (Pz,Ωz) to (P1,Ω1). By [McL12,
Lemma 5.16], we may pre-compose this parallel transport map with a symplectomor-
phism such that the composition ϕz : (Pz,Ωz) → (P1,Ω1) maps h−1

z (∞) to h−1
1 (∞)

and h−1
z (0) to h−1

1 (0). We may identify (P1,Ω1) and h1 with (M,Ω1) and π respec-
tively. Applying Proposition 13.1 to π−1(∞) in M , there exists a Kähler form Ω′ on
M and a symplectic embedding

ψ : (M,Ω1) ↪→ (M,Ω′)

that is the identity near π−1(0) and maps M into a compact subset of M , which we
can choose to be Mr1 .

Let β : ˜M →M and π̃ : ˜M →C denote the resolution data of π as in the beginning
of Sect. 11. We fix a Kähler form on ˜M as in Lemma 11.13 and let ψ denote the
corresponding symplectic embedding. As in Sect. 11, after deforming a small open
neighborhood of the divisor π̃−1(0) in ˜M , we obtain a compact, codimension zero
submanifold of ˜M , say ˜K, such that π̃−1(0) ⊂ ˜K, and ˜K ⊂ ( ˜M)r1 . Here ˜K is the
space H−1((−∞, δ]) given in Notation 11.7. So K := ψ(˜K) is a compact, codimension
zero submanifold of M with π−1(0)⊂K, and K ⊂Mr1 . By Lemma 19.5, there exists
r0 > 0 such that r(∂K)⊂ (r0, r1). By Corollary 19.3 and Lemma 11.13, after shrinking
K and possibly modifying ˜Ω and ψ, we can arrange for K to be stably displaceable
inside of (Mr1 ,Ω′).

Using Notation 11.14, we obtain Hamiltonians Hn : ˜M → R. In this manner, we
obtain a sequence of Hamiltonians H ′

n : M →R from Lemma 11.16 that satisfy H ′
n <

H ′
n+1 and H ′

n → (0)K . Without loss of generality, assume that H ′
n ≡−1/n for r ≤ r0.

Since Ω′ is Kähler, it is compatible with the almost complex structure that makes
the projection π : M → C holomorphic. So the fibres of π are symplectic subman-
ifolds with respect to Ω′, and (M,π,Ω′) defines a Hamiltonian fibration over C

×.
By Proposition 14.13 with the constants a, b, c in the statement being chosen such
that 0 < a < b < c� r0, we obtain a symplectic form Ω′′ on M , and a symplectic
embedding μ : (M,Ω′) ↪→ (M,Ω′′). We may push-forward (and extend by constancy)
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the H ′
n to (M,Ω′′) via H ′′

n := (μ−1)∗H ′
n. The conclusions of Lemma 11.16 still hold

for these H ′′
n since μ is a smooth isotopy that is the identity near π−1(0).

After relabeling, by our application of Proposition 14.13 above, we can fix 0 <

r0 < r1 < r2 < r3 such that

– μ ◦ψ(M) and μ(K) are both properly contained in the interior of Mr3 ,
– M �Mr0 is symplectomorphic to a symplectic mapping cylinder, whose associ-

ated Reeb vector field is non-degenerate,
– r2 < r(∂μ(K))< r3, and
– H ′′

n ≡−1/n for r ≤ r2.

The H ′′
n are degenerate Hamiltonians with families of constant orbits {H ′′

n ≡
−1/n} and {H ′′

n ≡ n}. Both of these are pseudo Morse-Bott families as in Defini-
tion 9.8. Moreover, by item (CZ1), the Conley-Zehnder indices of these constant
orbits are zero. So by Lemma 9.10 and Lemma 11.16, we may pick C2-small pertur-
bation of the H ′′

n , say to obtain H ′′′
n , such that

– for r1 ≤ r ≤ r2, H ′′′
n is a linear function in r (and thus ϕ-scalable as in Defini-

tion 10.3),
– near r = r3, H ′′′

n is a linear function in r with fixed slope τ that is independent
of n,

– the H ′′′
n satisfy the hypotheses of Lemma 10.8 (with a = r1, b= r2, and c= r3),

– H ′′′
n <H ′′′

n+1, and
– the sequence H ′′′

n is cofinal in H+(μ(K)⊂Mr3 ,Ω′′; 0, τ).

Since K was stably displaceable, μ(K) is stably displaceable inside of Mr3 . So by
Lemma 10.8 and Proposition 6.1 item (ii),

0 = ̂SH(μ(K)⊂Mr3 ; 0, τ)⊗Λ ∼= ̂SH((μ(K))δ ⊂Mr3+δ; 0, τ)⊗Λ

for all δ > 0. For δ � 0 sufficiently large, μ ◦ ψ(M) is contained in Mr3 ⊂Mr3+1 ⊂
(μ(K))δ+1 ⊂Mr3+1+δ. Now by [TV23, Proposition 2.5] (see Remark 6.2) and Propo-
sition 6.1 item (iv),

̂SH(Mr3+1 ⊂Mr3+1+δ; 0)⊗Λ∼= 0.

Setting ψz = μ◦ψ◦ϕz, a= r3, b = r3 +1, and c = r3 +1+δ, we almost have completed
the proof of the lemma. It just remains to explain why Ω is integral. To see this,
one can either notice that Ω is cohomologous to the original Kähler form, which
is integral (as all of the above embeddings are produced via Moser’s argument), or
that ψz preserves the Kähler form near π−1(0) and so any sphere in M is homotopy
equivalent to a sphere in π−1(0), and thus, its integral of Ω will be an integer. �

Remark 12.1. Notice that in the proof above, the Reeb orbits of the stable Hamil-
tonian structure arising from the symplectic mapping cylinder like end do not need
to satisfy any index bounded assumption. Consequently, if we tried to construct our
isomorphism by using radial Hamiltonians whose slopes go to infinity as n increases,
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then a priori, we would not know if we could apply Lemma 10.8. It was the divisor
model that explicitly gave us the index bounded assumption. Typically, one has a
neighborhood of a divisor whose boundary is a contact manifold and one deforms
the contact form to have the nice dynamical properties that our Hamiltonians have
above. In our case, there is no contact form to be found. So we take the novel ap-
proach of working directly with Hamiltonians that are adapted to divisors.

Part 3 Hamiltonian fibrations and symplectic deformations

In this part, we establish requisite symplectic embedding/deformation results
that are used to construct the “modified parallel transport maps” in the proof of our
main result, see Lemma 8.4 and Lemma 8.5. We also discuss Hamiltonian fibrations
and their relationships with symplectic mapping cylinders and convex symplectic
domains.

13 Symplectic self-embeddings of divisor complements

We discuss a Kähler embedding result, which allows one to symplectically push
divisor complements away from divisors via a symplectic deformation that lies in a
fixed Kähler class.

Proposition 13.1. Let (X,Ω, J) be a Kähler manifold and let D be an effective nor-

mal crossings divisor in X . There exists a Kähler form ˜Ω for (X,J) and a symplectic

embedding

ψ : (X �D,Ω|X�D) ↪→ (X �D, ˜Ω|X�D)

that satisfy:

(i) ψ(X �D) ⊂X �N(D) for an open neighborhood N(D) of D in X , and

(ii) ψ can be made the identity away from any fixed open neighborhood of D.

We begin with a local model for the embedding in Sect. 13.1. Using this local
model, we prove Proposition 13.1 in Sect. 13.2.

13.1 Computing in a local model. Here we understand the local model for the
symplectic embedding introduced above.

Notation 13.2. (i) Let Ωstd denote the standard symplectic form on C
n with

respect to the holomorphic coordinates z1, . . . , zn,

Ωstd :=
∑

i

i

2
dzi ∧ dzi =

∑

i

ridri ∧ dθi,

where zi = rie
θi in polar coordinates.
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(ii) Let σ :Cn →C be given by

σ(z1, . . . , zn) = zα1
1 · · ·zαn

n ,

where α = (α1, . . . , αn) is a tuple of non-negative integers.
(iii) Let D := σ−1(0) be the associated normal crossings divisor.
(iv) Let Vstd denote the vector field on C

n
�D given by

Ωstd(Vstd, ·) =
∑

i

αidθi =−dc log |σ|(·),

where | · | is the standard metric on C. Equivalently,

Ωstd(Vstd, J ·) =
∑

i

αi

ri
dri =

∑

i

d(log(rαi
i )) = d(log |σ|)(·).

Explicitly,

Vstd =
∑

i

αi

ri
· ∂ri .

(v) Let ρ : Cn → R be a smooth function whose gradient vector field with respect
to Ωstd(·, J ·) is denoted by ∇ρ,

Ωstd(∇ρ,J ·) = dρ(·).

(vi) For 0≤ s≤ 1, let Ωs be a family of Kähler forms on C
n.

(vii) Let Vs denote the family of vector fields on C
n
�D given by

Ωs(Vs, J ·) = d(log |σ|)(·).

(viii) Let (∇ρ)s denote the family of vector fields on C
n given by

Ωs((∇ρ)s, J ·) = dρ(·).

We want the following estimate.

Lemma 13.3. There exists ε > 0 and a > 0 so that

d(log |σ|+ ρ)(Vs + (∇ρ)s)≥ a · (log |σ|+ ρ)2

on D
n
ε ⊂C

n.

Our strategy is to relate Vs to Vstd via simple matrix algebra and bootstrap off
of the analogue of Lemma 13.3 for Vstd, which follows from a computation:

Lemma 13.4. There exists ε > 0 so that

d(log |σ|+ ρ)(Vstd +∇ρ)≥ (log |σ|+ ρ)2

on D
n
ε ⊂C

n.
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We need the following estimate.

Lemma 13.5. Given non-negative constants b1, b2, c1, and c2, there exists ε > 0 such

that if 0 ≤ x≤ ε and 0 ≤ y ≤ ε, then

log(c1 · x) · log(c2 · y)≤
b1
x2 +

b2
y2 .

Proof. Without loss of generality, we may assume that

0≤ c1 · x≤ c2 · y ≤ 1.

By L’Hopital’s rule, there exists ε > 0 such that if c1 · x≤ ε, then

log(c1 · x)2 ≤ b1
x2 .

So

log(c1 · x) log(c2 · y)≤ log(c1 · x1)2 ≤
b1
x2 ≤ b1

x2 +
b2
y2 ,

as desired. �

We prove Lemma 13.4.

Proof.

d(log |σ|+ ρ)(Vstd +∇ρ) =
(

d|σ|
|σ| (Vstd) +

d|σ|
|σ| (∇ρ) + dρ(Vstd) + dρ(∇ρ)

)

=
∑

i

α2
i

r2
i

+ 2
∑

i

αi

ri
dri(∇ρ) + |∇ρ|2.

For each ε > 0, dri(∇ρ) and |∇ρ|2 are bounded on D
n
ε ⊂C

n. So for ε > 0 sufficiently
small, there exists c > 0 such that

d(log |σ|+ ρ)(Vstd +∇ρ)≥ c ·
∑

i

α2
i

r2
i

on D
n
ε . Since

log(eρ · |σ|) = log |σ|+ ρ,

Lemma 13.5 implies that (after shrinking ε)

d(log |σ|+ ρ)(Vstd +∇ρ)≥ c ·
∑

i

α2
i

r2
i

≥ (log |σ|+ ρ)2

on D
n
ε , as desired. �

We prove Lemma 13.3.
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Proof. Relate Vs to Vstd via some simple matrix algebra: Consider the standard basis
of TCn ∼= TR2n and use the standard metric Ωstd(·, J ·) to extend it to a dual basis
of T ∗

C
n ∼= T ∗

R
2n. With respect to these bases, we may write

(i) d(log |σ|+ ρ) = β, a covector, and
(ii) Ωs(·, J ·) =As, a family of symmetric, positive definite matrices.

Note that As and β both vary with respect to points in C
n. With these identifications,

Vstd + (∇ρ) = βT

and

Vs + (∇ρ)s =A−1
s · βT .

Since A−1
s is also symmetric and positive definite,

v ·A−1
s · vT ≥ a · v · vT

for all v ∈ T ∗
D

n
1 and some a > 0 (which is independent of v). So

d(log |σ|+ ρ)(Vs + (∇ρ)s) = (Vs + (∇ρ)s)T ·As · (Vs + (∇ρ)s)

= β · (A−1
s )T ·As ·A−1

s · βT

= β · (A−1
s )T · βT

≥ a · β · βT

= a · d(log |σ|+ ρ)(Vstd +∇ρ)

on D
n
1 . The lemma follows from this inequality and Lemma 13.4. �

13.2 Proof of proposition. Here we apply the local computations from Sect. 13.1
to prove Proposition 13.1.

Proof. Consider the line bundle O(D), a Hermitian metric ‖ · ‖ on O(D), and a
holomorphic section σ with σ−1(0) = D. Fix a smooth function  : R≥0 → R≥0 that
satisfies:

(i) (r) = r for 0 ≤ r ≤ δ/2,
(ii) (r) is constant for δ ≤ r, and
(iii) ′(r)≥ 0.

Consider f :X �D→R given by f = log((‖σ‖)). This gives rise to a (1,1)-form on
X , ddcf . Fix c > 0 sufficiently small so that

˜Ω := Ω + c · ddcf

is non-degenerate (and consequently Kähler).
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dcf is not globally defined. So ddcf is not globally exact on X and ˜Ω is not
cohomologous to Ω. However, on the complement of D, dcf is well-defined and ddcf

is exact. So we have a family of cohomologous Kähler forms on X �D given by

Ωs := Ω + s · c · ddcf.

We would like to use Moser’s argument, to determine a symplectic embedding

ψ : (X �D,Ω) ↪→ (X �D, ˜Ω)

obtained by taking the time 1 flow along Vs determined by

Ωs(Vs, ·) =−c · dcf.

The goal of the rest of this proof is to bound Vs in order to show that its time s flow,
ψs, is well-defined and satisfies the desired properties.

We claim there exists a neighborhood N(D) of D in X and a > 0 such that

d(log‖σ‖)(Vs) ≥ a · (log‖σ‖)2

on N(D). To see this, fix p ∈D and local holomorphic coordinates z1, . . . , zn such
that

σ = zα1
1 · · ·zαn

n .

In this trivialization, the Hermitian metric ‖ · ‖ may be written as eρ · | · | where | · |
is the standard metric on C. So sufficiently close to p,

log((‖σ‖)) = log ‖σ‖= log |σ|+ ρ.

Moreover, in this local chart, Vs is determined by

Ωs(Vs, J ·) = c · d(log |σ|+ ρ).

So our setup in this local chart (or rather a rescaling of it by c) agrees with our
local model from Sect. 13.1. By Lemma 13.3, we have that there exists ap > 0 and a
neighborhood N(p) of p in X such that

d(log‖σ‖)(Vs)≥ ap · (log‖σ‖)2

on N(p). Since D is compact, we may find a neighborhood N(D) of D in X and a
single a > 0 such that

d(log‖σ‖)(Vs) ≥ a · (log‖σ‖)2

on N(D), as desired.
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We now show that the flow ψs of Vs is well-defined for all s and address the
claims in the proposition. Let γ be a flow line of Vs. Fix 1/2 > ε > 0 such that
‖σ‖−1([0,2ε])⊂N(D). By the above inequality,

d

ds
(log ‖σ‖ ◦ γ(s)) = d(log‖σ‖)γ(s) ◦ (Vs)γ(s) ≥ a · (log‖σ‖)2 ◦ γ(s)

when ‖σ‖ ◦ γ(s) ≤ 2ε. So when ‖σ‖ ◦ γ(s0) ≤ 2ε, we may solve this differential in-
equality to get that

log‖σ‖ ◦ γ(s)≥ log‖σ‖ ◦ γ(s0)
1− a · (s− s0) · log‖σ‖ ◦ γ(s0)

when ‖σ‖ ◦ γ(s)≤ 2ε and s≥ s0. From this, we see when ‖σ‖ ◦ γ(s0)≤ 2ε that

(i) ‖σ‖ ◦ γ(s)≥ ‖σ‖ ◦ γ(s0), and
(ii) ‖σ‖ ◦ γ(s)≥ exp

(

−1
a·(s−s0)

)

for s0 ≤ s≤ s1, where

s1 = min{s≥ s0 | γ([s0, s])⊂ ‖σ‖−1([0,2ε])}.

To show that ψs is well-defined, it suffices to show that, first, no flow line runs into
D in finite time, and, second, ψs is the identity outside of a compact neighborhood of
D. To see that no flow line runs into D in finite time, suppose by way of contradiction
that γ is not bounded away from D for all s. This implies that there exists an
increasing sequence sν such that

(i) ‖σ‖ ◦ γ(sν)≤ 2ε, and
(ii) limν→∞ γ(sν) ∈D.

The second item implies that

lim
ν→∞

‖σ‖ ◦ γ(sν) = 0.

The first item combined with the fact that

‖σ‖ ◦ γ(sν)≥ ‖σ‖ ◦ γ(s0)

implies that

lim
ν→∞

‖σ‖ ◦ γ(sν)> 0,

a contradiction. To see that ψs is the identity outside of a compact neighborhood of D
notice that  is constant on ‖σ‖−1([δ,+∞). So dcf = 0 on ‖σ‖−1([δ,∞)). This implies
that Vs = 0 on ‖σ‖−1([δ,∞)) and thus that ψs is the identity on ‖σ‖−1([δ,∞)).

To show that ψ(X�D) is contained in the complement of an open neighborhood
of D in X , it suffices to show that ‖σ‖−1 ◦ γ(1) > ε. The above work implies that
if ‖σ‖ ◦ γ(s0) > ε, then ‖σ‖ ◦ γ(s) > ε for all s ≥ s0. So it suffices to show that if
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‖σ‖ ◦ γ(0)≤ ε, then for some s0, ‖σ‖ ◦ γ(s0)> ε. However, when ε < exp(−1/a), the
above work implies that such an s0 must exist. So after shrinking ε, we obtain the
desired inclusion.

Finally, to see that we can make the support of ψ be contained in any arbitrarily
small neighborhood of D, notice that (when we showed that ψs was well-defined) we
showed that ψs is the identity on ‖σ‖−1([δ,∞)). So taking δ to be arbitrarily small
forces the support of ψ to be contained in any arbitrarily small neighborhood of D,
as desired. �

14 Hamiltonian fibrations

14.1 Definitions. We give basic definitions that pertain to Hamiltonian fibra-
tions.

Definition 14.1. Let (F,ωF ) be a closed symplectic manifold. A Hamiltonian fibra-
tion over (a possibly open) Riemann surface Σ with fibre (F,ωF ) is a tuple (M,π,Ω)
where

(i) M is a manifold,
(ii) π :M → Σ is a proper submersion, and
(iii) Ω is a closed 2-form on M whose restriction to each fibre Fz = π−1(z) is sym-

plectic and agrees with ωF , that is, (Fz,Ω|Fz) ∼= (F,ωF ).

Ω is the coupling form. If the coupling form Ω is non-degenerate, then (M,π,Ω) is
called a non-degenerate Hamiltonian fibration.

Definition 14.2. The vertical distribution of a Hamiltonian fibration (M,π,Ω) is

Verp = ker(dπ(p)).

If a vector field is contained in Ver, then it is called vertical. The horizontal distri-
bution of a Hamiltonian fibration (M,π,Ω) is

Horp =
{

v ∈ TpM | Ω(v, ·)|Verp ≡ 0
}

.

If a vector field is contained in Hor, then it is called horizontal.

There is a splitting TpM ∼= Horp⊕Verp.

Definition 14.3. The horizontal lift of a vector field W on Σ is the horizontal
vector field ˜W that satisfies

dπ(p) ◦ ˜W (p) =W (π(p)).

Definition 14.4. The curvature of a Hamiltonian fibration (M,π,Ω) with respect
to the symplectic form ωΣ on Σ is the function R :M →R determined by

R(p) · ωΣ(v,w) = Ω(ṽ, w̃),
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where v and w are vectors in Tπ(p)Σ and ṽ and w̃ are their horizontal lifts in TpM

respectively.

A Hamiltonian fibration is non-degenerate if and only if the curvature with respect
to any symplectic form on the base Σ is everywhere positive. So the non-degenerate
Hamiltonian fibrations are precisely the positively curved Hamiltonian fibrations.
Any Hamiltonian fibration which is degenerate can be made non-degenerate by
adding π∗(h ·ωΣ) to Ω for any smooth function h : Σ→R that satisfies R+π∗h > 0,
where R is the curvature with respect to ωΣ. This produces a new coupling form
that is non-degenerate.

It will be useful to consider the following situation. Let (M,Ω, π) be a non-
degenerate Hamiltonian fibration and let f : M → R be a smooth function on M .
Given a 1-form α on Σ, consider the ωΣ-dual of α, denoted by Xα. We wish to com-
pute the Ω-dual of f · π∗α in terms of Xα and the curvature R of this Hamiltonian
fibration with respect to ωΣ.

Lemma 14.5. The Ω-dual of the 1-form f · π∗α is the vector field

X =
f

R
· ˜Xα.

Proof. Let X denote the Ω-dual of f · α. Notice that X is horizontal since

Ω(X, ·) |Ver = f · α ◦ dπ(·)|Ver = 0.

So we need to show that

Ω
(

f · ˜Xα/R, ˜W
)

= f · α(W ),

where W is an arbitrary vector field on Σ. But this is easy:

Ω
(

f · ˜Xα/R, ˜W
)

=
f

R
·Ω

(

˜Xα, ˜W
)

= f · ωΣ(Xα,W ) = f · α(W ). �

14.2 Symplectic mapping cylinders. We discuss Hamiltonian fibrations given
by symplectizations of stable Hamiltonian structures associated to mapping tori of
symplectomorphisms. These Hamiltonian fibrations naturally arise in the context of
our main result.

Let (F,ωF ) be a closed symplectic manifold of dimension 2n − 2 and let ψ :
(F,ωF ) → (F,ωF ) be a symplectomorphism. The mapping torus of the symplecto-
morphism ψ is

Mψ := [0,2π]× F/((0, x)∼ (2π,ψ(x))).

Equivalently, Mψ is the quotient of R×F by the action (t, x) �→ (t+ 2π,ψ(x)). The
projection [0,2π]× F → [0,2π] gives a projection Mψ → S1. So the pull-back of the
angular 1-form dθ on S1 is a non-vanishing 1-form on Mψ, which we will also denote
by dθ.
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Lemma 14.6. Let Mψ be the mapping torus of the symplectomorphism ψ with a

closed 2-form η that restricts to ωF on each fibre. The pair (η, dθ) defines a stable

Hamiltonian structure on Mψ.

The hyperplane distribution of (η, dθ) is ker(dθ), which is the tangent spaces of
the fibres of the projection to S1. Similarly, the Reeb vector field is the horizontal
lift of the angular vector field ∂θ on S1.

The stable Hamiltonian structure obtained in Lemma 14.6 could have a degener-
ate Reeb vector field. However, this can be rectified by adding a generic perturbation
to η.

Lemma 14.7. Consider a stable Hamiltonian structure (η, dθ) on Mψ as in

Lemma 14.6. For a generic choice of Hamiltonian, H :Mψ →R, the pair (η + d(H ·
dθ), dθ) defines a stable Hamiltonian structure on Mψ with non-degenerate Reeb

vector field.

Proof. View Mψ as the quotient of R×F by the action (θ,x) �→ (θ+2π,ψ(x)), where
θ denotes both the angular coordinate on S1 and the Cartesian coordinate on R. Fix
a Hamiltonian H :Mψ →R. By [Oh15, Example 4.2.3], pulling-back η+ d(H · dθ) to
R× F gives

η + d(H · dθ) = ωF + dGθ ∧ dθ + dHθ ∧ dθ,

where dGθ is an R-family of exact 1-forms on F that satisfy ψ∗dGθ+2π = d(Gθ) and
Hθ is the pull-back of H (so ψ∗Hθ+2π = Hθ). In this trivialization, the Reeb vector
field is ∂θ + Vθ, where

ωF (Vθ, ·) = dGθ(·) + dHθ(·).

If ψθ : F → F is the time θ flow along Vθ, then the Reeb flow is given by (·+ θ,ψθ(·)).
So the Reeb orbits have periods in 2π ·Z and correspond to fixed points of ψ ◦ψθ. So
Reeb vector field will be non-degenerate if the derivative of ψ ◦ψθ at any fixed point
has no eigenvalues equal to 1; however, ψθ is a Hamiltonian diffeomorphism. So for
generic H , at the fixed points, the derivative of ψ ◦ψθ will have no eigenvalues equal
to 1, as desired. �

We now discuss the relationship between mapping tori of symplectomorphisms
and Hamiltonian fibrations. Considering the product (0,∞)×Mψ, we obtain a proper
submersion π : (0,∞)×Mψ → (0,∞)×S1. Fix polar coordinates (r, θ) for (0,∞)×S1.

Definition 14.8. Given a closed 2-form η on Mψ that restricts to ωF on each fibre,
the symplectization of Mψ with respect to η is the Hamiltonian fibration

((0,∞)×Mψ, π, η + π∗(dr ∧ dθ)).

Such a Hamiltonian fibration is a symplectic mapping cylinder.
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The following characterizes the relationship between symplectic mapping cylin-
ders and Hamiltonian fibrations over (0,∞)× S1.

Lemma 14.9. The symplectic mapping cylinder ((0,∞) × Mψ, π, η + π∗(dr ∧ dθ))
defines a non-degenerate Hamiltonian fibration whose curvature with respect to

π∗(dr ∧ dθ) is constant and equal to 1. Conversely, if a Hamiltonian fibration

(M,π,η + π∗(dr ∧ dθ)) satisfies π : M → (0,∞)× S1, η(∂r, ·)|Ver ≡ 0, and ∂r(η) ≡ 0,
then it is given by a symplectic mapping cylinder.

Proof. To prove the first claim, it suffices to check that the curvature is always equal
to one (the other elements of the first claim being clear). Let ∂r and ∂θ be the vector
fields associated to coordinates (r, θ). The horizontal lift of ∂r is ∂r:

(η + π∗(dr ∧ dθ)) (∂r, ·) |Ver = (η(∂r, ·) + (dr ∧ dθ)(∂r, ·))|Ver = η(∂r, ·)|Ver ≡ 0.

So the curvature is always one:

R · (dr ∧ dθ)(∂r, ∂θ) = (η + π∗(dr ∧ dθ))(˜∂r,˜∂θ) = η(∂r,˜∂θ) + (dr ∧ dθ)(∂r, ∂θ)

= (dr ∧ dθ)(∂r, ∂θ).

Consequently, R≡ 1.
The converse follows from [Oh15, Theorem 4.2.4]. Briefly, one considers the family

of symplectomorphisms

ψθ : (π−1(1, θ), η|π−1(1,θ)) → (π−1(1, θ), η|π−1(1,θ))

obtained from parallel transporting along γ(θ) = (1, θ) ∈ (0,∞)× S1. These parallel
transport maps give trivializations of M that agree with trivializations of (0,∞) ×
Mψ2π . So the two spaces are fibrewise diffeomorphic, giving the result. �

Remark 14.10. It should be clear from Definition 2.3 and Definition 14.8 that these
two definitions of symplectizations agree for mapping tori of symplectomorphisms.

We conclude by discussing admissible almost complex structures.

Lemma 14.11. The space of admissible almost complex structures of a convex sym-

plectic domain with boundary given by a mapping torus of a symplectomorphism is

non-empty and contractible.

Proof. Fix a collar: ((0,1] ×Mψ, η + dr ∧ dθ). Recall the definition of an admissi-
ble almost complex structure from Definition 2.4. The condition that d(dθ)(·, J ·) is
non-negative definite on all J -complex lines in T (Mψ) is vacuously satisfied. The
conditions that J(ker(dθ)) = ker(dθ) and −dr ◦ J = rdθ imply that J (with respect
to the basis (r · ∂r)⊕ ˜∂θ⊕TF ) is

⎛

⎜

⎝

0 −1 0
1 0 0
0 0 JF

⎞

⎟

⎠
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where JF is an (0,1] × S1 family of almost complex structures on the fibre. The
condition that J be (η+dr∧dθ))-compatible implies that JF is ωF -compatible. So a
choice of admissible almost complex structure (in the collar) corresponds to a choice
of ωF -compatible almost complex structures on the vertical distribution. The space
of such choices is non-empty and contractible. This gives the desired result. �

Remark 14.12. As an upshot of the proof of Lemma 14.11, any admissible almost
complex structure makes the projection (0,1]×Mψ → (0,1]×S1 holomorphic. More-
over, for a radially admissible choice of Hamiltonian, Floer trajectories in the collar
will project to Floer trajectories in (0,1]× S1.

14.3 Flattening Hamiltonian fibrations. We investigate the relationship between
symplectic mapping cylinders and (more general) non-degenerate Hamiltonian fibra-
tions over (0,∞) × S1. Let (M,Ω) be a symplectic manifold. Let π : M → C be a
smooth, proper map that is a submersion over C

×. Assume that (π−1(C×),Ω, π) is
a non-degenerate Hamiltonian fibration. For example, this holds when M admits
an Ω-compatible almost complex structure that makes π holomorphic. Finally, let
ω := d(fdθ) be a symplectic form on (0,∞)× S1, where f is a smooth function in r

with non-negative second derivative. We assume that ω induces the same orientation
on C as dr ∧ dθ. So since ω is symplectic, it follows that f ′ > 0. This will be used
frequently in the lemmas to come. Similarly as in Notation 2.8, let Ma := π−1(Da),
where Da denotes the disk of radius a in C.

Proposition 14.13. Given c > b > a > 0, there exists a symplectic form Ω on M

and a symplectic embedding

ϕ : (M,Ω) ↪→ (M,Ω)

that satisfy:

(i) ϕ is the identity on Ma,

(ii) Mb ⊂ ϕ(int(Mc)), and
(iii) on M �Mb, Ω = η + π∗ω,

where η is a closed 2-form that satisfies:

– the restriction to each fibre agrees with ωF ,

– η(∂r, ·)|Ver ≡ 0,
– ∂r(η)≡ 0, and
– the Reeb vector field of the stable Hamiltonian structure (η, dθ) on ∂Mb is non-

degenerate.

Remark 14.14. When ω = dr ∧ dθ, Lemma 14.9 combined with Proposition 14.13
implies that (M,Ω) may be symplectically embedded inside a symplectic manifold
whose end is modeled after a symplectic mapping cylinder with non-degenerate Reeb
vector field. Condition (i) implies that one can arrange for this embedding to be
supported in the end of M . Condition (ii) implies that one can further arrange for
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the image of a fixed slice of the end of M under ϕ to be properly contained inside
the symplectization region.

To prove Proposition 14.13, we study Proposition 14.15 and combine it with
Lemma 14.7.

Proposition 14.15. Given c > b > a > 0, there exists a symplectic form ˜Ω on M

and a symplectic embedding

ψ : (M,Ω) ↪→ (M, ˜Ω)

that satisfy:

(i) ψ is the identity on Ma,

(ii) Mb ⊂ ψ(int(Mc)), and
(iii) on M �Mb, ˜Ω = η + π∗ω, where η = Ω|Mb

.

The proof of Proposition 14.15 is technical and quite involved. The idea is the
following. Consider the obvious radial deformation retraction ϕ : M →Mb. The pull-
back ϕ∗Ω is cohomologous to Ω; however, it is not symplectic. Nevertheless, ϕ∗Ω+ω

is symplectic and still cohomologous to Ω. So by Moser’s argument, we expect a
symplectic embedding

(M,Ω)→ (M,ϕ∗Ω + ω).

Given this, condition (iii) in Proposition 14.15 would be satisfied by construction.
However, this map is not the identity over Ma and, a priori, need not satisfy condition
(ii) in Proposition 14.15. So to achieve conditions (i) and (ii), above, one could replace
ϕ∗Ω +ω with ϕ∗Ω +  ·ω, where  is an appropriately defined radial cut-off function
on M that vanishes on Ma.

There are issues that arise when trying to make this rigorous. First, the symplectic
embedding obtained from Moser’s argument need not be well-defined. The flow that
gives this symplectic embedding may have solutions that exit all compact subsets
of M in finite time. Second, the retraction ϕ is never smooth and thus ϕ∗Ω is not
a differential 2-form. To deal with these complications, we break up the desired
symplectic embedding into three separate symplectic deformations, each of which is
explicit enough for us to control the solutions to the flow equation given by Moser’s
argument and, thus, obtain well-defined symplectic mappings as well as our desired
properties. But first, we fix coordinates and a description of Ω.

Notation 14.16. Using polar coordinates (r, θ) for (a,∞) × S1 ⊂ C
×, the compo-

sition r ◦ π is a proper submersion (and thus a fibre bundle)

π−1((a,∞)× S1)→ (a,∞).
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Trivialize π−1((a,∞)× S1) over (a,∞):

(a,∞)× π−1(b× S1) π−1((a,∞)× S1)

(a,∞) (a,∞).

Define S := π−1(b× S1). So π−1((a,∞) × S1) ∼= (a,∞) × S with the first factoring
agreeing with r ◦π. We will refer to this coordinate as r. The projection (a,∞)×S →
S is a (smooth) homotopy equivalence with (smooth) homotopy inverse given by the
inclusion of S. So over (a,∞), Ω is cohomologous to the pull-back of a closed 2-form
on S. More precisely, Ω = η+d(ξ), where η is the closed 2-form given by pulling-back
Ω along the composition

π−1((a,∞)× S1)∼= (a,∞)× S � S ↪→ π−1((a,∞)× S1).

By this description, η(∂r, ·) and ∂r(η) are both zero and ξ may be chosen to be
a 1-form whose restriction to S is zero. Indeed, if ξ did not vanish along S, then
restricting η + d(ξ) to S gives that ξ restricted to S is closed. So we can replace ξ

by ξ− (ξ|S) (where we abusively use ξ|S to denote the pull-back of the restriction of
ξ to S along the projection (a,∞)× S → S) and the resulting form will now vanish
along S.

Lemma 14.17 (The first symplectic deformation). Given c > b > a > 0 as in Proposi-

tion 14.15, for δ > 0 sufficiently small, there exists a symplectic form Ω′ on (a,∞)×S

and a symplectic embedding

ψ′ : ((a,∞)× S,Ω) ↪→ ((a,∞)× S,Ω′)

that satisfy:

(i) ψ′ is the identity for r ≤ a+(b− a)/2,
(ii) Ω′ = η + d(ξ′) with

ξ′ = (f + cδ)π∗dθ

for b− δ ≤ r ≤ b+ δ, where cδ is a fixed constant, and

(iii) r−1((a, b+ δ])⊂ ψ′(r−1((a, c))).

The idea for Lemma 14.17 is to pull-back Ω along a radial self-map of (a,∞)×S

that smoothly collapses a small annular neighborhood of π−1(b× S1) onto π−1(b×
S1). One then add a small multiple of ω (multiplied by an appropriate radial cut-off
function) to this pull-back to obtain a symplectic form that is cohomologous to the
original Ω. One then applies Moser’s argument to obtain the desired symplectic em-
bedding. If this self-map is the identity near a× S and one collapses a sufficiently
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small annular neighborhood of π−1(b×S1) onto π−1(b×S1), then by adding a suffi-
ciently small multiple of ω as above, we can obtain the additional conditions of the
lemma.

Proof. For each δ > 0 sufficiently small, fix a smooth function δ : R≥0 → R≥0 that
satisfies:

– δ(r) = r for 0 ≤ r ≤ a+ (b− a)/2 and c− (c− b)/2≤ r,
– δ(r) = b for b− δ ≤ r ≤ b+ δ, and
– ′δ(r)≥ 0 for all r with ′(r) = 0 if and only if b− δ ≤ r ≤ b+ δ.

For each δ, we have a smooth family of maps

φδ
s : (a,∞)× S → (a,∞)× S, φδ

s(r,x) = ((1− s) · r + s · δ(r), x)

for 0 ≤ s≤ 1. This gives the family (φδ
s)∗Ω of cohomologous 2-forms on (a,∞)× S.

Since dφδ
s|Ver = 1 for each s, each (φδ

s)∗Ω is a coupling form for (a,∞)×S with respect
to π. However, each form is not necessarily non-degenerate and thus is not necessarily
symplectic. Note, det(dφδ

s) ≥ 0 and det(dφδ
s) = 0 if and only if b− δ ≤ r ≤ b+ δ and

s = 1. So (φδ
s)∗Ω is degenerate if and only if b−δ ≤ r ≤ b+δ and s = 1. Let Rs denote

the curvature of Ωs with respect to ω. We have Rs ≥ 0 with Rs = 0 if and only if
b− δ ≤ r ≤ b+ δ and s= 1.

To rectify the degeneracy, for each ε > 2bδ sufficient small, fix a smooth function
Hε :R≥0 →R≥0 that satisfies:

– Hε(r) = 0 for 0≤ r ≤ a+ (b− a)/2,
– Hε(r) = f + cε for b− δ ≤ r ≤ b+ δ, where cε is some constant,
– Hε(r) = ε for c− (c− b)/2≤ r, and
– H ′

ε(r)≥ 0 for all r.

Define a smooth family of 2-forms on (a,∞)× S,

Ωs := (φδ
s)∗Ω + s · d(Hε · π∗dθ).

By construction, Ωs is a smooth family of cohomologous symplectic forms on (a,∞)×
S.

We wish to apply Moser’s argument to this symplectic deformation to obtain our
desired symplectic embedding. Using our description of Ω = η + d(ξ) and the fact
that (φδ

s)∗η = η (η is independent of r),

d

ds
(Ωs) = d

(

d

ds

(

(φδ
s)∗ξ

)

+Hε · π∗dθ

)

=: d(ξs).

Define Vs by Ωs(Vs, ·) = −ξs. Let ψs denote the time s flow of Vs. By Moser’s argu-
ment, if ψs is well-defined, then it is a symplectic embedding. We claim that ψ′ := ψ1
and Ω′ = Ω1 define the desired pieces of data for δ and ε sufficiently small.

First, we show that ψs is well-defined for 0 ≤ s ≤ 1 and is the identity for r ≤
a+(b− a)/2. Since φδ

s is the identity for r ≤ a+(b− a)/2 and c− (c− b)/2 ≤ r, we
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have for said values of r that

d

ds

(

(φδ
s)∗ξ

)

≡ 0.

Also for r ≤ a+(b−a)/2, Hε = 0 and for c− (c−b)/2≤ r, Hε is constant and equal to
ε. So for r ≤ a+(b−a)/2, Vs = 0 and, consequently, ψs is the identity and well-defined
for 0≤ s≤ 1 on this end. On the other end, by Lemma 14.5, for c− (c− b)/2≤ r,

Vs =
−ε

f ′ ·Rs
·˜∂r.

So Vs is always pointing inward with respect to r and thus ψs is well-defined for
0≤ s≤ 1 on this end. It follows that ψs is well-defined for 0≤ s≤ 1.

Second, we show Ω′ = η+d(ξ′) with ξ′ = (f + cε)π∗dθ for b− δ ≤ r ≤ b+ δ. Notice
that for b− δ ≤ r ≤ b+ δ, the map φδ

1 agrees with the projection (a,∞)×S → S. So
(φδ

1)∗Ω = η and (φδ
1)∗ξ = 0 for b− δ ≤ r ≤ b+ δ. Setting

ξ′ = ξ1 = d
(

(φδ
1)∗ξ +Hε · π∗dθ

)

,

the desired result follows.
Finally, we explain the inclusion r−1((a, b + δ]) ⊂ ψs(r−1((a, c))). For c − (c −

b)/2≤ r, our description of Vs (and compactness) implies that

lim
ε→0

|r(ψs)− r|= 0

on all compact subsets. So the inclusion holds by taking ε and δ sufficiently small. �

Lemma 14.18 (The second symplectic deformation). Assuming the notation of

Lemma 14.17, there exists a symplectic form Ω′′ on (a,∞) × S and a symplectic

embedding

ψ′′ : ((a,∞)× S,Ω′) ↪→ ((a,∞)× S,Ω′′)

that satisfy:

(i) ψ′′ is the identity for r ≤ b+ δ/3, and
(ii) Ω′′ = η + d(ξ′′) with

ξ′′ = F · π∗dθ

for b− δ ≤ r, where F is a smooth function in r that satisfies F (r) = f +C for

b− δ ≤ r ≤ b+ δ/3 with C being some fixed constant.

The idea of Lemma 14.18 is to pull-back Ω along a radial self-map of (a,∞)× S

that smoothly collapses the entire positive end of (a,∞)×S onto π−1((b+δ/2)×S1)
for some small δ. One then add a sufficiently large, radially varying, symplectic form
from the base (a,∞)×S1 (again, multiplied by an appropriate radial cut-off function)
to this pull-back to obtain a symplectic form that is cohomologous to the original Ω.
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When the symplectic area of this base form is sufficiently large, one can show that
the flow obtained from Moser’s argument is well-defined. The additional conditions
of the lemma will follow as in Lemma 14.18.

Proof. Fix a smooth function  :R≥0 →R≥0 that satisfies

– (r) = r for 0 ≤ r ≤ b+ δ/3,
– (r) = b+ δ/2 for b+ δ/2≤ r, and
– ′(r)≥ 0 for all r with ′(r) = 0 if and only if b+ δ/2≤ r.

As in Lemma 14.17, we have a smooth family of maps

φ′
s : (a,∞)× S → (a,∞)× S, φ′

s(r,x) = ((1− s) · r + s · (r), x)

for 0≤ s≤ 1, which gives rise to the family (φ′
s)∗Ω′ of cohomologous coupling forms

(with respect to π) on (a,∞) × S. Let R′
s denote the curvature of the coupling

form (φ′
s)∗Ω′ with respect to ω. As in Lemma 14.17, R′

s ≥ 0 with R′
s = 0 if and

only if b+ δ/2≤ r and s= 1. To run Moser’s argument, we again need to rectify this
degeneracy; however, there is the complication that the support of φ′

s is not compact.
So we need a more delicate construction.

Let rn be a strictly increasing sequence of real numbers that diverges to infinity
and satisfies rn > c for each n. Let Un be a collection of connected, pairwise disjoint
open intervals in R>c such that rn ∈ Un. For each increasing sequence of positive real
numbers cn, fix a smooth function H{cn} : R≥0 →R≥0 that satisfies:

– H{cn}(r) = 0 for 0≤ r ≤ b+ δ/3,
– H ′

{cn}(r)≥ 0 with H ′
{cn}(r)> 0 for b+ δ/2≤ r, and

– H{cn}(r) = r + cn for r ∈ Un.

Define a smooth family of 2-forms on (a,∞)× S by

Ω′
s := (φ′

s)∗Ω′ + s · d
(

H{cn} · π∗dθ
)

.

Ω′
s is a smooth family of cohomologous symplectic forms on (a,∞)× S.
As in Lemma 14.17, we apply Moser’s argument to obtain our symplectic embed-

ding. Like before,

d

ds
(Ω′

s) = d

(

d

ds
((φ′

s)∗ξ′) +H{cn} · π∗dθ

)

=: d(ξ′s).

Define V ′
s by Ω′

s(V ′
s , ·) =−ξ′s. Let ψ′

s denote the time s flow of V ′
s . We claim that for

a particular choice of sequence cn, the flow ψ′
s is well-defined and is the identity for

r ≤ b+ δ/3.
We first show that ψ′

s is the identity (and thus well-defined) for r ≤ b+δ/3. Notice
that φ′

s is the identity for r ≤ b+ δ/3. So for said values of r,

d

ds
((φ′

s)∗ξ′)≡ 0.
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Also for r ≤ b + δ/3, H{cn} = 0. So for r ≤ b + δ/3, V ′
s = 0 and, consequently, ψ′

s is
the identity on this end.

We now show that ψ′
s is well-defined for c≤ r. By Lemma 14.5, for b + δ/2 ≤ r,

the Ω′
s-dual of −H{cn} · π∗dθ is the vector field

Ws =
−H{cn}

(

f ′ ·R′
s + s ·H ′

{cn}

) · ˜∂r.

Let Zs denote the vector field determined by

Ω′
s(Zs, ·) =− d

ds
((φ′

s)∗ξ′) .

Using the splitting of the tangent space into vertical and horizontal components,
write Zs = fs · ˜∂r + Ys, where Ys is orthogonal to ˜∂r. The sign of the function fs
determines whether the vector field Zs is pointing inwards along the radial coordinate
r (this occurs when fs < 0) or is pointing outwards along the radial coordinate r (this
occurs when fs > 0). The vector field V ′

s is given by Zs +Ws. Notice that if

fs +
−H{cn}

(

f ′ ·R′
s + s ·H ′

{cn}

) ≤ 0,

then the flow of V ′
s is inward pointing. Notice that over each Un,

Ω′
s = (φ′

s)∗Ω′ + s · dr ∧ dθ.

So Ω′
s does not depend on the choice of function H{cn} over each Un. Also notice that

(φ′
s)∗ξ′ is independent of the choice of function H{cn}. So from the defining equation

for Zs, over each Un, fs is independent of the choice of function H{cn}. In particular,
if one were to choose different constants cn when defining H{cn}, then the description
of fs would not change over Un. On r−1(Un), the above equation is

fs(r,x)− r + cn
(f ′ ·R′

s(r,x) + s)
≤ 0.

By compactness, pick cn sufficiently large so that this inequality holds over Un. Again,
by fixing cn, we do not alter the description of fs over Un. So the flow ψ′

s is inward
pointing over each Un. It follows that the flow of ψ′

s is well-defined for 0 ≤ s≤ 1 on
every compact subset of (a,∞)×S and thus is globally well-defined for 0≤ s≤ 1, as
desired.

Fix cn so that the above flow ψ′
s is well-defined. Let ψ′′ := ψ′

1 and let Ω′′ := Ω′
1.

To complete the proof, we need to show that Ω′′ = η + d(ξ′′) with ξ′′ = F · π∗dθ

for b − δ ≤ r, where F is a smooth function in r that satisfies F (r) = f + C for
b− δ ≤ r ≤ b+ δ/3 with C being some fixed constant. As before, we have

ξ′′ = (φ′
1)∗ξ′ +H{cn} · π∗dθ = (φ′

1)∗(φ∗
1ξ) + (φ′

1)∗Hε · π∗dθ +H{cn} · π∗dθ.
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Notice that for b− δ ≤ r, the composition, φ1 ◦φ′
1, is given by the projection onto S.

So (φ′
1)∗(φ∗

1ξ) = 0. Since φ′
1 only depends on the variable r, F := (φ′

1)∗Hε +H{cn} is a
smooth function only depending on r and ξ′′ = F ·π∗dθ for b−δ ≤ r. Finally, F agrees
with f +C for b−δ ≤ r ≤ b+δ/3. Indeed, φ′

1 is the identity for r ≤ b+δ/3, H{cn} ≡ 0
for r ≤ b+ δ/3, and Hε = f +C for b− δ ≤ r ≤ b+ δ. So for b− δ ≤ r ≤ b+ δ/3,

F (r) = (φ′ ∗
1 Hε +H{cn})(r) =Hε(r) +H{cn}(r) = f +C. �

Lemma 14.19 (The third symplectic deformation). Assuming the notation of

Lemma 14.17 and Lemma 14.18, there exists a symplectic form Ω′′′ on (b− δ,∞)×S

and a symplectic embedding

ψ′′′ : ((b− δ,∞)× S,Ω′′) ↪→ ((b− δ,∞)× S,Ω′′′)

that satisfy:

(i) ψ′′′ is the identity for r ≤ b+ δ/3, and
(ii) Ω′′′ = η + d(ξ′′′) with ξ′′′ = (f +C) · π∗dθ, where C is some constant.

We indicate the idea. The form Ω′′ in Lemma 14.18 almost satisfies the conditions
of Lemma 14.19. For r ≥ b + δ, Ω′′ = η + d(F · π∗dθ). So we need to alter the form
so that for r ≥ b + δ, Ω′′′ = η + d(f · π∗dθ). In the case where η = 0 (that is, when
our total space is C), we can always construct (the obvious) symplectic deformation
between these two forms. The associated flow from Moser’s argument can be explic-
itly computed using that it is radially determined and area preserving. When one
explicitly solves, one sees that the flow is well-defined when the symplectic areas of
d(f · π∗dθ) and d(F · π∗dθ) are infinite, which is ensured by our construction. So to
produce the result for η �= 0, we relate its associated flow from Moser’s argument to
the flow in case where η = 0.

Proof. Consider the smooth function G :R≥b−δ →R≥0, G(r) = f +C, where C is the
constant in Lemma 14.18. We have a smooth family of symplectic forms

Ω′′
s = η + d(((1− s) ·F + s ·G) · π∗dθ)

for 0 ≤ s ≤ 1. By Lemma 14.5 and the discussion in the proof of Lemma 14.9, the
vector field V ′′

s ,

Ω′′
s(V ′′

s , ·) = (F −G) · dθ,

is

V ′′
s =

F −G

(1− s) · F ′ + s ·G′ · ∂r.

Let ψ′′
s denote the time s flow along V ′′

s . We claim that ψ′′
s is well-defined and the

identity for r ≤ b+ δ/3.
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Notice that the flow of V ′′
s is well-defined if and only if the flow of Ws is well-

defined, where Ws is the vector field on (b− δ,∞)× S1 determined by

d(((1− s) · F + s ·G) · dθ)(Ws, ·) = (F −G) · dθ,

that is,

Ws =
F −G

(1− s) · F ′ + s ·G′ · ∂r.

Let us define ωs = d(((1− s) · F + s ·G) · dθ). By Moser’s argument, the flow along
Ws, which we denote by Φs, is a symplectomorphism (Φ∗

sωs = ω0) and thus an area
preserving map with respect to the area forms ωs and ω0. Since Ws is independent
of θ, Φs may be written as (r, θ) �→ (ϕs(r), θ), where ϕs :R≥0 →R≥0. Computing, we
have that

(F (r)− F (b)) ·
∫

b×S1
dθ

=
∫

r×S1
F (r)dθ−

∫

b×S1
F (b)dθ

=
∫

[b,r]×S1
ω0

=
∫

[b,r]×S1
Φ∗

sωs

=
∫

[b,ϕs(r)]×S1
ωs

=
∫

[b,ϕs(r)]×S1
d(((1− s) ·F + s ·G) · dθ)

=
∫

ϕs(r)×S1
((1− s) · F (ϕs(r)) + s ·G(ϕs(r))) · dθ

−
∫

b×S1
((1− s) · F (b) + s ·G(b)) · dθ

= ((1− s) · (F (ϕs(r))− F (b)) + s · (G(ϕs(r))−G(b))) ·
∫

b×S1
dθ,

where the second equality follows from Stokes’s Theorem, the third equality follows
from Φs being a symplectomorphism, the forth equality follows from the change of
variables formula and the fact that φs(b) = b (indeed, since F = G for r ≤ b + δ/3,
Ws = 0 and thus ϕs is the identity in this region), the sixth equality follows from
Stoke’s Theorem, and the remaining equalities should be clear. Canceling terms
(recall that F (b) =G(b)),

F (r) = (1− s) · F (ϕs(r)) + s ·G(ϕs(r)).
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The derivative of the right-hand-side is positive for 0 ≤ s≤ 1. So for 0 ≤ s≤ 1, the
right-hand-side is invertible. So we can solve for ψ′′

s when the range of the left-hand-
side is contained in the range of the right-hand-side. Notice that when s > 0, the range
of the right-hand-side is [f(b)+C,∞), because G(r) = f(r)+C is exhaustive (since f ′

and f ′′ are both positive) and F (b) =G(b). Since F ′ is positive and F (b) = f(b)+C,
the range of the left-hand-side is contained in [f(b) +C,∞). So we can solve for ψ′′

s

and the flow is well-defined.
Finally, since F = G for r ≤ b + δ/3, V ′′

s = 0 and thus ψ′′
s is the identity for said

values of r. Setting ψ′′′ := ψ′′
1 and

Ω′′′ := Ω′′
1 = η + d(G · π∗dθ) = η + d ((f +C) · π∗dθ)

yields the desired data. �

We now chain together the above deformations and prove Proposition 14.15.

Proof. First, the symplectic embeddings and symplectic forms constructed in the
above lemmas all extend to symplectic (self) embeddings and symplectic forms on
all of M , because ψ′, ψ′′, and ψ′′′ are all the identity near a, a, and b− δ respectively.
We do not distinguish between the original maps and forms and their respective
extensions to M . Set ψ = ψ′′′ ◦ ψ′′ ◦ ψ′ and ˜Ω = Ω′′′. Notice that for b− δ ≤ r, Ω′′′ =
η + π∗ω. ψ is the identity over Da ⊂C because ψ′, ψ′′, and ψ′′′ are each the identity
in this region. Finally, the inclusion, Mb ⊂ ψ(int(Mc)), follows from the inclusion
property of ψ′ from Lemma 14.17 and the fact that ψ′′ and ψ′′′ are both the identity
for r ≤ b+ δ/3. This finally completes the proof. �

Now we produce one final deformation to prove Proposition 14.13. The idea is to
introduce a small perturbation as in Lemma 14.7 to the symplectic form ˜Ω from
Proposition 14.15. If we make the perturbation sufficiently small, then applying
Moser’s argument will produce a symplectomorphism from ˜Ω to the perturbed form
that still preserves the additional conditions of the propositions.

Proof. Assume the notation and conclusions of Proposition 14.15. For δ > 0 suffi-
ciently small, consider a generic Hamiltonian H :M →R that satisfies:

(i) H ≡ 0 for r ≤ a+ δ,
(ii) H is independent of r for r ≥ b− δ, and
(iii) H ≥ 0.

Define

Ωs := ˜Ω + s · d(H · dθ).

For |H| sufficiently small, Ωs will be symplectic. Consider the vector field Vs,

Ωs(Vs, ·) =−H · dθ.
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By Lemma 14.5, for r > 0,

Vs =
−H

f ′ ·Rs
· ∂r,

where Rs is the curvature of Ωs with respect to ω. Let ψs be the time s flow along
Vs. We claim that the symplectic form Ω := Ω1 and the symplectic mapping

ψ1 ◦ψ : (M,Ω)→ (M,Ω)

define the desired data.
We argue that ψs is well-defined for all 0 ≤ s ≤ 1. For r ≤ a + δ, H ≡ 0. So for

r ≤ a + δ, Vs vanishes and ψs is the identity in this region. For r ≥ b − δ, H is
independent of r. So by Lemma 14.9, Rs ≡ 1. Since H ≥ 0, for r ≥ b− δ, Vs is inward
pointing along ∂r. So the flow ψs is globally well-defined for 0≤ s≤ 1.

Next, by Proposition 14.15 and the discussion above, ψ1 ◦ ψ is the identity on
Ma. To obtain the inclusion Mb ⊂ (ψ1 ◦ ψ)(int(Mc)), we argue as follows. Over the
support of ψs, the curvature Rs is bounded below independently of s. Consequently,
as |H| → 0, ψs converges to the identity map. So using that Mb ⊂ ψ(int(Mc)), we
may take H to be sufficiently small so that ψ1 preserves this inclusion. Finally, on
M �Mb, we have that

Ω = η + d(H · dθ) + π∗ω.

Define η = η+d(H ·dθ). By Lemma 14.7, for a generic choice of H , η will satisfy the
conditions of the lemma. �

14.4 Flattening more Hamiltonian fibrations. We show that every Hamiltonian
fibration over C can be embedded into the product Hamiltonian fibration over C.
Let (M,Ω) be a symplectic manifold. Let π : M →C be a smooth, proper map that
is a submersion over all of C, which we assume gives a Hamiltonian fibration. Let
F = π−1(0) denote the fibre of π over the origin. Let ΩF denote the restriction of
Ω to F . Let ω := d(fdθ) be a symplectic form on (0,∞)× S1, where f is a smooth
function in r that vanishes at the origin and has non-negative second derivative.

Proposition 14.20. There exists a symplectic embedding

ϕ : (M,Ω) ↪→ (F ×C,ΩF + ω),

which is a smooth homotopy equivalence and is the identity from π−1(0) to F ×{0}.

The construction is very similar to the construction of the embedding in Proposi-
tion 14.13. So when elements of the construction are entirely analogous to elements
of the construction in Proposition 14.13, we will leave it to the reader to check that
the previous arguments carry over. We now fix a nice system of coordinates and a
nice description of Ω.
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Notation 14.21. Fix polar coordinates (r, θ) for C. Since π is everywhere a proper
submersion, fix a trivialization of π. Namely, identify M with F × C and π with
the projection to the second component, π : F ×C→C. Let πF : F ×C→ F denote
the projection to the first component. This is a smooth homotopy equivalence with
smooth homotopy inverse given by the inclusion of F as F × {0}. So the closed
2-form Ω is cohomologous to the pull-back of a closed 2-form ΩF on F . We have
Ω = ΩF + d(ξ). Moreover, ξ may be chosen to be a 1-form whose restriction to F

is zero. Indeed, if ξ does not vanish along F , then restricting ΩF + d(ξ) to F gives
that ξ restricted to F is closed. Consequently, we can replace ξ by ξ− (ξ|F ) and the
resulting form will now vanish along F , as desired.

Lemma 14.22. There exists a function H :R→R such that d(H(r)dθ) is symplectic

on C and there exists a symplectic embedding

ψ′ : (F ×C,ΩF + d(ξ)) ↪→ (F ×C,ΩF + d(H(r)dθ)),

which is a smooth homotopy equivalence and is the identity from π−1(0) to F ×{0}.

Proof. Consider the smooth family of maps ψs : F ×C→ F ×C given by ψs(x, z) =
(x, s · z). Notice that ψ1 is the projection to F and ψs(x,0) = (x,0) for all x ∈ F .
This gives rise to the family (φs)∗Ω of cohomologous coupling forms (with respect
to π). Let Rs denote the curvature of the coupling form (φs)∗Ω with respect to ω.
Analogous to the argument in Lemma 14.17, Rs ≥ 0 with Rs = 0 if and only if s = 1.
We consider the family of cohomologous symplectic forms

Ωs := φ∗
sΩ + s · d(H(r)dθ)

for some radial function H to be determined. The curvature of the coupling forms
Ωs is

Rs + s · H
′(r)

f ′(r)
.

As in Lemma 14.17, we apply Moser’s argument to obtain our symplectic embedding.
We have

d

ds
(Ωs) = d

(

d

ds
((φs)∗ξ) +H · dθ

)

=: d(ξs).

Define the vector field Vs by Ωs(Vs, ·) =−ξs. Let ψs denote the time s flow of Vs. For
a particular choice of function H , the flow ψs is well-defined and is the identity on
F × {0}. To see this, one constructs a sufficiently large function H as in the proof
of Lemma 14.18 that vanishes at the origin. As in Lemma 14.18, this will ensure
that the flow ψs is well-defined. To see that ψs fixes F × {0} for all s, observe that
ξs|F×{0} = ξ|F×{0} = 0. So Vs vanishes along F × {0} and ψs is the identity along
F × {0}. Setting ψ′ := ψ1 proves the lemma. �
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Lemma 14.23. Let f be as above. Given H :R→R such that d(H(r)dθ) is symplectic

on C and H(0) = 0, there exists a symplectic embedding

ψ′′ : (F ×C,ΩF + d(H(r)dθ)) ↪→ (F ×C,ΩF + d(fdθ))

such that ψ′′ is a smooth homotopy equivalence that is the identity from π−1(0) to

F × {0}.

Proof. We have a smooth family of symplectic forms

Ωs = ΩF + d(((1− s) ·H + s · f) · dθ)

for 0 ≤ s ≤ 1. By Lemma 14.5 and the discussion in the proof of Lemma 14.9, the
vector field Vs determined by Ωs(Vs, ·) = (H − f) · dθ is

Vs =
H − f

(1− s) ·H ′ + s · f ′ · ∂r.

Let ψs denote the time s flow along Vs. To see that the flow ψs is well-defined, one
argues almost identically to the proof of Lemma 14.19. To see that ψs is the identity
on F × {0}, one observes that Vs vanishes along F × {0} and thus the flow is the
identity along F × {0}, as desired. Setting ψ′′ := ψ1 proves the lemma. �

Proposition 14.20 now follows immediately from composing the embeddings con-
structed in Lemma 14.22 and Lemma 14.23.

Part 4 Gromov-type compactness results

In this part, we discuss Gromov-type compactness results that are necessary for
our main results. We will prove a compactness result for sequences of holomorphic
curves with boundaries that arise in the proof of our main result; namely, the se-
quences of curves that degenerate to the center fibre of our degeneration to the
normal cone. We also prove a Gromov-Floer-type compactness result for sequences
of Floer trajectories associated to sequences of Hamiltonians that uniformly converge
to the zero Hamiltonian on a compact subset. This is the key ingredient that allows
us to produce holomorphic curves from Floer trajectories.

15 Compactness for degenerations à la fish

We establish a compactness result (specific to our setting) for holomorphic curves
with boundaries.

Notation 15.1. Let (Q,Ω, J) be an almost Kähler, symplectic manifold with
boundary such that int(Q) is an open complex analytic manifold. Let πQ : Q→C be
a proper, surjective map with π−1

Q (0) = F ∪E, where E is a compact subset of Q,
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and F is a (possibly singular) proper, complex analytic subscheme of the interior of
Q that is not strictly contained in E.

Let M be a smooth quasi-projective variety with a smooth, projective compacti-
fication M . We assume that there exists a birational map ϕ : F →M that gives an
isomorphism ϕ : (F �E ∩ F )→M .

To orient the reader, Q will be a “trimming” of the degeneration of the normal
cone of π−1(∞) to M in Lemma 8.3. The below lemma is inspired by a result of
McLean [McL14, Lemma 4.6]. As with McLean’s result, Lemma 15.2 relies on a
compactness result due to Fish [Fis11, Theorem A].

Lemma 15.2. Suppose that there is a sequence of (possibly disconnected) genus zero,

compact, holomorphic curves uν : Σν →Q with non-empty boundaries20 that satisfy:

– πQ ◦ uν ≡ zν ∈C with zν → 0,
– uν(xν) → p ∈ F �E ∩ F for some xν ∈Σν ,

– uν(∂Σν)⊂ ∂Q,

– uν(Σν) is connected, and

– the energies of the uν (with respect to Ω and J) are uniformly bounded in ν.

There exists a genus zero, compact, holomorphic curve u : Σ →M with empty bound-

ary such that u(Σ) is connected, and the image of u intersects ϕ(p) and M �M .

Proof. Fix a background metric on Q with distance function dist. After passing to a
subsequence of the uν , assume the images of the uν lie in a fixed compact subset of
Q. So by [Fis11, Theorem A], there exists a subsequence of the uν , ε > 0, and a dense
open subset I ⊂ [0, ε) such that for each δ ∈ I, the sequence of curves uδ

ν : Σδ
ν →Qδ,

where

Qδ = {q ∈Q | dist(p, ∂Q)≥ δ}

and

Σδ
ν := {x ∈Σν | dist(uν(z), ∂Q)≥ δ} ,

Gromov converges (see [Fis11, Definition 2.11]). For each δ ∈ I and each ν, Σδ
ν is a

compact surface with boundary. Now fix δ ∈ I such that the uδ
ν Gromov converges

and such that F is a proper subset of int(Qδ). Since uν(Σν) is connected for each
ν, there exists a (possibly non-unique) subset of connected components Σδ

ν
′ ⊂ Σδ

ν

such that uδ
ν(Σδ

ν
′) is connected and intersects both p̃ and ∂Qδ. After passing to

a subsequence, assume that the subsequence uδ
ν |Σδ

ν
′ : Σδ′

ν → Qδ Gromov converges.
Denote the limiting stable holomorphic curve by v :C →Qδ.

The map v will not satisfy the conclusions of the lemma. However, restricting v

to a subdomain will yield the desired curve. To this end, denote the associated map
with “smoothed” domain by ṽr : ˜Cr → Qδ (see [Fis11, Discussion before Definition

20 We do not place any constraints on the topological type of the boundaries.
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2.11]). By Gromov convergence, there exist diffeomorphisms φν : Σδ
ν
′ → ˜Cr such that

the maps vν := uδ
ν ◦ φ−1

ν : ˜Cr → Qδ converge to ṽr in C0(˜Σr). Using this and our
hypotheses, we deduce that

(i) v(C) is contained in E ∪ F ,
(ii) v(∂C)⊂E � (E ∩ F ),
(iii) v(C)∩E �=∅,
(iv) there exists x ∈C � ∂C such that v(x) = p, and
(v) v(C) is connected.

Now we define our desired curve. By items (i), (iii), (iv), and (v) above, there
exists a sequence of connected components C0, . . . ,Ck ⊂C such that x ∈C0, v(Ci)∩
v(Ci+1) �=∅, and v(Ck)∩E �=∅.

Since F is a proper, complex analytic subscheme of int(Q) and v : C → F ∪E is
a holomorphic map, if v(Ci) ∩ (F � (E ∩ F )) �= ∅, then v(Ci) ⊂ F . Let 0 ≤ ≤ k be
the smallest integer such that v(C�) ∩ (F � (E ∩ F )) �= ∅ and v(C�) ∩ (F ∩E) �= ∅.
So C� is the first component in the sequence that is completely contained in F and
non-trivially intersects E. Given this , if i≤ , then v(Ci)⊂ F . Set Σ := ��

i=0Ci and
define u : Σ→M by composing v|Σ with ϕ : F →M .

It remains to show that u : Σ→M satisfies the conclusions of the lemma. To see
that u defines a genus zero, compact, holomorphic curve with empty boundary, we
proceed as follows. First, Σ is compact by construction. Second, the genus is zero by
the classification of surfaces with boundaries. Third, to see that the boundary of Σ is
empty, argue as follows: Since ∂Σ ⊂ ∂C, v|Σ(∂Σ)⊂ v(∂C)⊂E� (E ∪F ) (using item
(ii) above). But v|Σ(Σ) ⊂ F . So v|Σ(∂Σ) = ∅, that is, ∂Σ = ∅. Finally, that u(Σ) is
connected and intersects ϕ(p) and M �M is immediate from our construction. This
completes the proof. �

16 Gromov-Floer compactness with turning off Hamiltonians

Let (M,Ω, λ) be a convex symplectic domain with an admissible almost complex
structure J . We also assume that the boundary of M has non-degenerate Reeb
vector field. We consider how to produce holomorphic curves from sequences of Floer
trajectories associated to Hamiltonians that become zero on the interiors of domains
via a Gromov-Floer-type compactness result. Consider a degenerating sequence of
Hamiltonians.

Notation 16.1. Let Hν be a sequence of (a−δ+ε)-radially admissible Hamiltonians
on M with

– Hν =Hν+1 for a− δ + ε≤r(x), and
– Hν = εν · g on Ma−δ, where g is a negative C2-small Morse function that is

Morse-Smale with respect to J and limν→∞ εν = 0.
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Let H∞ be the limiting Hamiltonian, which we assume to be smooth. We assume
that these Hamiltonians have been chosen so that they have no 1-periodic orbits in
the cylindrical region (a−δ, a−δ+ε). There is an obvious identification of the orbits
of Hν with the orbits of Hν+1. So we do not distinguish between the orbits of these
different Hamiltonians.

Given H∞, we define a notion of a Morse-Bott broken Floer trajectory, which is
an appropriate gluing of Floer trajectories associated to (H∞, J) with segments of
negative gradient trajectories of g. Similar definitions appear in [DL19] and [BO09].
The main difference is that our Hamiltonian H∞ is non-degenerate in the collar
neighborhood of the boundary. We added in perturbations near our S1-families of
orbits (see Remark 5.7). Consequently, we do not need to consider “cascades” that
arise when one “turns off” the Hamiltonian perturbation term about these orbits.

Definition 16.2. A Morse-Bott broken Floer trajectory of type ((H∞, J, g), x−, x+)
is a tuple (γ0, u1, γ1, . . . , uk, γk, uk+1, uk+2, . . . , um) where

(i) ui : Ci →M is a smooth map with each Ci being a nodal curve of type (0,2)
with punctures p±i both contained in the same irreducible component, denoted
C0

i , and
(ii) γi : Ii →M is a smooth map with Ii being a closed, connected subset of R.21

These maps satisfy

(i) lims→±∞ ui|C0
i

= xi
± are orbits of H∞,22

(ii) lims→−∞ γ0(s) = x−,
(iii) lims→+∞ um(s, t) = x+,
(iv) ev(γi) = xi

+ for 1≤ i≤ k,
(v) ev(γi) = xi+1

− for 0≤ i≤ k, and
(vi) xi

+ = xi+1
− for k + 1≤ i≤m− 1,

and

(i) ∂(H∞,J)u
i|C0

i
≡ 0,

(ii) ui|Ci�C0
i

is holomorphic, and
(iii) −∇g ◦ γi = (γi)′.

See Figure 8 for a depiction of a Morse-Bott broken Floer trajectory. Notice that
in Definition 16.2, the orbit x+ does not necessarily need to be a non-constant orbit.
Similarly, the orbit x− does not necessarily need to be a constant orbit. We point
out that if x− is non-constant and x+ is constant, then by Proposition 18.4 no
such Morse-Bott broken Floer trajectory can exist. In our applications, x− will be a
constant orbit and x+ will be a non-constant orbit.

21 In other words, Ii is either of the form [a, b], [a,+∞), or (−∞, b] for some constants a and b.
22 If any of the orbits xi

± of H∞ are contained in Ma−δ , then they could be any points (constant
orbits) in Ma−δ since H∞ vanishes in this region. These orbits are not necessarily critical points of
g.
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Figure 8: A heuristic picture of a Morse-Bott broken Floer trajectory.

We want the following compactness result.

Proposition 16.3. Let uν ∈M((Hν , J), x−, x+) be a sequence of Floer trajectories

with energies uniformly bounded by a constant E, and suppose that each uν has a

single irreducible component. There exists a Morse-Bott broken Floer trajectory of

type ((H∞, J, g), x−, x+), (γ0, u1, γ1, . . . , uk, γk, uk+1, uk+2, . . . , um), and shifts siν ∈ R

so that uν(·+ siν , ·) converges to ui in the Gromov-Floer sense, and
∑m

i=0E(ui)≤E.

To drop the assumption that uν has a single irreducible component and still
obtain a Morse-Bott broken Floer trajectory, one simply inducts, keeping track of
bubbles. The proof of Proposition 16.3 is long and slightly tedious. We give it as a
sequence of claims. Now we fix notation.

Notation 16.4. Fix a background metric on M with injectivity radius less than 1.
Let dist denote its associated distance function. Let

Bc(x) = {y ∈M | dist(x, y)< c}

denote the open metric ball of radius c about a 1-periodic orbit x of Hν . Without
loss of generality, we may assume that

– the B1(x) are pairwise disjoint among 1-periodic orbits of Hν , and
– if r(x)≥ a− δ + ε, then r(B1(x))≥ a− δ + ε.

We construct the Morse-Bott broken Floer trajectory inductively. We will start
at the orbit x+ and construct our way down to the orbit x−.

Lemma 16.5. If r(x+)≥ a−δ+ε, then there exists sequences of shifts siν for 1 ≤ i≤ 

(for some ) such that (after extracting a subsequence) uν(·+ siν , ·) converges in the

Gromov topology to an element ui of M((H∞, J), xi
−, x

i
+), where xi

− and xi
+ are

1-periodic orbits of H∞ that satisfy:

(i) x1
+ = x+,

(ii) xi
− = xi+1

+ for 1 ≤ i≤ − 1,
(iii) r(xi

+)≥ a− δ + ε for 1≤ i≤ ,

(iv) r(xi
−)≥ a− δ + ε for 1≤ i≤ − 1, and

(v) either x�
− = x− or r(x�

−) ≤ a− δ.

The proof of Lemma 16.5 follows the classical proof of Floer’s original global
compactness result [Flo89, Proposition 3b]. We closely follow the proof in [AD14,
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Theorem 9.1.7] in order to fix notation and establish some properties for our se-
quences of shifts, both of which will be used later.

Proof. Define

s1
ν := sup{s | uν(s, ·) ∈M �B1(x+)}.

Consider uν(· + s1
ν , ·). After extracting a subsequence, it converges in the Gromov

topology to an element u1 of M((H∞, J), x1
−, x

1
+) by Floer’s original compactness

theorem [Flo89, Proposition 3c]. By construction,

uν(s+ s1
ν , ·)∩B1(x+) �=∅

for all s > 0. Also, uν(s1
ν , t) ∈ ∂B1(x+) for some t. So u1 must satisfy:

– u1(s, ·)∩B1(x+) �=∅ for s > 0, and
– u1(0, ·)∩ ∂B1(x+) �=∅.

Since the 1-periodic orbits of H∞ are isolated for r ≥ a− δ + ε,

x1
+ = lim

s→+∞
u1(s, t) = x+.

If r(x1
−)≤ r− δ, then we are done. If not, then r(x1

−) ≥ a− δ + ε, and we iterate the
following argument below until we do obtain a 1-periodic orbit x�

− with r(x�
−)≤ a−δ.

Since lims→−∞ u1(s, t) = x1
−, there exists s− so that u1(s, ·) ∈ B1(x1

−) for all s≤
s−. Since uν(s− + s1

ν , ·) converges to u1(s−, ·), we have that

uν(s− + s1
ν , ·) ∈B1(x1

−),

for ν � 0. Since x1
− �= x−, uν must exit B1(x1

−) for s� s− + s1
ν . So define

s2
ν := sup{s≤ s− + s1

ν | uν(s, ·) ∈M �B1(x1
−)}.

Consider uν(·+ s2
ν , ·). After extracting a subsequence, this sequence converges in the

Gromov topology to an element u2 of M((H∞, J), x2
−, x

2
+). We claim that x2

+ = x1
−,

and x2
− �= x1

−.
We first observe that s1

ν −s2
ν → +∞. Indeed, suppose by way of contradiction that

s1
ν−s2

ν ≤C for some constant C. Then [s2
ν−s1

ν , s
−]⊂ [−C,s−]. Since uν(·+s1

ν , ·)→ u1

uniformly on all compact subsets modulo bubbling, it does so on [−C,s−]× S1. By
definition of s−, u1([−C,s−], ·)⊂B1(x1

−). So for ν � 0,

uν([s2
ν , s

− + s1
ν ], ·)⊂ uν([−C,s−] + s1

ν , ·)⊂B1(x1
−).

In particular, u(s2
ν , ·)⊂B1(x1

−), which is a contradiction since uν(s2
ν , ·)∩ ∂B1(x1

−) �=
∅.

Now for fixed s > 0, there exists ν � 0 such that

s2
ν ≤ s2

ν + s≤ s− + s1
ν .
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So for this fixed s > 0 and ν � 0,

uν(s2
ν + s, ·)∩B1(x1

−) �=∅.

So u2(s, ·)∩B1(x1
−) �=∅ for all s > 0. Since x1

− is an isolated orbit,

x2
+ = lim

s→+∞
u2(s, t) = x1

−.

Also, u2(0, ·)∩ ∂B1(x2
+) �=∅. So u2 must exit this ball, and, consequently, x2

− �= x2
+.

We iterate this argument to obtain shifts siν for 1 ≤ i≤  and Floer trajectories
ui ∈M((H∞, J), xi

−, x
i
+) that satisfy the conclusions of the lemma. �

Given Lemma 16.5, either x�
− = x−, or r(x�

−) ≤ a − δ. In the former case, we
are done. So we assume that r(x�

−) ≤ a − δ and continue our argument. Now our
argument starts to differ from the standard argument presented in [AD14].

Lemma 16.6. There exists a sequence of shifts s�+1
ν such that (after extracting a

subsequence) uν(·+ s�+1
ν , ·) convergences in the Gromov topology to an element u�+1

of M((H∞, J), x�+1
− , x�+1

+ ), where x�+1
− and x�+1

+ are 1-periodic orbits of H∞ with

(i) s�ν − s�+1
ν → +∞,

(ii) x�+1
+ ∈B1(x�

−), and
(iii) r(u�+1)≤ a− δ.

Proof. As in Lemma 16.5, since lims→−∞ u�(s, t) = x�
−, there exists s−n such that

u�(s, t) ∈B1/n(x�
−) for all s≤ s−n . Since uν(s−n + s�ν , t) converges to u�(s−n , t),

uν(s−n + s�ν , t) ∈B1/n(x�
−)

for ν � 0. Since lims→−∞ uν(s, t) = x− �= x�
−, uν must exit B1/n(x�

−) for s� s−n + s�ν .
So define

s�+1
ν,n = sup{s≤ s− + s�ν | uν(s, ·) ∈B1/1(x�

−)} (1)

and set s�+1
ν := s�+1

ν,1 . Consider the sequence of Floer trajectories uν(·+ s�+1
ν , ·). After

extracting a subsequence, this sequence converges in the Gromov topology to an
element u�+1 of M((H∞, J), x�+1

− , x�+1
+ ). To wrap up the proof, we make remarks.

(i) As in Lemma 16.5, s�ν − s�+1
ν → +∞.

(ii) As in Lemma 16.5, u�+1(s) ∈B1(x�
−) for s≥ 0. In particular, x�

+ ∈B1(x�
−). How-

ever, since the orbits of H∞ are non-isolated in r ≤ a− δ, we can not conclude
that x�+1

+ is x�
−.

(iii) A priori, u�+1 could be constant. However, if it is constant, then x�+1
− �= x�

−
because u�+1(0, ·) meets ∂B1(x�

−).
(iv) Since the positive end of u�+1 is contained in {r ≤ a− δ}, Lemma 5.8 implies

that all of u�+1 is contained in {r ≤ a− δ}, as desired. �

We now construct a possibly broken negative gradient fragment of g that starts
at x�+1

+ and ends at x�
−.
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Lemma 16.7. There exists a sequence of shifts stopν such that (after extracting a

subsequence) uν(·+ s�+1
ν , ·) converges in the Gromov topology to the constant curve

at x�+1
+ .

Proof. We will need to extract a subsequence and relabel our sequence in order to
construct the stopν . First, if u�+1 is constant, then we are done and set stopν = s�+1

ν .
Now assume that u�+1 is non-constant.

As before, there exists constants s+
n > 0 such that u�+1(s, t) ∈ B1/n(x�+1

+ ) for all
s≥ s+

n , and there exists νn such that if ν ≥ νn, then

uν(s�+1
ν + s+

n , t) ∈B1/n(x�+1
+ ).

Since s�ν − s�+1
ν →∞, we may assume that if ν ≥ νn, then s�ν − s�+1

ν > n + s+
n . Now

diagonalize and relabel. Set ũν := uνν and s̃iν := siνν for all i. Notice that

– ũν(·+ s̃iν , ·) converges to ui,
– ũν(s̃�+1

ν + s+
ν , ·) ∈B1/ν(x�+1

+ ),
– s̃�ν − (s̃�+1

ν + s+
ν )→∞, and

– s+
ν − s̃�+1

ν →∞.23

Write uν for ũν and siν for s̃iν . We define stopν := s�+1
ν + s+

ν . Consider uν(· + stopν , ·).
After extracting a subsequence, this converges in the Gromov topology to some utop.
For each s fixed,

s− + s�ν > s+ stopν ≥ s�+1
ν

for ν � 0, where s− is as in Lemma 16.6. It follows that utop(s) ∈ B1(x�
−) for all

s and, consequently, utop is constant. In particular, utop converges to the constant
curve at x�+1

+ . �

Lemma 16.8. For each n sufficiently large, there exists a sequence of shifts s�+1
ν,n such

that (after extracting a subsequence) uν(·+ s�+1
ν,n , ·) converges in the Gromov topology

to a constant curve vn at a point xn ∈ ∂B1/n(x�
−). Moreover, s�+1

ν,n − stopν →∞, and

s�ν − s�+1
ν,n →∞.

Proof. Recall the shifts s�+1
ν,n from equation (1). Fix N � 0 such that dist(x�+1

+ , x�
−)>

1/N . Define vn to be the Gromov limit of the curves uν(s�+1
ν,n + ·, ·) for n ≥N . We

first show that for each n, s�+1
ν,n − stopν → ∞, and s�ν − s�+1

ν,n →∞. The second item
follows from the same argument used to show that s�ν − s�+1

ν → ∞. For the first
item, suppose by way of contradiction that 0 ≤ s�+1

ν,n − stopν ≤ C. Since uν(· + stopν , ·)
converges to x�+1

+ on all compact subsets, it does so on [0,C]. So

vn(0, ·) = lim
ν

uν(s�+1
ν,n − stopν + stopν , ·) = x�+1

+ .

23 Indeed, if s+
ν − s�+1

νν is bounded, then u�+1 would have to be constant, which we have assumed
not to be the case.
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But vn(0, ·) meets the boundary of B1/n(x�
−), a contradiction.

As before, vn(s, t) is contained in B1/n(x�
−) for s > 0; however, we further claim

that vn(s) is contained in B1(x�
−) for s < 0. For fixed s < 0 and ν � 0,

s�ν + s−n ≥ s�+1
ν,n ≥ s�+1

ν,n + s≥ s�+1
ν + s+

ν ≥ s�+1
ν .

It follows that uν(s+ s�ν,n, t) ∈B1(x�
−). Consequently, vn must be constant and con-

tained in the boundary of B1/n(x�
−). �

Lemma 16.9. There exists a possibly broken negative gradient fragment of g that

starts at x�+1
+ and ends at x�

− with length limn limν εν · (stopν − s�+1
ν,n ).

Proof. We will prove that there exists a possibly broken negative gradient fragment
of g from x�+1

+ to xn. As the xn converge to x�
−, a diagonalization produces the

desired trajectory from x�+1
+ to x�

−.
The energies of the uν(·+s�+1

ν,n , ·) over the intervals [stopν −s�+1
ν,n ,0] converge to zero

since their Gromov limits over these intervals are constant. So by the work in [Oh05]
(see [OZ22, Theorem 4.7] for a statement), there exists a possibly broken negative
gradient fragment of g from x�+1

+ to xn of length limν εν · (stopν − s�+1
ν,n ). �

One inducts upon the arguments in Lemma 16.6, Lemma 16.7, Lemma 16.8, and
Lemma 16.9 to obtain the desired Morse-Bott broken Floer trajectory in Propo-
sition 16.3. The energy equality in the statement of Proposition 16.3 follows from
the fact that after ignoring the gradient trajectory pieces, the sequence of curves uν

Gromov-Floer converges to �iu
i. Since Gromov-Floer convergence preserves energy

(see, for example, [Sal97, Sect. 3.1] and [Flo89, Proposition 3c] and note that the
proofs therein do not need that the sequence uν converges to Floer trajectories of a
non-degenerate Hamiltonian). The stated energy inequality follows. This completes
the proof of Proposition 16.3.

Part 5 Appendix

17 Algebraic preliminaries

17.1 Chain complexes and conventions. We fix conventions for chain complexes
and mapping telescopes.

Definition 17.1. Let K be a unital, commutative ring of characteristic zero. Let
Ch(K) denote the category whose objects are Z-graded chain complexes over K and
whose morphisms are chain maps. We use cohomological grading conventions for our
chain complexes. So the differentials increase the grading by +1.

Definition 17.2. A ray of chain complexes (a ray) is a sequence of chain maps

A =
{

A0
α0

A1
α1

A2
α2

· · ·
}

.
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Definition 17.3. The mapping telescope of a ray A is the chain complex with terms

Tel(A) =
⊕

i∈N
Ai[1]⊕Ai

and differential

d(. . . , (a′i, ai), . . . ) = (. . . , dAi[1](a′i),1[1](a′i) + dAi(ai) + αi−1[1](a′i−1), . . . )

= (. . . ,−dAi(a′i), a′i + dAi(ai) + αi−1(a′i−1), . . . ).

Remark 17.4. Pictorially, the differential of a mapping telescope is represented by
the following diagram. Notice that all maps have degree +1.

A0

dA0

A1

dA1

A2

dA2

· · ·

A0[1]

1[1]
α0[1]

dA0[1]

A1[1]

1[1]
α1[1]

dA1[1]

A2[1]

1[1]
α2[1]

dA2[1]

· · · .

Remark 17.5. The mapping telescope of a ray gives a representative for the homo-
topy colimit of the associated diagram.

There is a filtration

F n Tel(A) =
(

n−1
⊕

i=0
Ai[1]⊕Ai

)

⊕An, Tel(A) = colimnF
n Tel(A).

We have induced maps F n Tel(A)→An,
(

n−1
⊕

i=0
(0⊕(αn ◦ · · · ◦ αi))

)

⊕ 1An .

The maps F n Tel(A) →An are quasi-isomorphisms and fit into a strictly commuta-
tive diagram

F 0 Tel(A) F 1 Tel(A) F 2 Tel(A) · · ·

A0
α0

A1
α1

A2
α2

· · · .

This induces a map

Tel(A)∼= colimnF
n Tel(A) colimnAn .
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Since colimits commute with cohomology, we can deduced the following.

Lemma 17.6. The canonical map Tel(A)→ colimnAn is a quasi-isomorphism.

Using the filtration, we describe how homotopy commutative diagrams of rays
induce morphisms of the associated mapping telescopes. Consider a homotopy com-
mutative diagram of rays

A0

ϕ0

ψ0

A1

ϕ1

ψ1

· · ·

B0 B1 · · · .

This gives rise to a strictly commutative diagram of the filtered complexes

F 0 Tel(A)

F 0 Tel(ϕ0)

F 1 Tel(A)

F 1 Tel(ϕ1)

· · ·

F 0 Tel(B) F 1 Tel(B) · · ·

where

F n Tel(ϕn)(· · · , a′i, ai, . . .) = (· · · , ϕi[1](a′i), ψi−1(a′i−1) +ϕi(ai), . . .).

Passing to colimits, one obtains the desired morphism of the associated mapping
telescopes.

17.2 Completions of chain complexes over the Novikov ring. We discuss comple-
tions of chain complexes over the universal Novikov ring and how mapping telescopes
and colimits of rays behave with respect to such completions.

Definition 17.7. The universal Novikov field over24
Q is

Λ =

{ ∞
∑

i=0

qiT
Ri | qi ∈Q,Ri ∈R, and for each R ∈R the set {i | qi �= 0,Ri <R} is finite.

}

with addition and multiplication defined as they are for power series.

Definition 17.8. The valuation map val : Λ →R∪ {∞} is

val
( ∞

∑

i=0
qiT

Ri

)

=

⎧

⎨

⎩

mini{Ri | qi �= 0}, ∑∞
i=0 qiT

Ri �= 0
∞, else.

24 For the discussion in this section, one could replace Q with any unitial, commutiative ring. For
the discussion of the total exposition, one could replace Q with any field of characteristic zero.
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Definition 17.9. The universal Novikov ring over Q is Λ≥0 := val−1([0,∞)). Define
Λ≥R := val−1([R,∞)) and Λ>R := val−1((R,∞)), which are ideals in Λ≥0.

Given a chain complex A over Λ≥0 that is a free Λ≥0-module, the valuation map
extends to a valuation map val :A→R∪ {∞} by

val(a) =

⎧

⎨

⎩

min
{

R | 0 �= a ∈A⊗Λ≥0 (Λ≥0/Λ≥R)
}

, a �= 0
∞, else.

If A is finitely generated with basis a0, . . . , ak, the valuation of a =
∑

i λi · ai is
min{val(λi)}.

Definition 17.10. The completion functor ·̂ : Ch(Λ≥0) → Ch(Λ≥0) sends chain
complexes to their degree-wise completions,

̂A• = lim
R

A• ⊗Λ≥0 Λ/Λ≥R,

with degree-wise completed differentials ̂d.

Remark 17.11. It is useful to think of completions in terms of Cauchy sequences. A
Cauchy sequence in A is a sequence (a1, a2, . . . ) of elements of A such that for every
R ≥ 0 there exists N ∈ N so that if n,m≥N , then val(an − am) ≥ R. Two Cauchy
sequences (a1, a2, . . . , ) and (a′1, a′2, . . . , ) are equivalent if and only if for every R≥ 0
there exists N ∈N so that if n,m≥N , then val(an − a′m)≥R. The completion ̂A is
given by the set of Cauchy sequences in A. The completion of a map ϕ : A→ B is
given by the induced map on Cauchy sequences,

ϕ̂(a1, a2, . . . ) = (ϕ(a1), ϕ(a2), . . . ).

There is a canonical map A→ ̂A given by the inclusion of constant Cauchy sequences,
a �→ â := (a, a, a, . . . ).

For the case where A is a free Λ≥0-module, we have the following description.

̂A• =

{

∞
∑

j=0

λj · aj | λi ∈ Λ≥0, aj ∈A•, and for each R ∈R≥0 the set {i | val(λi) <R} is finite

}

and

̂d

⎛

⎝

∑

j∈N
λj · aj

⎞

⎠ =
∑

j∈N
λj · d(aj).

From this description, it becomes clear that if A is a degree-wise finitely generated,
free Λ≥0-module, then the induced map A → ̂A is an isomorphism, that is, A is
complete.
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In general, the functor ·̂ : Ch(Λ≥0) → Ch(Λ≥0) is not exact. It is a limit and
thus the obstruction to exactness is given by the non-vanishing of the associated
lim1 functor. Nevertheless, we still have the following analogue of Lemma 17.6 for
completions, for example, see [Var21, Lemma 2.3.7].

Lemma 17.12. The canonical map Tel(A) → colimA induces a quasi-isomorphism
̂Tel(A)→ ĉolimA.

17.3 From completed differentials to uncompleted differentials. We discuss how
non-trivial differentials in completed complexes give rise to non-trivial differentials
in the original (uncompleted) complexes. This is spelled out in the following two
lemmas.

Lemma 17.13. Let A be a chain complex over Λ≥0 with x ∈A closed. If [x̂] ∈H( ̂A)⊗
Λ is null-homologous, then there exists λ ∈Λ≥0 such that for each R≥ 0 there exists

y ∈A with

val(λ · x− d(y))>R.

So if val(λ · x)≤R, then y is non-zero.

Proof. Using Remark 17.11, there exists a Cauchy sequence (y0, y1, . . . ) such that the
Cauchy sequence (d(y0), d(y1), . . . ) is equivalent to the Cauchy sequence λ · (x,x, . . . )
for some λ ∈ Λ≥0. So for each R ∈ R≥0, there exists NR such that for all n ≥ NR,
val(λ · x− d(yn))>R. We take y = yNR

. �

Lemma 17.14. Let A be a ray of chain complexes over Λ≥0 with x ∈ A0 closed. If

[x̂] maps to zero under

H(̂A0)⊗Λ →H(̂Tel(ϕ))⊗Λ,

then there exists λ ∈ Λ≥0 such that for each R ≥ 0 there exists y ∈ An (for some n

dependent on R) with

val(λ · αn−1 ◦ · · · ◦ α0(x)− d(y))>R.

So if val(λ · αn−1 ◦ · · · ◦ α0(x))≤R, then y is non-zero.

Proof. By Lemma 17.13, there exists λ ∈ Λ≥0 such that for each R≥ 0, there exists
ỹ ∈Tel(A) with

val(λ · x− d(ỹ))>R,

where we have used x to denote the image of x in Tel(A). This inequality is realized
in, say, F n Tel(A). Write

ỹ = (y0, y
′
0, . . . , yn−1, y

′
n−1, yn) ∈ F n Tel(A).
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Applying the map F n Tel(A)→An,

val
(

λ · αn−1 ◦ · · · ◦ α0(x)− d

(

n
∑

i=0
αn−1 ◦ · · · ◦ αi(yi)

))

>R.

So we set

y =
n

∑

i=0
αn−1 ◦ · · · ◦ αi(yi). �

18 An integrated maximum principle for convex symplectic domains

We establish a maximum principle for compact symplectic manifolds (M,Ω) with
boundaries of a slightly weaker form than those of convex symplectic domains.

Definition 18.1. A compact symplectic manifold with boundary (M,Ω) is a weakly
convex symplectic domain if the following hold.

(i) There exists a collar neighborhood N(∂M) of the boundary that is symplec-
tomorphic to the (bottom half of the) symplectization of a stable Hamiltonian
structure (Ω|∂M , α) on ∂M for some 1-form α on ∂M .

Using the identification with the symplectization, the radial/collar coordinate is

r : N(∂M)∼= (0,1]× ∂M → (0,1].

The associated Liouville 1-form on M is λ= r · α.

(i) There exists an Ω-compatible almost complex structure J on M such that
on N(∂M),

a) −df ◦J = λ for some function f (dependent on J) in r with f ′(r)> 0,
and

b) dα|ξ(·, J ·) is semi-positive definite on ξ.

Denote a weakly convex symplectic domain by (M,Ω, λ). Finally, an almost complex
structure J as above is weakly admissible for the tuple (M,Ω, λ).

Remark 18.2. A convex symplectic domain is a weakly convex symplectic domain.
We could have phrased all of our Floer theoretic constructions, arguments, and
properties in terms of weakly convex symplectic domains. In particular, we could
define action completed symplectic cohomology for these domains. The additional
assumptions for convex symplectic domains are not (vitally) used in any of our
constructions or arguments. We introduce these weakly convex symplectic domains
now because we need this weaker notion of convexity and its associated integrated
maximum principle when we deform our rescaled almost complex structure in our
rescaling argument, see Sect. 10.



GAFA SECTIONS AND UNIRULINGS OF FAMILIES OVER P
1

The usage of some flavor of the convexity is standard in pseudo-holomorphic curve
theory since it gives maximum principles for pseudo-holomorphic curves. Our’s is no
exception.

Notation 18.3. (i) Let (M,Ω, λ) be a weakly convex symplectic manifold.
(ii) Let Js be an R-family of admissible almost complex structures for this tuple.

We assume that −df ◦Js = λ for a single function f (as opposed to some family
fs).

(iii) Let H :R× S1 ×M →R be a family of Hamiltonians such that Hs|N(∂M) = hs,
where hs is a family of radial functions in r that satisfies ∂s∂rhs ≤ 0.

(iv) Let u :R× S1 →M be a smooth map that satisfies

0 = (du−XH ⊗ dt)0,1.

We now give our integrated maximum principle for weakly convex symplectic
domains. It is inspired by the integrated maximum principle in [AS10, Sect. 7] and
the maximum principle in [Sei08, Section (3c)]. In our case, the exterior derivative
of the Liouville 1-form need not be the symplectic form and so some variant of the
argument is required.

Proposition 18.4. If

lim
s→±∞

r ◦ u(s, t) = c± < 1,

then r ◦ u≤ max(c±). Moreover, if ∂r∂rhs ≥ 0, then r ◦ u≤ c+, and if c− = c+, then

r ◦ u is constant.

Proof. For the first statement, since f satisfies f ′(r) > 0, it suffices to show if
lims→±∞ f ◦ u(s, t) ≤ f(c±), then f ◦ u ≤ max(f(c±)). As in [Sei08, Section (3c)],
one finds

Δ(f ◦ u) =−d(df ◦ du ◦ j)≥ −r · ∂r∂rhs

f ′(r)
· ∂s(f ◦ u).

So f ◦ u satisfies a maximum principle, giving the first claim.
For the second part, assume by way of contradiction that c− > c+. So f ◦ u ≤

f(c−). For each fixed s,
∫ 1

0
∂s(f ◦ u)(s) dt=

∫ 1

0
λ(∂tu−XH)(s) dt

=
∫ 1

0
λ(∂tu)(s)− (∂rhs(u) · r(u))(s) dt

≥
∫ 1

0
r ◦ u(s) · ∂rhs(c−)− (∂rhs(u) · r(u))(s) dt

≥ 0
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The first inequality follows from Stokes’ Theorem, and the positivity of u∗dα. The
second inequality follows from the assumptions that ∂s∂rhs ≤ 0, ∂r∂rhs ≥ 0, and the
fact that ∂s(r ◦ u) must be non-positive near lims→−∞ u(s, t). So the average value
of ∂s(f ◦ u)(s) on each s-slice of the domain of u is positive. Thus, f ◦ u must be
constant, which implies that c− = c+, a contradiction.

For the final statement, if c− = c+, then the above argument (does not lead to a
contradiction but instead) implies that r ◦ u is constant, as desired. �

19 Stable displaceability of neighborhoods of divisors

The reader should recall the definition of stably displaceability from Definition 6.7.
Here we will discuss and prove the following.

Lemma 19.1. Let π : M → C be a proper surjective morphism of smooth, quasi-

projective varieties. Given a Kähler form Ω on M , any fibre of π is stably displaceable

in (M,Ω).

Lemma 19.2. Let (M,Ω) be a symplectic manifold with a proper surjective map

π : M → C that is submersive on a punctured neighborhood of the origin. If π−1(0)
is stably displaceable in (M,Ω), then there exists ε > 0 such that π−1(Dε) is stably

displaceable in (M,Ω).

Combining Lemma 19.1 and Lemma 19.2, we obtain the following.

Corollary 19.3. Let π :M →C be a proper surjective morphism of smooth, quasi-

projective varieties. Given a Kähler form Ω on M , there exists ε > 0 such that

π−1(Dε) is stably displaceable in (M,Ω).

Proof. By Lemma 19.1, π−1(0) is stably displaceable in (M,Ω). Since π is surjective,
the critical values of π are isolated. So π is submersive in a punctured neighborhood
of the origin. Applying Lemma 19.2 gives the desired result. �

Lemma 19.1 follows immediately from a result of McLean:

Theorem 19.4 ([McL20, Corollary 6.21]). Every proper, positive codimension subva-

riety of a Kähler manifold is stably displaceable.

Lemma 19.2 follows from point-set topology.

Lemma 19.5. Let f : Y →X be a continuous surjective proper map of metric spaces.

Let U ⊂ Y be an open subset and suppose D ⊂ U with f−1(f(D)) = D. If f(U �D)
is open, then f(U) is open.

Proof. First, if x ∈ f(U)�f(D)⊂ f(U�D), then since f(U�D) is open there exists
an open subset V ⊂ f(U �D) ⊂ f(U) that contains x. Consequently, x is an interior
point of f(U).

Second, suppose that x ∈ f(D). Suppose by way of contradiction that it is not
an interior point of f(U). There must exist xn ∈ B1/n(x) � f(U) for each n ∈ N.
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Since f is surjective, there exists yn ∈ f−1(B1/n(x)) � U . Since f is proper, the
yn are contained in the compact subset f−1(B1(x)). Passing to a subsequence and
relabeling, the sequence yn converges to some point y. By continuity, f(y) = x and
thus y ∈D. Since U is an open subset containing D, we must have that yn ∈ U for
n� 0, a contradiction. Consequently, each x ∈ f(D) is an interior point of f(U). So
all the point of f(U) are interior points. �

We prove Lemma 19.2.

Proof. By assumption, π−1(0) is stably displaceable. So π−1(0) × S1 ⊂ M × T ∗S1

is Hamiltonian displaceable. Since π−1(0)× S1 ⊂M × T ∗S1 is a compact subset, it
admits an open neighborhood which is Hamiltonian displaceable. After shrinking said
open neighborhood, assume it is a product U1 × U2 ⊂M × T ∗S1. By Lemma 19.5,
π(U1) is open. So find ε > 0 such that Dε ⊂ π(U1). Now π−1(Dε)×S1 is contained in
the Hamiltonian displaceable subset U1×U2 and thus π−1(Dε) is stably displaceable.

�
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